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Flat bands on a spherical surface from
Landau levels to giant-quantum-number
orbitals
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Flat bands result in adivergentdensity of states andhigh sensitivity to interactions in physical systems.
While such bands are well known in systems under magnetic fields, their realization and behavior in
zero-field settings remain largely unexplored.Herewecompare the behavior of electrons confined to a
single flat band on the surface of a sphere to those in flat bands under a magnetic field. The zero-field
flat band exhibits an additional C(2) symmetry, which causes electrons to symmetrically cluster on
opposite sidesof the sphere’scenterwhena trappingpotential is introduced, resulting in aunique form
of long-range “entanglement”. To explore these findings experimentally, we propose a feasible setup
to explore the unique properties of zero-field flat bands on spherical substrates, offering a promising
route for studying interaction-driven states in spherical geometry without external fields.

The flat bands in momentum space imply divergent density of states,
making the system very sensitive to interactions, often leading to many
strongly correlated phenomena.Much of the research in this area is focused
on periodic crystal structures, such as the fractional Chern insulators1–3,
heavy fermion systems4–6, superconductors7–10, Mott insulators11,12, and so
on. Research on continuous models mainly focuses on the quantum Hall
effects, where topological phases emerge from electrons confined within a
two-dimensionalmanifold subject to a strong perpendicularmagnetic field.
Here the flat bands, or the so-called Landau levels, are formed due to the
magnetic field. In the limit of large magnetic field, only one Landau level is
physically accessible at low temperature, formingavery specialHilbert space
responsible for the topological physics of both the integer and fractional
quantum Hall effect.

The geometries in the quantum Hall effect mainly include the disk13,
cylinder14, sphere15, and torus16, among which the sphere is the only curved
geometry compared to the others. The absence of boundaries on the sphere
makes it particularly suitable for investigating the bulk properties of the
system. Moreover, in contrast to planar geometries, the degeneracy of
Landau levels in spherical geometry isfinite, allowing for a clear definitionof
filling the Landau levels (LLs).

Even without a magnetic field, flat bands naturally arise on the surface
of the sphere. The single particle kinetic energies of particles confined to the
spherical surface forms gapped flat bands. Intuitively one can understand
this by identifying the geometric Gaussian curvature of the sphere as ana-
logous to a uniform “magnetic field”, that nevertheless does not break time
reversal symmetry. The energy quantization in this system is governed by

the electron density, the radius of the sphere, and the effective mass of the
electrons. Moreover, similar to Landau levels, the zero-field bands on the
surface of the sphere remain strictly flat, with no dispersive bands present.
The study of strongly correlated systems for electrons projected onto a
specific kinetic energy flat band on the surface of a sphere in the zero field
remains unexplored. Previous studies look into the Coulomb interaction
model of two or three electrons on the sphere without projection into a
single flat band, such as the approaches of approximate Schrödinger
equations17–19, the configuration interaction method18,20–23. It has been sug-
gested that electrons can form a Wigner crystal for the strong interaction
limit19,22–25.

In this Paper, we study the physics of electrons confined to a single flat
band on the surface of a conducting sphere, as well as the mixing of flat
bands from strong interactions. Depending on the presence or absence of
themagnetic field (i.e., magneticmonopoleQ), such flat bands have distinct
physical characteristics with or without strong interaction. Starting from a
single electron, we find that the flat band withQ = 0 possesses an additional
C(2) symmetry. This leads to the curious phenomenon that within a single
flat band, electrons cannot be localized in real space with local confining
potentials. We can thus easily create a pair of “Bell state” localized simul-
taneously at the North Pole and South Pole of the sphere with long-range
entanglement. Subsequently, we study the impact of the trapping potential
on the rotational symmetry of the system.While a discrete array of trapping
potentials always break the rotational invariance on the surface of the
sphere, it is not necessarily the case within a single flat band.Moreover, due
to the C(2) symmetry of the flat band Q = 0, fewer trapping potentials are
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needed to maintain the L̂z rotational symmetry of the system, as compared
to theflat bandswithQ>0.We also analyze the two-body interactionwithin
these flat bands, and discovered that the effective interaction inQ = 0 bands
are very long-range compared to those in Q > 0, even from a very short-
range bare interaction in the real space. This leads to much stronger band
mixing effects in the absence of the magnetic field.

Results
Single particle flat bands
The single-electron Hamiltonian on spherical surface with a magnetic
monopole of strength Q at the center of the sphere is15

Ĥk ¼
L2 � ℏ2Q2

2meR
2 ; ð1Þ

where L is orbital angular momentum, ℏ is the reduced Planck constant,me

is the effective mass of an electron and R is the radius of the sphere.We can
easily get the Hamiltonian’s eigenvalues El

k ¼ lðlþ1Þℏ2�ℏ2Q2

2meR
2 , and the eigen-

states are given by the monopole harmonics YQ,l,m
26,27, satisfying

L2YQ,l,m = l(l+ 1)ℏ2YQ,l,m and L̂zYQ;l;mðΩÞ ¼ mℏYQ;l;mðΩÞ, where l andm
denote orbital angular momentum L and its z component L̂z respectively,
andΩ is the angular coordinates θ andϕ on the sphere. For the case ofQ>0,
we choose the latitudinal gauge

A ¼ �ℏQ
eR

cot θêϕ; ð2Þ

and the monopole harmonics YQlm can be expressed using Wigner’s
d-function dðlÞm;QðθÞ27. Its explicit form is given by

YQ;l;mðΩÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2l þ 1
4π

r
eiðmþQÞϕdðlÞm;QðθÞ: ð3Þ

Thekinetic energy levels exhibit a series offlat bandswith degeneracy2l+ 1.
For the Hamiltonian of zero field Q = 0, its eigenstates are also called
spherical harmonic functions Y0,l,m = Yl,m

Yl;mðΩÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2l þ 1
4π

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl �mÞ!
ðl þmÞ!

s
Pm
l cosðθÞ½ �eimϕ; ð4Þ

where Pm
l ðxÞ is associated Legendre polynomial.

We focus on the dynamics within the topmost unfilled lth flat band
where l isfixed and large, assuming that all orbitalswith angularmomentum
less than l are filled with electrons. Consequently, as the particle density
approaches infinity, we can have a “flat band” with an infinite number of
degenerate states as well as an infinitely large energy gap. This is analogous
to the Landau levels in the limit of the large system sizes (the thermo-
dynamic limit), where the energy gap is non-vanishing with an infinite
number of degenerate states in a single Landau level. If we fix l (thus the
degeneracy within the flat band), the Landau level index is given by l − Q
with Q = l being the Lowest Landau level (LLL). It is well known that the
eigenstates are Gaussian localized (see Fig. 1a). The very specialQ = 0 is the
case of zero magnetic field. From some perspectives this is the infinite
Landau level limit (l/Q→ ∞), though the qualitative difference is the pre-
sence of the time reversal symmetry, so the spherical harmonicspossessC(2)
symmetry (seeFig. 1b). In addition, fromEq. (1), it canbe concluded that the
gapΔEl

k between theflat bandwith orbital angularmomentum l and theflat
bandwith orbital angular momentum l+ 1 is ðlþ1Þℏ2

meR
2 . Unlike the equidistant

distribution of Landau levels in a plane, the gap between adjacent flat bands
on the sphere gradually increase as l increases. While Landau levels on the
sphere have been extensively studied, with the total flux through the surface
of the sphere is an integer 2Q times the unit magnetic flux, leading to
2Q+ 2n+ 1 states in the nth Landau level (nLL), in this work we will study

the flat band atQ= 0, so the orbital angularmomentum lmust be restricted
to integer values.

Localization in flat bands
For temperature lower than the band gap, the physical Hilbert space is a
single flat band with degeneracy 2l+ 1. Such flat bands are already special
whenwe look at howwe can localize a single particle within this flat band in
real space.We introduce a 1-body delta trapping potentialV δ(Ω), whereΩ
is the position of the electron. We can use the Legendre expansion and the
addition theorem of spherical harmonics to calculate thematrix elements of
the one-body potential

Vδ;Q
l1 ;m1 ;l2 ;m2

¼ hQ; l1;m1jVδðΩÞjQ; l2;m2i

¼
Xl1þl2

l0¼jl1�l2j
Uδ

l0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2l1 þ 1Þð2l2 þ 1Þ

2l0 þ 1

r

� ð�1ÞQþm1þl0þl1þl2Y�
l0 ;m1�m2

ðΩ0Þ

� l1 l0 l2
�Q 0 Q

� �
l2 l0 l1
m2 m1 �m2 �m1

� �
;

ð5Þ

where jQ; l;mi denotes YQ,l,m, Ω0 is the position of the delta trapping
potential in the real space on the surface of the sphere, and the last two
parentheses are wigner-3j symbols, which can be calculated by Clebsch-
Gordan coefficient28. Furthermore,we just consider the lth level, so l1 = l2 = l.
Uδ

l0 satisfies V
δðΩÞ ¼ P1

l0 ¼ 0 Pl0 ðcos θÞUδ
l0 , where

Uδ
l0 ¼

2l0 þ 1
2

Z 1

�1
VδðΩÞPl0 ðcos θÞd cos θ; ð6Þ

where Pl(x) is the Legendre polynomial, and θ is the angle between the
position of the electron and the position of the potential. For delta potential

VδðΩÞ ¼ Wδδ
ð2Þ ∣Ω�Ω0∣
� �

; Uδ
l0 ¼ Wδ

2l0 þ 1
4π

; ð7Þ

whereWδ is the strength of the delta potential. To account for the effects of
band mixing, the system’s Hamiltonian can be expressed as

Ĥtrap ¼ Ĥk þ
X

l1 ;l2;m1 ;m2

Vδ;Q
l1;m1 ;l2 ;m2

Cl1y
m1
Cl2
m2
; ð8Þ

whereCly
m andCl

m denote the creation and annihilation operators for the lth
kinetic energy level, respectively. By diagonalizing the Hamiltonian Ĥtrap,

Fig. 1 | Single-particle density distributions within a flat band. a The square
modulus of the monopole harmonics YQ,Q,m with the strength of the magnetic
monopoleQ = 3 and ϕ = 0 in the lowest Landau level, wherem is z component of the
orbital angular momentum, θ and ϕ are the angular coordinates. Blue solid, orange
dotted, green dashed and red dash-dotted lines correspond to m = 0, 1, 2 and 3,
respectively. b The square modulus of the spherical harmonic functions Yl,m with
orbital angular momentum l = 3 and ϕ = 0. Source data are provided in the Sup-
plementary Data.
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we investigate the localization behavior of the electron within a single band
and under strong band mixing conditions.

In the lowest Landau level, it is known that with a local impurity
potential (e.g., in the form of a delta trapping potential), electrons can be
Gaussian localized in the real space as a coherent state as shown inFig. 2a.As
the index of Landau level increases, the density distribution oscillations of
the excited state become more and more pronounced, and the general
expression of the real space wavefunction of the localized state at the origin
Ω0 = (0, 0) in the nth Landau level can be written as

ψðΩÞ ¼
XQþn

m¼�Q�n

Y�
Q;Qþn;mðΩ0ÞYQ;Qþn;mðΩÞ: ð9Þ

Thus as Q decreases, it is increasingly difficult to localize a single electron
within a flat band, if the impurity potential is smaller than the band gap.

In the case of zerofieldwithQ= 0, Fig. 2b shows that the delta trapping
potential produces a qualitatively different effect. Electrons tend to cluster
simultaneously at positions that are diagonally opposite on the surface of the
sphere. That is to say,within a singleflat band, if we apply a delta potential at
the North Pole, we will similarly observe electron clustering at the
South Pole.

When the delta potential is strong enough to mix a few flat bands,
electrons becomemore localized and concentrate at a single point regardless
of the presence of amagnetic field, as shown in Fig. 2. It indicates that in the
case of a zero magnetic field, band mixing breaks the C(2) symmetry of the
system. This is reasonable; for instance, if a delta potential with infinitely
strong negative strength is introduced at the North Pole, the electron
becomes fully localized at a single point, which corresponds to the limit of
large band mixing. This is why it is difficult to observe this special phe-
nomenon at Q = 0 in reality, as it requires the strength of the impurity
potential to be much smaller than the gap ΔEl

k, as shown in Fig. 2.

Rotational symmetry in flat bands
The special properties of the flat band Hilbert space are also reflected in its
robustness of spatial symmetry. In general with localized one-body poten-
tials or disorder, all rotational symmetries are broken. However, in a single
flat band, this issue ismore subtle.Within the flat band, the single particleL2

is always a good quantum number. This is because the influence of disorder
is significantly smaller than the bandwidth, allowing the system to be
regarded as a single band and preventing the mixing of different flat bands.

Consequently, the only quantum number that can be affected by the dis-
order is L̂z . A singledeltapotential doesnot affect L̂z ; whenwe introduce two
such potentials, we need to place them diagonally on the sphere to ensure
that L̂z is still a good quantum number. When the number of these
potentials increases the rotational symmetry is generally broken, however it
can be restored if the number of delta potentials is large enough and uni-
formly distributed, due to the unique properties of a single flat band.

For simplicity, we introduce deltapotentials at equidistant points along
the equator, and ask if rotational symmetry about the z-axis is broken, or if
L̂z still gives a good quantumnumber. Naively this would not be the case for
any number of delta potential in the full Hilbert space, however within a
single flat band the situation is more subtle. ForQ > 0, when the number of
delta potentials, Nδ, satisfies Nδ ≥ 2l + 1, L̂z becomes a good quantum
number. In contrast, for Q = 0, we find that L̂z remains a good quantum
number evenwhenNδ< 2l+ 1, provided thatNδ is odd and greater than the
orbital angular momentum l. The rigorous proofs for the above phenom-
enon are presented in Supplementary Note 1 and 2.

This observation can also be understood intuitively as follows. Within
the flat band with angular momentum l, there are 2l + 1 states, and this
implies that only discrete symmetry ofC(2l) is present. Consequently, if the
Hamiltonian also has the same discrete symmetry, L̂z is restored as a good
quantum number. For the flat band with zero field, the situation is slightly
different due to the additional inversion symmetry of the system.When the
number of delta potentials is odd, it effectively corresponds to doubling the
number of delta potentials in the system. As a result, compared to systems
with Q > 0, the zero-field system requires fewer delta potentials to restore
rotational symmetry L̂z . In the full Hilbert space, however, L̂z becomes a
good quantum number only in the limit where the number of delta
potentials along the equator approaches infinity.

Whenmore than one electron is present, the total angular momentum
L2 =∑ijLiLj is generally no longer a good quantum number in the presence
of impurities. However, due to the peculiarity of theHilbert space of a single
flat band, the breaking of rotational symmetry is suppressed if we add delta
potentials as evenly distributed as possible on the sphere.We investigate the
uniformity of the potential distributions within the system by analyzing the
bandwidth Δb of the delta potential spectrum. Here, Δb is defined as the
difference between the maximum and minimum energy of the spectrum.
When the bandwidth is sufficiently narrow, this can be interpreted as delta
potentials being isotropically distributed over the surface of a sphere.While
it is relatively straightforward to achieve a uniform distribution of delta
potentials in toroidal geometries29, accomplishing this on a spherical surface
presents significant challenges that have been extensively addressed in the
literature30–33, and a good solution is the Fibonacci lattice33, as shown in
Fig. 3, where the coordinates of the ith point (xi, yi, zi) on a unit sphere are as
follows

zi ¼
2i� 1
Nδ � 1

;

xi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2i

q
cos 2πiη

� �
;

yi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2i

q
sin 2πiη

� �
;

ð10Þ

where η ¼
ffiffi
5

p �1
2 is the golden ratio.

As shown in Fig. 3, We find that whenNδ > 2Q, the energy bandwidth
Δb decreases rapidly in the lowest Landau level. This suggests that even in the
presence of Fibonacci lattice delta potentials, which break rotational
invariance in the Hilbert space, the rotational symmetry is still well
approximated. This finding aligns with similar studies conducted on torus
and disk geometries34, showing that rotational invariance is very robust
against a superlattice with lattice constant smaller than the magnetic length
that does not mix different LLs. Similar to the case on the torus, the
bandwidth is maximumwhen the number of delta potentials is equal to the
number of magnetic fluxes, at which the rotational invariance is broken
the most.

Fig. 2 | Excited-state density under a delta potential. The density profile ρ of the
excited state of a delta potential located at the North Pole for the lth and (l+ 1)th flat
bandsmixing with orbital angular momentum l = 25. aThe strength of themagnetic
monopole Q = l and ϕ = 0, where θ and ϕ are the angular coordinates. Blue soli-
d, orange dotted, green dashed and red dash-dotted lines represent Wδ=ΔE

l
k ¼

10�1; 10�2; 10�3 and 10−4, whereWδ is the strength of the delta potential andΔEl
k is

the flat-band gap. b Q = 0 and ϕ = 0. The gray cone marks a scanning tunneling
microscopy (STM) tip applying a delta potential at one end of the blue sphere,
resulting in simultaneous electron density accumulation at both ends. Source data
are provided in the Supplementary Data.
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In contrast, for the caseofQ=0, themagnetic lengthno longer serves as
the fundamental length scale, although the number of states within a single
flat band remains finite in analogy to the Landau levels. Consequently, the
bandwidthΔb is significantly larger than in the case ofQ > 0, even whenNδ

exceeds the number of states in a single flat band. AsNδ becomes very large,
however, Δb rapidly decreases. Nevertheless, for the same system size and
the same value of Nδ, the rotational invariance of the Q > 0 band is con-
sistently more robust, as evidenced by its smaller bandwidth Δb.

Interaction within flat bands
We nowmove on to discuss the differences between the flat band with zero
field and theLandau levels fromtheperspective of interactions.Wefirst look
at the regime when the interaction energy scale is small compared to the
band gap, so that we can ignore the band mixing effect. The interaction
Hamiltonian projected onto the kinetic energy level l in the spherical geo-
metry, can be solved by projecting it into the center of mass space15, and the
matrix elements of the Hamiltonian can be written as

Ĥ
l
int ¼

X
m1;m2

X
m3 ;m4

X
J;M

X
J 0 ;M0

hQ; l;m1; l;m2jQ; l; l;J;Mi

� hQ; l; l;J;MjUðΩ1 �Ω2ÞjQ; l; l;J0;M0i
� hQ; l; l;J0;M0jQ; l;m3; l;m4iCy

m1
Cy
m2
Cm4

Cm3
;

ð11Þ

where U(Ω1 − Ω2) is the interaction of two electrons, J and M denote
coupled total angular momentum and its z component, and Q = 0 denotes
zero field. hl;m1; l;m2jl; l;J;Mi is Clebsch-Gordan coefficient28, and
hl; l;J;MjUðΩ1 �Ω2Þjl; l;J0;M0i ¼ VJδJ;J 0δM;M0 is the 2-body pseudo-
potential parameter, which reflects the interaction between two electrons,
and J ¼ 2l � J is the relative angular momentum.

We start with the short-range Trugman-Kivelson (TK) type
interaction35. For a fermionic system, it can be written as

Uδ Ω1 �Ω2

� � ¼ ∇2δ ∣Ω1 �Ω2∣
� �

; ð12Þ

and the corresponding pseudopotential parameters are shown in Fig. 4. For
the lowest Landau level, it is well known that the 2-body pseudopotential
corresponding to the TK interaction is V1. This is no longer the case in
higher LLs: we find that with the same contact interaction in real space, the
corresponding pseudopotential is V1 þV3 þ � � � þV2l�1 in the lth
Landau level. Thus, even though different LLs are topologically equivalent,
there are still qualitative differences. For example, the exact Laughlin state at
ν=1/3 can only be realized in the LLL. In higher LLs the interaction tends to

become more long ranged in the pseudopotential basis. This is also
fundamentally related to the increase of the trace of the Fubini-Studymetric
in higher LLs36.

Aswe canunderstand theQ=0 case as the limit of an infinite number of
LLs, it isnot surprising that evenwith avery short-range interaction in the real
space, the effective interactions are very long-range in the pseudopotential
basis compared to when there is amagneticmonopole, as shown in Fig. 4(b).
This significant difference prevents the realization of a uniform ground state
within the partially filled flat band with realistic Coulomb interactions, in
contrast to the case of Q > 0, as shown in Supplementary Note 3.

Strong interaction limit and flat band mixing
So far we only focused on the cases where the gap between the flat bands is
infinite with no band mixing especially from the electron-electron inter-
action. In experiments the band gap is always finite, and the interaction
energy scale is not necessarily small compared to the bandgap.The resulting
band mixing from interaction can significantly affect the dynamics of
electrons. For example in the fractional quantum Hall effect, Landau levels
mixing (LLM) breaks the particle-hole symmetry of the two-body interac-
tion system and leads to the emergence of many non-Abelian states37–39.
When the Coulomb interaction is smaller than the energy gap between the
flat bands, we can treat the interaction as a perturbation to solve for an
effective single Landau level model40–43. However, in many experimental
samples, the strengthof interaction is often close to or greater than the gapof
flat bands44,45, rendering the perturbation theory ineffective. Therefore, we
choose a nonperturbative approach by directly mixing two flat bands.
Previous studies have shown that excluding higher Landau levels will not
have a significant impact on the results42, and the valence states are
polarized46,47, with excitations of different spin not substantially affecting the
crucial physics of the system47. These viewpoints can support the validity of
our model. In order to compare the different properties of the system with
zero field, we mix the two flat bands with zero field and do not consider the
electron spin.

Fig. 4 | Pseudopotential parameters of the Trugman-Kivelson interaction. Q is
the strength of the magnetic monopole. Since for the Q = 0 flat band, the system no
longer has a magnetic length, making the sphere’s radius the only relevant length
scale, we perform an energy normalization by taking the radius of the sphere with
zero field to be equal to that of the lowest Landau level. aPseudopotential parameters
of the Trugman-Kivelson interaction in different Landau level with orbital angular
momentum l = 17. Red open circles (LLL), blue open squares (1LL), green open
triangles (2LL), and purple open diamonds (3LL) represent the lowest, first, second,
and third Landau levels, respectively. bPseudopotential parameters of the Trugman-
Kivelson interaction in the lth flat band with Q = 0. Red filled circles, blue filled
squares, green filled triangles, and purple filled diamonds represent l = 8, 11, 14 and
17, respectively. c Pseudopotential parameters of the Coulomb interaction in dif-
ferent flat band with l = 17. Source data are provided in the Supplementary Data.

Fig. 3 | Bandwidth variation and Fibonacci lattice on the sphere. Energy-
bandwidth as a function of 1/Nδ and the number of orbitalsNO= 101, where the peak
of the line representing the lowest Landau level (LLL) corresponds toNδ = 2Q = 100.
Nδ is the number of delta potentials andQ is the strength of the magnetic monopole.
The blue solid line represents the LLL, while the purple dash-dotted line denotes the
flat bandwithQ = 0. The orange dots indicate a schematic Fibonacci lattice arranged
on the surface of the blue sphere. Source data are provided in the Supplemen-
tary Data.
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The Hamiltonian of the system with flat band mixing (FBM) can be
written as

ĤFBM ¼Ĥk þ Ĥcoulomb;

Ĥk ¼
X
i

L2i � ℏ2Q2

2meR
2 ;

Ĥcoulomb ¼
e2

4πϵR

X
m1 ;m2

X
m3 ;m4

X
l1 ;l2

X
l3 ;l4

hQ; l1;m1; l2;m2j

� 1
∣Ω1 �Ω2∣

jQ; l3;m3; l4;m4iCl1y
m1
Cl2y
m2
Cl4
m4
Cl3
m3
;

ð13Þ

where ϵ is thepermittivity.Due to the ratio of theCoulomb interaction to the
gap of flat bands Ĥcoulomb=ΔE

l
k ! R, we can actually control the relative

strength of the Coulomb interaction by changing the radius of the sphere.
The effectiveHamiltonianof theprojected interaction canbewritten as

Ĥeff ¼
X
J

V2�body
J Ĥ

2�body

J ; ð14Þ

which corresponds to the two-body pseudopotential parameter V2�body
J

described in Eq. (11), and Ĥ
2�body

J is the two-body pseudopotential
interactionwith total relative angularmomentum Jwithout FBM. In general,
the effective Hamiltonian within a single flat band that captures the band
mixing effect is given by two-body ormore pseudopotentials as shownbelow:

Ĥeffm ¼
X
i¼2

X
J;α

Vi�bodym
J;α Ĥ

i�bodym

J;α ; ð15Þ

where Ĥ
i�bodym

J;α is the i-body pseudopotential interaction with total relative

angular momentum J within a single band48, Vi�bodym
J;α denotes the corre-

spondingpseudopotential parameters, andαdenotes thedegeneracyof such

pseudopotentials with the same total relative angular momentum. The
energy spectrum of Eq. (15) is defined to match the low-energy part of the
full Hamiltonian in Eq. (13) for any number of electrons. Consequently, the
modification to the two-bodypseudopotential parameterdue toFBMcanbe

easily determinedasV2�bodym
J �V2�body

J . Similarly, themodification to the

three-body pseudopotential parameter is given byV3�bodym
J;α , which can be

determined by subtracting the three-electron energy contribution of the

two-body effective interactions,
P

JV
2�bodym
J Ĥ

2�bodym

J , from the low-
energy part of the Hamiltonian in Eq. (13) for three electrons. Unlike the
two-body pseudopotential coefficients, the allowed values of J for the three-
body pseudopotential coefficients follow the relation J = 3n1 + 2n2 with
n1 ≥ 1; n2 ≥ 0; n1; n2 2 Z48, indicating that for a given J, multiple
pseudopotential coefficients may exist.

The mixing of the lth and (l + 1)th flat bands results in the pseudo-
potential modifications for the two-body and three-body interactions in the
lth band, as shown inFig. 5.AsQdecreases, themodifications of bandmixing
on the large-J components of the pseudopotential parameters become
increasingly significant, Inparticular, atQ=0, themodifications to the large-J
components are the strongest and constitute the primary contribution.

Discussion
In summary, theflat bandwithQ=0exhibits a rangeof intriguingproperties,
one of which is its ability to host long-range entangled states with a simple
experimental setup. Specifically, as discussed in the Results section titled
Localization in flat bands, a single flat band offers a rather natural setting for
long-range “entanglement”, especially if the sphere is sufficiently large. A
conducting spherical shell can thus be used as a convenient platform for
hosting a “Bell pair”, when a pair of electrons with opposite spins is added to
the shell in thepresence of a localizationpotential at theNorthPole (e.g., from
a scanning tunneling microscopy tip). Due to the special C(2) symmetry of
the systemwithQ= 0, the probability density of the electrons is concentrated
at opposite ends of the sphere even though the two ends are spatially well
separated, and the local potential is only appliedatone end.The singleparticle
long-range entanglement of the electrons of opposite spin (e.g., if they form a
singlet) implies a spin-up measured at the North Pole forces a spin-down to
be measured at the South Pole, or vice versa, as shown in Fig. 6a.

Several conditions need to be satisfied in the experiments for the zero-
field (i.e., Q = 0) flat band to be realized with large enough band gap as
compared to temperature ordisorder in the system.Explicitly the radiusRof

the sphere must satisfy R ≪
ffiffiffiffiffiffiffiffiffiffiffi
ðlþ1Þℏ2
kBTme

q
, where kB is the Boltzmann constant.

Hence, if we take ΔEl
k ≥ 10kBT , this gives the maximum value of radius

Rmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl þ 1Þℏ2

10kBTme

s
: ð16Þ

Furthermore, for the flat band with orbital angular momentum l, lower flat
bands are completely filled, requiring a total number of 2l 2 electrons. The
relationshipbetween the electrondensityρe and the radius of the sphere is thus

R ¼
ffiffiffiffiffiffiffiffiffi
l2

2πρe

s
: ð17Þ

Todetermine the crossover temperatureTc, we use the conditionR ¼ Rmax,
and

Tc ¼
ðl þ 1Þπℏ2ρe
5l2kBme

: ð18Þ

Realizing the flat bands at higher temperatures and on larger spherical
surfaces requiresmaterials with a sufficiently small effectivemass and a high
electron density, as shown in Fig. 6(b) and (c). If a larger spherical surface is

Fig. 5 |Modifications to two-body and three-body pseudopotentials.The effective
pseudopotential parameters for the lth and (l + 1)th flat bands mixing with orbital
angularmomentum l=12 and different strength ofmagneticmonopoleQ, where the
sphere radius for Q = 0 is the same as that for Q = l. All modifications are negative

values. a β1 ¼ lg
V2�bodym

J �V2�body
J

V2�body
J

����
���� represents the logarithmic ratio of themodification

to the two-body pseudopotential parameters, to the two-body pseudopotential
parameters within a single flat band. Blue open squares, purple open diamonds,
green open triangles, and Red open circles represent Q = 0, l, l − 1, and l − 2,

respectively. b β2 ¼ lg
V3�bodym

J;α

EJ;α

����
���� denotes the logarithmic ratio of the modification to

the three-body pseudopotential parameters, to the three-electron energy EJ;α from

the two-body effective interaction
P

JV
2�bodym
J Ĥ

2�bodym

J . Source data are provided

in the Supplementary Data.
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required, the experimental temperature must be reduced. Alternatively,
increasing the electron density provides another feasible approach.
Experimentally, several methods have been developed to achieve higher
electron densities49. We can look at two common materials indium anti-
monide (InSb) and gallium arsenide (GaAs), with effectivemasses 0.014m0

and 0.067m0, where m0 is the free electron mass, and electron densities
2.4 × 1011cm−2 and 1.3 × 1011cm−2, respectively50–52.

We also examine the effect of interaction on bandmixing with realistic
experimental parameters. The scale of the Coulomb interaction is given by
e2

4πϵR. The ratio of the interaction scale to the flat-band gap can be calculated

as mee
2R

4πϵðlþ1Þℏ2. It is well known that for Q > 0, R ¼ ffiffiffiffi
Q

p
lB, where lB ¼

ffiffiffiffi
ℏ
eB

q
is

the magnetic length. Consequently, Landau level mixing can be suppressed
by either increasing themagnetic field or decreasingQ. However, in the case
ofQ=0weno longer has amagnetic length, so the radius of the sphere is the
only length scale. For Coulomb interaction at zero field not to mix different
flat bands, it needs tobe smaller than the gapΔEl

k of theflat band andgreater
than kBT, so the radiusR of the spheremust satisfy two conditions. The first

condition is R≪ 4πϵðlþ1Þℏ2

mee2
. Here we take

R1 ¼
4πϵðl þ 1Þℏ2

10mee2
; ð19Þ

which ensures R ≤ R1. The second condition is R < e2
4πϵkBT

, and we take

R2 ¼
e2

8πϵkBT
; ð20Þ

ensuring R ≤ R2. We can use the first condition in Eq. (19) and Eq. (17) to
derive the minimum value of electron density

ρmin ¼ 25m2
ee

4l2

8π3ϵ2ðl þ 1Þ2ℏ4 ; ð21Þ

For large values of l, the ratio l2

ðlþ1Þ2 approaches 1. This implies that to reduce
the required electron density, materials with a larger permittivity and a
smaller effective mass are needed, such as InSb with ϵ = 17ϵ0 (ϵ0 is the
vacuumpermittivity)53, and ρmin � 3:8× 1011 cm�2. Using this density and
the second condition in Eq. (20), we can calculate the required radius of the
sphere at a temperature of 1mK,which is approximately less than 0.49mm.

Overall, at zero magnetic field, a flat band can be realized on a con-
ducting sphere with a radius on the order of 10 to 100microns, featuring an
energy gap ranging from approximately 0.07 to 0.7 K and a degeneracy of
103 to 104 states. These parameters can be further optimized with improved
material properties, such as a lower effective electron mass, higher electron
density, and larger permittivity. In comparison, under a strong magnetic
field of 10 tesla, a sample of approximately 1 micron by 1 micron hosts a
similar order ofmagnitude for the number of states in each Landau level flat
band, also around103 states. InSb emerges as a promising candidate, capable
of supporting flat bands with a degeneracy of up to 105 at 1 mK, corre-
sponding to a maximum sphere radius of approximately 0.78mm. The
fabrication of micron-scale spherical substrates is well-established across
various experimental fields54,55, making this setup feasible. For higher tem-
peratures or larger spheres, increasing the electron density of the material
becomes essential, which is equally important for realizing flat bands
dominated by interactions without significant band mixing effects. It is
noteworthy that the system considered here fundamentally differs from the
conventional flat bands realized in quantum materials in the thermo-
dynamic limit, where the degeneracy of the flat band approaches infinity. In
our study, we focus on a finite spherical system that, nevertheless, can
achieve a high degeneracy of orbitals at the same energy (mimicking the flat
bands) with a large gap from the rest of the spectrum, potentially with
experimentally accessible parameters. Furthermore, in conventional flat
band systems, the large degeneracy in the thermodynamic limit comes with
a finite band gap, while in our case the gap also increases with the degen-
eracy, a useful property from an experimental point of view.

Futurework could explorehow thegenerationofBell pairs on spherical
systems can be experimentally realizedwith conductingmaterials with high

Fig. 6 | Experimental concept and physical para-
meters for realizing spherical flat bands. a The
figure schematically illustrates the flat band on the
spherical surface with the strength of the magnetic
monopoleQ = 0 and a zero-field system designed to
host a Bell pair, where the blue solid rectangles
represent orbitals occupied by electrons, the purple
hollow rectangles indicate unoccupied orbitals, and
the region enclosed by red dotted lines corresponds
to the partially filled flat band with orbital angular
momentum l. The inner sphere represents the
spherical substrate, while the outer shell represents a
layer of two-dimensional electron gas (2DEG), such
as that in indium antimonide (InSb) and gallium
arsenide (GaAs). The gray cone indicates the scan-
ning tunneling microscopy (STM) tip applying a
localized potential. The purple spheres at the North
Pole and South Pole denote a pair of entangled
electrons, with green arrows indicating the spin
orientations of each electron. b The orbital angular
momentum l as functions of crossover temperature
Tc for different electron densities ρe. Green solid and
dotted lines correspond to InSb with ρe = 1013cm−2

and 1011cm−2, respectively; purple dashed and dash-
dotted lines correspond to GaAs with the same
electron densities. c The radius R as functions of
crossover temperature Tc for different ρe. Source
data are provided in the Supplementary Data.
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electron density. In the Results section titled Rotational symmetry in flat
bands, we considered a highly tuned distribution of delta potentials, high-
lighting the potential impact of disorder on the system. For orbitals with
large angular momentum, the energy gap between adjacent orbitals is sig-

nificantly large (ΔEl
k ¼ ðlþ1Þℏ2

meR
2 ), which strongly suppresses the mixing of

different flat bands due to disorder. While the effects of disorder in Landau
levels have been extensively studied29,34, the role of disorder in theQ = 0 flat
band on the surface of the sphere remains an open question and will be the
subject of future exploration. Furthermore, in the absence of a magnetic
field, the impact of electron spin in this system and the novel phenomena it
may induce will also be investigated in detail in future studies.

Data availability
All numerical data generated in this study are provided in the Supplemen-
tary Information and the Supplementary Data. Source Data are available
with this paper.

Code availability
The code developed to analyze the results is available from the corre-
sponding author upon reasonable request.
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