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Flat bands on a spherical surface from
Landau levels to giant-quantum-number

orbitals

M| Check for updates

Chen-Xin Jiang ® ??, Zi-Xiang Hu® 1< & Bo Yang ®?

Flat bands result in adivergent density of states and high sensitivity to interactions in physical systems.
While such bands are well known in systems under magnetic fields, their realization and behavior in
zero-field settings remain largely unexplored. Here we compare the behavior of electrons confined to a
single flat band on the surface of a sphere to those in flat bands under a magnetic field. The zero-field
flat band exhibits an additional C(2) symmetry, which causes electrons to symmetrically cluster on
opposite sides of the sphere’s center when a trapping potential is introduced, resulting in a unique form
of long-range “entanglement”. To explore these findings experimentally, we propose a feasible setup
to explore the unique properties of zero-field flat bands on spherical substrates, offering a promising
route for studying interaction-driven states in spherical geometry without external fields.

The flat bands in momentum space imply divergent density of states,
making the system very sensitive to interactions, often leading to many
strongly correlated phenomena. Much of the research in this area is focused
on periodic crystal structures, such as the fractional Chern insulators'~,
heavy fermion systems*, superconductors’"’, Mott insulators'""?, and so
on. Research on continuous models mainly focuses on the quantum Hall
effects, where topological phases emerge from electrons confined within a
two-dimensional manifold subject to a strong perpendicular magnetic field.
Here the flat bands, or the so-called Landau levels, are formed due to the
magnetic field. In the limit of large magnetic field, only one Landau level is
physically accessible at low temperature, forming a very special Hilbert space
responsible for the topological physics of both the integer and fractional
quantum Hall effect.

The geometries in the quantum Hall effect mainly include the disk",
cylinder', sphere'”, and torus'®, among which the sphere is the only curved
geometry compared to the others. The absence of boundaries on the sphere
makes it particularly suitable for investigating the bulk properties of the
system. Moreover, in contrast to planar geometries, the degeneracy of
Landau levels in spherical geometry is finite, allowing for a clear definition of
filling the Landau levels (LLs).

Even without a magnetic field, flat bands naturally arise on the surface
of the sphere. The single particle kinetic energies of particles confined to the
spherical surface forms gapped flat bands. Intuitively one can understand
this by identifying the geometric Gaussian curvature of the sphere as ana-
logous to a uniform “magnetic field”, that nevertheless does not break time
reversal symmetry. The energy quantization in this system is governed by

the electron density, the radius of the sphere, and the effective mass of the
electrons. Moreover, similar to Landau levels, the zero-field bands on the
surface of the sphere remain strictly flat, with no dispersive bands present.
The study of strongly correlated systems for electrons projected onto a
specific kinetic energy flat band on the surface of a sphere in the zero field
remains unexplored. Previous studies look into the Coulomb interaction
model of two or three electrons on the sphere without projection into a
single flat band, such as the approaches of approximate Schrodinger
equations'’™"’, the configuration interaction method'****. It has been sug-
gested that electrons can form a Wigner crystal for the strong interaction
limitl‘?,ZZfZS.

In this Paper, we study the physics of electrons confined to a single flat
band on the surface of a conducting sphere, as well as the mixing of flat
bands from strong interactions. Depending on the presence or absence of
the magnetic field (i.e., magnetic monopole Q), such flat bands have distinct
physical characteristics with or without strong interaction. Starting from a
single electron, we find that the flat band with Q = 0 possesses an additional
C(2) symmetry. This leads to the curious phenomenon that within a single
flat band, electrons cannot be localized in real space with local confining
potentials. We can thus easily create a pair of “Bell state” localized simul-
taneously at the North Pole and South Pole of the sphere with long-range
entanglement. Subsequently, we study the impact of the trapping potential
on the rotational symmetry of the system. While a discrete array of trapping
potentials always break the rotational invariance on the surface of the
sphere, it is not necessarily the case within a single flat band. Moreover, due
to the C(2) symmetry of the flat band Q = 0, fewer trapping potentials are
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needed to maintain the I, rotational symmetry of the system, as compared
to the flat bands with Q > 0. We also analyze the two-body interaction within
these flat bands, and discovered that the effective interaction in Q = 0 bands
are very long-range compared to those in Q > 0, even from a very short-
range bare interaction in the real space. This leads to much stronger band
mixing effects in the absence of the magnetic field.

Results

Single particle flat bands

The single-electron Hamiltonian on spherical surface with a magnetic
monopole of strength Q at the center of the sphere is"

R LZ _ hZQZ
H=——-+ 1
KT om R )

where L is orbital angular momentum, 7 is the reduced Planck constant, s,
is the effective mass of an electron and R is the radius of the sphere. We can
easily get the Hamiltonian’s eigenvalues E. = %, and the eigen-
states are given by the monopole harmonlcs Youm*”, satisfying
L*Yqm =0+ )Y q,,, and LZ Yqim(Q) =mhYq,,(Q) Awhere land m
denote orbital angular momentum L and its z component L, respectively,
and Q is the angular coordinates 8 and ¢ on the sphere. For the case of Q > 0,

we choose the latitudinal gauge
hQ .
A=— R cot Qe¢, ()

and the monopole harmonics Yy, can be expressed using Wigner’s
d-function dm ' o(0)”. Tts explicit form is given by

2l+11m
Youn(@) = /= =" P} o(6). ®)

The kinetic energy levels exhibit a series of flat bands with degeneracy 21+ 1.
For the Hamiltonian of zero field Q = 0, its eigenstates are also called
spherical harmonic functions Yo ,,, = Y,

Yy(@) = /21 + 1

where PJ"(x) is associated Legendre polynomial.

We focus on the dynamics within the topmost unfilled Ith flat band
where /is fixed and large, assuming that all orbitals with angular momentum
less than [ are filled with electrons. Consequently, as the particle density
approaches infinity, we can have a “flat band” with an infinite number of
degenerate states as well as an infinitely large energy gap. This is analogous
to the Landau levels in the limit of the large system sizes (the thermo-
dynamic limit), where the energy gap is non-vanishing with an infinite
number of degenerate states in a single Landau level. If we fix [ (thus the
degeneracy within the flat band), the Landau level index is given by [ — Q
with Q = I being the Lowest Landau level (LLL). It is well known that the
eigenstates are Gaussian localized (see Fig. 1a). The very special Q = 0 is the
case of zero magnetic field. From some perspectives this is the infinite
Landau level limit (//Q — <o), though the qualitative difference is the pre-
sence of the time reversal symmetry, so the spherical harmonics possess C(2)
symmetry (see Fig. 1b). In addition, from Eq. (1), it can be concluded that the
gap AE! between the flat band with orbital angular momentum /and the flat
band w1th orbital angular momentum [ 4- 1 is (l“)h . Unlike the equidistant
distribution of Landau levels in a plane, the gap between adjacent flat bands
on the sphere gradually increase as  increases. While Landau levels on the
sphere have been extensively studied, with the total flux through the surface
of the sphere is an integer 2Q times the unit magnetic flux, leading to
2Q + 2n + 1 states in the nth Landau level (nLL), in this work we will study
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Fig. 1| Single-particle density distributions within a flat band. a The square
modulus of the monopole harmonics Y g, with the strength of the magnetic
monopole Q =3 and ¢ = 0 in the lowest Landau level, where m is z component of the
orbital angular momentum, 6 and ¢ are the angular coordinates. Blue solid, orange
dotted, green dashed and red dash-dotted lines correspond to m =0, 1, 2 and 3,
respectively. b The square modulus of the spherical harmonic functions Y;,,, with
orbital angular momentum [ = 3 and ¢ = 0. Source data are provided in the Sup-
plementary Data.

the flat band at Q = 0, so the orbital angular momentum / must be restricted
to integer values.

Localization in flat bands

For temperature lower than the band gap, the physical Hilbert space is a
single flat band with degeneracy 21 + 1. Such flat bands are already special
when we look at how we can localize a single particle within this flat band in
real space. We introduce a 1-body delta trapping potential V *(€2), where O
is the position of the electron. We can use the Legendre expansion and the
addition theorem of spherical harmonics to calculate the matrix elements of
the one-body potential

Vo o = QL m [ V(Q)IQ, L, my)

’1”2 \/411(21 TD2L+1)
) 20 +1
l—\l —b| o (5)
. (_ 1)Q+m1+ +1,+, Y?f‘ oy (QO)

<ll I lz)(l2 I I )
-Q 0 Q m, m;—m, —m '

where |Q, [, m) denotes Y, Qo is the position of the delta trapping
potential in the real space on the surface of the sphere, and the last two
parentheses are wigner-3j symbols, which can be calculated by Clebsch-
Gordan coefficient’. Furthermore, we just consider the Ith level, so [, =L, = .
U? satisfies VO(Q) = 377 Py(cos §)U?, where

Ul = 2l/+1

= / V3(Q)P; (cos B)d cos 6, (6)

where Py(x) is the Legendre polynomial, and 6 is the angle between the
position of the electron and the position of the potential. For delta potential

2l/+1
4n

Vi) = Wed? (2 - Ql), U =W, (7)

where Wi is the strength of the delta potential. To account for the effects of
band mixing, the system’s Hamiltonian can be expressed as

1 Tl
Htrap Hk + Z Vll myh mz C;’Z’ (8)

Ly sly,my

where C'f and C!, denote the creation and annihilation operators for the Ith
kinetic energy level, respectively. By diagonalizing the Hamiltonian H,

trap>
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Fig. 2 | Excited-state density under a delta potential. The density profile p of the
excited state of a delta potential located at the North Pole for the Ith and (I + 1)th flat
bands mixing with orbital angular momentum / = 25. a The strength of the magnetic
monopole Q = [ and ¢ = 0, where 6 and ¢ are the angular coordinates. Blue soli-
d, orange dotted, green dashed and red dash-dotted lines represent W, /AE} =
107!, 1072, 1073 and 10*, where Wyis the strength of the delta potential and AE;c is
the flat-band gap. b Q = 0 and ¢ = 0. The gray cone marks a scanning tunneling
microscopy (STM) tip applying a delta potential at one end of the blue sphere,
resulting in simultaneous electron density accumulation at both ends. Source data
are provided in the Supplementary Data.

we investigate the localization behavior of the electron within a single band
and under strong band mixing conditions.

In the lowest Landau level, it is known that with a local impurity
potential (e.g., in the form of a delta trapping potential), electrons can be
Gaussian localized in the real space as a coherent state as shown in Fig. 2a. As
the index of Landau level increases, the density distribution oscillations of
the excited state become more and more pronounced, and the general
expression of the real space wavefunction of the localized state at the origin
Q = (0, 0) in the nth Landau level can be written as

Q+n
V/(Q) = Z YB,QJrn,m(QO) YQ,Q+n,m(Q)‘ (9)

m=—Q—n

Thus as Q decreases, it is increasingly difficult to localize a single electron
within a flat band, if the impurity potential is smaller than the band gap.

In the case of zero field with Q = 0, Fig. 2b shows that the delta trapping
potential produces a qualitatively different effect. Electrons tend to cluster
simultaneously at positions that are diagonally opposite on the surface of the
sphere. That is to say, within a single flat band, if we apply a delta potential at
the North Pole, we will similarly observe electron clustering at the
South Pole.

When the delta potential is strong enough to mix a few flat bands,
electrons become more localized and concentrate at a single point regardless
of the presence of a magnetic field, as shown in Fig. 2. It indicates that in the
case of a zero magnetic field, band mixing breaks the C(2) symmetry of the
system. This is reasonable; for instance, if a delta potential with infinitely
strong negative strength is introduced at the North Pole, the electron
becomes fully localized at a single point, which corresponds to the limit of
large band mixing. This is why it is difficult to observe this special phe-
nomenon at Q = 0 in reality, as it requires the strength of the impurity
potential to be much smaller than the gap AEL, as shown in Fig. 2.

Rotational symmetry in flat bands

The special properties of the flat band Hilbert space are also reflected in its
robustness of spatial symmetry. In general with localized one-body poten-
tials or disorder, all rotational symmetries are broken. However, in a single
flat band, this issue is more subtle. Within the flat band, the single particle 12
is always a good quantum number. This is because the influence of disorder
is significantly smaller than the bandwidth, allowing the system to be
regarded as a single band and preventing the mixing of different flat bands.

Consequently, the only quantum number that can be affected by the dis-
orderis L. A single delta potential does not affect L,; when we introduce two
such potentials, we need to place them diagonally on the sphere to ensure
that L, is still a good quantum number. When the number of these
potentials increases the rotational symmetry is generally broken, however it
can be restored if the number of delta potentials is large enough and uni-
formly distributed, due to the unique properties of a single flat band.

For simplicity, we introduce delta potentials at equidistant points along
the equator, and ask if rotational symmetry about the z-axis is broken, or if
L, still gives a good quantum number. Naively this would not be the case for
any number of delta potential in the full Hilbert space, however within a
single flat band the situation is more subtle. For Q > 0, when the number of
delta potentials, Nj, satisfies N5 > 21 + 1, iz becomes a good quantum
number. In contrast, for Q = 0, we find that L, remains a good quantum
number even when N < 2] + 1, provided that Njis odd and greater than the
orbital angular momentum [. The rigorous proofs for the above phenom-
enon are presented in Supplementary Note 1 and 2.

This observation can also be understood intuitively as follows. Within
the flat band with angular momentum [, there are 2] + 1 states, and this
implies that only discrete symmetry of C(2]) is present. Consequently, if the
Hamiltonian also has the same discrete symmetry, L, is restored as a good
quantum number. For the flat band with zero field, the situation is slightly
different due to the additional inversion symmetry of the system. When the
number of delta potentials is odd, it effectively corresponds to doubling the
number of delta potentials in the system. As a result, compared to systems
with Q > 0, the zero-field system requires fewer delta potentials to restore
rotational symmetry L,. In the full Hilbert space, however, L, becomes a
good quantum number only in the limit where the number of delta
potentials along the equator approaches infinity.

‘When more than one electron is present, the total angular momentum
L? = >7,L,L; is generally no longer a good quantum number in the presence
of impurities. However, due to the peculiarity of the Hilbert space of a single
flat band, the breaking of rotational symmetry is suppressed if we add delta
potentials as evenly distributed as possible on the sphere. We investigate the
uniformity of the potential distributions within the system by analyzing the
bandwidth A, of the delta potential spectrum. Here, A, is defined as the
difference between the maximum and minimum energy of the spectrum.
When the bandwidth is sufficiently narrow, this can be interpreted as delta
potentials being isotropically distributed over the surface of a sphere. While
it is relatively straightforward to achieve a uniform distribution of delta
potentials in toroidal geometries”, accomplishing this on a spherical surface
presents significant challenges that have been extensively addressed in the
literature™ ™, and a good solution is the Fibonacci lattice™, as shown in
Fig. 3, where the coordinates of the ith point (x; y;, z;) on a unit sphere are as
follows

2i—1
zi=ﬁ7
§

x; =1/ 1 — 2% cos(2min),

1 — z7 sin(2min),

(10)

L

Yi=

where 1 = “/3271 is the golden ratio.

As shown in Fig. 3, We find that when N > 2Q, the energy bandwidth
Ay, decreases rapidly in the lowest Landau level. This suggests that even in the
presence of Fibonacci lattice delta potentials, which break rotational
invariance in the Hilbert space, the rotational symmetry is still well
approximated. This finding aligns with similar studies conducted on torus
and disk geometries*!, showing that rotational invariance is very robust
against a superlattice with lattice constant smaller than the magnetic length
that does not mix different LLs. Similar to the case on the torus, the
bandwidth is maximum when the number of delta potentials is equal to the
number of magnetic fluxes, at which the rotational invariance is broken
the most.
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Fig. 3 | Bandwidth variation and Fibonacci lattice on the sphere. Energy-
bandwidth as a function of 1/Nsand the number of orbitals No = 101, where the peak
of the line representing the lowest Landau level (LLL) corresponds to Ns=2Q = 100.
N is the number of delta potentials and Q is the strength of the magnetic monopole.
The blue solid line represents the LLL, while the purple dash-dotted line denotes the
flat band with Q = 0. The orange dots indicate a schematic Fibonacci lattice arranged
on the surface of the blue sphere. Source data are provided in the Supplemen-

tary Data.

In contrast, for the case of Q = 0, the magnetic length no longer serves as
the fundamental length scale, although the number of states within a single
flat band remains finite in analogy to the Landau levels. Consequently, the
bandwidth Ay, is significantly larger than in the case of Q > 0, even when Nj
exceeds the number of states in a single flat band. As Njsbecomes very large,
however, Ay, rapidly decreases. Nevertheless, for the same system size and
the same value of Nj, the rotational invariance of the Q > 0 band is con-
sistently more robust, as evidenced by its smaller bandwidth Ay,

Interaction within flat bands

We now move on to discuss the differences between the flat band with zero
field and the Landau levels from the perspective of interactions. We firstlook
at the regime when the interaction energy scale is small compared to the
band gap, so that we can ignore the band mixing effect. The interaction
Hamiltonian projected onto the kinetic energy level [ in the spherical geo-
metry, can be solved by projecting it into the center of mass space'’, and the
matrix elements of the Hamiltonian can be written as

I:I:nt = Z Z ZZ<Q7Z7mlala mZIQv la laJaM)

my,my, my.my J.M J M’
. (Q7 lv l7 J7 Ml U(Ql - QZ)|Q7 l7 l7 J/7 M/)
. (Q7 17 l7 J/7 M/le 17 ms, lv m4>CTm1 Cjnz Cm4 Cm3>

(11)

where U(Q; — ,) is the interaction of two electrons, JJ and M denote
coupled total angular momentum and its z component, and Q = 0 denotes
zero field. (I,m;,l,m,|l,1,J, M) is Clebsch-Gordan coefficient”, and
(LLJ, MU, — Q)ILLI M) =V ;8 8y 5 is the 2-body pseudo-
potential parameter, which reflects the interaction between two electrons,
and J = 2] — J is the relative angular momentum.
We start with the short-range Trugman-Kivelson (TK) type
interaction™. For a fermionic system, it can be written as
U°(Q, — Q,) = V33(10, — Q,]), (12)
and the corresponding pseudopotential parameters are shown in Fig. 4. For
the lowest Landau level, it is well known that the 2-body pseudopotential
corresponding to the TK interaction is V. This is no longer the case in
higher LLs: we find that with the same contact interaction in real space, the
corresponding pseudopotential is V, +V; 4+ ... 4+V,, | in the Ith
Landau level. Thus, even though different LLs are topologically equivalent,
there are still qualitative differences. For example, the exact Laughlin state at
v = 1/3 can only be realized in the LLL. In higher LLs the interaction tends to
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Fig. 4 | Pseudopotential parameters of the Trugman-Kivelson interaction. Q is
the strength of the magnetic monopole. Since for the Q = 0 flat band, the system no
longer has a magnetic length, making the sphere’s radius the only relevant length
scale, we perform an energy normalization by taking the radius of the sphere with
zero field to be equal to that of the lowest Landau level. a Pseudopotential parameters
of the Trugman-Kivelson interaction in different Landau level with orbital angular
momentum [ = 17. Red open circles (LLL), blue open squares (1LL), green open
triangles (2LL), and purple open diamonds (3LL) represent the lowest, first, second,
and third Landau levels, respectively. b Pseudopotential parameters of the Trugman-
Kivelson interaction in the Ith flat band with Q = 0. Red filled circles, blue filled
squares, green filled triangles, and purple filled diamonds represent / = 8, 11, 14 and
17, respectively. ¢ Pseudopotential parameters of the Coulomb interaction in dif-
ferent flat band with [ = 17. Source data are provided in the Supplementary Data.

2LL

become more long ranged in the pseudopotential basis. This is also
fundamentally related to the increase of the trace of the Fubini-Study metric
in higher LLs™.

As we can understand the Q = 0 case as the limit of an infinite number of
LLs, it is not surprising that even with a very short-range interaction in the real
space, the effective interactions are very long-range in the pseudopotential
basis compared to when there is a magnetic monopole, as shown in Fig. 4(b).
This significant difference prevents the realization of a uniform ground state
within the partially filled flat band with realistic Coulomb interactions, in
contrast to the case of Q > 0, as shown in Supplementary Note 3.

Strong interaction limit and flat band mixing

So far we only focused on the cases where the gap between the flat bands is
infinite with no band mixing especially from the electron-electron inter-
action. In experiments the band gap is always finite, and the interaction
energy scale is not necessarily small compared to the band gap. The resulting
band mixing from interaction can significantly affect the dynamics of
electrons. For example in the fractional quantum Hall effect, Landau levels
mixing (LLM) breaks the particle-hole symmetry of the two-body interac-
tion system and leads to the emergence of many non-Abelian states” .
When the Coulomb interaction is smaller than the energy gap between the
flat bands, we can treat the interaction as a perturbation to solve for an
effective single Landau level model**’. However, in many experimental
samples, the strength of interaction is often close to or greater than the gap of
flat bands***, rendering the perturbation theory ineffective. Therefore, we
choose a nonperturbative approach by directly mixing two flat bands.
Previous studies have shown that excluding higher Landau levels will not
have a significant impact on the results”, and the valence states are
polarized**”, with excitations of different spin not substantially affecting the
crucial physics of the system””. These viewpoints can support the validity of
our model. In order to compare the different properties of the system with
zero field, we mix the two flat bands with zero field and do not consider the
electron spin.
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Fig. 5| Modifications to two-body and three-body pseudopotentials. The effective
pseudopotential parameters for the Ith and (I 4 1)th flat bands mixing with orbital
angular momentum /= 12 and different strength of magnetic monopole Q, where the

sphere radius for Q = 0 is the same as that for Q = I. All modifications are negative
v\z bodym _ ;2-body

values.a 3, =1g represents the logarithmic ratio of the modification

I
V2 2 ody

to the two-body pseudopotential parameters, to the two-body pseudopotential
parameters within a single flat band. Blue open squares, purple open diamonds,

green open triangles, and Red open circles represent Q =0, ,/ — 1,and [ — 2,
73—bodym

respectively. b 8, = lg ‘ %J“”?]

denotes the logarithmic ratio of the modification to

the three-body pseudopotential parameters, to the three-electron energy [E; , from

2—bod;
the two-body effective interaction ), A% b“dymH[ "

in the Supplementary Data.

. Source data are provided

The Hamiltonian of the system with flat band mixing (FBM) can be
written as

HFBM =Hk + Hcoulomb7

R LZ_h2Q2
Hk:z 2m,R*
i

Hcoulomb 47T€R Z Z ZZ<Q>ll7m11127m2|

my,my mymy 1L 1,

(13)

1 Lt bt oly ol
ma Q. Iy, ms, L, my)CLYCal C C,
where ¢ is the permittivity. Due to the ratio of the Coulomb interaction to the
gap of flat bands H_gyomp,/AEL — R, we can actually control the relative
strength of the Coulomb interaction by changing the radius of the sphere.
The effective Hamiltonian of the projected interaction can be written as

2-body 'y 2— body
Hy = Z v (14)

which corresponds to the two-body pseudopotentlal parameter Vz body

described in Eq. (11), and 5 7 is the two-body pseudopotential
interaction with total relative angular momentum J without FBM. In general,
the effective Hamiltonian within a single flat band that captures the band
mixing effect is given by two-body or more pseudopotentials as shown below:

xbodymAl bOde
Han =23 Vi
i=2

(15)

~-i—bod;
where [ , " is the i-body pseudopotential interaction with total relative

angular momentum J within a single band*, V;;bmym denotes the corre-

sponding pseudopotential parameters, and « denotes the degeneracy of such

pseudopotentials with the same total relative angular momentum. The
energy spectrum of Eq. (15) is defined to match the low-energy part of the
full Hamiltonian in Eq. (13) for any number of electrons. Consequently, the
modification to the two-body pseudopotential parameter due to FBM can be

easily determined as szbodym — VZ ~body, Similarly, the modification to the

3— bodym

three-body pseudopotential parameter is given by V;’ , which can be

determined by subtracting the three-electron energy contribution of the
~ 2—bodym

\%% bOdymH] , from the low-

two-body effective interactions, >,V
energy part of the Hamiltonian in Eq. (13) for three electrons. Unlike the
two-body pseudopotential coefficients, the allowed values of ] for the three-
body pseudopotential coefficients follow the relation J = 3n; + 2#n, with
n 21, n,20, n;,n, € 7%, indicating that for a given J, multiple
pseudopotential coefficients may exist.

The mixing of the /th and (I 4 1)th flat bands results in the pseudo-
potential modifications for the two-body and three-body interactions in the
Ith band, as shown in Fig. 5. As Q decreases, the modifications of band mixing
on the large-J components of the pseudopotential parameters become
increasingly significant, In particular, at Q = 0, the modifications to the large-J
components are the strongest and constitute the primary contribution.

Discussion
In summary, the flat band with Q = 0 exhibits a range of intriguing properties,
one of which is its ability to host long-range entangled states with a simple
experimental setup. Specifically, as discussed in the Results section titled
Localization in flat bands, a single flat band offers a rather natural setting for
long-range “entanglement”, especially if the sphere is sufficiently large. A
conducting spherical shell can thus be used as a convenient platform for
hosting a “Bell pair”, when a pair of electrons with opposite spins is added to
the shell in the presence of a localization potential at the North Pole (e.g., from
a scanning tunneling microscopy tip). Due to the special C(2) symmetry of
the system with Q = 0, the probability density of the electrons is concentrated
at opposite ends of the sphere even though the two ends are spatially well
separated, and the local potential is only applied at one end. The single particle
long-range entanglement of the electrons of opposite spin (e.g., if they form a
singlet) implies a spin-up measured at the North Pole forces a spin-down to
be measured at the South Pole, or vice versa, as shown in Fig. 6a.

Several conditions need to be satisfied in the experiments for the zero-
field (i.e., Q = 0) flat band to be realized with large enough band gap as
compared to temperature or disorder in the system. Explicitly the radius R of

(+1)n?
kg Tm,

the sphere must satisfy R <
Hence, if we take AEk

, where kg is the Boltzmann constant.

10k T, this gives the maximum value of radius

N (s
T\ 10k, T,

Furthermore, for the flat band with orbital angular momentum /, lower flat
bands are completely filled, requiring a total number of 21 electrons. The
relationship between the electron density p. and the radius of the sphere is thus

(16)

12
= — 17
R 2, (17)

To determine the crossover temperature T, we use the conditionR = R,
and

(14 Dnp,

T =
¢ 5Pkgm,

(18)

Realizing the flat bands at higher temperatures and on larger spherical
surfaces requires materials with a sufficiently small effective mass and a high
electron density, as shown in Fig. 6(b) and (c). If a larger spherical surface is
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Fig. 6 | Experimental concept and physical para-
meters for realizing spherical flat bands. a The
figure schematically illustrates the flat band on the
spherical surface with the strength of the magnetic
monopole Q = 0 and a zero-field system designed to
host a Bell pair, where the blue solid rectangles
represent orbitals occupied by electrons, the purple
hollow rectangles indicate unoccupied orbitals, and
the region enclosed by red dotted lines corresponds
to the partially filled flat band with orbital angular
momentum [ The inner sphere represents the
spherical substrate, while the outer shell represents a
layer of two-dimensional electron gas (2DEG), such
as that in indium antimonide (InSb) and gallium

I/ H

(InSb)

(a)
IERE—I—I—1——1—1—1——

Ll e e ] e [ e R
N

"
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I
2 .. p.=10"cm — = £,=10" cm
(InSb) (GaAs)

STM tip v

_ -0t
7

e [

= Bell Pair\

arsenide (GaAs). The gray cone indicates the scan-
ning tunneling microscopy (STM) tip applying a
localized potential. The purple spheres at the North

10" {0)

Pole and South Pole denote a pair of entangled = 1 04<_
electrons, with green arrows indicating the spin

orientations of each electron. b The orbital angular 1
momentum [ as functions of crossover temperature 1 Q1

T, for different electron densities p.. Green solid and 10
dotted lines correspond to InSb with p, = 10”cm > (©)

and 10" cm?, respectively; purple dashed and dash-
dotted lines correspond to GaAs with the same
electron densities. ¢ The radius R as functions of
crossover temperature T, for different p.. Source

data are provided in the Supplementary Data.

T, (K)

required, the experimental temperature must be reduced. Alternatively,
increasing the electron density provides another feasible approach.
Experimentally, several methods have been developed to achieve higher
electron densities”. We can look at two common materials indium anti-
monide (InSb) and gallium arsenide (GaAs), with effective masses 0.014 m;
and 0.067 m,, where my is the free electron mass, and electron densities
24 x10"cm™ and 1.3 x 10"'cm™, respectively”* .

We also examine the effect of interaction on band mixing with realistic

experimental parameters. The scale of the Coulomb interaction is given by
2
ek

The ratio of the interaction scale to the flat-band gap can be calculated

2
%. It is well known that for Q > 0, R = /Qlp, where I, = % is

the magnetic length. Consequently, Landau level mixing can be suppressed
by either increasing the magnetic field or decreasing Q. However, in the case
of Q =0 we no longer has a magnetic length, so the radius of the sphere is the
only length scale. For Coulomb interaction at zero field not to mix different
flat bands, it needs to be smaller than the gap AE! of the flat band and greater
than kgT, so the radius R of the sphere must satisfy two conditions. The first

2
e DI Here we take
mee

as

condition is R«

_4ne(l+ DR’

R
! 10m,e?

. (19)

. e . 2
which ensures R < R;. The second condition is R < zm:W’ and we take
B

32

Ry=—
27 8meky T

(20)
ensuring R < R,. We can use the first condition in Eq. (19) and Eq. (17) to
derive the minimum value of electron density

25m2etl’

e’ = 21
smie2(l 4+ 1)*n*’ @)

Pmin =

For large values of ], the ratio ﬁ approaches 1. This implies that to reduce

the required electron density, materials with a larger permittivity and a
smaller effective mass are needed, such as InSb with ¢ = 17¢, (¢ is the
vacuum permittivity)”,and p,_,. A 3.8 x 10"! cm™2. Using this density and
the second condition in Eq. (20), we can calculate the required radius of the
sphere at a temperature of 1 mK, which is approximately less than 0.49 mm.

Overall, at zero magnetic field, a flat band can be realized on a con-
ducting sphere with a radius on the order of 10 to 100 microns, featuring an
energy gap ranging from approximately 0.07 to 0.7 K and a degeneracy of
10’ to 10* states. These parameters can be further optimized with improved
material properties, such as a lower effective electron mass, higher electron
density, and larger permittivity. In comparison, under a strong magnetic
field of 10 tesla, a sample of approximately 1 micron by 1 micron hosts a
similar order of magnitude for the number of states in each Landau level flat
band, also around 10’ states. InSb emerges as a promising candidate, capable
of supporting flat bands with a degeneracy of up to 10° at 1 mK, corre-
sponding to a maximum sphere radius of approximately 0.78 mm. The
fabrication of micron-scale spherical substrates is well-established across
various experimental fields****, making this setup feasible. For higher tem-
peratures or larger spheres, increasing the electron density of the material
becomes essential, which is equally important for realizing flat bands
dominated by interactions without significant band mixing effects. It is
noteworthy that the system considered here fundamentally differs from the
conventional flat bands realized in quantum materials in the thermo-
dynamic limit, where the degeneracy of the flat band approaches infinity. In
our study, we focus on a finite spherical system that, nevertheless, can
achieve a high degeneracy of orbitals at the same energy (mimicking the flat
bands) with a large gap from the rest of the spectrum, potentially with
experimentally accessible parameters. Furthermore, in conventional flat
band systems, the large degeneracy in the thermodynamic limit comes with
a finite band gap, while in our case the gap also increases with the degen-
eracy, a useful property from an experimental point of view.

Future work could explore how the generation of Bell pairs on spherical
systems can be experimentally realized with conducting materials with high
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electron density. In the Results section titled Rotational symmetry in flat
bands, we considered a highly tuned distribution of delta potentials, high-
lighting the potential impact of disorder on the system. For orbitals with
large angular momentum, the energy gap between adjacent orbitals is sig-

. 1 1+1)h?
nificantly large (AE, = (:;ez)ez

different flat bands due to disorder. While the effects of disorder in Landau
levels have been extensively studied*>*, the role of disorder in the Q = 0 flat
band on the surface of the sphere remains an open question and will be the
subject of future exploration. Furthermore, in the absence of a magnetic
field, the impact of electron spin in this system and the novel phenomena it
may induce will also be investigated in detail in future studies.

), which strongly suppresses the mixing of
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tary Information and the Supplementary Data. Source Data are available
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