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Controlling crystal growth is a challenge across numerous industries, as the functional properties of
crystalline materials are determined during formation and often depend on particle shape. Current
approaches rely on expensive, time-consuming experimental studies complemented by exhaustive
parameter space simulations, creating significant computational and analytical burdens. Despite
machine learning advances in crystal growth for structure-property relationships, applications

targeting morphological control remain underdeveloped. Here, we demonstrate how disentangling

autoencoders combined with particle aspect ratio and spherical harmonics descriptors can enhance
simulation workflows for crystal growth. This approach reveals continuous transformation pathways
between different crystal morphologies whilst preserving underlying crystallographic principles. Our
method significantly reduces data analytics burdens, shortens design study timelines, and deepens
understanding of crystal shape control. This framework enables more efficient exploration of possible
crystal morphologies, facilitating the targeted design of crystalline materials with specific functional

properties.

The crystalline state is central to a significant proportion of the functional
materials utilised in our daily lives, whether in pharmaceutical formulations
for medicines such as aspirin or paracetamol, the semiconducting silicon
found inside our computers, or ‘green’ materials used for hydrogen storage
or carbon dioxide removal. Crystalline materials are produced, or grown, in
the lab or at an industrial scale through processes that exploit state change.
Individual growth units, typically ions or molecules, are added in a block-by-
block fashion from a solution, melt, or the gas phase. The precise design and
control of crystallisation processes concern a range of factors operating at
different length scales. The shape (or morphology) of a crystal is a key
mesoscale property established at formation that can affect its overall
functionality. In the case of molecular crystals comprising active pharma-
ceutical ingredients, crystal morphology directly influences properties such
as dissolution rates and bioavailability, which in turn impact a drug’s
effectiveness'™.

Typically, crystal growth studies comprise expensive and time-
consuming high-throughput experimental screening. However, physics-

based modelling is increasingly used at different scales, such as ab initio
methods to model materials at the quantum level, molecular dynamics to
map the evolution of thermodynamic processes involved in crystal growth,
or (kinetic) Monte Carlo modelling to simulate the growth of surfaces or
whole crystals at atomic resolution. An example of the latter is the Crys-
talGrower package™. Using only a limited set of input parameters, a coarse-
grained representation of a crystal’s morphology, surface topography, and
layer-by-layer growth can be produced on a desktop computer. This can be
correlated with experimental results to provide insight into formulation
problems and point towards appropriate experimental parameter changes.
However, to fully explore even a limited parameter space, tens of thousands
of simulations are typically required. This results in large volumes of
complex image-based and numerical point cloud data, which are manually
analysed. This data burden can prove time-consuming, as useful or relevant
data can lie hidden within the parameter space.

Within the last decade, machine learning (ML) methods have made a
significant impact in the field of molecular and materials science'®'".
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Specifically, in the field of crystal growth, one of the earliest examples used
artificial neural networks and discriminant factorial analysis to classify
crystal shapes, finding both methods equally effective in utilising Fourier
descriptors and morphological parameters for automated shape recogni-
tion, but using a small dataset of 158 real particles”. Modern, data-driven
approaches utilising structural databases or molecular descriptors have
primarily explored structure-property relationships to aid the prediction of
morphologies of pharmaceutical crystals”, the probability of co-crystal
formation', the estimation of crystalline density from chemical structure”’,
and the development of a particle informatics workflow'’. ML has also
served as an emergent tool in crystal structure prediction, having been
shown to distinguish chemical elements based on coordination topology in
large crystallographic datasets, predict crystal structures with high accuracy
across diverse compounds while reducing computational costs, enhance
quantum mechanical calculations through data-efficient approaches,
replace expensive density functional theory calculations by actively learning
on-the-fly, and accurately predict thermal behaviour through anisotropic
displacement parameters using graph neural network architectures”” . It
has also seen application in solving the crystallographic phase problem,
reducing the volume of data needed to resolve the structure of weakly
scattering crystals™. Large language models (LLMs) have been successfully
utilised to generate plausible crystal structures for inorganic materials by
training on CIFs, achieving competitive performance with existing methods
while offering unique advantages in flexibility and space group-constrained
generation”’. Methods that lean towards the process side of crystal engi-
neering have been developed, including investigating Al-Cu alloy nucleation
in situ by combining synchrotron X-ray radiography and ML, predicting
interstitial oxygen concentration in Czochralski Si growth™, and deter-
mining the optimal synthetic conditions as part of a high-throughput per-
ovskite discovery workflow’. Machine learning force fields (MLFFs) and
interatomic potentials (MLIPs) have also seen application in studying far
from equilibrium liquid-to-crystal Si growth and crystal defects”. Fur-
thermore, in combining simulation and atomistic modelling with ML,
effects such as structural ordering at the solid-liquid interface and atomic
dynamics at grain boundaries have been investigated™”’.

Other studies have explored the use of ML in applications concerning
particle shape outside of the crystal growth domain. Convolutional neural
networks have been utilised in the prediction of packing density and
flowability of non-spherical particles via the analysis of shape features™,
whilst image processing and neural network methodology have been
developed to characterise the size distribution of gravel particles with a focus
on particle boundary delineation and shape feature extraction’. In addition,
variational autoencoder (VAE) methodology has been used to extract
morphological features from primate mandible imaging data for automatic
classification and reconstruction®’. Whilst it is now generally accepted that
ML is able to facilitate both the prediction of crystal structures and key
physicochemical properties, there remains space for its use in predicting and
understanding the range of morphologies available experimentally™.

Spherical harmonic shape descriptors (SHSDs) have provided an
alternative, effective means of describing shapes, albeit one that can be
considered more complex. SHSDs have been used in computer vision for
3D shape recognition™” and have proved extremely useful in shape-
matching applications™. The use of SHSDs, mainly as rotationally invariant
formalisations, is observed in chemical and biological domains, an example
being where the shapes of molecules, proteins, or cells have been successfully
described” . Within evolutionary biology, spherical harmonics have been
used to model the shapes of complex morphological structures from con-
tinuous surface maps produced by imaging techniques, including computer
tomography and confocal microscopy”. By contrast, only a handful of
studies utilise SHSDs as particle shape descriptions. A spheroidal harmonics
approach has recently been demonstrated as an improvement over tradi-
tional spherical harmonics for shape analysis of oblate and prolate
particles”’. SHSDs have also been used to characterise and simplify 3D
particle morphologies to quantify form, roundness, and roughness for more
accurate simulation of granular materials”. In combining spherical

harmonic analysis with X-ray micro-computed tomography, multiscale
morphological features of sand particles were successfully characterised”. By
using a range of frequency spaces (degrees 2-15), it was possible to effec-
tively represent shape, local angularity, and surface roughness. Finally, the
use of spherical harmonics in describing 3D (polygonal) single-crystal
shapes has recently been introduced for the comparison of experimental
data with simulation, the methodology of which is utilised as part of this
study’.

In this study, we combine a disentangling autoencoder (DAE)
approach with aspect ratio analysis and SHSDs to tackle the challenge of
classifying crystal shapes from large simulation datasets. We demonstrate
that this integration creates a framework for analysing crystal morphologies
in a lower-dimensional latent space, preserving critical shape information
while enabling an intuitive visualisation of shape transitions. Our results
show that the latent space effectively encodes physically meaningful aspects
of crystal geometry that align with crystallographic principles, capturing key
relationships between simulation parameters and resulting morphologies.
This approach significantly reduces the analytical burden of processing large
simulation datasets, provides continuous trajectories between different
shape classes, and reveals crystallographic constraints on morphology that
would be difficult to observe through traditional analysis methods. The
framework not only improves upon existing crystal growth simulation
workflows but also establishes a foundation for more efficient crystal shape
design and control.

Results

Crystal morphologies and particle shape descriptors

A crystalline solid is one that forms a three-dimensional array of its atoms,
ions, or molecules with average long-range order. This is a function of the
material’s innate molecular-level symmetry. For a given crystal structure,
the allowed facets, which are analogous to the faces of a given geometric
shape, depend on this symmetry. In addition, a system’s unique chemical
properties and external environmental factors, such as temperature or the
mother liquor composition, can affect the morphology expressed by a
particular crystal structure, whether the presence of certain faceting or the
relative proportions of different facet families.

The shape of a crystal can be defined using a range of shape descriptors,
ranging from simple metrics such as sphericity" to more complex
descriptors such as spherical harmonics®. Zingg proposed a method to
classify the shape of a particle based on the lengths of orthogonal length,
width, and height axes, each of which is classified as either short (S), medium
(M), or long (L)*. The same principle has been applied to classify crystals by
utilising paired or equivalent facets that form the opposing edges of the
crystal®®. By calculating the aspect ratios between these, i.e. $M and M:L, a
Zingg diagram can be created, with crystals falling into one of four cate-
gories: blocks, needles, laths, or plates, depending on the value of each aspect
ratio. This is shown in Fig. 1d as part of the overall particle simulation
workflow using CrystalGrower, which also demonstrates the proposed
DAE-based methodology and its integration in the workflow.

The advantages of using the spherical harmonics, Y},,,(6, ¢), lie in the
completeness and orthonormality of the basis, albeit valid only to shapes
represented as a function of spherical coordinates where a one-to-one
mapping to the unit sphere is possible (restricted to star domains). Spherical
harmonic functions are indexed by the angular quantum number / and the
magnetic quantum number m". These descriptors allow for setting the
highest order of I to be used for description, herein termed [ .. It follows
that the higher the [, , the greater the number of higher-frequency features
of the shape are retained within the description.

Simulated crystal dataset preparation

The dataset used for training and testing the ML model was generated using
CrystalGrower, a kinetic Monte Carlo simulation tool designed to model
crystal growth with nanoscopic resolution. Here, crystallisation is simulated
as a series of reversible transitions between a bulk growth medium and a
crystal surface. Starting from a .cif file of the crystal structure, the system is
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Fig. 1| A typical CrystalGrower modelling workflow for investigating a crystal
system overlaid with the proposed disentangling autoencoder (DAE) workflow.
aInput crystallographic information file (CIF) with structural data, (b) generation of
a net of building units representing key interactions, (c) bulk simulations over a
parameter space which can be classified using Zingg/aspect ratio analysis (d), with
validation against experimental data (e.g., optical, electron, or atomic force
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microscopy) leading to a refined morphology and nanoscale surface topography (e).
In the proposed DAE workflow, whole particle simulations (c) are first down-
sampled into voxel clouds (f), fed through the DAE architecture, and automatically
classified (g), thus better describing the parameter space, improving on and inte-
grating with existing simulation data analysis capabilities (h).

divided into a finite number of surface site types based on their geometrically
determined interactions with neighbouring sites, according to the Kossel
model of crystal growth'”’. The sum of these interactions, adjusted for the
energetic cost of solvent removal, defines the free energy of crystallisation
(AG;) for each site. Supersaturation (Ay), temperature, and other para-
meters provide a thermodynamic basis for calculating the probabilities of
growth and dissolution events, which are implemented stochastically using
a Monte Carlo engine.

During a simulation, growth units replace displaced solvent molecules
on the crystal surface, creating distinct site types with varying energies. The
output includes a three-dimensional point cloud (.XYZ file) that describes
the positions of growth units, capturing the crystal’s full morphology and
surface topography at atomic or molecular resolution as well as thermo-
dynamic/site data. Assumptions such as immediate exchanges between
crystal and mother phases, unaltered growth unit orientations, and negli-
gible entropy differences between surface sites ensure consistency with
thermodynamic principles and allow for a coarse-grained representation of
crystal growth. By integrating these elements, this methodology offers a
robust platform for studying the interplay between kinetics and thermo-
dynamics in crystal growth, generating data for predictive modelling and
advanced analysis.

To build an effective shape classification model, it is important to create
a training dataset that exhibits a substantial degree of shape diversity. The
expression of different sets of facets, and thus particle shapes, is determined
by the simulation parameters, the variation of which leads to their under- or
over-expression relative to one another. This means that multiple shapes
can occur within a given parameter space. However, not every shape
appearing in the parameter space will be observed experimentally, which is
why simulations are then validated using experimental data to pinpoint a
refined morphology and surface topography.

Owing to the generality of CrystalGrower, in that it can model the
growth of any crystal under a range of conditions, this meant selecting
chemical systems for which there was a range of known possible
morphologies across the thermodynamic parameter space. Thus, adipic

acid, benzamide form I, benzamide form III, L-cystine, urea, y-glycine, and
paracetamol form I were selected to provide a diverse, somewhat generic
representation of crystal shapes. Whilst many of these systems were chosen
due to previous experience in their study within the group, urea, L-cystine
and y-glycine were specifically chosen to sample molecular crystal structures
from outside the commonly observed monoclinic crystal system.

Table 1 details the crystallographic properties of the seven molecular
structures that comprise the training dataset. Whilst a majority of the chosen
structures are monoclinic, which is reflective of the distribution of space
groups in all known molecular crystal structures”, they show substantial
diversity both in their chemistry and crystallography. As shown in Fig. 2,
across the seven molecular systems, 16,522 simulations were carried out,
resulting in 5908 blocks, 4346 plates, 4625 needles, and 1643 laths. Variation
in the number of simulations per molecule originates from the span of the
individual molecular datasets. Tetragonal and hexagonal systems are highly
symmetrical, meaning there are fewer energy parameters that can be varied
to study the simulation space compared to the less symmetrical monoclinic
systems. Smaller increments in the energy parameters used to obtain the
molecular crystal datasets result in a denser parameter space with a greater
number of points. The simulation of lath-like shapes presented a unique
challenge in that these appear to be a much less common shape for molecular
crystals to adopt. The inclusion of an alternative crystal packing (known as a
polymorph) adopted by benzamide (form IIT) was aimed at expanding the
dataset to add more examples of laths. This was successful, with this
structure representing a substantial proportion of the total lath simulations.

To follow the method developed by Zingg to classify the shapes of
crystals based on their 3D aspect ratios and provide a manual classification
of each structure for validation of the ML model, the dimensions of the
simulated crystals were measured. Two methods have been proposed for
this: principal component analysis (PCA)*" of the point cloud (.XYZ) data of
the crystal surface and crystallographic direction analysis (CDA)*, which
uses the perpendicular distances between parallel crystal surface planes.
Both are readily calculated from data within the CrystalGrower output files.
It should be noted that the latter presents a unique challenge as a crystal can
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Table 1| Crystallographic information of molecular structures: structural information for the molecular crystals comprising the

training dataset, acquired from ref. 66
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Structure
- : : f o H H,O N’H
PPN TR N A A R e
o s hl : A
°ﬁ):y~ w®
Formula CeH1004 C;H,NO C;H,NO CeH12N204S, CH4N,O CoHsNO, CgHgNO,
CSD Refcode ADIPAC®’ BZAMID05 BZAMID08 LCYSTI147° UREAXX02"" GLYCINO17 HXACANO17
4 2 4 4 12 2 3 4
z 0.5 1 1 0.5 0.25 1 1
Space Group P24/a P2,/c P2,/c P6,22 P42,m P35 P2,/a
Crystal System Monoclinic Monoclinic Monoclinic Hexagonal Tetragonal Hexagonal Monoclinic
a, b, c(A) 10.07, 5.16, 10.03 5.57,5.04, 21.70 5.06, 5.51, 22.96 5.41,5.41, 55.96 5.59, 5.59, 4.69 7.04,7.04,5.48 12.98,9.40,7.10
a, B,y () 90.0, 137.1,90.0 90.0, 90.4, 90.0 90.0, 101.3, 90.0 90.0, 90.0, 120.0 90.0, 90.0, 90.0 90.0, 90.0, 120.0 90.0, 115.9, 90.0
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Fig. 2 | Shape distributions of the training dataset. a Grouped by crystal structure, and (b) by particle shape as defined by the Zingg classification.

exhibit multiple sets of surfaces/facets, thus the aspect ratio between any
three pairs of facets, in a given area of the parameter space, may not strictly
obey the S:M:L criteria as required by Zingg’s method. Thus, for this study,
the three largest principal components from PCA were used to calculate the
aspect ratios, as they provide a geometrically accurate and standardised
aspect ratio calculation. In this work, as all simulated crystal shapes are
simple convex polyhedra, an I, of was chosen when applying spherical
harmonics descriptors to the data.

DAEs for crystal representation and reconstruction

We use a DAE architecture to learn interpretable representations in a small-
dimensional space, referred to as the latent space®. In contrast to other
autoencoder-based methodologies, the DAE enforces orthogonality in this
latent space to achieve disentangled representations, ensuring that each
latent variable captures an independent and distinct factor of variation in the
data™. Whilst a number of linear unsupervised dimensionality reduction
techniques, such as PCA, are available, the nonlinear nature of the DAE
allows for capturing more complex data representations. By employing both
an encoder, which encodes the input data into the latent space, and a
decoder, which reconstructs the original inputs, the DAE cannot only learn
meaningful representations of the crystals but also reconstruct them from a
lower-dimensional representation and visualise the trajectories between two
crystals within it. Each of these abilities of the DAE will be reviewed in the
following subsections.

Reconstruction results

One of the metrics used to ensure that the proposed model learns
meaningful features in the latent space is to examine the quality of the
reconstructions of the original data when passed through the full
autoencoder architecture. High-quality reconstructions confirm that the
latent space includes meaningful and relevant information about the
crystal shapes, as the decoder arm can generate an accurate recon-
struction from the limited information contained within each data
point’s latent vector, which is of a substantially smaller dimensionality
when compared to the original input. To quantitatively assess the
reconstruction quality, we used two metrics: the Structural Similarity
Index (SSIM) and the normalised cross-correlation (NCC), both applied
to the 3D volumes of the crystal shapes. These metrics range from —1,
indicating complete dissimilarity, to 1, indicating perfect similarity. This
SSIM quantifies structural similarity by comparing luminance, contrast,
and structural information between the original and reconstructed
data®. Our model achieved an SSIM score of 0.8761. The NCC, which
assesses the alignment and similarity between the original and recon-
structed data, produced a score of 0.8129. Both scores indicate that the
reconstructions preserve a high degree of structural similarity with the
original data, suggesting that our model has successfully learned
meaningful features in the latent space. Figure 3 shows reconstruction
results for crystals of different chemical systems, crystal systems, and
shapes appearing in the dataset.
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Fig. 3 | Comparison between input and reconstructed crystals. Reconstruction results demonstrating (a) input crystals, and (b) reconstructed crystals, with plate

morphologies coloured yellow, blocks blue, laths purple, and needles green.
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volume, and the ratio between surface area and volume, and (b) the magnitudes of
the first six spherical harmonics coefficients.

Analysis of latent dimensions

By analysing the latent space and the latent vectors contained within, we
explored the relationship between the latent dimensions and various geo-
metric characteristics of the crystal shapes. An effective ML model should be
able to capture geometric relationships between shapes appearing in the
dataset, even when the dimensionality of the data is reduced to that of its
latent vector. We selected a six-dimensional latent space for this architecture
after empirical evaluation. This choice ensures learning sufficient yet
minimal features to accurately reconstruct the input data. Specifically, we
examined the covariance between the six-dimensional latent variables and
quantitative shape descriptors, including the small-to-medium aspect ratio,
the medium-to-large aspect ratio, surface area, volume, and the surface-
area-to-volume ratio, as shown in Fig. 4a. Our findings indicate that
dimension 0 in the latent space shows a strong positive correlation with the
small-to-medium aspect ratio of the crystal shapes, which is 0.74. This
suggests that this latent dimension effectively captures variations in the
relative proportions of the small and medium axes within the crystals.
Furthermore, dimension 1 in the latent space shows a high correlation with
the medium-to-large ratio, being —0.88. This implies that dimension 1
predominantly represents variations related to the relative sizes of the
medium and large axes in the crystal shapes. Based on these findings, we
visualised the latent space using two dimensions that exhibit high correla-
tions with the small-to-medium and medium-to-large aspect ratios, which
are geometric characteristics used to describe shape. Figure 5a shows that
crystals from the same shape class tend to cluster together, with some
overlaps between different shapes, although the boundaries are generally
well-defined. Figure 5b presents the same latent space but with points
labelled by the chemical system. Since each chemical system can include
multiple shapes, the labels inevitably overlap. Notably, urea appears not to
be well-clustered, which can be rationalised by the gradual change in
morphology from needles to plates that occurs along one axis as thermo-
dynamic parameters are varied.

We also utilised UMAP™ to map the six-dimensional latent vectors to
two-dimensional vectors for visualisation, as shown in Fig. 6. Since UMAP
uses all six dimensions, the resulting visualisation provides clearer bound-
aries between shapes when compared to using only two dimensions. Again,
urea appears as an outlier, appearing primarily at the edge of the mapping, or
as individual clusters separated from the main body of the latent space.

Furthermore, we conducted the same experiments using a 3-VAE”
and visualised its latent space in the same manner as the DAE. These
mappings are presented in Supplementary Note 1. When considering the
two dimensions that exhibit high correlations with the small-to-medium
and medium-to-large aspect ratios, as shown in Supplementary Fig. S1, the
results appear similar to those of the DAE. However, when examining the
UMAP projection across all latent dimensions, as shown in Supplementary
Fig. S2, the DAE exhibits clearer clustering between different shapes, sug-
gesting that its orthogonal constraints help better distinguish morphological
variations. Once again, urea does not appear well-clustered in the 3-VAE.

Comparison with spherical harmonics descriptors

From Fig. 4b, we are able to derive important relationships between the
spherical harmonic coefficient space, the autoencoder latent space, and their
relationship to physical shape metrics observed in Fig. 4a. Since each
spherical harmonic coefficient can be described by its two quantum num-
bers | and m, each coefficient is indexed as Y}". The first six spherical
harmonic coefficients (real, m > 0) referenced in Fig. 4b (Mag,_.5) thus
represent Y3, Y9, Y1, Y9, Y] and Y3. Mag, being the unit sphere, therefore
represents the average particle radius. Mag; and Mag, represent dipole-like
shape asymmetries; for example, Mag; informs on the span of the shape
along the Cartesian Z axis, whereas Mag, informs on the particle’s span
along the Y axis. Mags s represents quadrupolar shape features such as
elongation or flattening in specific directions. Specifically, Mag; represents
elongation along Z with contraction in the XY plane, while Mag, and Mags
relate to the particle’s size in the YZ diagonals and along the XY directions,
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respectively. These relationships are also evident in the reconstructions
presented in Supplementary Note 1.

Mag, has the strongest correlation to any of the latent dimensions,
being both positively correlated with Dim, and negatively correlated with
Dimy, but it only forms weak correlations with other latent dimensions. A
strong correlation is also seen in Mags, where it exhibits a negative corre-
lation with several latent dimensions, indicating that the DAE latent space
encodes shape features in a way that is not aligned with the spherical har-
monics. Analysis shows that Dimj, and Dim, exhibit the strongest correla-
tions with the spherical harmonic coefficients. In particular, Dimg and Dim,
show strong correlations with Magy, Mags, and Mags, suggesting these first
two latent variables capture primarily aspect ratio and overall size distor-
tions. This observation aligns with the results shown in Fig. 4a, supporting
the conclusion that these dimensions encode the most information about
aspect ratio. The latent dimensions (Dim;_.s) show weak or mixed corre-
lations with different spherical harmonic terms, implying that they may
encode more complex, nonlinear shape features. Again, this is also reflected
in Fig. 4a, where no strong correlation between the latter dimensions is seen
with respect to the chosen physical shape metrics. Overall, the presence of
strong correlations between specific spherical harmonics and DAE
dimensions suggests that certain latent variables effectively capture spherical
harmonic features. However, more controlled studies would be required to
accurately probe the overlap between these spaces.

Figure 7 provides an additional visualisation of the (66-dimen-
sional) spherical harmonic coefficient space, reduced to two dimen-
sions using UMAP. Compared to the f-VAE and DAE UMAP latent
spaces, in the spherical harmonic UMAP, the separation of points
based on crystal system or chemical system is less clear, and features
blurred boundaries. Whilst the DAE shows grouping of points
according to shape class in the form of broader regions rather than
sharply defined clusters, the spherical harmonic UMAP also forms
comparatively well-defined regions compared to that of the f-VAE
latent space.

Interestingly, the 5-VAE space forms distinct clusters based on che-
mical systems, whilst both the spherical harmonic space and the DAE
UMAP space seemingly retain less information on structure-shape rela-
tionships. To further rank these models would require additional metho-
dological considerations beyond the scope of this study. Another minor
observation is that block-shaped crystals appear to form a tighter group,
which may be related to the ability of SHSDs to describe shapes that are
morphologically closer to a sphere more accurately. Overall, these visual
assessments allow for a qualitative understanding of the different shape
descriptor models. For example, it becomes clear that both the DAE and 8-
VAE representations are able to encode important shape features in fewer
dimensions compared to a physics-based descriptor such as spherical
harmonics.
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Fig. 6 | Visualisation of the UMAP projection of ® Plate ®© Lath ® Needle ®Block o Plate o Lath o Needle ®Block
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Morphological dependency on crystal system

Given that crystal structures have a limited set of allowed shapes based on
their underlying symmetry, the output of the DAE can be further investi-
gated and verified through comparison to results expected from crystal-
lographic theory. The crystal systems for all crystal structures studied are
summarised in Table 1, with a total of three different systems across the
dataset: hexagonal, monoclinic, and tetragonal. Figure 5b-e demonstrates
how filtering the data from the first two dimensions of the latent space can
provide additional insight into crystal morphologies.

Figure 5c-e demonstrates that the model does follow the expected
outcomes from crystallography. Hexagonal and tetragonal crystal systems
both show no lath morphologies, which is expected due to the two axes of
the crystal system being of equal length, which only allows for asymmetric
variation along one axis for observed morphologies. In monoclinic systems,
however, all axes are of unequal length, meaning that each axis can vary
asymmetrically when a crystal is grown, reflected by the appearance of lath
morphologies in the latent space mappings.

Of note is the near absence of plate morphologies in the hexagonal
systems (Fig. 5¢, L-cystine and y-glycine), which intuitively should appear as
a block flattened along the variant axis, compared to a needle, which is
simply an extension along the same axis. This absence can be attributed to
the angle (y) between the equivalent a and b axes in the crystal system,
which is 120° rather than the orthogonal 90° seen in tetragonal systems

(Fig. 5e, urea). As PCA will use a set of orthogonal Cartesian axes derived
from the lengths of the particle point cloud, these can vary from the unit cell
axes in fractional space. For a cubic particle, the short, medium, and long
PCA axes would correspond to the edge of a cube (a), the diagonal across a
cube face (+/2 % a), and the body-diagonal across the cube (/3 % a),
respectively. A cubic particle would therefore be classed as a block in the
Zingg system, due to the S:M and M:L aspect ratios both being greater than
0.66. However, for a hexagonal system, the square particle faces become
rhombuses, meaning there are multiple face-diagonal distances caused by
the acute and obtuse angles of the rhombus (a2 + 2cosa and
a+/2 — 2cosa where & = 60°). The body-diagonal becomes longer, and the
shorter of the face-diagonal lengths shrinks relative to the edge length.
Therefore, the “long" length as defined by Zingg is likely to be extended
relative to the other lengths, causing more crystals to be classified as needles
rather than plates or blocks. Needles and blocks are well represented in the
tetragonal system, supporting the conclusion that this effect is driven by the
angle in the unit cell, rather than the unequal axis lengths.

In contrast to the monoclinic systems (Fig. 5d), which comprise the
bulk of the data, the hexagonal and tetragonal system morphologies tend to
cluster at the edges of the plot. Again, this is a reflection of the number of
degrees of freedom available to the materials within these crystal systems,
with smoother transitions between morphologies. Urea is the main outlier,
with morphologies that push into the lath region of the plot (Fig. 5b).
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Fig. 7 | Visualisation of the UMAP projection of ® Plate ®© Lath ® Needle ®Block o Plate o Lath o Needle ®Block
the spherical harmonic coefficients. a Labelled by
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This was attributed to the rapid transition from plates to needles in this
system within the dataset when changing the free energy of crystallisation
(AG;) parameters. The UMAP projection in Fig. 6e also shows the tendency
for urea morphologies to separate from the bulk of the data, which may be
evidence of poor clustering. However, the separation of the hexagonal and
tetragonal morphologies from monoclinic already provides additional
information when compared to aspect ratio analysis alone.

It was hypothesised that differences could be observed between the
two forms of benzamide, as form I could be considered a quasi-
orthorhombic crystal system, in that the angles of its unit cell are all close
to 90°, demonstrating that there are even borderline classification cases in
fundamental crystallographic theory. Despite this, both polymorphs
distribute similarly throughout the latent space, as all cell axes are of
unequal length, meaning both possess the same number of degrees of
freedom for their respective monoclinic and orthorhombic forms.
However, for more crystallographically distinct polymorphs, greater
separation would be expected.

Shape evolution trajectories

The use of an autoencoder-based methodology allows for the ability to not
only capture the complex relationships between different crystal shapes in
the latent space, but also to visualise the trajectories of transformations from
one shape or class to another. By identifying the centre of each shape class

(plate, lath, block, and needle) in the latent space, we can use the decoder to
reconstruct the trajectories that represent the smooth transition between
these shapes. In Fig. 8, we present the trajectories of changes from one shape
class to another within the latent space. These trajectories provide insight
into the continuous morphing process between different crystal shapes,
which would be difficult to observe or quantify directly in the original feature
space. Point cloud data alone, even when analysed by aspect ratio, cannot
capture the broader geometric and crystallographic patterns that emerge
across the entire dataset. The DAE approach overcomes this limitation by
uncovering the fundamental relationships between different data points
and, by extension, crystal morphologies, thus providing a global measure of
similarity across the dataset. To further quantify these shape transforma-
tions, we introduce Figure 9, which depicts the evolution of aspect ratio
along these shape class trajectories. Each subfigure in Fig. 9 directly corre-
sponds to its counterpart in Fig. 8. By incorporating quantitative measures,
Fig. 9 complements the visualised trajectories in Fig. 8, offering deeper
insights into the structural changes that occur as crystals transition between
different shape classes. The quantitative changes in S:M and M:L aspect
ratios across trajectories correspond to those expected according to Zingg
analysis, and thus provides the magnitude of change across individual
trajectories.

By visualising these shape transformation trajectories, our model
proves applicable not only to dimensionality reduction but also in revealing
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Fig. 8 | Interpolated trajectories between crystal
morphologies in the latent space. Trajectories a
depicting shape evolutions using the decoded latent
vectors appearing in the latent space between the
centres of (a) lath and block classes, (b) lath and
needle classes, (c) needle and block classes, (d) plate
and block classes, (e) plate and lath classes, and (f)
plate and needle classes, with plate morphologies
coloured yellow, blocks blue, laths purple, and
needles green.
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Fig. 9 | Changes in particle aspect ratios across shape trajectories between crystal
class centres. Quantitative depiction of S:M and M:L aspect ratio evolution across
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how crystal morphologies systematically evolve across a given parameter
space. Such transitions between shapes or their classes could provide
insights for mechanism studies when analysing bulk simulations of a single-
crystal system. This is because a given trajectory would fol