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Rydberg atom array experiments have demonstrated the ability to act as powerful quantum
simulators, preparing strongly-correlated phases of matter which are challenging to study for
conventional computer simulations. A key direction has been the implementation of interactions on
frustrated geometries, in an effort to prepare exotic many-body states such as spin liquids and
glasses. In this paper, we apply two-dimensional recurrent neural network (RNN) wave functions to
study the ground states of Rydberg atom arrays on the kagome lattice. We implement an annealing
scheme to find the RNN variational parameters in regions of the phase diagram where exotic phases
may occur, corresponding to rough optimization landscapes. For Rydberg atom array Hamiltonians
studied previously on the kagome lattice, our RNN ground states show no evidence of exotic spin
liquid or emergent glassy behavior. In the latter case, we argue that the presence of a non-zero
Edwards-Anderson order parameter is an artifact of the long autocorrelations times experienced with
quantum Monte Carlo (QMC) simulations, and we show that autocorrelations can be systematically
reduced by increasing numerical effort. This result emphasizes the utility of autoregressive models,
such as RNNs, in conjunction with QMC, to explore Rydberg atom array physics on frustrated lattices
and beyond.

Rydberg atom arrays have emerged as a rich playground for quantum
simulation of many-body problems1. A key property of these arrays is their
high degree of programmability, which enables the realization of multiple
Hamiltonians on different lattice geometries and parameter ranges. This
programmability facilitates the simulation of a wide array of phases of
matter2,3 and enables the solution to challenging combinatorial optimization
problems3–5. The preparation of spin liquid phases—disordered phases of
matter characterized by the presence of anyonic excitations, topological
invariants, and long-range entanglement—has been demonstrated in pro-
grammable Rydberg arrays, potentially serving as building blocks of future
generation of fault-tolerant qubits6–8.

Recent numerical studies have investigated the physics of the ground
state of Rydberg atom arrays in different lattice geometries, in particular in
one9 and two spatial dimensions in various geometries10–16. In lattices such as
ruby and honeycomb lattices, strong numerical evidence favors the exis-
tence of a spin liquid phase in agreement with experiments14,16. Another
recent example is the kagome lattice, where Density Matrix Renormaliza-
tion Group (DMRG)17,18 studies provided evidence that Rydberg atom
arrays host a liquid-like regime13, while Quantum Monte Carlo (QMC)

simulations predicted the existence of a spin glass phase19. These systems
display frustration arising from lattice geometry and Hamiltonian interac-
tions, leading to the existence of a large number of quantum states with
nearly degenerate energies but markedly different properties. This makes it
computationally difficult to accurately approximate the ground state of
these systems.

Here we focus on applying recurrent neural network (RNNs) wave
functions20,21 to a Rydberg array of atoms on the kagome lattice. The
effectiveness of RNNs and Transformer language models has already been
demonstrated in Rydberg atom arrays on the square lattice22–24. RNNs
possess two key properties that make them particularly well-suited for
studying frustrated systems. Firstly, their ability to perform exact sampling
helps mitigate frustration-induced ergodicity issues in quantum Monte
Carlo. Secondly, the ability to define them in any spatial dimension without
incurring additional computational intractability helps address challenges
faced by techniques like DMRG, such as the increased computational cost
stemming from increased entanglement in higher dimensions20,25.

Our findings reveal that in the highly frustrated and highly entangled
regimes of the system, the RNN predicts a paramagnetic phase without
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topological order, consistent with earlier QMC simulations19. However, in
contrast to the QMC results in ref. 19, the RNN suggests the absence of a
spin-glass phase. Nevertheless, in agreement with QMC, our numerical
simulations indicate the emergence of a rugged optimization landscape,
necessitating more optimization steps and thermal-like fluctuations to
mitigate local minima in the RNN’s parameter landscape.

Overall, our results showcase the remarkable applicability and
advantages of machine learning-based wave functions, particularly RNNs,
in tackling challenging problems at the forefront of Rydberg atom array
physics. Thesefindings pave theway for further exploration of exotic phases
and phenomena in highly frustrated quantum systems, harnessing the
power of modern machine learning techniques to advance our under-
standing in this field.

Methods
We focus our attention on an array of neutral atoms on the kagome lattice,
interacting via laser excitation to atomic Rydberg states. We consider a
lattice with periodic boundary conditions (PBC). The Hamiltonian of this
system is given by refs. 1,13:
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Here ∣g
�
i; ∣rii are respectively the ground and excited states of the Rydberg

atom i.Ω is theRabi frequency and δ is the laser detuning.V(R) =C/R6 is the
repulsive potential due to the dipole-dipole interaction between Rydberg
atoms, which is responsible for the blockade mechanism1. In practice, we
define a blockade radius Rb such that V(Rb/a) =Ω, where a is the distance
between twoneighboringRydberg atoms. Finally, we note that the sumover
all possible pairs is truncated to a sumoverneighbors separatedby adistance
cutoff Rc = 2 or Rc = 4. The choice Rc = 2 is taken to compare with the
DMRG results reported in ref. 13 aswell as with theQMC findings in ref. 19

Two dimensional RNNs
The Rydberg Hamiltonian is stoquastic in nature26, which implies that the
ground-state wave function contains only positive amplitudes. This offers
the opportunity tomodel the ground state with an RNNwave functionwith
only positive amplitudes20 which we adopt below. Complex extensions of
RNN wave functions for non-stoquastic Hamiltonians have been explored
in refs. 20,21,25. To model a positive RNN wave function, we can express

our ansatz in the computational basis as:

ΨθðσÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
pθðσÞ

p
;

such thatθ corresponds to the variational parameters of the ansatz ∣Ψθ

�
, and

σ = (σ1, σ2, …, σN) is a configuration of the Rydberg atoms. The main
advantage of using RNN wave functions is the possibility of estimating
observables through autoregressive sampling, which allows obtaining
uncorrelated samples by construction20. To do so, we model the joint
probability pθ(σ) by constructing the conditionals pθ(σi∣σ<i) by taking
advantage of the probability chain rule

pθðσÞ ¼ pθðσ1Þpθðσ2jσ1Þ � � � pθðσN jσN�1; . . . ; σ2; σ1Þ:

These conditional probabilities are obtained through a Softmax layer as
follows:

pθðσ ijσ < iÞ ¼ yi � σ i:

Here yi = Softmax(Uhi+ c) where U and c are, respectively, trainable
weights and biases, and ‘Softmax’ corresponds to the normalizing Softmax
activation function. Additionally, the memory (hidden) state hi is obtained
recursively as ref. 27:

hi ¼ f ðW½hi�1; σ i�1� þ bÞ; ð1Þ

such that [. ; . ] is a concatenation of two vectors, while σi−1 is a one-hot
encoding of σi−1. These computations are illustrated in Fig. 1a.W and b are
also trainable weights and biases, and f is a user-defined activation function.

By virtue of the ‘Softmax’ activation function, the conditionals
pθ(σi∣σ<i) are normalized to one. This property implies that the RNN joint
probability pθ is also normalized20. Furthermore, by sampling the condi-
tionals pθ(σi∣σ<i) sequentially, as illustrated in Fig. 1b, we can extract exact
samples from the joint RNN probability pθ. An attractive property of this
scheme is the possibility to efficiently generate uncorrelated samples from
different modes present in pθ, whereas traditional Metropolis sampling
scheme may get stuck in only one mode.

The atom configurations of a Rydberg atom array on a kagome lattice
can be seen as an L × L × 3 array of binary degrees of freedomwhere L is the
size of each side of the lattice. As illustrated in Fig. 1c, we can map our
kagome lattice with a local Hilbert space of 2 to a square lattice with an
enlarged Hilbert space of size 23 = 8 which we can study using our two-
dimensional (2D) RNN wave function23,28.

Fig. 1 | RNN wave functions architecture details. a An illustration of a positive
RNN wave function. Each RNN cell receives an input σn−1 and a hidden state hn−1

and outputs a new hidden state hn. This vector is taken as an input to the Softmax
layer (denoted S) that computes the conditional probabilityPi.bRNNautoregressive
sampling scheme: after obtaining the probability vector yi from the Softmax layer (S)
in step i, we sample it to produce σi. The latter is taken again as an input to the RNN
along with the hidden state hi to sample the following degree of freedom σi+1.
cMapping of a Kagome lattice to a square lattice by embedding three atoms in a
larger local Hilbert space. d A two-dimensional (2D) RNN with periodic boundary

conditions for a 3 × 3 lattice for illustration purposes. A bulk RNN cell receives two
hidden states hi,j−1 and hi�ð�1Þj ;j , as well as two input vectors σi,j−1 and σ i�ð�1Þ j ;j (not
shown) as illustrated by the black solid arrows. RNN cells at the boundary receive
additional hidden states hi,j+1 and hiþð�1Þ j ;j , as well as two input vectors σi,j+1 and
σ iþð�1Þj ;j (not shown), as demonstrated by the blue curved and solid arrows. The
sampling path is taken as a zigzag path, as demonstrated by the dashed red arrows.
The initial memory states of the 2D RNN and the initial inputs are null vectors, as
indicated by the dashed black arrows.
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To construct a 2D RNN ansatz that can handle PBC, we modify our
RNN recursion in Eq. (1) to a two-dimensional recursion relation as:

hi;j ¼ f W½Neighbours ðhi;jÞ; Neighbours ðσ i;jÞ� þ b
� �

: ð2Þ

hi,j is amemory state with two indices for each atom in the two-dimensional
lattice. Here ‘Neighbours(σi,j)’ returns a concatenation of the neighbors of
σi,j. The same observation goes for ‘Neighbours(hi,j)’. These neighbors
correspond to incoming vectors indicated by the black and blue arrows as
illustrated in Fig. 1d. More specifically, we define

Neighbours ðhi;jÞ � ½hi�ð�1Þ j ;j; hi;j�1; 0; 0�

on the bulk. On the boundaries, we take

Neighbours ðhi;jÞ � hi�ð�1Þ j;j; hi;j�1;
h

hiþð�1Þ j;j; hi;jþ1

i
:

Note that PBCon the indices is assumed. The additional inputs σiþð�1Þj ;j, σi,j
+1 and hidden states hiþð�1Þ j ;j, hi,j+1 allow to take PBC into account and to
introduce correlations between degrees of freedom at the boundaries.
During the autoregressive samplingprocedure, the input andhiddenvectors
are initialized to a null vector, if not previously defined, to preserve the
autoregressive nature of our scheme, as illustrated in Fig. 1b. Also, note that
the particular choice of the indices ismotivated by the zigzag sampling path.
In this study, we use an advanced version of 2D RNNs incorporating the
gating mechanism as previously done in refs. 25,29,30. More details can be
found inSupplementaryNote1. Finally, sincehi,j is a summaryof thehistory
of the generated σ<i,j, it is used to compute the conditional probabilities as
follows:

pθðσ i;jjσ < i;jÞ ¼ Softmax ðUhi;j þ cÞ � σ i;j: ð3Þ

Supplementing RNN optimization with annealing
To reach the ground state of the Rydberg atoms array Hamiltonian on the
kagome lattice, weminimize the energy expectation valueEθ ¼ Ψθ

�
∣Ĥ∣Ψθ

�
using the Variational Monte Carlo (VMC) scheme31 (see Supplementary
Note 2). Due to the frustrated nature of the kagome latticewhich can induce
local minima in the VMC scheme, we leverage annealing with thermal-like
fluctuations to mitigate local minima. This technique has been suggested
and implemented in refs. 21,25,28,32–34. In this case, we obtain a free-
energy like cost function, defined as

FθðnÞ ¼ Eθ � TðnÞSclassicalðpθÞ; ð4Þ

where Fθ is a variational pseudo Free energy and Sclassical is the classical
Shannon entropy:

SclassicalðpθÞ ¼ �
X
σ

pθðσÞ log pθðσÞ
� �

: ð5Þ

The previous sum goes over all classical Rydberg configurations {σ} in the
computational z-basis. Note that Sclassical is a pseudo-entropy that can be
efficiently estimated using our RNN wave function as opposed to the
quantum von Neumann entropy. Additionally, T(n) is a pseudo-
temperature that is annealed from some initial value T0 to zero as follows:
T(n) = T0(1− n/Na) where n∈ [0, Na] and Na is the total number of
annealing steps.We note that for each annealing step, we train our RNN for
5 training steps. We present more details about the hyperparameters of our
training scheme in Supplementary Note 3.

Topological entanglement entropy
To investigate the existence of a topological property in the Rydberg atom
arrays on the kagome lattice, we compute the topological entanglement
entropy (TEE)35–41. For a gapped phase of matter, where the area law is
satisfied, the Renyi-2 entanglement entropy follows the scaling law
S2ðAÞ ¼ aL� γþOðL�1Þ, assumingA andB is partition of the system,L is
the size of the boundary between A and B and S2ðAÞ � � logðTr ðρ2AÞÞ. In
this case, γ is the so-called TEE. In this paper, we use the swap trick with our
RNNwave function ansatz20,42,43 to calculate the second Renyi entropy S2 to
extract the TEE γ.

We extract γ using two different strategies, namely the Kitaev-Preskill
construction38 and the Levin-Wen construction37, illustrated in Fig. 2.

The Kitaev-Preskill construction consists of choosing three subregions
A,B,Cwithgeometries as shown inFig. 2a.TheTEEcanbe thenobtainedby
computing

γ ¼ �S2ðAÞ � S2ðBÞ � S2ðCÞ þ S2ðABÞ
þS2ðACÞ þ S2ðBCÞ � S2ðABCÞ;

where S2(A) is the second Renyi entropy of the subsystem A, and AB is the
union of A and B and similarly for the other terms. It is worth mentioning
that finite size effects on γ can be reduced by extrapolating the size of the
subregions38,44. Finally, note that this approach combined with RNN wave
functions was successful in extracting a non-zero TEE on the toric code and
the hard-core Bose-Hubbard model on the kagome lattice28.

The Levin-Wen construction allows to extract the TEE γ by con-
structing four different subsystems A1 =A ∪ B ∪ C ∪ D, A2 =A
∪C∪D,A3 =A∪ B∪D andA4 =A∪D as illustrated in Fig. 2b such that40:

γ ¼ �S2ðA1Þ þ S2ðA2Þ þ S2ðA3Þ � S2ðA4Þ
2

:

Fig. 2 | Topological entanglement entropy con-
structions. aAsketch of the partsA,B, andC that we
use for Kitaev-Preskill construction to compute the
TEE. b Levin-Wen construction using the regions
A, B, C and D. For the Rydberg atoms Hamiltonian
on a kagome lattice, each dot on the square lattice
corresponds to a block of three binary degrees of
freedom, as shown in Fig. 1c.

A

B C

D
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Note that finite size effects on γ can be reduced by extrapolating the width
and thickness of A1, A2, A3 and A4

40,44.
Finally, we would like to highlight that our ability to study quantum

systems with fully periodic boundary conditions is key to mitigating
boundary effects, as opposed to cylinders used in DMRG45,46, which can
introduce boundary effects in the TEE value13.

Results
According to the RNN numerics, our results show that the ground state at
Rb = 1.95 and δ = 3.3, which is suggested to be in the spin-liquid phase
according to ref. 13, is rather a disordered state with no topological order.
We first plot the correlations 〈n0nr〉 in Fig. 3a. The results indicate that the
extracted state has short-range correlations. To confirm the correctness of
our variational implementation, we perform a sanity check and compare
our ground state energies with QMC and DMRG as shown in Supple-
mentary Note 4. We found a good agreement between our RNN energies
andQMCaswell asDMRGenergies.Most importantly, we observe that our
RNN results using only dh = 100 are more accurate compared to DMRG
with a bond dimension χ = 1000 in the highly entangled regime at Rb = 1.95
and δ = 3.3.

To investigate the existence of a spin liquid in this regime, we calculate
theTEEγusing theKitaev-Preskill construction38 for a system sizeL = 8 (see
Fig. 2a), and for different values of δ∈ [2.0, 3.7] and Rc = 2, 4 at Rb = 1.95.
We also do the same using the Levin-Wen construction40 in Fig. 2b. Our
results, illustrated in Fig. 3b suggest that the TEE extracted by the RNN is
consistentwith zero anddifferent from lnð2Þwithin error bars. These results
suggest the non-existence of a spin liquid within our settings and also
suggest that the statewefind in this regime is adisordered state.Ourfindings
are further corroborated by a recent QMC study19 and also by previous
results in the literature suggesting that the paramagnetic ‘liquid’ phase in
Ising systems on the kagome lattice is not exotic47–49.

To address the finite-size scaling of the TEE, we compute the TEE at
Rb = 1.95, δ = 3.3 for N = 10 × 10 × 3 by pre-training from the RNN
optimized at L = 8 and also for L = 12 by starting from the optimized
parameters at L = 10. We follow a similar KP construction to Fig. 2 of the
regions A, B and C where the size of each subregion is given as 3 × 3 × 3,
3 × 3 × 3, and 6 × 3 × 3 for L = 6 respectively, and 4 × 4 × 3, 4 × 4 × 3, and

8 × 4 × 3 for L = 8. Our estimates γRNN = 0.10 ± 0.26, −0.1 ± 0.22 for
L = 6 and L = 8 respectively. These values, which are consistent with zero
TEE, corroborate the absence of a Z2 spin-liquid according to the RNN
variational calculations. Note that the error bars can be systematically
reduced by increasing the number of samples in the swap trick
calculations20,28.

In this QMC study19, it was suggested that the region, aroundRb = 1.95
and the values of δ used in our study contains an emergent spin-glass phase
instead of a paramagnetic state. To verify this claim, we compute the
Edwards-Anderson (EA) order parameters50,51, defined as:

qEA ¼
PN

i¼1 hni � ρi2
Nρð1� ρÞ ; ð6Þ

where N is the system size, ni is the occupation number of site i and
ρ ¼ ðPN

i¼1 niÞ=N . Deviations of this order parameter from zero values
are signals of the existence of a spin-glass phase. In Fig. 3c, we plot this
order parameter as a function of δ with Rc = 2, 4 and Rb = 1.95. We find
that the values of the order parameter are consistent with zero, as
opposed to the results of QMC in ref. 19. Furthermore, we report in
Fig. 3d the density-density overlap 1

N

PN
i¼1 n

ð1Þ
i nð2Þi and the spin-spin

overlap 1
N

PN
i¼1 S

ð1Þ
i Sð2Þi between different RNN samples at

Rb = 1.95, δ = 3.3, and Rc = 2. Here labels (1) and (2) correspond to two
independent sets of samples, which are obtained from optimized RNNs
with 10 different training seeds. The Gaussian nature of the overlap
distribution in both representations is another indicator that there is no
static signature of a spin-glass order52.

The discrepancy in our results and previous QMC findings19 could be
related to emergent glassy dynamics in the QMC simulations, which results
in very long auto-correlations times and thus in a non-ergodic behavior. To
corroborate our findings, we run QMC simulations53, based on Stochastic
Series Expansion (SSE)54,55, for larger inverse temperatures compared to
ref. 19, namely for β ≥ 200 and using 2.2 × 106 Monte Carlo samples. We
find that the QMC prediction for the EA order parameter is given as
qQMC
EA ¼ 0:0000018ð5Þ for Rb = 1.95, δ = 3.3, a system size 8 × 8 × 3, and for

a radius cutoff Rc = 2. The previous result agrees very well with our RNN
findings in Fig. 3c. This result is also confirmed by the good agreement

Fig. 3 | Numerical results of 2DRNNs applied to
Rydberg atom arrays on kagome lattice. In these
panels, we focus on the Blockade radius Rb = 1.95.
a Plot of two point correlations 〈n0nr〉 with δ = 3.3
and for a system sizeN = 8 × 8 × 3 and Rc = 2. b Plots
of the topological entanglement entropy versus δ for
two different values of the cutoff radius Rc, using the
Levin-Wen (LW) construction and the Kitaev-
Preskill (KP) construction, for N = 8 × 8 × 3. c A
histogram of the Edwards-Anderson order para-
meter qEA defined in Eq. (6) as a function of δ for
N = 8 × 8 × 3. The inset provides a zoomed-in view
close to zero. d A plot of the density overlaps
1
N

PN
i¼1n

ð1Þ
i nð2Þi and the spin overlaps 1

N

PN
i¼1 S

ð1Þ
i Sð2Þi

at δ = 3.3.Here Si = 2ni− 1, and (1) and (2) are labels
for two sets of samples obtained from our optimized
RNN, that are aggregated from 10 different training
seeds, for N = 6 × 6 × 3 and Rc = 2. For each seed, we
generate 2 × 105 independent samples and divide
them into two sets. The error bars indicate the sta-
tistical uncertainty of one standard deviation, cal-
culated across different samples. In this and other
plots throughout the Article, error bars may be
hidden if they are smaller than the symbol size.
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between the RNN energies and the QMC energies as shown in Supple-
mentary Note 4. Our findings are further supported by the results of ref. 56,
which suggests the possibility of transition in a quantum dimer model
between nematic to paramagnetic to staggered states. In conclusion, our
numerical investigation suggests that the long auto-correlation time could
be a limiting factor in the QMC results reported in ref. 19.

We note that the emergence of a long autocorrelation time in QMC
coincides with the emergence of a rugged optimization landscape, which in
our simulations implies a longer number of annealing steps in our RNN
simulations to achieve convergence.To demonstrate this point, we compute
the structure factor

SðqÞ ¼ 1
N

X
i;j

hninji eiq�ðxi�xjÞ ð7Þ

to extract the nature of the states obtained by our RNN ansatz and inves-
tigate their dependence on the number of annealing stepsNa.We expect the
optimization landscape to be rougher asNa required to converge increases.
Figure 4a–d atRb = 1.95 and δ = 3.3 show that theRNNfinds different states
for different numbers of annealing steps Na, until it converges to a state
without ordering peaks, i.e., the paramagnetic state. In contrast, the nematic
state at Rb = 1.7, δ = 3.3 can be reached without the need for annealing, as
illustrated by the structure factors at different Na in Fig. 4e–h. These
observations suggest an emergent rugged optimization landscape when
optimizing our ansatz in the highly entangled regime. Finally, to find the
optimal number of annealing steps Na in the highly entangled regime, we
note that we conduct a scaling study as shown in Supplementary Note 5.

To indicate the quality of our variational calculations, we use the
v-score as a metric57, which we report in Supplementary Note 6. Fur-
thermore, to investigate the effect of parameter sharing in the RNN, illu-
strated in Eqs. (2), (3), we optimized our RNN using site-dependent
parameters at Rb = 1.95, δ = 3.3 and for L = 8 and we find that both TEE
and EA order parameters are consistent with zero within errors bars. This
result confirms that parameter-sharing in our RNN ansatz does not bias
our findings. More details are shared in Supplementary Note 7.

Finally, we report a comparison between RNN and QMC runtimes in
Supplementary Note 8. In particular, we find a significant speed-up when
trainingRNNsonanA100GPUandQMCona singleCPU.This speedup is
enabled by GPU hardware in addition to the ability of the 2DRNN to do
transfer learning from smaller lattices to larger ones21,25,28,30,58,59.

Conclusion
In this paper, we demonstrate a successful application of recurrent neural
network (RNN)wave functions to the task of investigating topological order
on Rydberg atom arrays on kagome lattice. We use these architectures to
estimate the second Renyi entropies using the swap trick20. The latter allows
us to compute the TEEs using the Kitaev-Preskill38 and the Levin-Wen37

constructions. Furthermore, with the possibility of handling periodic
boundary conditions inRNNs, the boundary effects on the TEE are reduced
compared to DMRG, which has challenges with boundary effects on
cylinders46.

Our main finding, suggested by the two-dimensional RNN wave
functions results, points out that Rydberg atom arrays on the kagome
lattice do not establish a Z2 spin liquid in the highly entangled regime.
This observation is also consistent with previous QMC studies19. Our
RNN numerics also suggest that the highly entangled region corre-
sponds to a trivial paramagnetic state and that there is no signature for
spin glass order as opposed to the observations outlined in ref. 19. We
believe that the ability of RNNs to generate uncorrelated samples from a
multimodal distribution is a crucial factor for our numerics to indicate
the non-existence of the spin-glass phase. Additionally, we find that
autocorrelation could be the main factor behind the spin glass phase
observed in previous QMC simulations19. In particular, our QMC
numerics with more numerical effort compared to ref. 19. suggest the
absence of a spin glass phase. Furthermore, supplementing RNNs with
annealing turns out to be a valuable tool for mitigating local minima
induced by the frustrated nature of the kagome lattice in the highly
entangled regime. We highlight that advanced optimization schemes,
such as minimal Stochastic Reconfiguration (minSR)60,61, is a potential
avenue for enhancing the optimization of our 2DRNN ansätzes.
Refs. 62,63 reported that Stochastic Reconfiguration (SR) is not as
effective as Adam optimizer when applied to RNN wave functions. As a
result, we believe that reconciling SR and RNN wave function optimi-
zation is an interesting research direction that deserves a thorough study
in the future. Furthermore, studying dynamic properties of Rydberg
atoms arrays is another promising research direction that can corro-
borate our findings by performing time-evolution on our RNN
ansatz64,65.

Finally, we note that our method can be generalized to study other
systems with potential topological order, such as the Rydberg atom arrays
on the Ruby lattice14,66,67. One could also use quantum state tomography

Fig. 4 | Structure factor evolution with the number of annealing steps. We
illustrate the structure factor for different values of the number of annealing stepsNa

atRb = 1.95, δ = 3.3 in (a–d) and atRb = 1.7, δ = 3.3 in (e–h). The color bars represent
themagnitude of the structure factor S(q). Additionally, these results correspond to a

system sizeN = 6 × 6 × 3. Note that we observe convergence to a paramagnetic state
without ordering peaks beyondNa = 1000 for Rb = 1.95, δ = 3.3. For Rb = 1.7, δ = 3.3,
we find that the nematic state is not affected by the choice ofNa and can be obtained
without a need for annealing.
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with RNNs68 in a wide variety of quantum simulators and also combine
data from QMC or quantum simulators with VMC to improve the
variational results22,24,69,70. We also believe in the potential of RNN wave
functions ansätzes in the discovery of new phases of matter with topo-
logical order. Overall, these results highlight the promising future of
RNN wave functions20,21, language-model based wave functions, and
neural quantum states71, in general, for investigating open questions and
discovering new physics within the condensed matter community and
beyond.

Data availability
The data generated in this study is available from the corresponding author
upon reasonable request.

Code availability
Our code is made publicly available at “http://github.com/mhibatallah/
RNNWavefunctions”. The hyperparameters we use are given in Supple-
mentary Note 3.
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