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Inverse imaging with elastic waves driven
by unsupervised machine learning

Check for updates

Liyou Luo1,6, Yaxi Shen1,2,6, Jiawei Xi1, Yabin Jin3, Daniel Torrent 4 & Jensen Li 1,5

In inverse imaging and scattering problems, it is critical to avoid potentially solving problems with
ambiguity, where the solution space may exceed what is represented in observation data that could
lead to non-uniqueness. Thus, inspecting such an issue before collecting data from real-world
experiments would be highly desirable. Here, starting with an elastic wave imaging problem aimed at
extracting material and geometry parameters, we handle this issue by adopting an unsupervised
machine learning technique, variational autoencoder, to compress the observation data into a latent
space whose dimensionality is leveraged to assess whether it is unique or not in the inverse process,
based on readily accessible data from simulation configured to match experimental settings. After
confirming the uniqueness, this latent representation, through independent component analysis, is
then converted into independent components each corresponding to one physical parameter to be
recovered. The practical application is demonstrated by applying the trained machine learning model
to the experimental data measured from 3D-printed samples, with high accuracy. Our method offers
broad applications ranging from evaluating the adequacy of data in inverse problems, extracting
independent representations from complex data, to building understanding from observations.

Inverse imaging and scattering1,2, trying to recover unknown material or
geometry parameters from observed fields, possess extensive applications,
including remote sensing3, biological imaging4,5, and geophysics6. In recent
years, machine learning (ML)7–10, through learning from large datasets, has
emerged as a powerful tool toward such inverse tasks11,12. Compared with
traditional methods13,14 that usually develop specific algorithms for indivi-
dual situations based on a good understanding of forwardmechanisms, this
methodology automatically identifies rules in data, offering a general data-
driven framework effective for various scenarios, capable of addressing
complex problems that are not easily tackled by traditional methods. Its
superior capabilities have been demonstrated in electromagnetic and
acoustic inverse scattering15–17, high-quality image construction18,19 and
subwavelength imaging20, often with surpassing accuracy, resolution or
efficiency. A popular approach in ML for inverse imaging is to use the so-
called supervised methods that basically fit a function from the observed
fields to their targets, e.g.,material parameters (treatedas labels inML)of the
system. In practice, it often happens that only degraded data can be mea-
sured due to problems like phase missing in measurements21,22 or limited
areas attainable for detection23,24, which may result in observed data

containing insufficient information to recover the target parameters,
potentially leading to non-uniqueness where one observation can corre-
spond to multiple system configurations. The straightforward supervised
methods lack prior mechanisms to detect such an issue, where recon-
structing the images actually requires more information than what is
represented in the measured data, potentially wasting efforts on preparing
data and labeling. It is thus beneficial to inspect such an issue in advance.On
the other hand, another category of ML, unsupervised methods25–29, driven
by designed criteria rather than directly fitting the ground truth, can learn
fromunlabeled data. Suchmethods have proven to be proficient at revealing
the underlying structures of input data, with demonstrated applications
ranging from discovering physical concepts, conservation laws, and oper-
ationally meaningful representations30–32, to extracting interpretable
dynamics33, recognizing phase transition34,35, and learning quantum
models36,37. In inverse problems of imaging, unsupervised learning offers a
diversity of practical implementations, such as denoising and deblurring
through latent representations38–40, anomaly detection through identifying
deviations from learned features41–43, and compressed sensing utilizing
generativemodels44–46. Suchmethods canbeusedaloneorflexibly combined
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with other approaches to enhancemodel performance9,28,47, which canmake
the whole task more efficient, effective and interpretable, especially in cases
of noisy or incomplete data, and scarce labeled datasets. Through learning
patterns from data, they yield valuable information on the data that can
reduce the complexity of tasks and benefit subsequent steps, while also
holding potential on offering guidance on data preparation for inverse
imaging and scattering.

In this work, we focus on one important kind of inverse problem,
elastic wave imaging that extracts material or geometry parameters from
wave data, which has substantial practical applications such as elasticity
measurements, defect detection and non-destructive testing48–52. We pro-
pose to combine two unsupervised methods, variational autoencoder53,54

and independent component analysis55, to build an ML model with the
capability to detect the non-uniqueness in inverse processes and sig-
nificantly reduce the need for labeled data. As a demonstration, this
methodology is applied to the retrieval ofmaterial and geometry parameters
from the observed vibration fields on a beam. The variational autoencoder
compresses the observed fields into features called latent variables. The
dimension of these latent variables is leveraged to evaluate whether it is a
one-to-one mapping from the collected data to the unknown parameters,
thus avoiding potentially solving ambiguous inverse problems. These latent
variables are further converted into independent components by indepen-
dent component analysis. It turns out that each of these components cor-
responds to onephysical parameter. As an additional step, a straightforward
linear scaling canbe applied to readily adjust the rangeof eachcomponent to
match its corresponding physical quantity with the help of a small number
of known values of these physical quantities. Although here wemake use of
the readily obtainable simulation data to train our model to boost the data
collection efficiency, this model can also be applied to real-world data, even
when such data come from practical conditions differing from ideal simu-
lation. We enable our ML model to work for real-world data by carefully
considering the major deviation in conditions between experiment and
simulation, which is the difference in exerted excitation forces. Our testing
results show that both geometry and material parameters can be well
recovered by sending experimental data measured by a laser Doppler vib-
rometer from six fabricated elastic structures via 3D printing to the
ML model.

Results
Network architecture
We begin with an elastic wave inverse imaging problem with four physical
parameters to be retrieved as an illustrative example, which is simple and
clear yetwithno loss of generality, to demonstrate ourworkflowand explore
the issue of non-uniqueness, as shown in Fig. 1a. In particular, wewould like

to retrieve the Young’s modulus and the heights of three blocks of a beam,
denoted by αi

� � ¼ E0; h1; h2; h3
� �

, from the velocity fields measured at
the back face. To predict the values of these parameters, we build an ML
model containing two parts, i.e., a variational autoencoder network (VAE-
Net,filledwith gray color) andan independent component analysis network
(ICA-Net, filled with light blue color), which are collectively termed VAE-
ICA Net as a whole model, as shown in Fig. 1b, c.

In this task, one crucial consideration is to ensure that the collecteddata
canuniquely determine all four parameters.We assess this issue through the
VAE-Net that consists of an encoder and a decoder. The encoder tries to
shrink the inputs (the velocity data fvig on the surface of the beam) into
features fzig that we call latent variables, from which the decoder then
reconstructs the inputs as fv0ig. Each latent variable zi is assumed to satisfy a
normal distribution zi � Nðμi; σ2i Þ, with the reparameterization trick zi ¼
μi þ ϵσ i where ϵ � Nð0; 1Þ to enable training the network through back
propagation54. The loss function is set to be LVAE ¼ Lrec þ LKL, where
Lrec ¼ mean vi � v0i

� �2� �
is themean squared error of fvig and fv0ig driving

the reconstruction of the velocity fields. The second term LKL ¼
β
P

iDKL N μi; σ
2
i

� �jjN 0; 1ð Þ� �
is a regularization term, trying to approach

Nðμi; σ2i Þ to a standard normal distribution N 0; 1ð Þ as closely as possible
through calculating Kullback-Leibler divergence DKL that measures the
differencebetween twoprobability distributions,withβ as ahyperparameter
to balance the Lrec and LKL. Owing to this additional regularization term in
the loss function, it allows us to determine the number of degrees of freedom
(DOFs) of the input data (i.e., the minimum number of variables necessary
to represent the data), which can help to evaluate whether the collected data
are sufficient to retrieve all physical parameters, thus to avoid solving ill-
posed problemswith non-uniqueness, as wewill demonstrate in detail later.
Nevertheless, it would be laborious to evaluate this issue by experimentally
collecting data in real world, given the large amount of data required to be
collected for training. Instead,we tactically use the simulationdataunder the
same settings to be implemented in experiments, which is cost-efficient and
would not hinder the assessment of uniqueness, since the computational
simulation, in principle, implements the same physical laws as those in
experiments. For these obtained latent variables, even if the problem is
unique, they are not guaranteed to be the unknownparameters thatwewant
to recover, but only a bijective function of them. As a further step, we use
another unsupervised method, namely, independent component analysis,
implemented by ICA-Net in our model, to transform these latent variables
to their independent component representation fz0ig. After training, it turns
out that each of fz0ig corresponds to one of the physical parameters fαig. A
direct merit of this unsupervised approach is that just a small amount of
labeled data is required to recover the unknown parameters in a subsequent
step, simply through scaling each z0i to the correct range of its corresponding

Fig. 1 | Workflow of our unsupervied imaging
method. a Setup for obtaining vibration fields by a
laser Doppler vibrometer for the inverse imaging of
parameters αi

� � ¼ fE0; h1; h2; h3g, i.e., Young’s
modulus and three heights of a beam, which is
excited by a harmonic signal at one end at f ¼ 2kHz.
b, c The architecture of the machine learning model,
with b a variational autoencoder (VAE-Net, filled
with gray color) to compress the velocity fields fvig
into a low-dimensional representation zi

� �
(each

follows a Gaussian distribution with mean μi and
standard deviation σ i in generating the latent vari-
able for every input), and c an independent com-
ponent analysis (ICA-Net, filled with light blue
color) to further transform fzig into their indepen-
dent components fz0ig. The predicted values α0i

� � ¼
fE0

0; h
0
1; h

0
2; h

0
3g can be readily obtained by linearly

scaling fz0ig with a small amount of z0i; αi
� �

pairs to
correct the range of each z0i , as shown in (d) (filled
with light green color).
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physical parameter, as shown in Fig. 1d (filled with light green color). We
emphasize that the labeleddata arenot used for training theneural networks
(i.e., VAE-Net and ICA-Net), but are used solely for the scaling task
describedabovebyemployingordinary least squares linear regressionwhich
does not involve training via back propagation. Details about implementing
the VAE-Net and ICA-Net can be found in Supplementary Note 1 and 2.

Training results using simulation data
Next, we go to the details of our system setup and ML results. Figure 2a
depicts the size of the studied structure, a beam with length (W = 247mm)
along x axis, width (D = 25mm) along y axis and thickness (h0 = 3.1mm)
along z axis, with three blocks on the top. The blocks have the same area
(d × dwith d = 25mm) but differ in their heights, with a distance p = 35mm
between adjacent blocks. The whole structure is made of the samematerial,
with density 1167kg/m3, Young’s modulus 2:7GPa, and Poisson’s ratio 0:4.
Aharmonic force along z directionwith frequency f = 2kHz is applied at one
end, leaving the other end clamped.We set the Young’smodulusE0 and the
heights of the three blocks h1, h2 and h3 to be the pixels to be imaged, i.e.,
αi

� � ¼ E0; h1; h2; h3
� �

:Thedataused to train ourMLmodel are collected
from a rectangle area of 165 × 15mm (with 89 × 9 data points) on the
homogeneous face (back face in Fig. 2a).

Next,wepresenthow to identify thenumberofDOFs (denotedbyn) in
the trainingdata. Then is equal to the number ofmeaningful latent variables
nM in the bottleneck of VAE-Net under an appropriate setting of the
hyperparameterβ in the loss function. First, weneed to determinewhether a
latent variable zi � N μi; σ

2
i

� �
is meaningful or not through the statistical

behaviors of μi and σ i. For a latent variable zi, if the standard deviation (Std)
of μi is near zero and themean of σ i is almost unity across all samples in the

training set, indicating that the value of zi fluctuates drastically and thus
contains no useful information, we consider such a latent variable mean-
ingless and can be discarded. In contrast, if the standard deviation of μi is
unity and themean of σ i is near zero, zi is determined clearly, inwhich sense
we regard as meaningful and will keep such a latent variable. According to
these discussions, four out of ten latent variables (we set ten latent variables
when initiating the VAE-Net) are meaningful, as can be seen from Fig. 2b.
Note here the hyperparameter β is set to be 10�4 such that the number of
meaningful latent variables corresponds to the number of DOFs in the data,
which is clearly justified by analyzing the evolution of the reconstruction
error Lrec as β varies, as shown in Fig. 2c, with Lrec and nM as functions of β
ranging from10�10 to 101.When β is very large, the loss function focuses on
the LKL part, trying to achieve μ ¼ 0 and σ ¼ 1, in which case the latent
variables are meaningless, along with the large reconstruction error. As β
decreases, the latent variables turn to become meaningful, along with the
decline of reconstruction error, and as β decreases further, the network
catches more meaningful latent variables, accompanied by Lrec dropping
significantly, indicating that the latent variables better represent the infor-
mation in the input data. However, when the number of meaningful latent
variables reaches a certain threshold (four in this case), more meaningful
latent variables achievedby smallerβdonot improveLrec further, since there
are already enough variables for representing the data. And n is equal to this
minimum number of meaningful latent variables that effectively represent
the input data,which isn ¼ 4 inour case, as shown inFig. 2c. The technique
of extracting DOFs is not influenced by the variations of the prescribed
number of latent variables when initiating the network, as verified in Sup-
plementary Note 4a where we present the ML results using a setting of fifty
latent variables at the bottleneck of VAE-Net. The results show that four
meaningful latent variables can be identified, which aligns with what we
would expect when we prescribe 10 latent variables here. The only
requirement is that the dimension of the latent space should be greater than
the number of actual parameters to be recovered to enable the information
to flow uninterrupted through the bottleneck of VAE-Net.

After obtaining n, we can evaluate whether it is unique or not in our
inverse imaging problem. If n is less than the number of unknown physical
quantities fαig, then the observation data do not capture all the information
about fαig, and one observation fvig can correspond to multiple physical
configurations, suggesting improving the intended experimental scheme or
data collection method to catchmore information about the system. In our
case, n ¼ 4 exactly corresponds to the number of unknown physical
parameters, indicating that the collected velocity fields are sufficient to
retrieve these parameters. When we collect fewer velocity data, n can be
smaller than four, frustrating the inverse imaging task, whichwe illustrate in
theSupplementaryNote3a to simulate the caseswith less accessible areas for
measurement. In one case, we remove the velocity fields under the middle
block and4DOFs can still be found (as can be seen in Fig. S3a). If we remove
the fields under all three blocks and only keep the fields at the two ends, we
can only find 3 DOFs (as shown in Fig. S3b). Such a case is not suitable for
imaging, since the information is not enough for recovering all four
unknown parameters. Nevertheless, it would be interesting to explore such
kind of situations with fewer DOFs, with potential applications other than
imaging. We provide an illustration of such a scenario in Supplementary
Note 3b by adding density as a varying parameter to demonstrate this
promising potential. Figures S4 and S5 show that four DOFs are found
despite five varying parameters, and notably, an independent component,
corresponding to neither E0 nor ρ0 but to another physically meaningful
quantity, namely,E0=ρ0, is found. Thedetailed investigation of this category
of problems is beyond the scope of this study at present, and we will leave it
for future work. This capability of discovering minimal independent
representations can facilitate identifying hidden physical relationships from
observation data, especially in cases involving non-uniqueness.

In addition, an understanding of how fzig quantitatively represents the
underlying physical parameters can benefit retrieving these parameters
from the latent space. As an illustration, we manifest one of the parameters
h2 (the height of the second block) in the latent space and project into two-

Fig. 2 | Degrees of freedom in data. a The structure used to demonstrate inverse
imaging: a beam with three blocks on top, with four parameters E0; h1; h2; and h3 to
be recovered. b The standard deviation (Std) of μi and the mean of σ i (with zi �
Nðμi; σ2i Þ to generate latent variables) across the training dataset, indicating whether
a latent variable is meaningful or not. A meaningful variable points to a definite
generation with low values of σ i but with μi varying with data, in contrast to a
meaningless variable, which is random with small μi and high σ i . We obtain four
meaningful latent variables here, exactly corresponding to the number of unknown
quantities to be recovered. c The evolutions of the reconstruction error Lrec and the
number ofmeaningful latent variables nM as the hyperparameter β varies from10�10

to 101, indicating that the number of DOFs in the data is n ¼ 4, before Lrec sig-
nificantly increasing.
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dimensional space for visualization, as shown in Fig. 3a, with h2 (repre-
sented by colormap) over each pair of {zi}. In the figure, we can see that h2
has a layered structure on ðz1; z2Þ, ðz2; z3Þ and (z2, z4), implying that the
contours of h2 could be cut planes in the 4-dimensional latent space, which
further suggests linear relationships betweenh2 and fzig. The panelswithno
layered pattern on ðz1; z3Þ, ðz1; z4Þ and (z3, z4) in Fig. 3a can be attributed to
the weaker linear relationships of h2 with z1, z3 and z4, thus projection
upsets the layered structure. Linear relations shall also apply to other
parameters. If this is true, a linear regression would recover fE0; h1; h2; h3g
from fzig. However, we prefer to continuously proceed in an unsupervised
manner, by using the independent component analysis, to transform fzig to
their independent components (denoted by fz0ig), achieved by the ICA-Net
throughminimizing statistical correlations between its outputs by assuming
that these components satisfy a uniform distribution. It turns out that each
z0i corresponds to one of the physical parameters (with E0; h1; h2 and h3
corresponding to z01; z

0
2; z

0
4 and z03, respectively) and with no apparent

relation to other parameters, as exhibited in Fig. 3b, with the digits printing
the Pearson correlation coefficients on the top-right corner to indicate the
strength of linear dependence. The order of fz0igmay not correspond to the
order of the fE0; h1; h2; h3g, since the ICA-Net is only guided to find all the
independent components without extra information to sort them in a
specific order. Finally, after obtaining the fz0ig, we can linearly transform
them to the correct range to obtain the predictions of the unknown para-
meters by referring to a small number of z0i

� �
- E0; h1; h2; h3
� �

pairs (weuse
twenty here) in the scaling part in Fig. 1d. Figure 3c shows the predictions
(denoted by E0

0, h
0
1, h

0
2 and h

0
3) of the four parameters, exhibiting clear one-

to-one correspondences with their ground truth. To quantify the prediction
error, we calculate the mean absolute errors (MAEs) between the predicted
values and the real values of the physical quantities, withMAE = 0.048 GPa,
0.179mm, 0.123mm and 0.150mm for E0

0, h
0
1, h

0
2, and h03, respectively,

shown as digits on the bottom-right corner of each panel, which are rela-
tively small compared with the full range of these parameters. Note that the
labels used for scaling are of high quality since the data are generated from
these labels, which can thus be regarded as ground truth. In addition, we
evaluate the effects of the number of labeled configurations used for the

scaling on the accuracy of predictions, as presented in Supplementary
Note 5, which shows that twenty configurations are sufficient to achieve
satisfactory accuracy.The influenceof noise on the accuracyof predictions is
assessed in SupplementaryNote 4bwherewe impose threedifferent levels of
noise on the testing data with signal-to-noise ratios of 20, 14, and 6 dB,
respectively, to demonstrate the model’s robustness against noise. We also
evaluate the extrapolation performance of our model when the range of
heights in the testing data is larger than that in the training data, as detailed
in Supplementary Note 4c by increasing the span of heights from 0 ~ 4mm
to0 ~ 5mm,demonstrating similar performance evenwhen the testing data
lie outside the range of the training data. On the other hand, for practical
factors that affect model performance, such as the material parameter
mismatch between simulation and fabricated samples, measurement inac-
curacy of the field amplitudes in this work, we take two approaches: one is
adding one more varying parameter in training the model, Young’s mod-
ulus of the material to cater for the uncertainty of material parameters even
in real cases the 3D-printing samples use the same material, another is
adding post-processing technique regularizing experimental data, the fil-
tering of torsional mode, as presented in Supplementary Note 6.

Thus, we begin with the observed velocity fields of elastic waves on a
beam and find the quantitative representation of each unknown physical
parameter by the VAE-ICA network, without even knowing the number or
the values of these parameters in advance.During this process, it allowsus to
check the number of DOFs in the input data, thus either validating or
suggesting improvements to the intended experimental schemes of the
collecting schemes. The technique of extracting the DOFs can also benefit
supervised methods, as it can detect whether the solution space is too large
for the limited data to establish a clear mapping and thus avoid potentially
solving problems with non-uniqueness, which can also reduce the risks of
preparing data and labeling for an unreasonable task that attempts to link a
single observation simultaneously to multiple configurations.

Test with experimental data
The above discussions aremostly based on the data from the simulation. To
enable real applications of inverse imaging, it is highly desirable that such an

Fig. 3 | Latent variables and independent components. a The relationships
between each pair of meaningful latent variables after VAE, colored by the magni-
tude of the height of the second block h2, showing high correlation to latent variable
z2. b The relations between different {z0i} (independent components after ICA) and
{E0, h1, h2, h3}, with the digits on the top-right corner representing Pearson

correlation coefficients measuring the strength of linear dependence, indicating that
one physical variable ismapped to only one independent component. cThe relations
between the recovered physical parameters fE0

0; h
0
1; h

0
2; h

0
3g from our ML model and

their real values fE0; h1; h2; h3g (ground truth), for the testing set of simulation data,
with the digits on the bottom-right corner indicating the mean absolute errors.
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MLmodel trainedwith simulation data can predict unknownparameters in
real-world experiments. For this purpose, we first fabricate samples by 3D
printing, with different configurations of h1, h2 and h3 whose values are
marked in blue on the three blocks, as shown in thefirst rowof Fig. 4. To test
the ML model on a diverse range of situations, the height configurations
generally go from simple to complex, with h1 ¼ h2 ¼ h3 ¼ 0 in the first
sample in Fig. 4a to heights of a randomconfiguration in the sixth sample in
Fig. 4f. Then, the out-of-plane velocity fields on the back face of the samples
are recorded by a laser Doppler vibrometer. One thing worth noting here is
that we use two transducers to excite, and the two transducers may give
different magnitudes of forces under their excitation areas on the beam due
to the possibly different responses of the transducers in practice, which
differs from ideal conditions in simulation where we apply a uniformly
distributed force on the beam. Specifically, the asymmetry of the excitation
force about x-axis can excite waves with significantly different velocity
patterns compared to those in simulation, which could lead to unreasonable
results from the ML model. We tackle this carefully by extracting the two-
dimensional velocity fields from the symmetric excitation of the force along
y direction through analyzing theGreen’s function of the system in response
to a driven force by taking advantage of the symmetry of the structures of
our samples, as detailed in SupplementaryNote 6. In addition, we verify the
approach’s effectiveness by comparing the predicted physical parameters
fromdata before and after postprocessing in three representative samples, as
presented also in Supplementary Note 6. After this extraction, we can get
plane wave like patterns just as those in simulation, as exhibited in the
second row of Fig. 4. As the configurations of E0, h1, h2 and h3 change from
one to another, the velocityfields also change correspondingly inmagnitude
and wavelength whose characteristics serve as sources for the VAE-Net to
encode into four different features zi

� �
: If the VAE-Net can work properly

for suchexperimental data, thedecoder shall recover the input velocityfields
well. To verify, we plot the reconstructed velocity fields in the third row of
Fig. 4, with well agreements with the input fields in the second row of Fig. 4,
confirming that the VAE-Net can work on data from experiments after our
data processing strategy, since otherwise the reconstructed fields will be
different from those in the input.

To obtain the predictions from these experimental observations by
our ML model, we send the obtained features fzig to the ICA-Net to get
the independent components fz0ig, which are then scaled subject to the
same scaling rule established previously from the simulation data. The
predicted values of the four physical parameters are displayed in the front
row of each bar plot in Fig. 5, together with the predicted values from
simulation data (generated by the ground truth) in the middle row, and
the ground truth in the third row for convenient comparison. The digits
on the top face of each bar in the figure exhibit the numerical values of
that bar. Our model works well for the simulation data, as shown in the
middle rows, by comparing with the ground truth in third row in Fig. 5.
For the real-world data from experiments, the ML model is still effective,
with both the trends and numerical values of the predictions corre-
sponding well to those of the real parameters, as shown in the first row of
Fig. 5. To quantify the error, we also calculate the MAEs of the predic-
tions from experimental data, with MAE = 0.167 GPa, 0.140 mm,
0.279mm and 0.262mm for E0

0, h
0
1, h

0
2, and h03. Compared with the

MAEs from simulation data in Fig. 3c, they rise slightly, yet the overall
performance continues to be satisfactory. This further confirms that our
ML model can apply to real circumstances after using the strategy to
purify the data to eliminate disturbing factors inevitably involved in
imperfect settings of experiments. Other strategies focusing on the model
itself can also be considered to enable the model trained with simulation
data to work for experimental data, like generalizing the ML model to
take additional factors possibly occurring in experiments into account
when generating the training data, with expectations that the ML model
can also identify the additional factors yet does not interfere the original
goals to retrieve the physical parameters of interests.

Discussion
We have proposed an unsupervisedmachine learning approach combining
the variational autoencoder and independent component analysis toward
inverse imaging and demonstrate its effectiveness in retrievingmaterial and
geometry parameters with elastic waves. One advantage of our approach is
that through VAE-Net, the number of intrinsic DOFs in the input data can

Fig. 4 |Measured and reconstructed velocity fields.The first rows in a–f are photos
of six 3D-printed samples with different configurations of heights of the three blocks,
denoted by I, II–VI, used to obtain experimental data. The second rows are the 2D

out-of-plane velocity fields at frequency f ¼ 2kHz measured by a scanning laser
Doppler vibrometer. The third rows are the reconstructed velocity fields produced
by the ML model.
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be obtained from the number of meaningful latent variables, thus pre-
venting the potential of solving ill-posed problems with non-uniqueness
andprovidingguidanceon improvingdata collection schemes if thenumber
of discovered DOFs is less than the number of physical variables for
recovery. Another advantage is that a clean representation with each
independent component corresponding to an unknown parameter can be
found through further transforming the latent variables by ICA-Net. We
emphasize that the true values of the physical quantities do not input into
either the VAE-Net or the ICA-Net, but are used only for scaling these
independent components to match the correct ranges of those physical
quantities. This final scaling step requires only twenty configurations
compared with 12k configurations in the training data, holding potential to
significantly relieve the work of labeling. In this architecture, the observed
fields gradually turn into physical parameters in an explanatory way, which
can discover issues in advance and enhance interpretability. While our
method is presented in the context of unsupervised imaging, it can also be
useful for otherML tasks, since it can serve as apriorprocess or a component
within a broader framework to analyze information in data, extract essential
features, and reduce data complexity, thereby facilitating subsequent tasks
and improving overall performance. In our case, although the number of
DOFs in the data is equal to the number of unknown physical quantities to
accommodate the inverse imaging scenarios, the developed unsupervised
architecture is not limited to imaging problems but could also be applied in
other cases, such as those where the number of DOFs of data is less than the
number of physical quantities generating these data. In these cases, the
information is not enough to recover the physical quantities, but a possible
representation spanned by independent variables could still be discovered.
One possible application scenario involves systems modeled by effective
medium theories, as effective medium theories can be viewed as non-
uniqueness problems in the sense that the same effective parameters can
correspond to multiple real configurations with different values of physical
quantities, resulting in a one-to-many mapping with non-uniqueness. Our
method is well-suited for such situations, offering potential applications for
discovering the effective parameters or minimal representation of complex
physical systems. The developed technique can also help identify key factors
that affect observations, build understanding from data, and facilitate data-
driven modeling in various physical systems.

Methods
Data preparations
The training data (N = 12k configurations in total, with 0.7N for training,
0.2N for validation, and0.1N for testing) are generated by thefinite element
solverCOMSOLMultiphysics. The left face of one endof the sample is set to
afixedboundary conditionanda force along z axis is exerted onanother end
at bottom surface over a rectangular area (25 × 12mm), as shown in Fig. 2a.
Free boundary conditions are set on other surfaces of the sample. In order to
expose the ML model to a wide range of configurations of fE0; h1; h2; h3g,
the Young’s modulus E0 is randomly sampled from the uniform distribu-
tion with E0 � Uð2:6; 3:1Þ (in GPa), and three block heights h1; h2; h3 �
U 0; 4ð Þ (in mm) to generate the observation data. Out-of-plane velocity
fields are extracted from the bottom face of the samples as training data.We
randomly select twenty sets of these parameters to scale the independent
components tomatch the ranges of their corresponding physical quantities.

Experimental setup
Six samples with different physical configurations are fabricated by 3D
printing technology using a cured photosensitive resin. The experimental
setup mainly consists of a laser Doppler vibrometer (optomet SWIR
Scanning Vibrometer), an amplifier (Krohn-Hite Model 7602M), two
transducers, and the fabricated samples. One end of the sample is clamped
(with an additional length remaining for clamping) to simulate a fixed
boundary condition, while the other end is excited by two piezoelectric
transducers. Here, we use two circular piezoelectric transducers (with a
diameter of 12mm) to simulate the force along z direction. The harmonic
signal is generated by a built-in signal generator of the laser Doppler vib-
rometer, and thenmagnified by a power amplifier to improve the signal-to-
noise ratio, exciting the transducers at a frequency of f ¼ 2kHz to drive
vibration of the samples. The out-of-plane velocities at all scanning points
(89 × 9 points across a 165 × 15mm rectangular area) are measured and
recorded using OptoSCAN software, designated for this vibrometer model,
to obtain velocityfields in the time domain at a sampling rate of 163.840kS/s
over a duration of 100ms. Each data point is measured separately under
identical excitation conditions with a reference signal to synchronize data
across different scanning points. The timedomaindata are then subjected to
adiscrete Fourier transform toproduce frequencydomaindata at f ¼ 2kHz

Fig. 5 | Recovered physical parameters. a–f corresponds to the recovered Young’s
modulus E0 and heights of three blocks h1, h2, and h3 of the six 3D-printed samples I,
II–VI from experimental data by the ML model. For each panel, the first row of the

bar plot shows the predictions from experimental data, the second row is from the
simulation data, and the third row is the ground truth.
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that can be fed into the model after data processing and normalization. A
photo of the experimental setup can be found in Supplementary Note 6.

Data availability
The data that support the findings of this study are available from the
corresponding author on reasonable request.

Code availability
The codes that support the findings of this study are available from the
corresponding author on reasonable request.
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