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Diagnosing strong-to-weak symmetry
breaking via Wightman correlators

Check for updates

Zeyu Liu1, Langxuan Chen2, Yuke Zhang1, Shuyan Zhou1,3 & Pengfei Zhang 1,4,5,6

Symmetry plays a fundamental role in quantum many-body physics, and a central concept is
spontaneous symmetry breaking. Recent developments highlight new symmetry-breaking patterns
known as strong-to-weak spontaneous symmetry breaking, characterized by two different order
parameters: the fidelity correlator and the Rényi-2 correlator which are inequivalent. In this work, we
propose the Wightman correlator as an alternative diagnostic tool. This construction relies on the
introduction of the thermofield double state for a generic density matrix, which maps the strong
symmetry of the density matrix to the doubled symmetry of the pure state, allowing the Wightman
correlator to emerge naturally as a standard probe of symmetry breaking. We prove the equivalence
between the Wightman correlator and the fidelity correlator, and examine explicit examples.
Additionally, we discuss a susceptibility interpretation of the Wightman correlator. The validity of
Wightmancorrelator haswide applications for understanding strong-to-weak spontaneous symmetry
breaking.

Understanding quantum phases and phase transitions is one of the most
important topics in quantummany-body physics. A celebrated paradigm is
spontaneous symmetry breaking1, which posits that different phases are
classifiedbasedon their symmetry properties, as indicatedby the long-range

correlation of order parameters hÔiÔ
y
j i. Recent advancements in the study

of symmetry and phase transitions in open systems have brought new
insights into this fundamental question. An important observation is that
the symmetry of densitymatrices can be defined in two different ways2–5. As
an example, when the particle numbers of the system and the bath are
conserved separately, the density matrix ρ can show strong symmetry with
Uρ = eiθρ, where U generates the symmetry transformation. On the other
ha , if the systemandbath canexchangeparticles, thedensitymatrixdisplays
only weak symmetry, fulfillingUρU† = ρ. These fruitful symmetry features
of open quantum systems promise exciting avenues for exploring novel
phases of matter.

Special attention has been given to the spontaneous breaking of strong
symmetry down to weak symmetry, a new symmetry-breaking pattern that
has no direct counterpart in pure states6–15. In the seminal work by Lessa
et al.9, the fidelity correlator is proposed as a universal order parameter for
strong-to-weak spontaneous symmetry breaking (SWSSB). It is defined as
the fidelity Fði; jÞ ¼ tr ½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ
p

σ
ffiffiffi
ρ

pp � between the original density matrix ρ
and the decorated density matrix σ ¼ ÔiÔ

y
j ρÔ

y
i Ôj with charged operator

Oi. When the fidelity correlator is non-vanishing for ∣i − j∣ → ∞, it is

concluded that the systemexhibits SWSSB.TheSWSSBserves as anobstacle
to the disentangling of quantum states with symmetric low-depth quantum
channels9, and can be understood as a divergence of fidelity susceptibility of
local charge dephasing15. For systems with strong U(1) symmetry, it is
demonstrated that SWSSB implies the hydrodynamic behavior of
charges7,8,11,12.

On the other hand, Rényi-2 correlator has been proposed as an alter-
native candidate for SWSSB, and it has been studied in many examples6,9,10.
One intriguing reason for using the Rényi-2 correlator is that its construc-
tion is based on the Choi-Jamiolkowski isomorphism16,17 of the density
matrix, whichmaps the density matrix ρ to a pure state ∣ρ

��
in the doubled

Hilbert space. Consequently, the symmetry-breaking patterns of the density
matrix reduce to those of some well-established pure state. Nevertheless,
case studies show that the Rényi-2 correlator leads to different transition
points compared to the fidelity correlator. Given the series of favorable
properties satisfied by the fidelity correlator9, the Rényi-2 correlator
becomes less appealing.

In this work, we introduce the use of the Wightman function to
diagnose SWSSB, as illustrated inFig. 1.Our approach involvesmapping the
input density matrix to the thermofield double state, where the strong
symmetry is transformed into a doubled symmetry, represented by U and
~U . The Wightman function naturally arises as a correlator of charged
operators within this framework. By establishing two-sided bounds, we
demonstrate the equivalence between the Wightman correlator and the
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fidelity correlator, with several illustrative examples provided.We also draw
an analogy with spin-glass susceptibility to propose a susceptibility inter-
pretation of the Wightman correlator.

Results
Wightman correlator
Our primary aim is to reuse the pure-state perspective of SWSSB.Unlike the
Choi-Jamiolkowski isomorphism, which directly employs the operator-
state mapping, we consider a specific purification of the density matrix,
typically referred to as the thermofield double (TFD) state for thermal
density matrices18,19. Here, we extend this terminology to apply to any
generic density matrix. We focus on quantum many-body systems that
contain N qubits, with Pauli operators {Xi, Yi, Zi} for i = 1, 2, …, N. The
generalization to arbitrary localHilbert space dimensions anddimensions is
straightforward. Now, we introduceN auxiliary qubits with Pauli operators
f~Xi; ~Yi; ~Zig, and prepare the full system in the (unnormalized) maximally
entangled state between the original and the auxiliary system ∣EPR i ¼
�ið∣ "#

�
i � ∣ #"�iÞ: Given any density matrix ρ, the corresponding TFD

state is defined as

∣TFD i ¼ ð ffiffiffi
ρ

p � IÞ∣ EPR i: ð1Þ

Here,
ffiffiffi
ρ

p
only operates on the original quantum system. It is straightfor-

ward to check that tracing out the auxiliary system reproduces a reduced
density matrix ρ.

The symmetry property of the TFD state is inherited from the original
density matrix ρ. For strongly symmetric density matrices, diagonalization
yields ρ ¼Paλa∣ψaihψa∣, where all states ∣ψai possess the same symmetry

charge. This leads to

∣TFD i ¼
X
a

ffiffiffiffiffi
λa

p
∣ψai � ∣~ψai: ð2Þ

Here, ∣~ψa

�
:¼ ψa

�
∣ EPR

�
is the state in the auxiliary system.Tobe concrete,

let us focus on either the Z2 symmetry with U ¼Qi Xi or U(1) symmetry
with U ¼ expðiϕPiZiÞ. Using the fact that both ðPi þ ~PiÞ∣EPR i ¼ 0 for
an arbitrary Pauli operator P, we find U ∣ψai ¼ eiθ∣ψai implies ~U ∣~ψa

� ¼
e�iθ∣~ψai with unitary transformations on the auxiliary system ~U ¼Q

i ð�1ÞN ~Xi or ~U ¼ expðiϕPi
~ZiÞ. As a consequence, the physical system

and the auxiliary system exhibit doubled symmetry U and ~U .
The breaking of symmetry is probedby long-range correlations between

charged operators on the TFD state, which can be supported in both physical
and auxiliary systems. Let us first consider the scenario where the doubled
symmetry is completely broken. Taking the U(1) case as an example, we
expect both the charged operator Oi ¼ Sþi and the auxiliary operator ~Oi ¼
~S
�
i to exhibit long-range correlations. More generally, we have

Cði; jÞ ¼ OiO
y
j

D E
TFD

¼ ~Oj
~O
y
i

D E
TFD

¼ tr ½ρOiO
y
j �; ð3Þ

which corresponds to the standard two-point function of the densitymatrix
ρ. Now, if the strong symmetry is broken to weak symmetry, we should
choose an operator that carries the charge ofU but does not carry the charge
of U � ~U . A natural choice is Oi

~Oi, leading to

CW ði; jÞ ¼ Oi
~OiO

y
j
~O
y
j

D E
TFD

: ð4Þ

We expect the SWSSB corresponds to having CW(i, j) ≠ 0 for ∣i− j∣→∞.
This can also be written in the physical Hilbert space as

CWði; jÞ ¼ tr
ffiffiffi
ρ

p
OiO

y
j
ffiffiffi
ρ

p
Oy

i Oj

� �
; ð5Þ

which is non-negative. Again, we adopt the terminology for thermal density
matrices and refer toCW(i, j) as theWightmancorrelator.This correlator has
been studied in special cases to probe the SWSSB in ref. 11. Compared to the
Rényi-2 correlator, there are two key differences. Firstly, it replaces ρ in the
Rényi-2 correlator by

ffiffiffi
ρ

p
. Secondly, no normalization factor is needed since

the TFD state is automatically normalized. When the charged operator is
unitary, the Wightman correlator becomes equivalent to the “Holevo just-
as-good fidelity” since FHði; jÞ ¼ tr

ffiffiffi
ρ

p ffiffiffi
σ

p� �	 
2 ¼ CWði; jÞ220,21. In the
following sections, we prove that the SWSSB defined by the Wightman
correlator is equivalent to the definition based on fidelity and provide
illustrative examples from several perspectives.

Equivalence
We first prove that for operators with bounded operator norm ∣∣O∣∣∞, the
fidelity correlator is lower bounded by the Wightman correlator with the
same operator OiO

y
j . To see this, we first apply Hölder’s inequality

22

CW ði; jÞ≤ jj ffiffiffi
ρ

p
OiO

y
j
ffiffiffi
ρ

p jjp × jjOy
i Ojjjq; ð6Þ

for 1/p + 1/q = 1.Here, jjAjjp :¼ ½trðAyAÞ
p
2�
1=p

denotes the p-norm of the
operatorA. We take the limit that p→ 1 and q→∞. jjOy

i Ojjjq becomes the
jjOjj21, while jj ffiffiffi

ρ
p

OiO
y
j
ffiffiffi
ρ

p jj1 exactly matches the fidelity correlator.
Therefore, we find the inequality

Bound1 : CWði; jÞ≤ Fði; jÞ jjOijj21: ð7Þ

In particular, for Pauli operators, ∣∣Oi∣∣∞ = 1 andwe obtainCW(i, j) ≤ F(i, j).
We proceed to derive how the fidelity correlator serves as a lower bound for

Fig. 1 | Schematic of our proposal.Wepresent a schematic of our proposal for using
the Wightman correlator to diagnose strong-to-weak symmetry breaking of the
density matrix. The strong symmetry of the density matrix is mapped onto the
doubled symmetry of the thermofield double state, with each symmetry acting
individually on the physical and auxiliary subsystems.
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theWightman correlator. To achieve this, we apply the generalizedHölder’s
inequality, which states that ∣∣ABC∣∣1 ≤ ∣∣A∣∣p∣∣B∣∣q∣∣C∣∣r with the constraint
1/p + 1/q + 1/r = 1. In this context, we set A = C = ρ1/4 and
B ¼ ρ1=4OiO

y
j ρ

1=4. By substituting these definitions into the inequality, we
obtain

Fði; jÞ≤ jjρ1=4jjp × jjρ1=4jjr × jjρ1=4OiO
y
j ρ

1=4jjq: ð8Þ

Let us choose p = r = 4 and q = 2. Interestingly, we find ∣∣ρ1/4∣∣4 = (tr[ρ])1/4

= 1, and, by definition, jjρ1=4OiO
y
j ρ

1=4jj2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CW ði; jÞ

p
. Therefore, the

inequality becomes

Bound2 : Fði; jÞ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CWði; jÞ

q
: ð9Þ

By combining both bounds from Eq. (7) and Eq. (9), we conclude that the
SWSSB defined by the Wightman correlator is equivalent to the definition
using the fidelity correlator.

This relation indicates that the Wightman correlator satisfies all the
favorable conditions satisfied by the fidelity correlator9. For example, the
stability condition states that if a density matrix ρ has a finite Wightman
correlatorCW(i, j) for ∣i− j∣→∞ and E is a strongly symmetric finite-depth
local quantum channel, then E½ρ� also has finite Wightman correlator for
∣i − j∣ → ∞. We also propose several generalizations of our inequality,
including two classes of generalized Wightman correlators

Fαði; jÞ :¼ ρα=2OiO
y
j ρ

α=2
��� ���

1=α
α 2 ð0; 1�;

CW
α ði; jÞ :¼ tr ½ραOiO

y
j ρ

1�αOy
i Oj� α 2 ð0; 1Þ:

ð10Þ

As elaborated in the Supplementary Note 1, both generalizations are
equivalent to the fidelity correlator and the Wightman correlator in diag-
nosing SWSSB. In particular, we have F1(i, j) = F(i, j)
and F1=2ði; jÞ ¼ CW

1=2ði; jÞ ¼ CW ði; jÞ.

Examples
Having established generic bounds on the Wightman correlator, we now
provide a few examples that illustrate how the Wightman correlator
enhances our understanding of SWSSB by simplifying calculations and
discovering interesting connections. More examples can be found in the
Supplementary Note 2.

Spin glass. It is known that the SWSSB has a close relationship with
traditional discussions of the spin glass23. We consider special density
matrices inwhich the charged operator cannot couple different states that
diagonalize the density matrix ψb

�
∣OiO

y
j ∣ψa

� / δab. The fidelity corre-
lator in this scenario becomes Fði; jÞ ¼Paλaj ψa

�
∣ÔiÔ

y
j ∣ψa

�j, which
matches the standard definition of the Edwards-Anderson (EA) order
parameter9. For the Wightman correlator, a straightforward calculation
shows that

CWði; jÞ ¼
X
a

λajhψa∣ÔiÔ
y
j ∣ψaij2: ð11Þ

By averaging over i and j, we find N−2∑ijC
W(i, j) ≔ χSG/N, where χSG is

knownas the spin glass susceptibility23, a universal probe of spin-glass order.
It measures the response of a random magnetic field. In the paramagnetic
phase, χSG is finite, leading to a vanishing averagedWightman correlator in
the thermodynamic limit. In contrast, in the spin-glass phase, the
susceptibility scales with the system size N, implying a finite Wightman
correlator. Furthermore, higher ordermoments of j ψa

�
∣ÔiÔ

y
j ∣ψa

�j can also
be probed by generalized Wightman correlators Fα(i, j), while CW

α ði; jÞ
becomes independent of α.

Thermal ensemble. It has been conjectured that the finite-temperature
canonical ensemble ρβ,c of a local Hamiltonian with charge conservation
exhibits SWSSB9. Here, we examine theWightman correlator. Assuming
no spontaneous breaking of the weak symmetry, theWightman function
for ∣i − j∣ ≫ 1 can be approximated as

CWði; jÞ ¼ tr
ffiffiffiffiffiffiffi
ρβ;c

p
OiO

y
j
ffiffiffiffiffiffiffi
ρβ;c

p
Oy

i Oj

� �
� tr

ffiffiffiffiffiffiffiffiffi
ρβ;gc

p
OiO

y
j
ffiffiffiffiffiffiffiffiffi
ρβ;gc

p
Oy
i Oj

� �
� CW

Oi
CW
Oj
:

ð12Þ

In thefirst approximation,we replace the canonical ensemblewith the grand
canonical ensemble ρβ,gc, as both yield the same predictions within a fixed
charge sector. In the second approximation, we neglect the connected part
between operators at sites i and j. Here, we have introduced theWightman

function of a single charged operator as CW
Oi

¼ tr ð ffiffiffiffiffiffiffiffi
ρβ;gc

p
Oi

ffiffiffiffiffiffiffiffi
ρβ;gc

p
Oy
i Þ,

which matches the imaginary-time Green’s function of Oi with a time
separation τ = β/2. Since CW

Oi
> 0 for any finite temperature ensemble, we

conclude that ρβ,c exhibits the SWSSB. For systems with a charge gap Δ, we
expect CW

Oi
� e�βΔ=2, which leads to CW(i, j) ~ e−βΔ. Interestingly, this

matches the result of the fidelity correlator from a replica calculation in9.
More generally, we have Fα(i, j) ~e−βΔ and CW

α ði; jÞ � e�2τΔ, with
τ=β ¼ minfα; 1� αg. Finally, we note that the locality requirement can
be relaxed in physical models with all-to-all interactions. A celebrated
example is the complex Sachdev-Ye-Kitaev model24–28, in which the
Wightman function has been extensively studied for the calculation of out-
of-time-order correlators (OTOC).

Decohered Ising model. Another concrete example of SWSSB is the
decohered Ising model in 2D9, which is dual to the toric code under bit-
flip errors29–33.We consider a 2D square latticewhere each site is occupied
by a qubit. The system is initialized in the product state along the x-
direction ρ0 ¼ �i∣þ xi þxh ∣. Then, a nearest neighbor Ising channel is
applied to the system with

E ¼
Y
hiji

Eij; Eij½ρ0� ¼ ð1� pÞρ0 þ pZiZjρ0ZjZi: ð13Þ

Here, p ∈ [0, 1/2]. The decohered density matrix ρ ¼ E½ρ0� exhibits strong
symmetrywithU ¼Qi Xi. To calculate theWightman correlator using the
replica trick, we first introduce CW;ðnÞði; jÞ ¼ tr ðρnZiZjρ

nZiZjÞ. The strat-
egy is to derive results for generic n, and perform the analytical continuation
to n = 1/2. Generalizing the analysis in ref. 9, we find that CW,(n)(i, j) is
described by the correlators similar to the fidelity correlator

CW;ðnÞði; jÞ ¼
Yn
α¼1

σðαÞi σðαÞj

* +
Heff

: ð14Þ

with

Heff ¼ �
X
hiji

X2n�1

α¼1

σðαÞi σðαÞj þ
Y2n�1

α¼1

σðαÞi σðαÞj

 !
; ð15Þ

at an effective temperature β determined by tanh β ¼ p=ð1� pÞ. In the
single replica limit n → 1/2, the effectivemodel describes the randombond
Ising model along the Nishimori line32, which undergoes a ferromagnetic-
to-paramagnetic phase transition. The SWSSB for ρ occurs when the
random bond Ising model becomes ordered at p > pc ≈ 0.109. Here, we
emphasize the significance of the single replica limit, enabled by the use of
theTFDstate, or equivalently, byhaving

ffiffiffi
ρ

p
inEq. (5). This also implies that

the same transition point applies to all generalized Wightman correlators.
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Susceptibility interpretation
Motivated by its close relation to spin glass susceptibility, we present an
interpretation of the Wightman correlator in terms of susceptibility in
generic setups. There is a similar proposal for the fidelity correlator15. We
consider the Wightman function CW

Oi
¼ hOi

~O
y
i iTFD of a single charged

operatorOi for a generic density matrix.When ρ exhibits strong symmetry,
the Wightman function vanishes due to the charge constraint. Now, we
introduce a perturbation to the TFD state by coupling the physical system
and the auxiliary system with a direct hopping

∣ψi � exp
ϵ

2

X
j

Oy
j
~Oj þ Oj

~O
y
j

h i !
∣TFD i: ð16Þ

Physically, this perturbation enables charge fluctuations. We then measure
the change of theWightman functionCW

Oi
. Perturbatively, the result is given

by

CW
Oi
=ϵ :¼ χW ¼

X
j

CWði; jÞ: ð17Þ

Therefore, the susceptibility χW remains finite when the strong symmetry is
unbrokenbut diverges if SWSSBoccurs. This is closely analogous to the spin
glass case. To leading order in ϵ, we can translate the perturbation into the
language of quantum channelN ¼ Qi N i with:

N i½ρ� ¼ 1� ϵ2

2

� 

ρþ ϵ2

4
Oy

i ρOi þ
ϵ2

4
OiρO

y
i : ð18Þ

Here, we assume the charged operatorOi is unitary. This quantum channel
perturbs the density matrix by a homogeneous charge creation.

We can also interpret the generalized Wightman functions as sus-
ceptibilities using a similar construction. Here, we briefly discuss an alter-
native strategy for CW

α ði; jÞ with α → 0, showing a close relation to the
response of von Neumann entropy. Assuming that Oi is unitary, we have

CW
α ði; jÞ ¼ CW

0 ði; jÞ � α tr ½HMδρ�; ð19Þ

to the leading order in α. Here, we introduce the modular Hamiltonian
HM ¼ � ln ρ and δρ ¼ ½OiO

y
j ρO

y
i Oj � ρ�. The second term can be inter-

preted as computing the difference in von Neumann entropy between the
original density matrix ρ and the decohered density matrix

M½ρ� ¼ ð1� αÞρþ αOiO
y
j ρO

y
i Oj ¼ ρþ αδρ; ð20Þ

in the limit of α → 0. For systems without SWSSB, CW
0 ði; jÞ > 0 while

CW
α ði; jÞ ¼ 0 for α > 0, indicating a divergence in the entropy response

tr[HMδρ]. This further suggests that the modular Hamiltonian of density
matrices without SWSSB should exhibit spooky properties, possibly with
operator sizes scaling with the system size or an unbounded spectrum. This
relation also provides solid proof that the thermal state of physical Hamil-
tonians always exhibits SWSSB, for which the entropy response function is
bounded.

Discussion
The validity of the pure-state perspective has significant implications for
understanding SWSSB. It is well-known that order-to-disorder transitions
can be probed by the expectation value of disorder operators, which remain
non-zero in the disordered phase34. We anticipate that a similar disorder
operator can be introduced straightforwardly within our TFD setup. Fur-
thermore, recent studies highlight the singularity of the full counting sta-
tistics of charges in a subregion during the superfluid phase35. Applied to the
TFD state, this framework suggests the singularity of a correlator involving
charge twist operators acting on both the physical and auxiliary systems.
Another intriguingdirection is exploringSWSSB from theperspective of the

modular flow. For a system with SWSSB, our analysis of entropy response
suggests themodularHamiltonian is well-behaved. This facilitates the study
ofmodular flow, which defines the intrinsic dynamics of the densitymatrix.
For instance, evolving the operatorOj in Eq. (5) to a later time t results in an
OTOC. This framework could pave the way for further classification of
densitymatrices, allowing for thedistinctionbetween thosewith chaotic and
non-chaotic modular Hamiltonians.

Data availability
Data sharing is not applicable to this article as no datasets were generated or
analyzed during the current study.
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