
communications physics Article
A Nature Portfolio journal

https://doi.org/10.1038/s42005-025-02284-x

Dynamical Aharonov-Bohm cages and
tight meson confinement in a Z2-loop
gauge theory
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Low-dimensional lattice gauge theories based on simplified gauge groups have emerged as relevant
models of charge-confinement that can potentially be realized with quantum simulators. The
intertwined dynamics of matter and gauge fields can result in quantum phases of the confined matter
that have not yet been fully explored, especially in connection to the underlying mechanisms behind
confinement. Here we study the finite-density phases of a Z2 lattice gauge theory of interconnected
loops and dynamical Z2 charges. We show that the gauge-magnetic flux threading each loop is
responsible for a phenomenon of dynamical Aharonov-Bohm caging, determining the confinement of
particles into tightly-bound charge-neutral pairs, the Z2 analogue of mesons. The latter are trapped
inside the cages, which become mobile by adding quantum fluctuations through an external electric
field. These tightly-bound mesons can either propagate, manifesting a Luttinger liquid behaviour, or
form an incompressible Mott insulator. In light of recent trapped-ion experiments for a singleZ2 loop,
these phases could be explored in future experiments.

Gauge theories are ubiquitous in many areas of physics, ranging from the
realm of fundamental interactions1,2, to the low-energy physics of con-
densedmatter systems3,4. Dynamical gaugefieldsmediate the interactions of
quantum matter and are responsible for remarkable non-perturbative
phenomena, being confinement a prominent example5. The impossibility of
observing isolated particles with a net gauge charge according to the
underlying local symmetry group1, first realised in asymptotically-free non-
Abelian gauge theories6, can actually also appear in simplerAbelianmodels,
such as quantum electrodynamics in D = 1 + 1 dimensions7. While the
dimensional reduction allows for a more detailed quantitative under-
standing of this phenomenon8,9, a full non-perturbative analysis of finite-
density regimes and long real-time propagation lies beyond our current
capabilities. The discretization of gauge theories on a space-time lattice does
provide a well-defined route to address several non-perturbative problems
in the field, such as the phase structure of quantum chromodynamics.
However, ourmost sophisticatednumerical analysis of lattice gauge theories
(LGTs) is limited by the so-called sign problem10 and the harsh entangle-
ment scaling properties11,12, such that a plethora of quantitative questions
remain unanswered.

With the advent of quantum technologies, an alternative strategy
has been identified13, which searches for scalable protocols to syn-
thesize LGTs on either digital or analogue quantum simulators14–31.

Such an endeavour has led to the experimental observation of gauge-
invariant dynamics, confinement and string-breaking phenomena32
–60. Despite being still far from a fully-fledged quantum simulation of
the Standard Model of particle physics, which will likely require a
large-scale fault-tolerant quantum computer, these simpler quantum
simulators can already provide useful insights, especially when
addressing real-time and finite-density phenomena. LGTs built on
Z2 gauge groups constitute a prototypical example of such models,
which are of great interest in various contexts, ranging from the
understanding of confinement61–67, to topological phases of matter
and spin liquids68–71, opening the way to new collective effects72–74.

Let us consider a D = (1 + 1) dimensional Z2 LGT in which the
dynamical charges correspond to hardcore bosons that can be created or
annihilated by ayi ; ai on the lattice sites xi = id, where d is the lattice spacing
and i 2 ZL with L being the number of sites. The boson operators are
constrained by a 2

i ¼ 0 ¼ ay2i , such that there cannot be double occu-
pancies, and their tunnellingwill bemediated byZ2 gaugefields encoded by
Ising spins σαi‘ on the links xi‘ ¼ i‘d with iℓ = i + 1/2, where α ∈ {x, y, z}
specifies the particular Pauli operator. The Z2 LGT on a chain has been
thoroughly studied previously61,63,75,76. In the presence of a non-zero electric
field strength h, which leads to a potential between a pair of background test
charges growing linearly with their distance V(r) ~ V0r, this model exhibits
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confinement also when the charges become dynamical61,63. Such property is
reflected in the exponential decay of the gauge-invariant one-body Green’s
function, indirectly showing that there are no charged quasi-particles in the
low-energy spectrum. Confinement in the Z2 chain has been shown to
survive for any particle density76, and even at non-zero temperatures75. For
very large electric fields h, the particles get tightly bound into charge-neutral
pairs at neighbouring sites connected by a short electric-field string. The
emergent dynamics of these bound pairs is governed by an integrablemodel
that, in the continuous limit, has a Luttinger liquid (LL) behaviour with a
power-law decay for the corresponding Green’s function61. Hence, in con-
trast to the charged particles, these charge-neutralZ2 “mesons” propagate
as boson fields with a certain anomalous dimension, governing the physics
of the low-energy spectrum of the theory. As one lowers the electric field,
even if the confinement is not so tight and the exact mapping to the
integrable model is no longer valid, theZ2 chain remains in a confined LL
phase, albeit with an anomalous dimension and power-law decay that
change.

In our work, we explore a minimal extension of this model that
brings in a neat connection to quantum Hall physics, where the
interplay of dynamical matter and static gauge fields has been the
object of intense investigations. In this case, the gauge fields provide a
background under which the charged particles propagate. A notable
effect in such systems is that charged particles in 2d and quasi-1D
lattices can localize even in the absence of disorder, as a result of
Aharonov-Bohm interference77. This phenomenon is known as
Aharonov-Bohm (AB) caging78, as particles are locked inside
restricted regions of space. This leads to localised eigenstates and a
flat-band spectrum for specific values of the background magnetic
flux that pierces each elementary plaquette. The competition of
Aharonov-Bohm caging and inter-particle interactions has been
widely addressed in the literature: while interactions are disruptive
for the stability of cages, they can be responsible for a rich physical
phenomenology79–86.

With ourwork, we introduce the notion of dynamical AB caging, in
whichgaugefields areno longer static classical configurations, but rather
dynamical quantum variables. Indeed, we shall see that a fundamental
interplay between AB caging and confinement physics arises. Specifi-
cally, also motivated by recent experimental progress in the imple-
mentation of a Z2 loop with trapped-ion devices60, we introduce a
minimal LGT generalising the above Z2 chain, and grounding for the
phenomenon of the aforementioned dynamical AB caging through
gauge fields. For this purpose, we add an extra Ising spin on each link of
the system we sketched above, such that the charges have now two
tunnelling paths along the bonds b∈ {1, 2}, eachmediated by the gauge-
field parallel transporter σzb;i‘ . This setup can then be naturally repre-
sented as a linear chain of loops, with twoZ2 gauge fields living on either
arm of each loop - see Fig. 1. These minimal plaquettes thus enclose a
dynamicalZ2-valuedflux,whosemagnetic energetic contribution stems
from a simplified Wilson plaquette term that only requires a two-body
Ising interaction to attain gauge invariance. As we shall see, such a
Z2-flux, taking values 0 or π, can indeed set the sought dynamical AB
caging. In the context of fractionalization andZ2 LGTs with dynamical
matter in D = 2 + 1 dimensions, π fluxes are referred to as visons for
vortex Ising excitations87,88. They appear as particle-like vortex excita-
tions localised to a single plaquette of the two-dimensional lattice and
can only be excited by a non-local string that connects the plaquette to
one of the boundaries. By analogy, we shall also refer to these localised π
fluxes as visons for our Z2-loop chain. While here visons cannot con-
dense to yield confinement-deconfinement transitions, we will
demonstrate that phase transitions of a different nature can occur, as
arising from the interplay of the particle filling, visons proliferation and
AB cages, and dynamical AB caging will emerge as a mechanism of
strong-confinement, even in the absence of strong electric field lines
binding particles in pairs.

Methods
The model
The Hamiltonian of the Z2-loop chain, for ℏ = 1, reads

H ¼ t
2

X
i;b

ayi σ
z
b;i‘

aiþ1 þH:c:
� �

þ h
2

X
i;b

σxb;i‘ þ
J
2

X
i

σz1;i‘σ
z
2;i‘

; ð1Þ

where we have introduced the tunnelling strength t, and the electric h and
magnetic J couplings. The tunnelling of hardcore bosons is assisted by a Pauli
operator along z that acts as a parallel transporter, enforcing the Z2 gauge
invariance of the matter dynamics. Pauli operators along x, instead, play the
role of aZ2 electric field Eb;i‘

¼ ð1þ σxb;i‘ Þ=2. In the electric-field basis, the

states ∣± b;i‘
i ¼ ð∣"b;i‘

i± ∣#b;i‘
iÞ= ffiffiffi

2
p

stand for the presence/absence of an
electric-field lineconnecting twoneighbouringmatter sites.The Isingcoupling
W�i‘

¼ σz1;i‘σ
z
2;i‘

can be interpreted as a Wilson plaquette term that

quantifies the ‘magneticflux’piercing the loop that connects sites i and (i+ 1).
Indeed, for a vanishing electric field, the total phase acquired by a boson
circulating the loop can be expressed in terms of an effective flux
expfiΦBg ¼ hW�i‘

i. As a result, ferromagnetic loop orderings are 0-flux

configurations,while anti-ferromagnetic onesyield aπ-flux. Sinceπ-flux states
correspond to vanishing eigenvalues ofSzi‘ ¼ 1

2 ðσzi‘;1 þ σzi‘;2Þ, suchgauge-field
loop configurations lead to aperfect destructiveAB interference, inhibiting the
boson tunnelling to a neighbouring loop. In contrast with the classical AB
cages, we note that the interplay of the interference and particle dynamics will
be affected by quantum fluctuations and by the specific filling.

The Hamiltonian (1) has a global U(1) symmetry associated to the
conservation of the total particle number, which we control through a
chemical potential μ via H → H − μ∑ini with ni ¼ ayi ai. The Z2 gauge
invariance of the Hamiltonian (1) results from [H,Gi] = 0 ∀i, in which
Gi ¼

Q
bσ

x
b;i‘�1ð�1ÞniQbσ

x
b;i‘

are the local symmetry generators. When
considering an open loop chain terminating with a pair of matter sites, the
local generators of the gauge group at its ends should read G1 ¼
ð�1Þn1Qbσ

x
b;1‘

and GL ¼
Q

bσ
x
b;ðL�1Þ‘ ð�1ÞnL .

Additional local symmetry and reduction to spin-1
Besides itsZ2 gauge symmetry, the Hamiltonian (1) is also invariant under
the local exchange of the two Ising operators of each loop: σα1;i‘ $ σα2;i‘ . Let
us define the total spin in a loop as Si‘ ¼ ðσ1;i‘

þ σ2;i‘
Þ=2, so that the

Z2-loopHilbert space can be seen as the direct sumof a spin-0 (singlet) and
a spin-1 (triplet) representation of SU(2). There is thus an additional local
conservation of the Casimir operator S2i‘ , which has eigenvalues si‘ ðsi‘ þ 1Þ,
with si‘ 2 f0; 1g. The total Hilbert space thus decouples into sectors cor-
responding to each possible set f. . . ; si‘�1; si‘ ; si‘þ1; . . . g. Whenever a loop
is in a singlet π-flux configuration, which corresponds to si‘ ¼ 0 and to a
loop Bell state ∣Ψ�

i‘
i ¼ ð∣"1;i‘

#2;i‘
i � ∣#1;i‘

"2;i‘
iÞ= ffiffiffi

2
p

, the chain gets
effectively broken, as the loop resides in a so-called dark state that decouples
from the dynamics. Moreover, the associated π-flux inhibits any possible
tunnelling connecting the two partitions. Therefore, an arbitrary distribu-
tion of singlets leads to the chain being fragmented into a set of independent
subchains, which are instead composed only of triplet bonds that allow for
non-trivial dynamics.

Without loss of generality, we can thus restrict our analysis to one of
these si‘ ¼ 1 subchains. When expressed in terms of the total spin, the
Hamiltonian reads

H ¼ t
X

i
ayi S

z
i‘
aiþ1 þH:c:

� �
þ h

X
i

Sxi‘ þ J
X
i

Szi‘

� �2
; ð2Þ

where we have neglected an irrelevant constant term. The model in Eq. (2)
now describes a LGT on a chain, but with gauge degrees of freedom being
spin-1 operators. Let us remark that this model differs from the so-called
quantum linkmodels89, which can also include a higher-spin representation
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of the gauge fields to preserve a local U(1) gauge symmetry. In our case, the
symmetry is still the discreteZ2 group, having effective local generators that
now read

Gi ¼ P x
i‘�1ð�1ÞniPx

i‘
; Px

i‘
¼ 2ðSxi‘ Þ

2 � 1 ð3Þ

together with the corresponding deformations at the edges for open
boundary conditions.Wewill work in the neutral gauge sector, such that the
physical space ∣ψi 2 Hphys � H is stabilised by Gauss’ law operators
Gi∣ψi ¼ þ∣ψi 8i. In this case, considering a finite chain ending with sites,
one can see that the total parity of hardcore bosons is actually fixed to be
even, as Phb ¼ ð�1Þ

P
i
ni ¼ Q

iGi ¼ 1.We note that the loop chainmodel
(1) is the simplest extension of the Z2 chain in which the gauge-field
dynamics is not entirely fixed by thematter fields. Indeed, the non-linearity
of Gauss’ law in terms of the gauge field operators, which is quadratic in the
spin-1 reduction of the Hamiltonian, Eq. (2), makes it impossible to
integrate them out in favour of a pure matter model, in contrast to the Z2
chain61.

In the spin-1 language, the Wilson plaquette for each loop becomes
W�i‘

¼ 2ðSzi‘ Þ
2 � 1, and thushas aZ2-valued spectrum ±1corresponding

to the 0-flux (+ 1) and π-flux (− 1) configurations. Equivalently, the total
electric field in each loop is controlled by the x component of the total spin
Ei‘

¼ P
bEb;i‘

¼ 1þ Sxi‘ . From here onward, we will adopt the notation

∣0*i ¼ ∣ ""i; ∣πi ¼ ð∣ "#i þ ∣ #"iÞ= ffiffiffi
2

p
; ∣0+i ¼ ∣ ##i for the

m = 1, 0, − 1 eigenstates of Sz that label 0-flux and a π-flux states, respec-
tively. For convenience, we also use the Bell pairs

∣Φ ± i ¼ 1ffiffiffi
2

p ð∣ ""i± ∣ ##iÞ; ∣Ψ± i ¼ 1ffiffiffi
2

p ð∣ "#i± ∣ #"iÞ; ð4Þ

such that ∣Φ± i ¼ ð∣0*i± ∣0+iÞ=
ffiffiffi
2

p
and ∣Ψþi ¼ ∣πi, recalling that the

missing Bell pair ∣Ψ�i ¼ ð∣ "#i � ∣ #"iÞ= ffiffiffi
2

p
is the dark state that is

completely decoupled from the dynamics. We note that the role of gauge
symmetry and AB interference in these entangled flux states has been rea-
lised in recent trapped-ion experiments60. The Bell states are common
eigenstates of ðSxi‘ Þ

2 and ðSzi‘ Þ
2, with ðSxi‘ Þ

2∣Φþ
i‘
i ¼ ∣Φþ

i‘
i, ðSxi‘ Þ

2∣Ψþ
i‘
i ¼ ∣Ψþ

i‘
i,

ðSxi‘ Þ
2∣Φ�

i‘
i ¼ 0 and ðSzi‘ Þ

2∣Φ±
i‘
i ¼ ∣Φ±

i‘
i, ðSzÞ2∣Ψ±

i‘
i ¼ 0.We also point out

that the state ∣Φ�
i‘
i is a 0-flux state, which also has awell-defined value of the

total electric field Ei‘
∣Φ�

i‘
i ¼ ∣Φ�

i‘
i. The gauge-invariant configurations that

are allowed by Gauss’ law are depicted in Fig. 1.

DMRG encoding
The interest in low-dimensional LGTswith simplifiedAbelian groups lies in
the expectations that they could be amenable to quantum simulation in the
near term and has led to recent experimental progress32–45,47–60. Even if
phenomena related to long-time dynamics lie beyond numerical cap-
abilities, the existence of an entanglement area law90 for the reduced
dimensionality suggests that one may use numerical simulations based on
matrix product states (MPS)91 to explore the full finite-density phase dia-
gramof themodel. Thiswill shed light on the role of the dynamicalAB cages
and the gauge-invariant couplings, guiding our understanding of finite-
density effects reported in the following sections. Before delving into the
details, let us present our approach to deal with the local Z2 symmetry
using MPS.

The numerical results of this paper are mainly obtained using DMRG
algorithms92–94 in subspaces of fixed gauge sectorGi = 1 and particle density
ν =N/L. A direct use of DMRG for Eq. (2) requires additional Hamiltonian
terms to penalize the overlap of a state ∣ψi with states not belonging to the
physical Hilbert space satisfying the Gauss law Gi∣ψi ¼ þ∣ψi 8i. For
instance, one may consider adding Hamiltonian penalty terms such as
H→H−λ∑iGi, which suppress unwantedcontributions fromother gauge-
sectors in the low-energy regime, but these are hard to control95.

Another possible strategy would be to integrate out the matter degrees
of freedom by making use of Gauss’ law Gi∣ψi ¼ þ∣ψi 8i, with the gen-
erators inEq. (3). In thephysical subspace, thiswould lead to a spin-1model,
in a similar spirit to the spin-1/2model that arises in the physical subspace of
theZ2 chain

61,62, with non-local terms that follow from the mapping of the
particle density onto domain-wall operators ni ! ð1� Px

i‘�1P
x
i‘
Þ=2, which

count the number of magnetic kinks connecting two neighbouring ferro-
magnetic domains – see SupplementaryNote 1. In this case, a fine-tuning of
a chemical potential term �μð1� Px

i‘�1P
x
i‘
Þ=2 would be needed to fix the

total number of particles in the system.
In order to enforce both Gauss’ law and particle number conservation

without resorting to penalty or chemical potential terms, we rewrite the
model (2) as follows. First, every bond operator is split into two
Sαi‘ 7!σαi ; S

α
iþ1. Then, ‘super-sites’ are introduced that enclose the original

matter sites of the chain and the neighbouring ‘half-links’. The half-links on
the right of each site host Ising spin degrees of freedom, while spin-1
operators live on the left – see Fig. 2. The Hamiltonian is then rewritten as
H ¼ P ~HP, where

~H ¼ t
X
i

ðayi σzi Sziþ1aiþ1 þH:c:Þ þ h
X
i

Sxi þ J
X
i

ðSzi Þ2 ð5Þ

still displays a localZ2 gauge symmetrywith generators that are local on the
super-sites ~Gi ¼ Px

i ð�1Þniσxi , ~G1 ¼ ð�1Þn1σx1, ~GL ¼ Px
Lð�1ÞnL . The pro-

jectors P ¼ Q
ið1þ σxi P

x
iþ1Þ=2 impose the condition that σxi ¼ Px

iþ1,
ensuring that the dynamics of ~H in the subspace constrained by ~Gi ¼ 1 8i is
reduced to that of Eq. (2) in the neutral gauge sector Gi = 1 ∀i(3).

As detailed in Supplementary Note 2, by exploiting a global symmetry
ofP ~HP, we show that it is possible to fix both the total number of particles
in the system and theGauss’ law constraints, without resorting to additional
Hamiltonian penalties. To the best of our knowledge, other approaches

Fig. 1 | Z2 Loop-chain. a Hardcore bosons live in the sites of a one-dimensional
lattice. Two links depart from each site in a loop geometry and host spin-12 gauge-field
variables σα1 and σα2 . Each loop encloses a gauge flux taking values in {0, π} and
corresponding to the eigenvalues +1 (0 flux) or -1 (π flux) of σz1σ

z
2. The hopping

amplitude between sites connected by a loop in a π-flux state vanishes due to
destructive Aharonov-Bohm interference. b Gauge invariant configurations in the
spin-1 reduction of the loop-chain model, where jΦ± i and jΨþi are common
eigenstates of the spin-1 operators ðSxÞ2 and ðSzÞ2, defined at the end of the
“Additional local symmetry and reduction to spin-1" subsection in the Methods.
Occupied sites are filled in dark blue.
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allow to enforce either one of these symmetries, while still relying on
energetic penalties for the other. As a figure of merit of the reliability of the
above method, in Supplementary Note 2 we show that Exact Diagonaliza-
tion (ED) results based on Eq. (2) and DMRG results based on Eq. (5)
coincide - see Supplementary Fig. 1. In the same figure, further comparison
with a different DMRG approach is also presented for a larger system size:
there, the results are compared to those obtained for the spin-1 chain that
describes the Z2 loop model in the neutral gauge sector.

Results
Self assembly of Aharonov-Bohm cages at h = 0
For h = 0, the electric field term drops out of the Hamiltonian (2) and the
remaining hopping and flux terms locally commute. As a result, ðSzi‘ Þ

2 is

locally conserved, and theHilbert space results to be fragmented into sectors
labelled by the eigenvalues of ðSzi‘ Þ

2 at each link of the chain. Following a

similar logic towhat has been discussed in the previous section, we conclude
that the chainwill get partitioned into all possible combinations of AB cages
of different lengths, each surrounded by a pair of links in the ∣πi state, which
support a perfect AB destructive interference, such that the particles that
reside within the cage cannot escape. We will then be left with a set of
independentABcages, eachhosting only 0-fluxbond states and anumberof
particles that will search for the minimum energy configuration consistent
with the AB constrained length. Every AB cage will only be allowed to host
either zero or an even number of particles, as we recall that there is a parity
constraint dictated by Gauss’ law. Finding the ground state of the system
reduces to a classical problem, which consists of comparing the energies of
all the possible different partitionings of the full chain, by allowing for all
possible distributions of π fluxes and accounting for all the allowed particle
distributions that individuallyminimize the kinetic energy in eachAB cage -
see Supplementary Note 3.

The behaviour of the system with changing J/t and μ/t is presented in
Fig. 3.Theboundaries in red enclose regionsof a constant average gaugeflux
W ¼ P

ihW�i‘
i=ðL� 1Þ, which provides indirect information on the

nature of the chain partitioning.We find that the lattice does not break into
partitions for J < 0, as the magnetic Wilson term favours, in this case, a
ferromagnetic ordering of the spins, leading to an overall 0-flux. For positive
values,we alsofinda vanishingfluxbelowapronged curve that separates the
phasewitha fully-connected chain fromonewithABcages and clusteringof
particles. Below the transition line, the number of particles decreases in steps
of two with decreasing μ. When crossing the curve, we observe the self-
assembling of caged configurations favoured energetically: due to destruc-
tiveAB interference, particles are locked in clusters covering the entire chain
according to a periodic crystalline structure. Five main commensurate
coveringsof the lattice emerge,with cages of sizes ℓAB=1, 2, 3, 4, 5.Partitions

of length ℓAB=1correspond to independent empty sitesand to a total of zero
particles in the lattice, appearing in the bottom right corner of thefigure. For
all the other values of ℓAB, except for a small area that corresponds to
partitions of ℓAB = 5 sites that contain four particles, each ℓAB-sized cage is
filled with just two particles. As a result, the filling fraction ν is fixed to the
value ν = 2/ℓAB.

To the best of our knowledge, and in contrast to the previous results on
AB caging in static and homogeneous flux brackgrounds78,79,81, this is the
first study reporting a spontaneous fractionalization of the system by the
nucleation of π fluxes, sometimes referred to as visons in the context of
particle-like deconfined excitations of Z2 LGTs

87,88. Here, these visons get
arranged forming ordered patterns with a periodicity that depends on the
filling and the competition of the various microscopic terms. We note that,
for a chainoffinite sizeL, dependingon thenumber of sites, coveringswith a
single kind of clusters may become incommensurate with the size of the
lattice, resulting in mixed configurations. Such effect is expected to dis-
appear in the thermodynamic limit L→∞.

Let us now fix the total number of particles and explore this phe-
nomenon inmore detail for the specific filling fraction ν = 2/3. Resorting to
numerical methods, we find the following behaviour - see Fig. 4: for any
J < J⋆, where in the thermodynamic limit J?=t ¼ 3

ffiffiffi
3

p
=π � ffiffiffi

2
p

, the system
attains its minimum energy by remaining fully connected without AB cages
or visons - see SupplementaryNote 3. Strictly at vanishing electricfieldh=0,
our hardcore bosons hopping on a whole chain then correspond to
deconfined excitations in ametallic phase. Increasing themagnetic coupling
to J? < J <

ffiffiffi
2

p
t, pairs of particles get caged in three-sites cages (AB trimers)

that completely cover the chain. Finally, for even larger couplings J ≥
ffiffiffi
2

p
t,

we find that the system lowers its energy by creating smaller cages of two
sites (ABdimers), inwhich twoparticles are arranged into a tightly confined
‘meson’. In this case, due to the specific particle number N = 2L/3, one
cannot densely cover the lattice with these meson-filled AB dimers, and the
ground state shall intersperse AB dimers with other empty sites. We note
that this comes with a large degeneracy, corresponding to all the possible
arrangements of the diluted AB dimers.

Fig. 3 | Phase-diagram at h = 0. Contour plot of the filling fraction ν = N/L as a
function of J/t and μ/t, for a chain of L = 60 sites. Red lines delimit areas of constant
average gauge flux W ¼ P

ihW�i‘
i=ðL� 1Þ in which the chain is divided into

clusters of size ℓAB indicated by the red numbers inside each region. For instance, the
region on the left corresponds to the un-partitioned chain of ℓAB = L connected sites
and no visons, whereas that in the bottom right corner is broken at every site ℓAB = 1
by completely filling the loops with visions. A schematic representation of the flux
configurations is depicted in the larger regions, in which the periodic arrangement of
visons (red π-flux circles) and 0-flux loops (green circles) with periodicity ℓAB is
manifest. Except for the small unlabeled closed area with cages of size ℓAB = 5, which
host four particles each, the remaining arrangement of Aharonov-Bohm cages with
ℓAB ∈ {2, 3, 4, 5} contain two particles each. Notice that the reference values
J?=t ¼ 3

ffiffiffi
3

p
=π � ffiffiffi

2
p

, J 0=t ¼ ffiffiffi
5

p � ffiffiffi
2

p
and J=t ¼ ffiffiffi

2
p

can be calculated analytically
in the thermodynamic limit - see Supplementary Note 3 for details.

Fig. 2 | Schematics of the encoding for DMRG. The bonds of the spin-1 lattice
gauge theory in Eq. (2) are broken in half. Super-sites (dashed circles) enclose the
original matter sites of the chain and two “half-links", except at the edges, where one
“half-link" is dropped as the original chain terminates with sites. In each super-site,
the right “half-links" host spin-12 degrees of freedom, while spin-1 operators live in
those on the left.

https://doi.org/10.1038/s42005-025-02284-x Article

Communications Physics |           (2025) 8:357 4

www.nature.com/commsphys


We point out that different values of the filling fraction could set
configurations other than the ones discussed above. For instance, for ν=2/3,
it is not commensurable with the total number of particles and sites in the
chain to replace any number of trimers with cages of four sites and two
particles each. Such AB fourmers configurations can instead be found at
half-filling ν = 1/2 - see Supplementary Note 3 and Supplementary Fig. 2
therein.

Interference-assisted tight confinement of mesons
Let us now switch on the electric field h > 0, introducing quantum fluc-
tuations into the loop fluxes that compete with the AB caging and tend to
restore the tunnelling among the disconnected partitions of the chain. In
particular, visons start tomovealong the chain,which is accompaniedby the
rearrangement of AB cages that carry with them the particles that were
locked inside. Whilst the effect of h > 0 tends to be disruptive for the AB
caging, at small h/t and h/J configurations of constant average gauge fluxW
and filling fraction ν are resilient to quantum fluctuations and the filling
fractiondisplays a staircase behaviourwith changingμ/t - see Fig. 5. Plateaux
of fixed ν correspond to incompressible configurations, being characterized
by κ = ∂〈N〉/∂μ = 0, at which the average fluxW is also constant, indirectly
showing the persistence of caged configurations. The size of these plateaux
tends to shrink as the strength of the fluctuations controlled by h is
increased.

We stress that, at small values of h/t andh/J,most of the incompressible
configurations found in the previous semi-classical ground states are still
present - see Fig. 6. In fact, we find that cages of size ℓAB = 1, 2, 3, 4 survive
quantum fluctuations, while those of size ℓAB = 5 become unstable. As in the
semi-classical case, we find that for ground states with single-site AB cages
ℓAB = 1, the system has a vanishing particle filling ν = 0. Otherwise, all the
remainingABcageshost twoparticles each, such that ν=2/ℓAB.Wefind that
all these phases are incompressible sinceκ=0 - see Fig. 6, and spontaneously
break the lattice translational symmetry down to the subgroup of ℓAB-site
translations.This typeof transition is reminiscent of thePeierls’ instability in
low-dimensional metals, which breaks translational invariance into the
subgroup of 2-site translations, leading to an insulator in a dimerised
chain96. In our case, we find a periodic arrangement of visons and, in the
thermodynamic limit, the ground state is expected tobe ℓAB-folddegenerate.
This degeneracy corresponds to all the possible non-equivalent coverings of
the lattice, namely those that cannot be related by ℓAB-site translations.

Being characterized by a staircase behaviour of κ, transitions between dif-
ferent incompressible phases are first-order.

As noted above, in the limit of small h/t, h/J, quantum fluctuations can
assist the movement of AB cages and the particles thereby enclosed. This
effect can be effectively described via a Schrieffer-Wolff perturbative
transformation of Eq. (2): we focus on the caged regimes inwhich the lattice
is broken in clusters of ℓAB sites containing two particles each, far from the
values of J/t at which cages of different lengths become degenerate. A non-
zero electric field can induce virtual processes that expand and subsequently
contract theABcages by creating anddestroying visons through Sxi‘ ∣Φ

þ
i‘
i !

∣Ψþ
i‘
i and Sxi‘ ∣Ψ

þ
i‘
i ! ∣Φþ

i‘
i. The successive expansion and contraction of an

AB cage, which result from creating and destroying visons at its opposite
edges, yield an effective hopping process. Conversely, this second-order
process taking place at only one of its sides would simply lower the energy.
These energy-lowering contributions are suppressed when a single π-flux
loop is localised between neighbouring cages, which thus results in an
effective repulsive interaction. In this case, second-order processes affecting
this boundary vison cause the two ℓAB cages to fuse into a single 2ℓAB cage,
and thenbreak apart again. Taking into account both effective hoppings and
interactions, we find that this dynamics is described by an extended Bose-
Hubbard model, where an additional constraint accounts for the spatial
extent of each AB cage - see Supplementary Note 4. The effective Hamil-
tonian reads

H‘AB
¼ P‘AB

P
i �t‘AB ðb

y
i biþ1 þH:c:Þ

�

þV ‘AB
niniþ‘AB

�
P‘AB

:
ð6Þ

In this equation, we have introduced bosonic operators byi ðbiÞ, which
create (annihilate) an entire ℓAB-sized AB cage that starts at site i. Hence,
they involve the creation (annihilation) of two particles in the lowest two-
particle eigenstate available to a ℓAB-site subchain, where all the links
enclosed by the cage are forced to 0-flux (π-flux) states according to the
Gauss’ law – see Supplementary Fig. 3. Such operators are gauge-invariant
meson creators(annihilators) as they can be written as linear combinations
of two particle ai, aj (a

y
i ; a

y
j ) operators appropriately separated by strings of

loop operators to fulfil the Gauss’ law constraints. For instance, in the
simplest case of AB dimers ℓAB = 2, we have bi ¼ ai ∣Ψþ

i‘
ihΦ�

i‘
∣aiþ1. Let us

also note that the projectors P‘AB
impose a cluster hardcore constraint

byi b
y
iþn ¼ 0 that forbids the occurrence of pairs of doubly-occupied sites

Fig. 4 | Chain-partitioning. We plot the averaged expectation value of the magnetic
Wilson operatorsW ¼ P

ihW�i‘
i=ðL� 1Þ, which provides a sense on how the

number of vison changeswith the parameters and, thus, on the formation ofAharonov-
Bohm cages at h = 0 and filling ν ¼ 2

3. The fragmented chains contain Aharonov-Bohm
cages separated from one another by π-flux loops. By increasing J/t, we observe the
transition from a fully-connected chain to an Aharonov-Bohm-trimer covering and,
finally, to an Aharonov-Bohm-dimer configuration, in which the cages do not fully
cover the chain and can be thus arranged in many degenerate configurations. In the
thermodynamic limit, the transition points are given by J?=t ¼ 3

ffiffiffi
3

p
=π � ffiffiffi

2
p

and J=t ¼ ffiffiffi
2

p
.

Fig. 5 | Staircase behaviour of the filling fraction.We plot the filling fraction ν as a
function of the chemical potential μ/t at small values of the electric field strength
h/t = 0.05, 0.10, and at J/t = 0.45. The length of the chain is L = 120. Plateaux at the
fillings ν = 0, 1/2, 2/3, 1 denote incompressible configurations of the ground state
associated to a constant value of the average fluxW and thus to the presence of cages
of average size ℓAB ~ 1, 4, 3 and 2, respectively, as indicated in the labels above each
plateaux.
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within any site in the cage ∀n∈ {0, ℓAB− 1}.Hence, only a singlemeson can
reside in each AB cage.

In the cases of relevance to our current discussion, namely those in
which only two particles are hosted by each cage, the original density ν and
the filling fraction of these mesons νm(ℓAB) are related via the expression
νm(ℓAB) = ν/2. Due to the constraints imposed by P‘AB

, the specific value
�νmð‘ABÞ ¼ 1=ð1þ ‘ABÞ is equivalent to half filling, such that one cage exists
on everyother site. In a similarway,~νmð‘ABÞ ¼ 1=‘AB canbe regardedas the
fully-filled regime, since the projection constraints would not allow for
additional clusters to be added. In this last case, the model (6) is forced into
one of the configurations discussed above in which the chain is completely
covered by the cages and the system is found in an incompressible phase,
with the lattice translational invariance being broken to itsZ‘AB

subgroup -
see Fig. 6.

The model in Eq. (6) can be mapped to a spin-1/2 XXZ chain with a
constraint that forbids spin configurations in which two spin-up states are
less than ℓAB sites apart. Such models have been exactly solved using the
Bethe Ansatz for any value of ℓAB

97. The possible phases turned out to be
independent of ℓAB, leading to an equal-time Green’s function that displays
an algebraic decay hbyi biþri � r�β, with β being dependent on the meson
filling νm(ℓAB). At halffilling for themesons, the effect of the above repulsive
Hubbard interactions is enhanced, and one finds a quantum phase transi-
tion at δc ¼ V ‘AB

=2 t‘AB ¼ 1 from a gapless Luttinger Liquid phase (δ≤1) to
a gapped Mott-insulating phase (δ > 1)61,97.

Below, we will discuss how the above exact results can be exploited to
get insights about the phase diagram of Eq. (2), as one departs from the
perturbative limit of small electric fields. Let us recall that, at ν = 2/3 filling
andh=0,we found that the system formsABdimers for J >

ffiffiffi
2

p
t.At smallh,

we can now make use of the effective description provided by Eq. (6). For
ℓAB = 2, the meson density is fixed to νmð2Þ ¼ 1=3 ¼ �νmð2Þ and our
effective model in the regime of low quantum fluctuations predicts that we
are in the critical regime δc = 1,with t‘AB¼2 ¼ h2t2=JðJ2 � 2 t2Þ. The ground
state will then be a LL97, with gapless excitations corresponding to mesons
with an anomalous dimension manifested through the exponent of the
algebraic decay of the gauge-invariant correlators hbyi biþri - see Fig. 7 and
the analysis reported in Supplementary Note 6 and Supplementary Fig. 6
therein.

Up to now, we have observed that interference effects induced by the
AB effect on the elementary loops result in a caging that locks particles in
pairs inside specific partitions of the chain. The emergent dynamics of the
mesons bound inside theABcages at smallh/t andh/J, also emerges for large
electricfield strengthh, where the charges are bound inmeson pairs due to a
linearly-increasing confining potential and are separated by short electric
field lines. The effective model in this regime is still given by Eq. (6) with a

2-site constraint, and we find that the parameters are again fixed to the
critical value δc = 1, analogously to what happens for the standardZ2 chain
in this limit of strong electric fields61,63.We stress that, while in theZ2 chain
particles form dimers as a result of strong attractive interactions, controlled
by h, penalizing extended configurations of the electric strings, the same
effective description applies to our loop model in the absence of strong
electric-field lines connecting pairs of particles. Indeed, in the weak-h limit,
this is due to the formation of Aharonov-Bohm cages. On the other hand,
forh/t≫ 1, an equivalent situation to theZ2 chain occurswhen h/J≫ 1 too:
in the manifold of the lowest-energy states, all the bonds of the chain are
found in eigenstates of the electric-field operator Ei‘

, with those binding
particles in pairs being characterized by the eigenvalues + 1, while the
others carrying zero electric field.We now show that, as the last condition is
relaxed and J is allowed to be comparable to h, not all the bonds of the chain
are eigenstates of the electricfieldoperator, but particles are still separatedby
short electric strings and form dimers, with the same effective dynamics.

For t = 0, the ground-state manifold is obtained by diagonalizing the
local Hamiltonian (2)Hlocal ¼

P
ih S

x
i‘
þ JðSzi‘ Þ

2. The three eigenvalues are

Fig. 6 | IncompressibleZ‘AB
phases. In a we plot the filling fraction ν at h/t = 0.05,

for a chain of L = 120 sites. At small values of the electric field, quantum fluctuations
of the flux restore the hopping among separate partitions. Nevertheless, regions of
fixed filling fraction ν and flux are stabilized at ν = 0, 12,

2
3 and 1, corresponding to

incompressible phases in which the chain is fully partitioned into single empty sites,
fourmers, trimers and dimers respectively, as indicated by the labels inside each area

that correspond to the average size of the Aharonov-Bohm cages ℓAB. As a result, the
lattice translational symmetry is broken to the Z‘AB

subgroup. In b we show the
compressibility κ ¼ ∂N

∂μ jJ , demonstrating that the caged regions are incompressible
areas of fixed filling ν, as indicated by the red labels in each lobe, and are separated by
lines of diverging κ, at which the filling fraction changes abruptly.

Fig. 7 | Dimer correlator.The correlator gðrÞ ¼ hbyL=2bL=2þri, with bi corresponding
to the annihilator for a dimer, is shown in the opposite regimes of small (0.1) and
large (10.0) values of ht , at the filling ν ¼ 2

3 and at the magnetic coupling J/t = 1.8. To
minimize boundary-effects, we evaluate the correlator starting from the middle
point of the chain. Notice that, since the model (2) is defined on a chain of length
L= 120, dimer operators will be defined on a chain of length L− 1 = 119 and rwill be
allowed to vary up to 59. The main plot in log-log scale makes it evident that the
algebraic decays in the two regimes are almost superimposed and confirms that the
effective description provided by Eq. (6) for ℓAB = 2 is valid in both cases. In the inset,
the same plot is in linear scale up to r = 30 for a better visualization. The data points
are fitted to g(r) = α r−β. For h/t = 0.1(10.0), we find α ~ 0.154(0.154) and
β ≈ 1.920(1.925).
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ϵ* ¼ J=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2=4þ h2

q
, ϵ0 = J, and ϵ+ ¼ J=2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2=4þ h2

q
, with the

corresponding eigenstates obtained as combinations of 0 and π-flux states

∣ϵ*i ¼ N*f∣Ψþi þ ðJ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ 4h2

p
Þ∣Φþi=2hg, ∣ϵ0i ¼ ∣Φ�i and

∣ϵ+i ¼ N+f∣Ψþi þ ðJ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ 4h2

p
Þ∣Φþi=2hg, N⇑/⇓ being normalization

coefficients. By gauge invariance, the ground state at t/h = 0will bemade up
of tightly-bound pairs of particles separated by an ∣ϵ0i link, while all the
other links shall arrange in the lowest energy state ∣ϵ+i. Despite
Ei‘∣ϵ0ii‘ ¼ ∣ϵ0ii‘ , ∣ϵ+ii‘ is not an eigenstate of Ei‘

unless J = 0 and, on

average, i‘hϵ+jEi‘
jϵ+ii‘ ¼ 1� 2h=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4h2 þ J2

p
. Along the same lines of the

previous discussion, we can obtain a bosonic effective theory for composite

mesons in which ~bi ¼ ai aiþ1ð∣ϵ+ihϵ0∣Þi‘ annihilate a dimer at site i. The

dynamics of these mesons is then recovered at second order in a Schrieffer-
Wolff perturbative expansion98,99. In this formalism, the mesons can move
by second-order processes in which one of the charges tunnels such that the
electric-field string connecting the pair of charges gets virtually stretched
and subsequently compressed.The effectiveHamiltonian is again that of Eq.
(6) setting ℓAB = 2, albeit in this limit the 2-site constraint refers to the extent
of the electric-field string instead of the size of the AB cage. We find again

δc =V2/2t2 = 1, with t2 ¼ t2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4h2 þ J2

p
� JÞ=ð4h2 þ J2 þ J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4h2 þ J2

p
Þ -

see Supplementary Note 5. Therefore, following the logic discussed pre-
viously for small h/t and h/J, we can conclude that the system lies at the
boundary between the LL and a gappedMott insulating phase for any values
of J/t, provided that we are in the strong electric field limit t≪ h.

In spite of the different mechanisms behind confinement, as reflected
in the definitions of the bosonic operators in the two cases, the two meson
configurations share correlation functions hbyi biþri and h~byi ~biþri that dis-
play the same algebraic decay - see Fig. 7. We can thus infer that tightly
confinedmesons produced either byAB interference at small h/t and h/J, or
by a strong electricfield,movewith the same anomalous dimension. Indeed,
the two regimes are adiabatically connected, as can be inferred by inspection
of the spectral gap, which remains closed from J >

ffiffiffi
2

p
t and small h/J,h/t to

the regime of strong electric field, for any values of J/t – see Supplementary
Fig. 4, so that the system remains in a LLphase.Whilst dimers fully populate
the ground state only in the limiting regimes of large and small electric field,
we can extend the definition of dimer operators ~bi ¼ ai aiþ1ð∣ϵ+ihϵ0∣Þi‘ to
intermediate values ofh/t, as the state ϵ⇓varieswith this ratio.Note that,with
changing h/t, both the limiting cases are recovered. Inspection of the one-
body dimer correlators shows that these mesons display almost the same
algebraic decay throughout thewhole parameter regime comprised between
the two analytical limits, with an anomalous dimension that varieswith h/t -
see Fig. 8.Moreover, dimers are shown to densely populate the ground state,
also at intermediate values of the electric field to hopping amplitude ratio -
see Fig. 8.

Z3 Mott insulator of mesons locked into AB trimers
In the previous section, we have shown that tightly confined mesons arise
either as a result of AB interference at small h/t and h/J, or due to a strong
confining interaction at large h/t. At ν = 2/3 filling, the ground state in these
two regimes lies at the critical point δc=1of the effective perturbativemodel
(6), between a LL of ℓAB = 2 cages and aMott insulating phase inwhich such
dimers arrange themselves in a configuration that breaks translational
symmetry to itsZ3 subgroup.We find that aZ3 Mott insulating phase can
actually be stabilized in our Z2-loop chain by lowering the magnetic cou-
pling J. Indeed, in the grand canonical ensemble, we found an incompres-
sible phase in which AB trimers completely cover the chain when
ðJ? < J < ffiffiffi

2
p

tÞ.When quantumfluctuations are introduced h≠ 0, and in the
regime J � ffiffiffi

2
p

t, the size of the cages fluctuates and ℓAB = 2 and ℓAB = 3
cages can become energetically degenerate.We find that, when lowering the
magnetic coupling further, a transition to a different configuration can take
place, as AB trimers become energetically favourable, each of them hosting
twocharges bound in ameson thatnowextends to the three sites. This forms

a Z3 Mott insulator as reflected by the vanishing compressibility κ = 0
reported earlier, as well as is reflected by the opening of a charge gap
Δc ¼ 1

2 ½EðN þ 2Þ � 2 EðNÞ þ EðN � 2Þ�. Here, E(N) is the ground-state
energywithNparticles and the choiceN±2 is needed to fulfil the evenparity
requirement in the chosen gauge sector. The numerical results are obtained
throughDMRGand show that thisMott phase extends tofinite values of the
electricfield strengthh. Indeed, both the charge gap and the spectral gap - see
Fig. 9 and Supplementary Fig. 4, remain open at finite h, so that the ground
state of the system at ν = 2/3 filling is in aZ3 Mott insulating phase within
values of themagnetic coupling comprised between J⋆ and

ffiffiffi
2

p
t. In order to

confirm that the Mott-insulating phase is not washed out in the thermo-
dynamic limit, we have performed a finite-size analysis of the charge-gap
showing that it converges to finite values in the limit of L → ∞ - see
Supplementary Fig. 4.

To corroborate the previous analysis, we consider a bipartition of the
chain in two subchains of length l and L − l and we calculate the von
Neumann entanglement entropy (EE) of the bipartition as a function of l -
see Fig. 10. We find that, in the Z3 Mott insulator, the EE nearly vanishes
when the bipartition does not intersect any of the sites enclosed in the AB
trimer cages, which is when the length of the bipartition l is an integer

Fig. 8 | Algebraic decay of dimer correlators. a the exponent β of the decay of dimer
correlators hbyi bji � ji� jj�β, evaluated starting from i = L/2 for a chain of L = 120
sites, at thefilling ν=2/3, is obtained fromabest-fit analysis (solid blue line), together
with the associated errors ϵβ (shaded blue area between the dashed lines dermarking
β ± ϵβ). It is shown that dimers display almost the same algebraic decay throughout
the parameter regime between the two limiting cases of small and large electric field.
The anomalous dimension η = β− 1 of such composite mesons is seen to vary with
the ratio h/t. bwe plot the fraction of the total number of particles that form dimers.
The ground state results in being densely populated by dimers, even for intermediate
values of h/t.

Fig. 9 | Charge gap Δc. A charge gap opens up at the transition between a Luttinger
Liquid and aZ3 Mott insulator around J ¼ ffiffiffi

2
p

t, for ν ¼ 2
3. TheMott phase, which at

h/t, h/J≪ 1 spans the range J?

t < J
t <

ffiffiffi
2

p
extends in a lobe structure to finite values of

the electric field strength h/t. The system size is set to L = 120.

https://doi.org/10.1038/s42005-025-02284-x Article

Communications Physics |           (2025) 8:357 7

www.nature.com/commsphys


multiple of 3. This behaviour reflects a quasi-factorized ground state at these
specific bipartitions. In the dimer regime, in contrast, the EE displays the
conformal field theory (CFT) behaviour, which is consistent with the
expectation for a LL with central charge c = 1 in a finite-size system100.

Let us close this section by noting that in the standard Z2 chain, in
order tofind theseMott insulatingphases, oneneeds to introduce additional
density-density Hubbard-type interactions between charges at neighbour-
ing sites, which can favour a charge-density-wave pattern and effectively
lead to δ > 1, favouring the Mott insulator63. In our case, the origin of the
Mott insulator is very different: it results from the interplay of the charge
dynamics and the dynamical AB caging.We also note that a similar analysis
applies to thehalf-filled case ν=1/2, as the systemcan transition fromaLLof
trimer cages, as described by the effective model (6) with δ < 1, to a Mott
insulator of fourmer cages at the full-fillingmeson density~νbð4Þ ¼ 1=4 - see
Supplementary Note 4 and Supplementary Fig. 5 therein.

Conclusions
In this paper, we have introduced a minimal quasi-1D geometry in which
Z2 gauge fields can lead to the formation of dynamical Aharonov-Bohm
cages. While bearing some resemblance to the ‘static cases’ provided by an
externalmagnetic field79,81,82,84, the physics of dynamical caging in our lattice
gauge theory is substantially different. Indeed, our caging arises from the
competition of matter and gauge-field dynamics, and is not a consequence
of the appearance of flat bands in the single-particle energy spectrum, as it is
the case in quantum Hall type systems79. We have shown that these cages
self-arrange in periodic structures, separated by π flux loops, providing the
analogue of the two-dimensional visons, thus breaking the translational
symmetry of the system. Pairs ofZ2 charges get effectively confined inside
the cages, forming tightly-confined mesons. In contrast to the standardZ2
chain, matter is tightly confined even at vanishingly-small values of the
electric field h/t. The interplay between caging and confinement results in
the different ways in which the chain fragments into subchains of different
sizes, which in turn depends on the ratio of the effective magnetic flux and
tunnelling strengths J/t.Wenote that,while ath=0 confinement arises from
the aforementioned chain’s fragmentation (see the “Self assembly of
Aharonov-Bohm cages at h = 0" subsection in the Results), quantum fluc-
tuations of the magnetic fluxes induced by a non-vanishing electric field
h > 0 actually restore the tunnelling among disconnected clusters; this effect
provides the key allowing mesons to propagate in the system – see the
“Interference-assisted tight confinement of mesons" subsection in the
Results. For small values of h, such dynamics is shown to be integrable and

leads to a gapless Luttinger Liquid (LL) of mesons – see Eq. (6) and the
discussion below. The LL behaviour at small h/t and h/J, is shown to adia-
batically extend tofinite values of the electricfield strength, up to the limit of
large h/t. In the latter case, particles are shown to be also tightly-confined
intomesons with a short electric-field line that involves a single link, similar
to the case of the standardZ2 chain. In this regime, confinement does not
arise from a destructive interference induced by the gauge flux, but it is due
to the linearly-growing attractive interactions betweenparticles separatedby
electric field strings. In spite of these different origins of confinement, the
dimerized regimes at weak and strong electric field h/t showcase the same
quasi-long-range behaviour of the dimer correlators – see Fig. 7. We thus
find a mechanism for the tight confinement of Z2 charges where both
electric-field penalties and interference effects contribute, this effect per-
sisting also for intermediate values of h/t – see Fig. 8.

For specific values of the filling fraction, we discover that quantum
phase transitions to incompressible Mott-insulating phases occur – see the
“Z3 Mott insulator of mesons locked into AB trimers" subsection in the
Results. These transitions, which result in the opening of a charge gap (see
Fig. 9), arise from quantum fluctuations triggered by the electric field, that
aim at modifying the size of the AB cages ℓAB. At a critical value of the
magnetic coupling, onefindsquasi-degenerate configurations of the clusters
characterized by either ℓABor ℓAB+ 1 sites, with the largest cage covering the
whole lattice.As themagneticflux strength is loweredbelow its critical value,
larger cages are favoured and stabilize a Mott insulating configuration with
broken translational symmetry. These phases are characterized by a van-
ishing compressibilityκ: changing the chemical potentialμ atfixed J/thasno
effect, until a new commensurate covering of the lattice with cages of dif-
ferent sizes becomes energetically favourable – see Fig. 6.

In future theoretical studies, different constraints on the particle
dynamics (Gauss’ laws) could be explored, as they can lead todifferent cages’
fillings. Finite temperature effects could also be addressed, as thermal
fluctuations are expected to compete with the discussed caging
phenomenon.

Our work identifies AB caging as a driving force that can affect con-
finement, and it would be very interesting to explore it in fully two-
dimensional models. Based on the scenario emerged in the present study,
our dynamical caging might define a new form of string-net theories3,101,102.

Finally, we note that experimental realizations of the phenomenology
described in this paper are in line with current proposals for the quantum
simulation of Z2 gauge theories, for instance, through Rydberg atoms or
trapped ions30,31. In the latter platform, real-time dynamics and the interplay
of AB interference for a singleZ2 loop have been recently demonstrated60.
These experiments exploit a laser-assisted parametric driving between two
collective vibrationalmodes of a 2-ion crystal, in particular by driving a pair
of interfering state-dependent forces tuned to the centre-of-massmodes that
describe collective in-phase vibrations along two orthogonal axes of the ion
trap. The possibility of preparing various gauge-invariant states in trapped
ions, as well as the capabilities of measuring both vibrational and internal
observables for the Z2 charges and Z2 fields, has actually allowed to
experimentally demonstrate the relation between the loop dynamics ofZ2
charges and parity oscillations between Bell pairs ∣Φ± i in Eq. (4), as well as
the destructive AB interference for a π-flux in the Bell pair ∣Ψþi in Eq. (4).
Although these experiments only constitute a proof-of-principle of the tools
that would be required to realise our Z2 loop model, one could exploit
similar ideas as those exposed in previous works31 to extend the gauge-
invariant dynamics to larger lattices. In particular, a method to combine
various normal modes in a dimerised trapped-ion chain was proposed as a
way tomake a dimensional reduction from a synthetic ladder to an effective
Z2-invariant chain

31. One can foresee that upgrading the period-2 dimer-
ization to a period-4 modulation of the trapping frequencies can now
provide enough resolved collective modes and qubits to generalise the
Z2-invariant loop tunnelling to a full Z2-loop chain. Although this is a
challenging experiment requiring extended microscopic control cap-
abilities,we remark that the key ingredients have alreadybeendemonstrated
in a recent proof-of-principle experiment60. Additionally, the simplified

Fig. 10 | vonNeumann Entanglement Entropy.Weplot the entanglement entropy
(EE) for bipartitions of the lattice into two subchains of lengths l and L − l, where
L = 120 and the filling is fixed to ν ¼ 2

3. The electric field strength is fixed to the value
h/t = 0.2. a Trimers Mott regime at J/t = 0.8: the ground state is quasi-factorized in
the tensor product of trimer ground states. b Dimer Luttinger Liquid regime at
J/t = 1.6: the entanglement entropy follows the conformal field theory behaviour
(red solid line) SCFTðlÞ ¼ c

6 logð2Lπ sinðπlL ÞÞ þ ~c, with central charge c = 1. By fitting the
data we find ~c � 0:37.
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magnetic plaquette interactions corresponding to Ising spin-spin couplings
could, in this model, be driven by the vibrational modes not used to encode
Z2 charges, a scheme that has indeed been realised in various laboratories.

Data availability
The data generated in this study is available from the corresponding author
upon reasonable request.

Code availability
The code developed to perform the numerical simulations is available from
the corresponding author upon reasonable request.
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