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Dynamically encircling an exceptional
point through phase-tracked closed-loop
control
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The intricate complex eigenvalues of non-Hermitian Hamiltonians manifest as Riemann surfaces in
control parameter spaces. At the exceptional points (EPs), the degeneracy of both eigenvalues and
eigenvectors introduces noteworthy topological features, particularly during the encirclement of the
EPs. Traditional methods for probing the state information on the Riemann surfaces involve static
measurements; however, realizing continuous encircling remains a formidable challenge due to non-
adiabatic transitions that disrupt the transport paths. Here, we propose an approach leveraging the
phase-locked loop (PLL) technique to facilitate smooth, dynamic encircling of EPs while maintaining
resonance. Our methodology strategically ties the excitation frequencies of steady states to their
response phases, enabling controlled traversal along the Riemann surfaces of real eigenvalues. This
study advances the concept of phase-tracked dynamical encircling and explores its practical
implementation within a fully electrically controlled non-Hermitian microelectromechanical system,
highlighting robust in-situ tunability and providing methods for exploring non-Hermitian topologies.

The complex eigenvalues of non-Hermitian Hamiltonians appear in the
form of the roots of some complex functions, with their mapping over
control parameter spaces giving rise to Riemann surfaces. At the pivotal
branch points of these surfaces, termed exceptional points (EPs), both
eigenvalues and eigenvectors undergo degeneracy. The unusual topology of
the eigenvalue manifold and the skewed basis in the vicinity of the EP can
exhibit remarkable nontrivial behaviors that hold great potential for various
applications1–5. Of particular significance are the topological properties
observedwhenEPsare encircled6–9.Commonly employedmethods toprobe
eigenvalue and eigenstate information onRiemann surfaces involve discrete
measurements of the system’s static properties at various parametric con-
ditions along a closed loop10–15. Techniques such as stroboscopic measure-
ment of limited eigenmode profiles on the loop allow for the determination
of the Berry phase in non-Hermitian systems10–13, while braiding of eigen-
values has been demonstrated through the analysis of steady-state spectra14,1
5. However, the primary utility of discrete measurements resides in the
characterization of topological properties within non-Hermitian systems,
which inherently constrains the practical applications of topological prop-
erties. Moreover, such measurements require spectral analysis at each dis-
crete sampling point, introducing considerable computational redundancy.

Dynamic measurements provide a methodology to mitigate the afore-
mentioned challenges, while achieving genuine continuous braiding or real-
time accumulation of the Berry phase through dynamic execution of
smooth encircling remains a formidable challenge, especially since the
dynamical encircling of EPs often encounters non-adiabatic transitions16,17.
In this case, the transport path abruptly leaves the Riemann surfaces from a
higher-loss (lower-gain) mode to a lower-loss (higher-gain) one, as eluci-
dated by the Stokes phenomenon of asymptotics18,19. It remains an open
question to dynamically and continuously transport that maintains pre-
sence on the Riemann surfaces for all encircling paths.

To address this challenge, it is essential to sustain resonance evenwhen
the system changes with time. The phase-locked loop (PLL) technique
emerges as a promising solution20, having successfully maintained resonant
oscillations in billions of electronic devices, including frequency reference
oscillators in smartphones21 and inertial sensors in automobiles22. By locking
the phase of a resonator relative to external actuation, a PLL can preserve a
stable oscillation condition, even in the face of environmental perturbations
that might otherwise disrupt its resonant frequency.

While non-Hermitian systems have been explored across various
domains, most realizations have predominantly utilized optical or photonic
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controls1–5. The exploration of non-Hermicity within electrically tunable
integrated mechanical systems—renowned for their superior in-situ
controllability23–33 and wide-ranging applications21,22,34,35—has proven
elusive.

In this study, we leverage the PLL technique to propose a method for
smoothly encircling EPs in a dynamic and continuous manner, ensuring
that the transport path adheres closely to the eigenfrequency Riemann
surface. This innovative approach emphasizes the closed-loop control of
steady-state responses rather than their transient behavior. By controlling
excitation frequencies through tracking response phases, we can emulate
and trace out arbitrary trajectories on the eigenfrequency Riemann surface,
opening avenues for exploring and exploiting the eigenvalue and eigenstate
topological phenomena. Furthermore, we introduce a fully electrically
controlled non-Hermitian microelectromechanical system (MEMS) inte-
grated onto a single chip. Leveraging the excellent in-situ controllability and
tunability of these systems, we experimentally showcase the efficacy of our
phase-tracked dynamical encircling method within the non-Hermitian
MEMS resonator.

Results
Concept
Here, we consider a second-order non-Hermitian system (highlighted by
colored parts in Fig. 1a) described by the following Hamiltonian,

H ¼ Ω1 � i γ12 g

g Ω2 � i γ22

 !
; ð1Þ

whereΩ1;2 and γ1;2 represent the natural frequencies and damping rates of
the two coupled modes. The coupling rate g and the mode frequency
detuning Δ ¼ Ω2 �Ω1 serve as the two controlling parameters of this
system. Moreover, non-Hermiticity arises from the condition
γ ¼ γ2 � γ1≠0. To actuate the system, an external force of the form
F cosðωdtÞ is applied to mode 1. The responding displacement of this
actuated mode is described by A cosðωdt þ θÞ, where the amplitude A and
phase θ are functions of excitation frequency ωd. A typical response of the
coupled system is shown in Fig. 1b. The phase response θ can bemapped to
the excitation frequency ωd through θ ¼ �Arg χ1 ωd

� �� �
, where χ1 ωd

� �
is

the susceptibility of the drivenmode. In this study, the system is operated in
the weak-coupling region, specifically 2g < maxðγ1; γ2Þ, to ensure that the
mapping remains injective; otherwise, bifurcation would take place31. This
mapping canbeharnessed to establish a closed-looposcillation throughPLL
techniques31,36, enabling the control of the oscillation frequency to maintain
the response phase θ at desired values.

We focus on the eigenfrequencies Reðλ± Þ of the non-Hermitian sys-
tem, where λ± represent the complex eigenvalues of the Hamiltonian. The
eigenmode spectra are illustratedby thepurple andgreendashedLorentzian
curves in Fig. 1b. The eigenfrequencies Reðλ± Þ, indicated by dot-dashed
lines aligned with the peaks of the Lorentzian curves, are mapped to two
values of the response phase θ Re λ±

� �� � ¼ �Argfχ1 Re λ ±

� �� �g. Further-
more, eigenfrequencies Reðλ± Þ as functions of the coupling g and detuning
Δ is depicted in Fig. 1c, and their mapping to θ Re λ±

� �� �
is presented

in Fig. 1d.
We dynamically traverse a closed path in the parameter space sur-

rounding the EP by continuously varying the coupling g tð Þ and mode
detuning Δ tð Þ over time, while simultaneously tracking the corresponding
phase θfRe½λ± tð Þ�g (represented by the red and blue curves in Fig. 1d) using
a PLL, as illustrated in Fig. 1a. This process enables the attainment of a self-
sustained closed-loop oscillation. The evolution of the oscillation frequency
closely emulates a fully adiabatic process on the eigenfrequency Riemann
surface, as evidenced by the red and blue curves in Fig. 1c. These controlled
loops facilitate the permutation of excitations between the two sheets,
irrespective of the direction of encircling.

On-chip non-Hermitian system
To facilitate the observation of the smooth encircling, we construct an
on-chip non-Hermitian system utilizing a silicon-based MEMS disk reso-
nator, as illustrated in Fig. 2a. The resonator devices are fabricated
through bonding, deep reactive ion etching, and chemical mechanical
polishingprocesseson two silicon-on-insulatorwafers.Afterprocessing, the
wafer is diced using stealth laser cutting technology to obtain individual
devices.

As shown in Fig. 2b, this system features a pair of six-node standing-
wave modes, with natural frequencies ω1=2π ¼ 50; 468:68 Hz and
ω2=2π ¼ 51; 007:86 Hz. The characteristic structural thicknesses of the
deforming beams corresponding to the twomodes are deliberately designed
to differ, leading to variations in their thermal-elastic dissipations and
overall quality factors (see “Methods”). This tailored design enables the
engineering of the damping rates for the two modes, resulting in γ1 ¼
2π× 676 mHz and γ2 ¼ 2π× 904 mHz, yielding a considerable difference
of γ ¼ 2π× 228 mHz.

As shown in Fig. 2c, the two six-node modes of this resonator are
dynamically coupled through the application of an anti-Stokes parametric
pump Vp cosðωptÞ, which induces a Floquet modulation of the intermodal
coupling via electrostatic effects29 (see “Methods”). Here,Vp represents the
pump strength, and ωp is the pump frequency, closely tuned to the mode
frequency mismatch Δω ¼ ω2 � ω1. The dynamic coupling can be regu-
lated in real time by tuning the pump Vp cosðωptÞ, showcasing remarkable
in-situ controllability.

Mode1 is coherently coupled to thefirst harmonic idlerwave ofmode 2.
In the rotating frame of pump frequency, the system is described by
an effective non-Hermitian Hamiltonian of the form in Eq. (1),
where Ω1 ¼ ω1 � κV2

p=ð8ω1Þ, Ω2 ¼ ω2 � κV2
p=ð8ω2Þ � ωp ¼ ω1

�κV2
p=ð8ω2Þ � δp, and g ¼ κV0Vp=ð4ω1Þ. Here, κ is the electrostatic

tuning coefficient, measured to be 70; 186 Nm−1 kg−1 V−2, whileV0 ¼ 40 V
is a static bias voltage applied to the resonator body. The term δp ¼ ωp � Δω
denotes the pump detuning. The experimentally feasible control parameters
for this non-Hermitian system are Vp and δp, which govern the coupling
strength and effective degeneracy, respectively. It is worth noticing that Vp
may also influence degeneracy by an amount of κV2

p=ð8ω1Þ � κV2
p=ð8ω2Þ,

though this effect is negligible within the measurement range of this study.
To construct theRiemann surfaces of the eigenvalues, we actuatemode

1 and measure its open-loop steady-state frequency responses as functions
of the excitation frequency ωd across varying values of Vp and δp. The
resonant frequencies Reðλ± Þ and linewidths �2Imðλ± Þ of the normal
modes are determinedbyfitting the steady-state frequency-response spectra
to the scaled susceptibility ofmode 1 (details see “Methods”). The results are
shown in Fig. 2d, e, where the points represent experimental data, and the
surfaces correspond to theoretical results calculated using the best-fit
parameters. Additionally, the red points, obtained near degeneracy
(δp � 0), illustrate the process of the parity-time phase transition. The
transition point, located at ðVp; δp=2πÞ � ð162mV; 0HzÞ, corresponds to
the EP, serving as the branch point of the Riemann surfaces.

Smooth encircling of EP
To achieve smooth encircling of the EP on the eigenfrequency Reðλ ± Þ
Riemann surface, we implement an adaptive PLL designed to track the
response phase θ of the driven mode to the time-varying values of
θfRe½λ± tð Þ�g along the encircling paths in Fig. 1d. As shown in Fig. 3a, the
essence of this control loop lies in the introduction of a controlled phase shift
before the reference signal is put into the phase detectionmodule. The light
blue phase-shifting block is capable of updating the phase shift ϕ tð Þ in real-
time. The phase detector measures the relative phase (θ � ϕ) between the
response signal of the driven mode A cosðωdt þ θÞ and the phase-shifted
reference signal cosðωdt þ ϕÞ. A proportional-integral-derivative (PID)
controller is then employed to adjust the reference frequency ωd, ensuring
that the relative phase θ � ϕ remains locked at a constant setpoint value θ0.
The controlled reference signal is subsequently scaled to generate the
appropriate driving force. Through this adaptive PLL control, the response
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phase is effectively tracked to follow the time-varying set
values θ ¼ θ0 þ ϕ tð Þ.

The parametric loop for encircling is controlled by the strengthVp and
the detuning δp, of the pump that is produced by a programmable signal
generator. The base point for the topological encircling is selected as
ðVp; δp=2πÞ ¼ ð0:5V; 0:3HzÞ, which is located in the PT-symmetric
phase. In this study,we implement a clockwise (CW)rectangularparametric
loop defined by the sequence ½ðVp; δp=2πÞ� ¼ ð0:5V; 0:3HzÞ½ ,
0:1V; 0:3Hzð Þ, 0:1V;�0:3Hzð Þ, 0:5V;�0:3Hzð Þ, ð0:5V; 0:3HzÞ�, as
well as its reverse loop. Both loops enclose the EP.

The trajectory of the smooth encircling is defined by the parameters
ðVpðtÞ; δpðtÞ; θfRe½λ± tð Þ�gÞ, where VpðtÞ and δpðtÞ represent the time
evolution along the parametric loop, and θfRe½λ± tð Þ�g is the corresponding
dynamic evolution of the locking phase. The phase θfRe½λ± tð Þ�g for each
loop is predetermined by calculating �Argfχ1½Reðλ ± Þ�g using the best-fit
parameters of the non-Hermitian systemderived fromFig. 2d, e. In practice,
the test circuitry can introduce a constant phase shift of �65� to the
responding phase θ. This phase shift is compensated before the theoretical
θfRe½λ± tð Þ�g is put into the adaptive PLL (see “Methods”).

This process requires simultaneous control of the pump signal gen-
erator and the adaptive PLL (details see “Methods”). The starting point
location is determined on the high- or low-frequency sheets of the Riemann
surface by setting θ0 ¼ θfRe½λþ 0ð Þ�g or θfRe½λ� 0ð Þ�g, respectively.
Throughout the smooth encircling process, the time-varying phase shift is
defined as ϕ tð Þ ¼ θ Re λ± tð Þ� �� �� θfRe½λ ± 0ð Þ�g. The sign of ± is swit-
ched upon crossing the branch cut of the Riemann surface. In practice, the
continuous evolution of ϕ tð Þ is implemented by successively inputting 2001
predefined pinpoint values into the phase shifter in a time series synchro-
nized with the pump generation.

We conduct four encircling processes—clockwise (CW) and coun-
terclockwise (CCW)—starting from the high and low-frequency sheets of

the Riemann surface, respectively, all of which enclose the EP. Figure 3b–d
presents the implementation of a CW encircling starting from the high-
frequency sheet of the Riemann surface. As shown in Fig. 3b, the response
phaseθ (red solid curve) is closely tracked toθfRe½λ± tð Þ�g (gray solid curve).
This is ensured by two key factors: the relative phase θ � ϕ (green solid
curve) is locked to θ0 ¼ θfRe½λþ 0ð Þ�g (black dot-dashed curve), and the
phase shift ϕ tð Þ evolves in accordance with θ Re λ± tð Þ� �� �� θfRe½λþ 0ð Þ�g
(blue gradients). In the meantime, the control parameters VpðtÞ and δpðtÞ
trace out a CW loop, as shown in Fig. 3c. Additionally, the continuous
output of the controlled closed-loop oscillation frequency is processed to
yield its moving average (red thick curve), which aligns well with the the-
oretical value on the Re λ± tð Þ� �

Riemann surface (gray solid curve), as
shown inFig. 3d. The error band represents the rolling standarddeviationof
the measured frequency.

The results of the four encircling processes are presented in Fig. 4. The
measured oscillation frequency (moving averaged value) and the corre-
sponding trackedphase of the smooth encirclingprocesses illustratedon the
Re λ± tð Þ� �

and θ Re λ ± tð Þ� �� �
surfaces are shown in Fig. 4a, b, respectively.

The rectangular path above varies only one parameter at any time.We
also construct a circular path where two parameters are varied simulta-
neously to better demonstrate the feasibility of smoothly encircling EP
through phase-tracked closed-loop control (see “Methods”). The full results
of encircling EP with a circular path are shown in Supplementary Fig. 1.

The full results of Fig. 4 and Supplementary Fig. 1 depict trajectories for
the CW encircling starting from the high-frequency sheet (red trajectory),
the CW encircling starting from the low-frequency sheet (blue trajectory),
the CCW encircling starting from the high-frequency sheet (purple trajec-
tory), and the CCWencircling starting from the low-frequency sheet (green
trajectory). These findings robustly demonstrate that a phase-tracked
dynamic encircling of the EP can permute excitations between the two
sheets, regardless of the direction of encircling.

Fig. 1 | Concept of phase-tracked smooth encir-
cling. a The non-Hermitian system comprises two
coupled modes (labeled as Ω1 and Ω2 for their
natural frequencies) with distinct damping rates. An
adaptive phase-tracked closed-loop oscillation is
established to trace the eigenfrequencies. PLL,
phase-locked loop. b The correspondence between
the eigenfrequencies Reðλ± Þ and the response phase
θ Re λ±

� �� �
as illustrated in a typical steady-state

spectrum. The purple and green dashed curves
represent the eigenmode spectra. Eigenfrequencies
Reðλ± Þ (c) and the corresponding response phase
θ Re λ±

� �� �
(d) are presented as functions of the

coupling g and detuning Δ. The colors on the sur-
faces represent phase values. By smoothly following
the red or blue directional paths in (d) using the
phase-tracking technique depicted in (a), one can
derive the corresponding red or blue dynamic evo-
lutions of the eigenfrequencies in (c). The black
circle and square mark the start/end points of the
encircling trajectories on the high or low-frequency
sheets, respectively, while the black star indicates
the EP.
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Todemonstrate that the encircling of EP is not only independent of the
encircling direction but also independent of the position of the starting
point,we also conducted an encircling path starting at thePT-broken phase.
The base point for the encircling is selected as
ðVp; δp=2πÞ ¼ ð0:1V; 0:3HzÞ, which is located in the PT-broken phase. In

the CW encircling path, the control parameters vary linearly by the
sequence: ½ðVp; δp=2πÞ� ¼ ð0:1V; 0:3HzÞ½ , 0:1V;�0:3Hzð Þ,
0:5V;�0:3Hzð Þ, 0:5V; 0:3Hzð Þ, ð0:1V; 0:3HzÞ�, while the parameters
follow the reverse sequence in the CCW encircling path. The results of the
encircling processes are shown in Fig. 5. The dynamical encircling of EP
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initiated from the PT-broken phase does not manifest chiral behavior,
which demonstrates that the phase-tracked dynamic encircling of the EP
enables adiabatic and continuous dynamical evolution.

Conclusions
In summary, our study presents a robust method for smoothly traversing
the eigenfrequency Riemann surface of non-Hermitian systems. The state
corresponding to the phase-tracked encircling trajectory is represented by

the hybrid state described by jψi ¼ �1
ðλþ�ωdÞðλ��ωdÞ ðωd �Ω2 þ i γ22 ; gÞ

T
in

the basis spanned by modes 1 and 2, with ωd ¼ Re½λ± �. By further mea-
suring the instantaneous phase-tracked hybrid state information, one can
extract the information of the instantaneous Hamiltonian H, recover the
imaginary part of the instantaneous eigenvalue Im½λ± �, and reconstruct the
instantaneous eigenstates jv ± i ¼ eiαðλ± �Ω2 þ i γ22 ; gÞ

T
where α is an

arbitrary phase factor. In this dynamically coupled device, we currently face
limitations in measuring the phase information of mode 2 due to its strong
dependence on the uncontrolled pump phase. We aim to address this
challenge in future work by constructing frequency-matched non-Hermi-
tian MEMS oscillators coupled through ordinary coherent coupling. This
strategy holds great promise for realizing genuine continuous eigenvalue
braiding and observing real-time Berry phase accumulation.

More broadly, this work establishes a methodology for achieving
robust topological control in non-Hermitian oscillator systems. Beyond
emulating adiabatic evolution, our proposed method can also induce non-
adiabatic transitions by intentionally modulating the resonant phase switch
between high-frequency and low-frequency sheets (see “Methods” and
Supplementary Fig. 2), providing a platform for exploring the non-
Hermitian physical properties of non-adiabatic transitions.

Methods
Device design
One effective approach for constructing a non-HermitianMEMS resonator
involves engineering a pair of near-degeneratemodeswith distinct damping
rates, as demonstrated in the uniquely designed MEMS disk resonator of
this study. The primary dissipation mechanism in the disk resonator is
thermal-elastic damping (TED). By strategically regulating TED through
structural design, it is possible to effectively manipulate the overall quality
factor (Q)37–39.

The TED arises from the coupling of the strain field to the temperature
field40. During instantaneous deformation, tensile strain induces cooling,
while compressive strain leads to heating, resulting in local temperature
gradients. The relaxation of this thermal nonequilibrium back to equili-
brium causes an irreversible flow of heat, breaking the conservation of
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mental results. The error band is the standard deviation. The colors of ϕ tð Þ in (b)
correspond to the phase shift while encircling an EP.

Fig. 2 | On-chip non-Hermitian microelectromechanical system. a The layout of
this non-Hermitian resonator, where the left one shows the 3D model diagram, the
right one shows a wafer containing 333 devices, and the middle one displays the
microscope image of a single device (scale bar: 1 mm). b A pair of non-degenerate
six-node standing-wave modes (labeled as 1 and 2) of a MEMS disk resonator are
engineered to exhibit a considerable difference in damping rates. The insets present
the simulated mode shapes and the experimental decay signals, respectively. c An
anti-Stokes parametric pump with frequency ωp � Δω is applied to establish a
coherent dynamical coupling between mode 1 and the first harmonic idler wave of

mode 2. The coupling strength is determined by the pump amplitude Vp. In the
Floquet frame, the system is non-Hermitian. The resonant frequencies Reðλ± Þ (d)
and the linewidths �2Imðλ± Þ (e) of the system are presented as functions of the
pump strength Vp and pump detuning δp ¼ ωp � Δω. The points are obtained by
fitting the experimental steady-state frequency-response spectra under varying
conditions, while the surfaces represent theoretical values calculated using para-
meters derived from the fitting process. The red points illustrate the process of the
parity-time phase transition while δp � 0. The colors on the surfaces correspond to
the linewidth values.
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kinetic and potential energy in the vibrating resonator. Zener’s standard
model for TED is expressed as:

QTED ¼ C
Eα2T0

1
ωmτZ

þ ωmτZ

� 	
; ð2Þ

whereQTED is the thermal-elastic quality factor,C is the heat capacity of the
silicon material, E is Young’s modulus, α is the coefficient of thermal
expansion, T0 is the equilibrium temperature, ωm is the angular frequency
ofmechanical vibration, and τZ is the thermal relaxation time, defined as the
time required for the system to return to equilibrium following the
establishment of a local temperature gradient:

τZ ¼ b2

π2χ
: ð3Þ

Here, χ is the thermal diffusivity of the solid, and b represents thewidth
of the beam or the length of the heat flow path. In the flexibleMEMS device
studied, the vibration frequency ωm is significantly smaller than the rate of

thermal relaxation 1=τZ.Under these isothermal conditions, the termωmτZ
can be neglected in comparison to the 1=ðωmτZÞ term in Eq. (2). Conse-
quently, using a thinner beam or decreasing τZ can yield a higherQTED

41,42:
To regulate TED, we propose a disk resonator with a diameter of 4mm,

featuring 12 circularly connected fan-shaped sectors composed of either
concentrically spaced double-thin beams (width b1 ¼ 9 μm) or single-thick
beams (width b2 ¼ 13 μm), as illustrated in Supplementary Fig. 3a. The disk
resonator is anchored at its center and is surrounded by 24 capacitive elec-
trodes that facilitate the excitation, transduction, and tuning of the resonator.
Thewidth of the capacitive gap between the electrodes and resonator is 9 μm,
and both the structure and electrodes have a height of 100 μm.

Thedeformations of theflexible beamsgive rise to a pair of six-node in-
plane standing-wave modes, as depicted in Supplementary Fig. 3b. The
instantaneous temperature-deviation field resulting from the thermal-
elastic coupling of the operationalmodes is shown in Supplementary Fig. 3c.
The TED processes predominantly occur in the nodal (N) sectors, as
indicated by the deeper colors of the temperature-deviation fields in these
sectors compared to the antinodal (A) sectors in Supplementary Fig. 3c. In
our innovative design, mode 1 incorporates thinner nodal beams (b1 < b2),
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Fig. 4 | Results of smooth encircling starting from the PT-symmetric phase
obtained using the adaptive phase-tracking technique. a The phase-tracked
closed-loop oscillation frequencies for the CW encircling process starting from the
high-frequency sheet (red curve), theCWencircling process from the low-frequency
sheet (blue curve), the CCW encircling process from the high-frequency sheet
(purple curve), and theCCWencircling process from the low-frequency sheet (green

curve) smoothly evolve on the Re λ± tð Þ� �
Riemann surface. The black circles and

squares denote the start/end points of the encircling trajectories on the high and low-
frequency sheets, respectively. The black star indicates the EP. b The corresponding
tracked phases for the four encircling processes. The colors on all the surfaces
represent phase values.
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which contribute to reducedTEDand ahigher thermal-elastic quality factor
(QTED). The simulated thermal-elastic quality factors for the operational
modes areQTED;1 ¼ 88; 024 andQTED;2 ¼ 65; 389, as determined through
TED simulations conducted using COMSOL.

The device is fabricated from <100> single-crystal silicon using a
MEMS process as detailed in Supplementary Note 1. By experimentally
measuring the decay signals of the two operational modes in the device, the
quality factors were determined to beQ1 ¼ 74; 658 andQ2 ¼ 56; 424. The
corresponding damping rates are then calculated as γ1;2 ¼ ω1;2=Q1;2,
leading to a significant damping difference of Δγ ¼ 2π× 228 mHz.

While we have meticulously engineered the beamwidth differences to
achieve the closest possible natural frequencies for the two modes, an
uncompensatable frequency mismatch of Δω ¼ 2π× 539:18Hz still arises
in themeasured device, attributable to the fabrication tolerances inherent in
the MEMS manufacturing process. Future improvements in frequency
matching may be attained by further refining the beam width differences.

Experimental setup
More details about the experimental setup are provided in Supplementary
Fig. 4a. The packaged MEMS device is integrated with signal processing

circuitry on a printed circuit board. The disk resonator is differentially
actuated to excite mode 1 by applying two anti-phase alternating signals
generated by a lock-in amplifier (Zurich Instruments MFLI) to the
respective anti-phase antinodal electrodes of mode 1. Throughout the
experiment, the amplitude of the drive signal is maintained at a constant
level. A constant bias voltage ofV0 ¼ 40 V is applied to the resonator body,
providing the electrostatic potential energy necessary for both actuation and
tuning. Two anti-phase antinodal displacements of the two modes are dif-
ferentially detected using two charge amplifiers. The resultant displacement
signal is then amplified and fed into the lock-in amplifier. Additionally, an
alternating pump signal generated by a programmable wave generator is
applied to a set of nodal electrodes that are offset byþ15� compared to the
actuation electrodes. The pump strength VpðtÞ and frequency ωpðtÞ are
programmed to vary gradually in order to trace out the encircling
parametric loop.

The test circuitry can introduce an additional phase shift, denoted as φ
in the output displacement signal. By fitting, we find that φ is of a constant
value �65�. To address this, a phase shift block is incorporated to com-
pensate for φ prior to inputting the displacement signal into the adaptive
PLL. The phase responses obtained from an open-loop frequency-sweeping
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measurement, bothwith andwithout phase compensation, are illustrated in
Supplementary Fig. 4b. After the implementation of phase compensation,
the experimentallymeasuredphaseof thedisplacement signal coincideswell
with the theoretical values calculated based on θ ¼ �Argðχ1Þ.

During closed-loop operation, the mode 1 displacement signal
A cosðωdt þ θÞ is demodulated by the phase-shifted reference signal
cosðωdt þ ϕÞ within the phase detector. The relative phase θ � ϕ is main-
tained at a predefined setpoint θfRe½λþ 0ð Þ�g. The phase shift ϕðtÞ of the
reference signal is continuously updated using 2001 values of
Re λ± tð Þ� �� �� θfRe½λ± 0ð Þ�g along the encircling trajectory. This phase

updating is facilitated through the application programming interface of the
lock-in amplifier. The wave generator and the lock-in amplifier are syn-
chronized to enable simultaneous modulation of the parameters VpðtÞ,
δpðtÞ, and ϕðtÞ.

Dynamical coupling
To coherently couple the twomodes, a red-detunedparametric pump signal
Vp cosðωptÞ with ωp � Δω is applied to the +15° off-axis electrodes, pro-
ducing a modulation of the intermodal stiffness given by
Δp ¼ κfV2

0 � ½V0 � Vp cosðωptÞ�2g, where κ is the electrostatic tuning
coefficient. The higher-harmonic term κV2

p=2 � cosð2ωptÞ in Δp can be
neglected, as it contributes only to higher-order coupling terms that are not
considered in this study. Thus, the parametric pump can be expressed as:

Δp ¼ 2κV0Vp cos ωpt

 �

�
κV2

p

2
: ð4Þ

This formulation encompasses a Floquet modulation with frequency
ωp alongside a small static tuning.

The dynamically modulated two-mode system can be represented as
an order-reduced model, as illustrated in Supplementary Fig. 5. The New-
tonian equations of motion for this system are expressed as follows:

€x

€y

� 

þ γ1 0

0 γ2

� 

_x

_y

� 

þ

ω2
1 þ Δp=2 Δp=2

Δp=2 ω2
2 þ Δp=2

" #
x

y

� 


¼ F cos ωdt
� �

=m

0

" #
;

ð5Þ

where x and y denote the displacements ofmodes 1 and 2, respectively, and
m is the effective mass of mode 1. In the rotating frame at frequency ωd for
mode 1 and the first idler wave frame at frequencyωd þ ωp for mode 2, the
equations ofmotion canbe simplified (details see SupplementaryNote2) as:

i
_A0

_B1

" #
¼ Ω1 � ωd � iγ1=2 g

g Ω2 � ωd � iγ2=2

� 

A0

B1

� 

� f

0

� 

: ð6Þ

Here,A0 represents the complex amplitude ofmode 1,B1 is the complex
amplitude of the first idler wave of mode 2, Ω1 ¼ ω1 � κV2

p=ð8ω1Þ,
Ω2 ¼ ω2 � κV2

p=ð8ω2Þ � ωp ¼ ω1 � κV2
p=ð8ω2Þ � δp,

g ¼ κV0Vp=ð4ω1Þ, and f ¼ F=ð4mω1Þ.
We then transform Eq. (6) from the fast driving rotating frames to the

slow Floquet frame by writing x0 ¼ 1
2A0 exp �iωdt

� �þ c:c: and
y1 ¼ 1

2B1 exp �iωdt
� �þ c:c:, where “c.c.” signifies complex conjugation.

The equations of motion can be further simplified into the following first-
order complex differential equations (details see Supplementary Note 2):

i
_x0
_y1

� 

¼ Ω1 � iγ1=2 g

g Ω2 � iγ2=2

� 

x0
y1

� 

� f cos ωdt

� �
0

" #
: ð7Þ

The dynamical matrix ½Ω1 � iγ1=2 g
g Ω2 � iγ2=2

� describes the free
evolution of the system and represents the non-Hermitian effective

Hamiltonian. It is also possible to derive the Schrödinger-type equations of
motion that are identical to Eq. (7) quantummechanically. However, since
the system is purely classical, we employ the classical approach
detailed above.

Spectral fitting
The open-loop responding displacement A cosðωdt þ θÞ of mode 1 is
recordedby the sweeper block of the lock-in amplifier. The amplitudeA and
phase θ relative to the driving force are extracted through homodyne
measurements.

The theoretical frequency responses of mode 1 can be calculated by
applying the steady-state condition _A0 ¼ _B1 ¼ 0 in Eq. (6). This results in
A0 ¼ f χ1ðωdÞ, where the mechanical susceptibility of mode 1 is expressed
as:

χ1 ωd

� � ¼ Ω2 � ωd � iγ2=2

ωd � λþ
� �

ωd � λ�
� � ; ð8Þ

where

λ± ¼ Ω1 þΩ2

2
� i

γ1 þ γ2
4

±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 �Ω1

2
� i

γ2 � γ1
4

� 	2

þ g2

s
ð9Þ

are the eigenvalues of the Hamiltonian.
Ideally, A ¼ f χ1 ωd

� ��� ��, and θ ¼ �Arg χ1 ωd

� �� �
. However, in prac-

tice, the circuitrywill cause additional phase shiftφ, and the input signal can
also cause a small complex feedthrough b2C signal to the output port.
Consequently, we can fit the experimental data A exp �iθð Þ using the fol-
lowing fitting function:

F ωd

� � ¼ f χ1 ωd

� �
eiφ þ b: ð10Þ

To extract the eigenvalues from the steady-state frequency responses,
the in-phase component A cos θ and the quadrature component A sin θ of
the experimental data are fitted to the real part Re F ωd

� �� �
and the negative

imaginary part �Im F ωd

� �� �
of the fitting function, respectively. This

procedure yields the complex eigenvalues λ± of the non-Hermitian
Hamiltonian. Supplementary Fig. 6 presentsfitting results for varying values
of Vp while maintaining a constant δp=2π ¼ 0 Hz. The eigenvalues
obtained from these fittings are indicated by the red points in Fig. 2c. By
extending this fitting process across a broader range of parametric condi-
tions,we are able to populate the full Riemann surfaces depicted in Fig. 2d, e.

Smoothly encircling of EP with a circular trajectory
In themain text of this paper, we have conducted a rectangular trajectory to
dynamically encircle the EP,where only one parameter is varied at any time.
However,many complex encircling trajectories can be involved in the scene
of EP topological research. In some of these trajectories, the two control
parameters of the system will change simultaneously. To further illustrate
the feasibility of the control scheme proposed in this paper in the scenario
where the control parameters change at the same time, here we construct a
circular encircling trajectory, where the pump strength VpðtÞ varies cosi-
nusoidally with time [Vp tð Þ ¼ 0:3þ 0:2 cosð π30 tÞ ðVÞ], and the pump fre-
quency detuning δp tð Þ varies sinusoidally [δp tð Þ ¼ 2π � 0:2 sinð π30 tÞ ðHzÞ].

We conduct four encircling experiments starting from the high-
frequency sheet and low-frequency sheet of the Riemann surface, respec-
tively, along both clockwise (CW) and counterclockwise (CCW) directions.
As can be seen in Supplementary Fig. 1, the oscillation frequency and the
corresponding tracked phase of the system evolve smoothly along the
Riemann surfaces of the real eigenvalues and themappedphase respectively,
and the end point of the evolution is independent of the circling direction,
which demonstrate that our method is also applicable to the encircling
trajectory with two control parameters changing simultaneously.
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Non-adiabatic transitions through phase-tracked closed-loop
control
Different from the Hermitian system, the non-Hermitian system exhibits
unique physical properties, one of which is the non-adiabatic transitions.
Due to the Stokes phenomenon of asymptotics, the adiabatic evolution
process of dynamically encircling EPs will be disrupted, leading to non-
adiabatic transitions. Specifically, the system transitions from a high-
dissipation mode to a low-dissipation mode on the Riemann surface,
resulting in the final state of the encircling depending solely on the direction
and being independent of the initial state. In previous studies, non-adiabatic
transitions often occur onlywhen the system is in ahigh-dissipation state. In
this section, we will demonstrate that non-adiabatic transitions can be
induced in a low-dissipation state through phase-tracked closed-loop
control.

Asmentioned in themain text, by employing a PLL to synchronize the
resonant phase with the eigenfrequency-mapped phase, the system can
sustain stable oscillation at any point on the eigenfrequency Riemann sur-
face. Now we consider a closed-loop path in the parameter space that
encloses an EP. Along this path, the system possesses two eigenstates, with
the high-frequency (ReðλþÞ) and low-frequency (Reðλ�Þ) eigenstates cor-
responding to their respective resonant phases (θfRe½λ± tð Þ�g). By deliber-
ately controlling the PLL to switch its tracking between the resonant phases
of the high-frequency and low-frequency eigenstates, conversion between
the high-frequency sheet and low-frequency sheet at any position can be
realized, which enables the generation of a non-adiabatic transition.

We conduct a CW rectangular parametric path defined by the
sequence ½ðVp; δp=2πÞ� ¼ ð0:1V; 0:3HzÞ½ , 0:1V;�0:3Hzð Þ,
0:5V;�0:3Hzð Þ, 0:5V; 0:3Hzð Þ, ð0:1V; 0:3HzÞ�, as well as its reverse
loop. In contrast to the smooth encircling presented in the main text, we
deliberately induce a phase transition between the high- and low-frequency
sheets in the dynamic encircling trajectory through a low-dissipation region.
As shown in Supplementary Fig. 2, the oscillation frequency can be con-
verted between the high-frequency sheet and the low-frequency sheet in the
low-dissipation region, which indicates the occurrence of non-adiabatic
transitions.

Data availability
Thedata that support thefindings of this study are availablewithin themain
text, Supplementary Information, and Supplementary Data 1–4. Any other
relevant data is available from the corresponding author upon request.
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