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Controlling crystal growth is a challenge across numerous industries, as the functional properties of
crystalline materials are determined during formation and often depend on particle shape. Current
approaches rely on expensive, time-consuming experimental studies complemented by exhaustive
parameter space simulations, creating significant computational and analytical burdens. Despite
machine learning advances in crystal growth for structure-property relationships, applications
targeting morphological control remain underdeveloped. Here, we demonstrate how disentangling
autoencoders combined with particle aspect ratio and spherical harmonics descriptors can enhance
simulation workflows for crystal growth. This approach reveals continuous transformation pathways
between different crystal morphologies whilst preserving underlying crystallographic principles. Our
method significantly reduces data analytics burdens, shortens design study timelines, and deepens
understanding of crystal shape control. This framework enables more efficient exploration of possible
crystal morphologies, facilitating the targeted design of crystalline materials with specific functional
properties.

The crystalline state is central to a significant proportion of the functional
materials utilised in our daily lives, whether in pharmaceutical formulations
for medicines such as aspirin or paracetamol, the semiconducting silicon
found inside our computers, or ‘green’materials used for hydrogen storage
or carbon dioxide removal. Crystallinematerials are produced, or grown, in
the lab or at an industrial scale through processes that exploit state change.
Individual growthunits, typically ionsormolecules, are added in ablock-by-
block fashion from a solution,melt, or the gas phase. The precise design and
control of crystallisation processes concern a range of factors operating at
different length scales. The shape (or morphology) of a crystal is a key
mesoscale property established at formation that can affect its overall
functionality. In the case of molecular crystals comprising active pharma-
ceutical ingredients, crystal morphology directly influences properties such
as dissolution rates and bioavailability, which in turn impact a drug’s
effectiveness1–4.

Typically, crystal growth studies comprise expensive and time-
consuming high-throughput experimental screening. However, physics-

based modelling is increasingly used at different scales, such as ab initio
methods to model materials at the quantum level, molecular dynamics to
map the evolution of thermodynamic processes involved in crystal growth,
or (kinetic) Monte Carlo modelling to simulate the growth of surfaces or
whole crystals at atomic resolution. An example of the latter is the Crys-
talGrower package5–9. Using only a limited set of input parameters, a coarse-
grained representation of a crystal’s morphology, surface topography, and
layer-by-layer growth can be produced on a desktop computer. This can be
correlated with experimental results to provide insight into formulation
problems and point towards appropriate experimental parameter changes.
However, to fully explore even a limited parameter space, tens of thousands
of simulations are typically required. This results in large volumes of
complex image-based and numerical point cloud data, which are manually
analysed. This data burden can prove time-consuming, as useful or relevant
data can lie hidden within the parameter space.

Within the last decade, machine learning (ML) methods have made a
significant impact in the field of molecular and materials science10,11.
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Specifically, in the field of crystal growth, one of the earliest examples used
artificial neural networks and discriminant factorial analysis to classify
crystal shapes, finding both methods equally effective in utilising Fourier
descriptors and morphological parameters for automated shape recogni-
tion, but using a small dataset of 158 real particles12. Modern, data-driven
approaches utilising structural databases or molecular descriptors have
primarily explored structure-property relationships to aid the prediction of
morphologies of pharmaceutical crystals13, the probability of co-crystal
formation14, the estimation of crystalline density from chemical structure15,
and the development of a particle informatics workflow16. ML has also
served as an emergent tool in crystal structure prediction, having been
shown to distinguish chemical elements based on coordination topology in
large crystallographic datasets, predict crystal structures with high accuracy
across diverse compounds while reducing computational costs, enhance
quantum mechanical calculations through data-efficient approaches,
replace expensive density functional theory calculations by actively learning
on-the-fly, and accurately predict thermal behaviour through anisotropic
displacement parameters using graph neural network architectures17–21. It
has also seen application in solving the crystallographic phase problem,
reducing the volume of data needed to resolve the structure of weakly
scattering crystals22. Large language models (LLMs) have been successfully
utilised to generate plausible crystal structures for inorganic materials by
training onCIFs, achieving competitive performancewith existingmethods
while offering unique advantages in flexibility and space group-constrained
generation23. Methods that lean towards the process side of crystal engi-
neeringhavebeendeveloped, including investigatingAl-Cualloynucleation
in situ by combining synchrotron X-ray radiography and ML24, predicting
interstitial oxygen concentration in Czochralski Si growth25, and deter-
mining the optimal synthetic conditions as part of a high-throughput per-
ovskite discovery workflow26. Machine learning force fields (MLFFs) and
interatomic potentials (MLIPs) have also seen application in studying far
from equilibrium liquid-to-crystal Si growth and crystal defects27. Fur-
thermore, in combining simulation and atomistic modelling with ML,
effects such as structural ordering at the solid-liquid interface and atomic
dynamics at grain boundaries have been investigated28,29.

Other studies have explored the use of ML in applications concerning
particle shape outside of the crystal growth domain. Convolutional neural
networks have been utilised in the prediction of packing density and
flowability of non-spherical particles via the analysis of shape features30,
whilst image processing and neural network methodology have been
developed to characterise the size distribution of gravel particleswith a focus
on particle boundary delineation and shape feature extraction31. In addition,
variational autoencoder (VAE) methodology has been used to extract
morphological features from primate mandible imaging data for automatic
classification and reconstruction32. Whilst it is now generally accepted that
ML is able to facilitate both the prediction of crystal structures and key
physicochemical properties, there remains space for its use inpredicting and
understanding the range of morphologies available experimentally33.

Spherical harmonic shape descriptors (SHSDs) have provided an
alternative, effective means of describing shapes, albeit one that can be
considered more complex. SHSDs have been used in computer vision for
3D shape recognition34,35 and have proved extremely useful in shape-
matching applications36. The use of SHSDs, mainly as rotationally invariant
formalisations, is observed in chemical and biological domains, an example
being where the shapes ofmolecules, proteins, or cells have been successfully
described37–39. Within evolutionary biology, spherical harmonics have been
used to model the shapes of complex morphological structures from con-
tinuous surface maps produced by imaging techniques, including computer
tomography and confocal microscopy40. By contrast, only a handful of
studies utilise SHSDs as particle shape descriptions. A spheroidal harmonics
approach has recently been demonstrated as an improvement over tradi-
tional spherical harmonics for shape analysis of oblate and prolate
particles41. SHSDs have also been used to characterise and simplify 3D
particle morphologies to quantify form, roundness, and roughness for more
accurate simulation of granular materials42. In combining spherical

harmonic analysis with X-ray micro-computed tomography, multiscale
morphological features of sand particles were successfully characterised43. By
using a range of frequency spaces (degrees 2–15), it was possible to effec-
tively represent shape, local angularity, and surface roughness. Finally, the
use of spherical harmonics in describing 3D (polygonal) single-crystal
shapes has recently been introduced for the comparison of experimental
data with simulation, the methodology of which is utilised as part of this
study7.

In this study, we combine a disentangling autoencoder (DAE)
approach with aspect ratio analysis and SHSDs to tackle the challenge of
classifying crystal shapes from large simulation datasets. We demonstrate
that this integration creates a framework for analysing crystalmorphologies
in a lower-dimensional latent space, preserving critical shape information
while enabling an intuitive visualisation of shape transitions. Our results
show that the latent space effectively encodes physically meaningful aspects
of crystal geometry that alignwith crystallographic principles, capturing key
relationships between simulation parameters and resulting morphologies.
This approach significantly reduces the analytical burdenof processing large
simulation datasets, provides continuous trajectories between different
shape classes, and reveals crystallographic constraints on morphology that
would be difficult to observe through traditional analysis methods. The
framework not only improves upon existing crystal growth simulation
workflows but also establishes a foundation for more efficient crystal shape
design and control.

Results
Crystal morphologies and particle shape descriptors
A crystalline solid is one that forms a three-dimensional array of its atoms,
ions, or molecules with average long-range order. This is a function of the
material’s innate molecular-level symmetry. For a given crystal structure,
the allowed facets, which are analogous to the faces of a given geometric
shape, depend on this symmetry. In addition, a system’s unique chemical
properties and external environmental factors, such as temperature or the
mother liquor composition, can affect the morphology expressed by a
particular crystal structure, whether the presence of certain faceting or the
relative proportions of different facet families.

The shape of a crystal can be definedusing a range of shape descriptors,
ranging from simple metrics such as sphericity44 to more complex
descriptors such as spherical harmonics36. Zingg proposed a method to
classify the shape of a particle based on the lengths of orthogonal length,
width, andheight axes, eachofwhich is classified as either short (S),medium
(M), or long (L)45. The same principle has been applied to classify crystals by
utilising paired or equivalent facets that form the opposing edges of the
crystal46. By calculating the aspect ratios between these, i.e. S:M and M:L, a
Zingg diagram can be created, with crystals falling into one of four cate-
gories: blocks, needles, laths, or plates, depending on the value of each aspect
ratio. This is shown in Fig. 1d as part of the overall particle simulation
workflow using CrystalGrower, which also demonstrates the proposed
DAE-based methodology and its integration in the workflow.

The advantages of using the spherical harmonics, Ylm(θ, ϕ), lie in the
completeness and orthonormality of the basis, albeit valid only to shapes
represented as a function of spherical coordinates where a one-to-one
mapping to the unit sphere is possible (restricted to star domains). Spherical
harmonic functions are indexed by the angular quantum number l and the
magnetic quantum number m47. These descriptors allow for setting the
highest order of l to be used for description, herein termed lmax. It follows
that the higher the lmax, the greater the number of higher-frequency features
of the shape are retained within the description.

Simulated crystal dataset preparation
The dataset used for training and testing theMLmodel was generated using
CrystalGrower, a kinetic Monte Carlo simulation tool designed to model
crystal growthwith nanoscopic resolution. Here, crystallisation is simulated
as a series of reversible transitions between a bulk growth medium and a
crystal surface. Starting from a .cif file of the crystal structure, the system is
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divided into afinite numberof surface site types basedon their geometrically
determined interactions with neighbouring sites, according to the Kossel
model of crystal growth48,49. The sum of these interactions, adjusted for the
energetic cost of solvent removal, defines the free energy of crystallisation
(ΔGs) for each site. Supersaturation (Δμ), temperature, and other para-
meters provide a thermodynamic basis for calculating the probabilities of
growth and dissolution events, which are implemented stochastically using
a Monte Carlo engine.

During a simulation, growth units replace displaced solvent molecules
on the crystal surface, creating distinct site types with varying energies. The
output includes a three-dimensional point cloud (.XYZ file) that describes
the positions of growth units, capturing the crystal’s full morphology and
surface topography at atomic or molecular resolution as well as thermo-
dynamic/site data. Assumptions such as immediate exchanges between
crystal and mother phases, unaltered growth unit orientations, and negli-
gible entropy differences between surface sites ensure consistency with
thermodynamic principles and allow for a coarse-grained representation of
crystal growth. By integrating these elements, this methodology offers a
robust platform for studying the interplay between kinetics and thermo-
dynamics in crystal growth, generating data for predictive modelling and
advanced analysis.

Tobuild an effective shape classificationmodel, it is important to create
a training dataset that exhibits a substantial degree of shape diversity. The
expression of different sets of facets, and thus particle shapes, is determined
by the simulation parameters, the variation ofwhich leads to their under- or
over-expression relative to one another. This means that multiple shapes
can occur within a given parameter space. However, not every shape
appearing in the parameter space will be observed experimentally, which is
why simulations are then validated using experimental data to pinpoint a
refined morphology and surface topography.

Owing to the generality of CrystalGrower, in that it can model the
growth of any crystal under a range of conditions, this meant selecting
chemical systems for which there was a range of known possible
morphologies across the thermodynamic parameter space. Thus, adipic

acid, benzamide form I, benzamide form III, L-cystine, urea, γ-glycine, and
paracetamol form I were selected to provide a diverse, somewhat generic
representation of crystal shapes. Whilst many of these systems were chosen
due to previous experience in their study within the group, urea, L-cystine
andγ-glycinewere specifically chosen to samplemolecular crystal structures
from outside the commonly observed monoclinic crystal system.

Table 1 details the crystallographic properties of the seven molecular
structures that comprise the trainingdataset.Whilst amajority of the chosen
structures are monoclinic, which is reflective of the distribution of space
groups in all known molecular crystal structures50, they show substantial
diversity both in their chemistry and crystallography. As shown in Fig. 2,
across the seven molecular systems, 16,522 simulations were carried out,
resulting in 5908 blocks, 4346 plates, 4625 needles, and 1643 laths. Variation
in the number of simulations per molecule originates from the span of the
individual molecular datasets. Tetragonal and hexagonal systems are highly
symmetrical, meaning there are fewer energy parameters that can be varied
to study the simulation space compared to the less symmetrical monoclinic
systems. Smaller increments in the energy parameters used to obtain the
molecular crystal datasets result in a denser parameter space with a greater
number of points. The simulation of lath-like shapes presented a unique
challenge in that these appear tobe amuch less commonshape formolecular
crystals to adopt. The inclusion of an alternative crystal packing (known as a
polymorph) adopted by benzamide (form III) was aimed at expanding the
dataset to add more examples of laths. This was successful, with this
structure representing a substantial proportion of the total lath simulations.

To follow the method developed by Zingg to classify the shapes of
crystals based on their 3D aspect ratios and provide a manual classification
of each structure for validation of the ML model, the dimensions of the
simulated crystals were measured. Two methods have been proposed for
this: principal component analysis (PCA)51 of the point cloud (.XYZ) data of
the crystal surface and crystallographic direction analysis (CDA)52, which
uses the perpendicular distances between parallel crystal surface planes.
Both are readily calculated from data within the CrystalGrower output files.
It should be noted that the latter presents a unique challenge as a crystal can

Fig. 1 | A typical CrystalGrower modelling workflow for investigating a crystal
system overlaid with the proposed disentangling autoencoder (DAE) workflow.
a Input crystallographic information file (CIF) with structural data, (b) generation of
a net of building units representing key interactions, (c) bulk simulations over a
parameter space which can be classified using Zingg/aspect ratio analysis (d), with
validation against experimental data (e.g., optical, electron, or atomic force

microscopy) leading to a refinedmorphology and nanoscale surface topography (e).
In the proposed DAE workflow, whole particle simulations (c) are first down-
sampled into voxel clouds (f), fed through the DAE architecture, and automatically
classified (g), thus better describing the parameter space, improving on and inte-
grating with existing simulation data analysis capabilities (h).
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exhibit multiple sets of surfaces/facets, thus the aspect ratio between any
three pairs of facets, in a given area of the parameter space, may not strictly
obey the S:M:L criteria as required by Zingg’s method. Thus, for this study,
the three largest principal components fromPCAwere used to calculate the
aspect ratios, as they provide a geometrically accurate and standardised
aspect ratio calculation. In this work, as all simulated crystal shapes are
simple convex polyhedra, an lmax of was chosen when applying spherical
harmonics descriptors to the data.

DAEs for crystal representation and reconstruction
Weuse aDAE architecture to learn interpretable representations in a small-
dimensional space, referred to as the latent space53. In contrast to other
autoencoder-based methodologies, the DAE enforces orthogonality in this
latent space to achieve disentangled representations, ensuring that each
latent variable captures an independent anddistinct factor of variation in the
data54. Whilst a number of linear unsupervised dimensionality reduction
techniques, such as PCA, are available, the nonlinear nature of the DAE
allows for capturingmore complex data representations. By employingboth
an encoder, which encodes the input data into the latent space, and a
decoder, which reconstructs the original inputs, the DAE cannot only learn
meaningful representations of the crystals but also reconstruct them from a
lower-dimensional representation and visualise the trajectories between two
crystals within it. Each of these abilities of the DAE will be reviewed in the
following subsections.

Reconstruction results
One of the metrics used to ensure that the proposed model learns
meaningful features in the latent space is to examine the quality of the
reconstructions of the original data when passed through the full
autoencoder architecture. High-quality reconstructions confirm that the
latent space includes meaningful and relevant information about the
crystal shapes, as the decoder arm can generate an accurate recon-
struction from the limited information contained within each data
point’s latent vector, which is of a substantially smaller dimensionality
when compared to the original input. To quantitatively assess the
reconstruction quality, we used two metrics: the Structural Similarity
Index (SSIM) and the normalised cross-correlation (NCC), both applied
to the 3D volumes of the crystal shapes. These metrics range from −1,
indicating complete dissimilarity, to 1, indicating perfect similarity. This
SSIM quantifies structural similarity by comparing luminance, contrast,
and structural information between the original and reconstructed
data55. Our model achieved an SSIM score of 0.8761. The NCC, which
assesses the alignment and similarity between the original and recon-
structed data, produced a score of 0.8129. Both scores indicate that the
reconstructions preserve a high degree of structural similarity with the
original data, suggesting that our model has successfully learned
meaningful features in the latent space. Figure 3 shows reconstruction
results for crystals of different chemical systems, crystal systems, and
shapes appearing in the dataset.

Table 1 | Crystallographic information of molecular structures: structural information for themolecular crystals comprising the
training dataset, acquired from ref. 66

Adipic acid Benzamide-I Benzamide-III L-cystine Urea γ-glycine Paracetamol-I

Structure

Formula C6H10O4 C7H7NO C7H7NO C6H12N2O4S2 CH4N2O C2H5NO2 C8H9NO2

CSD Refcode ADIPAC67 BZAMID0568 BZAMID0869 LCYSTI1470 UREAXX0271 GLYCIN0172 HXACAN0173

Z 2 4 4 12 2 3 4

Z’ 0.5 1 1 0.5 0.25 1 1

Space Group P21/a P21/c P21/c P6122 P421m P32 P21/a

Crystal System Monoclinic Monoclinic Monoclinic Hexagonal Tetragonal Hexagonal Monoclinic

a, b, c (Å) 10.07, 5.16, 10.03 5.57, 5.04, 21.70 5.06, 5.51, 22.96 5.41, 5.41, 55.96 5.59, 5.59, 4.69 7.04, 7.04, 5.48 12.93, 9.40, 7.10

α, β, γ (∘) 90.0, 137.1, 90.0 90.0, 90.4, 90.0 90.0, 101.3, 90.0 90.0, 90.0, 120.0 90.0, 90.0, 90.0 90.0, 90.0, 120.0 90.0, 115.9, 90.0

Fig. 2 | Shape distributions of the training dataset. a Grouped by crystal structure, and (b) by particle shape as defined by the Zingg classification.
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Analysis of latent dimensions
By analysing the latent space and the latent vectors contained within, we
explored the relationship between the latent dimensions and various geo-
metric characteristics of the crystal shapes.An effectiveMLmodel should be
able to capture geometric relationships between shapes appearing in the
dataset, even when the dimensionality of the data is reduced to that of its
latent vector.We selected a six-dimensional latent space for this architecture
after empirical evaluation. This choice ensures learning sufficient yet
minimal features to accurately reconstruct the input data. Specifically, we
examined the covariance between the six-dimensional latent variables and
quantitative shape descriptors, including the small-to-medium aspect ratio,
the medium-to-large aspect ratio, surface area, volume, and the surface-
area-to-volume ratio, as shown in Fig. 4a. Our findings indicate that
dimension 0 in the latent space shows a strong positive correlation with the
small-to-medium aspect ratio of the crystal shapes, which is 0.74. This
suggests that this latent dimension effectively captures variations in the
relative proportions of the small and medium axes within the crystals.
Furthermore, dimension 1 in the latent space shows a high correlation with
the medium-to-large ratio, being −0.88. This implies that dimension 1
predominantly represents variations related to the relative sizes of the
medium and large axes in the crystal shapes. Based on these findings, we
visualised the latent space using two dimensions that exhibit high correla-
tions with the small-to-medium and medium-to-large aspect ratios, which
are geometric characteristics used to describe shape. Figure 5a shows that
crystals from the same shape class tend to cluster together, with some
overlaps between different shapes, although the boundaries are generally
well-defined. Figure 5b presents the same latent space but with points
labelled by the chemical system. Since each chemical system can include
multiple shapes, the labels inevitably overlap. Notably, urea appears not to
be well-clustered, which can be rationalised by the gradual change in
morphology from needles to plates that occurs along one axis as thermo-
dynamic parameters are varied.

We also utilised UMAP56 to map the six-dimensional latent vectors to
two-dimensional vectors for visualisation, as shown in Fig. 6. Since UMAP
uses all six dimensions, the resulting visualisation provides clearer bound-
aries between shapes when compared to using only two dimensions. Again,
urea appears as anoutlier, appearingprimarily at the edgeof themapping, or
as individual clusters separated from the main body of the latent space.

Furthermore, we conducted the same experiments using a β-VAE57

and visualised its latent space in the same manner as the DAE. These
mappings are presented in Supplementary Note 1. When considering the
two dimensions that exhibit high correlations with the small-to-medium
and medium-to-large aspect ratios, as shown in Supplementary Fig. S1, the
results appear similar to those of the DAE. However, when examining the
UMAP projection across all latent dimensions, as shown in Supplementary
Fig. S2, the DAE exhibits clearer clustering between different shapes, sug-
gesting that its orthogonal constraints help better distinguishmorphological
variations. Once again, urea does not appear well-clustered in the β-VAE.

Comparison with spherical harmonics descriptors
From Fig. 4b, we are able to derive important relationships between the
spherical harmonic coefficient space, the autoencoder latent space, and their
relationship to physical shape metrics observed in Fig. 4a. Since each
spherical harmonic coefficient can be described by its two quantum num-
bers l and m, each coefficient is indexed as Ym

l . The first six spherical
harmonic coefficients (real, m ≥ 0) referenced in Fig. 4b (Mag0→5) thus
represent Y0

0, Y
0
1, Y

1
1, Y

0
2, Y

1
2 and Y

2
2.Mag0, being the unit sphere, therefore

represents the average particle radius.Mag1 andMag2 represent dipole-like
shape asymmetries; for example, Mag1 informs on the span of the shape
along the Cartesian Z axis, whereas Mag2 informs on the particle’s span
along the Y axis. Mag3→5 represents quadrupolar shape features such as
elongation or flattening in specific directions. Specifically,Mag3 represents
elongation along Z with contraction in the XY plane, whileMag4 andMag5
relate to the particle’s size in the YZ diagonals and along the XY directions,

Fig. 3 | Comparison between input and reconstructed crystals. Reconstruction results demonstrating (a) input crystals, and (b) reconstructed crystals, with plate
morphologies coloured yellow, blocks blue, laths purple, and needles green.

Fig. 4 | Covariance between latent dimensions and geometric or harmonic shape
features. Covariance matrix between the six latent dimensions and (a) the ratio
between small and medium, the ratio between medium and large, surface area,

volume, and the ratio between surface area and volume, and (b) the magnitudes of
the first six spherical harmonics coefficients.
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respectively. These relationships are also evident in the reconstructions
presented in Supplementary Note 1.

Mag0 has the strongest correlation to any of the latent dimensions,
being both positively correlated with Dim0 and negatively correlated with
Dim1, but it only forms weak correlations with other latent dimensions. A
strong correlation is also seen in Mag5, where it exhibits a negative corre-
lation with several latent dimensions, indicating that the DAE latent space
encodes shape features in a way that is not aligned with the spherical har-
monics. Analysis shows that Dim0 and Dim1 exhibit the strongest correla-
tionswith the spherical harmonic coefficients. In particular,Dim0 andDim1

show strong correlations withMag0,Mag3, andMag5, suggesting these first
two latent variables capture primarily aspect ratio and overall size distor-
tions. This observation aligns with the results shown in Fig. 4a, supporting
the conclusion that these dimensions encode the most information about
aspect ratio. The latent dimensions (Dim3→6) show weak or mixed corre-
lations with different spherical harmonic terms, implying that they may
encodemore complex, nonlinear shape features. Again, this is also reflected
in Fig. 4a, where no strong correlation between the latter dimensions is seen
with respect to the chosen physical shape metrics. Overall, the presence of
strong correlations between specific spherical harmonics and DAE
dimensions suggests that certain latent variables effectively capture spherical
harmonic features. However, more controlled studies would be required to
accurately probe the overlap between these spaces.

Figure 7 provides an additional visualisation of the (66-dimen-
sional) spherical harmonic coefficient space, reduced to two dimen-
sions using UMAP. Compared to the β-VAE and DAE UMAP latent
spaces, in the spherical harmonic UMAP, the separation of points
based on crystal system or chemical system is less clear, and features
blurred boundaries. Whilst the DAE shows grouping of points
according to shape class in the form of broader regions rather than
sharply defined clusters, the spherical harmonic UMAP also forms
comparatively well-defined regions compared to that of the β-VAE
latent space.

Interestingly, the β-VAE space forms distinct clusters based on che-
mical systems, whilst both the spherical harmonic space and the DAE
UMAP space seemingly retain less information on structure-shape rela-
tionships. To further rank these models would require additional metho-
dological considerations beyond the scope of this study. Another minor
observation is that block-shaped crystals appear to form a tighter group,
which may be related to the ability of SHSDs to describe shapes that are
morphologically closer to a sphere more accurately. Overall, these visual
assessments allow for a qualitative understanding of the different shape
descriptor models. For example, it becomes clear that both the DAE and β-
VAE representations are able to encode important shape features in fewer
dimensions compared to a physics-based descriptor such as spherical
harmonics.

Fig. 5 | Visualisation of the latent space using the
first two dimensions from the DAE. a Labelled by
shape, and (b) labelled bymaterial. Additionally, the
latent space is visualised according to crystal sys-
tems, namely, (c) Hexagonal, (d) Monoclinic, and
(e) Tetragonal.
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Morphological dependency on crystal system
Given that crystal structures have a limited set of allowed shapes based on
their underlying symmetry, the output of the DAE can be further investi-
gated and verified through comparison to results expected from crystal-
lographic theory. The crystal systems for all crystal structures studied are
summarised in Table 1, with a total of three different systems across the
dataset: hexagonal, monoclinic, and tetragonal. Figure 5b–e demonstrates
how filtering the data from the first two dimensions of the latent space can
provide additional insight into crystal morphologies.

Figure 5c–e demonstrates that the model does follow the expected
outcomes from crystallography. Hexagonal and tetragonal crystal systems
both show no lath morphologies, which is expected due to the two axes of
the crystal system being of equal length, which only allows for asymmetric
variation along one axis for observedmorphologies. Inmonoclinic systems,
however, all axes are of unequal length, meaning that each axis can vary
asymmetrically when a crystal is grown, reflected by the appearance of lath
morphologies in the latent space mappings.

Of note is the near absence of plate morphologies in the hexagonal
systems (Fig. 5c, L-cystine and γ-glycine), which intuitively should appear as
a block flattened along the variant axis, compared to a needle, which is
simply an extension along the same axis. This absence can be attributed to
the angle (γ) between the equivalent a and b axes in the crystal system,
which is 120° rather than the orthogonal 90° seen in tetragonal systems

(Fig. 5e, urea). As PCA will use a set of orthogonal Cartesian axes derived
from the lengths of the particle point cloud, these can vary from the unit cell
axes in fractional space. For a cubic particle, the short, medium, and long
PCA axes would correspond to the edge of a cube (a), the diagonal across a
cube face (

ffiffiffi

2
p � a), and the body-diagonal across the cube (

ffiffiffi

3
p � a),

respectively. A cubic particle would therefore be classed as a block in the
Zingg system, due to the S:M andM:L aspect ratios both being greater than
0.66. However, for a hexagonal system, the square particle faces become
rhombuses, meaning there are multiple face-diagonal distances caused by
the acute and obtuse angles of the rhombus (a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ 2cosα
p

and
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� 2cosα
p

where α = 60°). The body-diagonal becomes longer, and the
shorter of the face-diagonal lengths shrinks relative to the edge length.
Therefore, the “long" length as defined by Zingg is likely to be extended
relative to the other lengths, causingmore crystals to be classified as needles
rather than plates or blocks. Needles and blocks are well represented in the
tetragonal system, supporting the conclusion that this effect is driven by the
angle in the unit cell, rather than the unequal axis lengths.

In contrast to the monoclinic systems (Fig. 5d), which comprise the
bulk of the data, the hexagonal and tetragonal systemmorphologies tend to
cluster at the edges of the plot. Again, this is a reflection of the number of
degrees of freedom available to the materials within these crystal systems,
with smoother transitions between morphologies. Urea is the main outlier,
with morphologies that push into the lath region of the plot (Fig. 5b).

Fig. 6 | Visualisation of the UMAP projection of
the six-dimensional latent space from the DAE. a
Labelled by shape and (b) labelled by material.
Additionally, the same UMAP projection is visua-
lised according to crystal systems, namely, (c)
Hexagonal, (d) Monoclinic, and (e) Tetragonal.
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This was attributed to the rapid transition from plates to needles in this
system within the dataset when changing the free energy of crystallisation
(ΔGs) parameters. TheUMAPprojection in Fig. 6e also shows the tendency
for urea morphologies to separate from the bulk of the data, which may be
evidence of poor clustering. However, the separation of the hexagonal and
tetragonal morphologies from monoclinic already provides additional
information when compared to aspect ratio analysis alone.

It was hypothesised that differences could be observed between the
two forms of benzamide, as form I could be considered a quasi-
orthorhombic crystal system, in that the angles of its unit cell are all close
to 90°, demonstrating that there are even borderline classification cases in
fundamental crystallographic theory. Despite this, both polymorphs
distribute similarly throughout the latent space, as all cell axes are of
unequal length, meaning both possess the same number of degrees of
freedom for their respective monoclinic and orthorhombic forms.
However, for more crystallographically distinct polymorphs, greater
separation would be expected.

Shape evolution trajectories
The use of an autoencoder-based methodology allows for the ability to not
only capture the complex relationships between different crystal shapes in
the latent space, but also to visualise the trajectories of transformations from
one shape or class to another. By identifying the centre of each shape class

(plate, lath, block, and needle) in the latent space, we can use the decoder to
reconstruct the trajectories that represent the smooth transition between
these shapes. In Fig. 8, we present the trajectories of changes fromone shape
class to another within the latent space. These trajectories provide insight
into the continuous morphing process between different crystal shapes,
whichwouldbedifficult toobserveorquantifydirectly in theoriginal feature
space. Point cloud data alone, even when analysed by aspect ratio, cannot
capture the broader geometric and crystallographic patterns that emerge
across the entire dataset. The DAE approach overcomes this limitation by
uncovering the fundamental relationships between different data points
and, by extension, crystal morphologies, thus providing a global measure of
similarity across the dataset. To further quantify these shape transforma-
tions, we introduce Figure 9, which depicts the evolution of aspect ratio
along these shape class trajectories. Each subfigure in Fig. 9 directly corre-
sponds to its counterpart in Fig. 8. By incorporating quantitative measures,
Fig. 9 complements the visualised trajectories in Fig. 8, offering deeper
insights into the structural changes that occur as crystals transition between
different shape classes. The quantitative changes in S:M and M:L aspect
ratios across trajectories correspond to those expected according to Zingg
analysis, and thus provides the magnitude of change across individual
trajectories.

By visualising these shape transformation trajectories, our model
proves applicable not only to dimensionality reduction but also in revealing

Fig. 7 | Visualisation of the UMAP projection of
the spherical harmonic coefficients. a Labelled by
shape, and (b) labelled bymaterial. Additionally, the
same UMAP projection is visualised according to
crystal systems, namely, (c) Hexagonal, (d) Mono-
clinic, and (e) Tetragonal.
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how crystal morphologies systematically evolve across a given parameter
space. Such transitions between shapes or their classes could provide
insights formechanism studies when analysing bulk simulations of a single-
crystal system.This is because a given trajectorywould followchanges inone
or more simulation parameters, which are physically interpretable accord-
ing to the CrystalGrower model.

Discussion
We opted for a DAE over the β-VAE58 because the DAE is specifically
designed for disentanglement by enforcing orthogonality in the latent
space. This orthogonality constraint ensures that the latent dimensions
remain independent, allowing for a clearer separation of features. By
contrast, due to their probabilistic nature, β-VAEs can sometimes pro-
duce overlapping latent variables, which leads to less distinct feature
separation, particularly when feature variances differ. We have shown
that two active features in the latent space are highly correlated with the
aspect ratios of the crystals. The third feature did not demonstrate a high
correlation with other physical quantities, such as the surface area or
volume of the crystals. It is possible that this feature could represent a
combination of multiple physical or geometric properties, which is why it

was not possible to find a direct correlation with any one of the physical
features provided in the dataset. In this work, the DAE architecture was
used to learn features for crystal shape analysis. However, because the
layers in the encoder and decoder were not explicitly designed to be
invariant to 3D voxel data, it was necessary to align the objects prior to
training. For future work, developing a model that incorporates equiv-
ariance and invariance to 3D rotations would allow for feature learning
directly from unaligned data. One possible route to achieving this could
be the use of group equivariant convolutional neural networks, which
would leverage the symmetries inherent in the data59,60. This could
improve generalisation and performance, particularly in tasks involving
arbitrary rotations of 3D shapes.

Additionally, in varying the various free energies of crystallisation,ΔGs,
that comprise the major thermodynamic simulation parameters, a range of
different shapes can be obtained. A drawback of Zingg’s methodology is the
idea of a hard numerical border between shape classifications when the
range of shapes appearingwithin a givenparameter space can be considered
continuous. It would be expected that variation along a particular para-
meter’s ’trajectory’ causes a transition between shape types, e.g., from block
to needle when such a parameter change causes elongation along one axis

Fig. 9 | Changes in particle aspect ratios across shape trajectories between crystal
class centres. Quantitative depiction of S:M and M:L aspect ratio evolution across
shape class trajectories between (a) lath and block classes, (b) lath and needle classes,

(c) needle and block classes, (d) plate and block classes, (e) plate and lath classes, and
(f) plate and needle classes.

Fig. 8 | Interpolated trajectories between crystal
morphologies in the latent space. Trajectories
depicting shape evolutions using the decoded latent
vectors appearing in the latent space between the
centres of (a) lath and block classes, (b) lath and
needle classes, (c) needle and block classes, (d) plate
and block classes, (e) plate and lath classes, and (f)
plate and needle classes, with plate morphologies
coloured yellow, blocks blue, laths purple, and
needles green.
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only. As shown in the shape distribution pie charts provided in Fig. 2, an
example of this would be glycine, where only block- or needle-like
morphologies are observed. Such an effect could explain the predominant
appearance at the edge of the latent spacemappings. Conversely, in the case
of urea, a majority plate system, a more limited range of accessible shapes
within the parameter space may explain the sparsity seen in the tetragonal
latent space mappings, although further investigation would be needed to
confirm this.

It is also possible that a number of different shapes, whilst distinct in
terms of faceting or overall geometry, may fall under a similar numerical
Zingg classification. This could be thought of in terms of the difference
between a cube and a rhombohedron, both of which would be classified as
blocks with broadly similar S:M and M:L aspect ratios >0.66, yet different
faceting and thus potentially dissimilar crystallochemical properties. By
using Zingg analysis alone, a crystallographic or chemical distinction
between these shapes cannot necessarily be made. However, by using the
DAEmethodology, onewould reasonably expect these two shapes to appear
distinct and separated in the latent space, thus giving a more useful overall
description of particle shape relative to the parameter space surveyed.

Furthermore, whilst it can be argued that the Zingg notation of block,
needle, plate, and lathcandescribe the vastmajority of shapes to an arbitrary
level of detail, their non-specificity means that the diversity and nuance in
morphologies comprising each category are not captured, as demonstrated
in this work. Future work could explore whether the DAE architecture
employed here would be able to classify the shapes comprising the training
dataset to the same level of accuracy, should a greater range of shape
descriptors of a higher specificity be utilised.

Another point to note is the lack of standardisation of crystal mor-
phology descriptors. In developing our dataset classification methodology,
we were required to rely on an appropriate albeit archaic classification,
namely particle aspect ratio (Zingg) analysis, which was first proposed in
1935. Although there are clear, mathematically derived conventions within
crystallography on molecular symmetry (space groups and point groups),
whichdirectly influence the allowedmorphologies of a given structure, there
is currently no equivalent universal standard for crystal shapes. Black and
Seton have recently highlighted the shortage of high-quality morphological
data for organic crystals, proposing a method to systematically link his-
torical data from P. von Groth’s Chemische Kristallographie with modern
crystal structures in the Cambridge Structural Database (CSD) bymatching
unit cells and storing the data in a standardised “morphology.cif” format 61.
Additionally, in data mining a major structural database, Wilkinson et al.
noted variations in the user-definedmorphological labels applied to entries
13. It remains to be seen whether consensus can be reached on how to best
describe crystal shapes in a manner compatible with existing databases and
practices within the field.

In the age of data-driven science, many different statistical or
dimensionality reduction techniques can be used in the analysis of large
and complex datasets. By utilising a kinetic Monte Carlo model with a
finite number of (directional) free energy parameters, tuning particle
morphology by adjusting experimental conditions to favour or disfavour
chemical interactions along these directions can result in greater control
over particle design and maximise relevant chemical performance.
Similarly, control over relative growth rates along directions corre-
sponding to different aspect ratios can make a range of previously
inaccessible morphologies producible. The DAE demonstrated here is a
substantial improvement on existing simulation analysis workflows,
which currently produce individual Zingg diagrams based on each free
energy of crystallisation (ΔGs) parameter and do not provide a wider,
global context of how data points are clustered.

When the DAE is employed, significantly more complex relationships
lying within the dataset, whether geometric or crystallographic, can be
elucidated, and a relativemeasure of similarity/dissimilarity between shapes
appearing in the parameter space is providedvia latent spacemappings. The
results presented in this paper prove that additional, relevant insight into
crystal growth processes can be gained via the use of ML and SHSDs.

Methods
CrystalGrower simulations
Each simulated crystal in the dataset was run for 3,000,000 iterations (where
each iteration corresponds to a single growth or dissolution event) at 25 °C.
Energy parameters for interactions within the crystal structures were varied
to produce crystals adopting a diverse set of morphologies for study. A high
value (100 kcal mol−1) of the thermodynamic driving force, Δμ, was set for
over two-thirds of the simulation run to ensure the growth of a sufficiently
large crystal for study, before equilibrating over the course of a 100,000
iterationperiod and remaining at equilibrium for thefinal 400,000 iterations
to reachanequilibriumshape.Datawereoutput in .XYZpoint cloud format,
which was then normalised to give a coordinate set in the range of 0–1.

Crystal growth simulations of glycine and paracetamol form I were
carried out using CrystalGrower 1.4.0 (Linux) on the CSF3 (Computational
Shared Facility 3) at The University of Manchester, composed of Intel
Haswell, Broadwell, or Skylake cores. Crystal growth simulations of all other
systems were carried out using CrystalGrower 1.4.0 (Linux) on the CSF4
(Computational Shared Facility 4) at The University of Manchester, com-
posed of Intel Cascade Lake CPUs.

Individual CrystalGrower calculations were performed in serial, with
simulation batches spread over CPU cores by the job scheduling systems
(Sun Grid Engine - SGE on CSF3, and SLURM on CSF4).

Dataset conversion for model input
UsingPython, the .XYZoutput of the simulated crystal surfacewas read into
a 2D array. The centre of the point cloud was moved to the origin of the
coordinate system, and the centred set of vertices was normalised by
dividing each vertex by the maximum Euclidean norm of all centred ver-
tices. The Python package scikit-learn62 was used to execute PCA on the
normalised vertices, and the ratio of the singular values of each of the
components was used as the S:M:L aspect ratio. This alignment is necessary
because our model is based on 3D-convolutional layers, which are not
rotationally equivariant or invariant. A shape file was produced for each
simulation containing the crystal’s shape label (block, lath, needle, or plate)
and the numerical S:M and M:L aspect ratios. The QHull algorithm63 was
used to calculate a convexhull of the simulated crystal shape, fromwhich the
surfacearea andvolumewere calculated.These parameters, plus a calculated
surface area/volume (SA/Vol) ratio, were included in the shape file as other
potentially useful features for shape description.

The raw point clouds usually lack neighbourhood structure, making it
difficult to extract semantic, geometric, or topological information from
images. Voxels, by contrast, are abstracted 3D units with pre-defined
volumes, positions, and attributes, which naturally encode the spatial dis-
tribution of 3D shapes. Therefore, the .XYZ data was converted to voxel
format. Pad zero values were added to the edge of each voxel cloud to ensure
all voxels were of the same size. Voxel clouds were then downsampled to a
sizeof 32 × 32 × 32byapplying amax function tonon-overlappingblocksof
the voxel. Thiswas doneusing the block_reduce function in the scikit-image
library in Python.

Model construction
A DAE architecture with 3D-convolutional layers is used to learn disen-
tangled representations of the range of crystal shapes. TheDAEarchitecture
enforces orthogonality constraints on the latent variables through Euler
encoding transformation, ensuring linear independence between dimen-
sions in the representation space53. By reconstructing the original inputs
through the decoder network, the method ensures that the latent variables
represent the input data in a lower-dimensional latent space with minimal
correlation between features.

The model architecture and training regime are outlined in Supple-
mentary Notes 3 and 4, respectively. The model was trained using a single
NVIDIA Tesla V100 GPU from the PEARL system at the Science and
Technology Facilities Council (STFC), which consists of two NVIDIA
DGX-2 nodes. The code was implemented with PyTorch, which enabled
efficient GPU acceleration.
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Spherical harmonics descriptors
Throughout this study, the method introduced by Spackman in describing
Hirshfeld surfaces has been utilised to describe the simulated 3D crystal
shapes7,64,65. CrystalGrower simulations in point cloud formwere processed
in Python to obtain the spherical harmonic coefficients for each simulation.
The convex hull of each simulated crystal shape, represented as a 2D
coordinate array, was computed using the QuickHull algorithm imple-
mented in the SciPy package63. Using the equations of the hull, the chmpy
Python package was then used to calculate the spherical harmonic coeffi-
cients representing the shape. Thenumber of spherical coordinates sampled
and the number of calculated coefficients directly correlate to the lmax

parameter.
Spherical harmonicdecompositionof the crystal shapeswas conducted

with a truncation parameter lmax = 10, consistent with established protocols
for shape-matching applications in the literature. This is presented visually
in SupplementaryNote 1. It is important to note that the spherical harmonic
coefficients obtained are described in a consistent Cartesian coordinate
system. Any comparisons made between the coefficients were direct com-
parisons of the real spherical harmonic coefficients without any rotational
invariance.

Data availability
Datasets (in voxel format used for model training) relating to this work are
available on request from the corresponding authors or CrystalGrower Ltd.
(team@crystalgrower.org).

Code availability
Code relating to this work is available at https://github.com/stfc-sciml/
crystal_dae.
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