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Quantitative phase imaging (QPI) enables label-free measurement of intrinsic optical properties such
as the refractive index, offering valuable insights into biological and medical samples. While reciprocal
diffractive imaging (RDI) has demonstrated single-shot, reference-free reconstruction of complex
optical fields from diffusive samples, its applicability to biological specimens has been limited due to
dominant low-frequency components that hinder algorithmic convergence. Here, we present a
generalized RDI method that overcomes this limitation by modulating the Fourier spectrum in the pupil
plane using a custom-designed Fourier mask and a neutral density (ND) filter. This modification
attenuates the DC term and enhances support boundary definition, enabling robust phase retrieval for
non-diffusive samples. We validate the proposed method through both simulation and experiments,
reconstructing known amplitude and phase objects as well as a range of biological samples including
live cells and stained tissue sections. The approach is implemented in a conventional microscope
without a reference arm, requiring only a simple pupil-plane modification. Our method provides a
compact, non-interferometric solution for high-fidelity QPI and holds significant potential for broad
applications in biomedical imaging and real-time dynamic studies.

Holography captures the full complex optical field—both amplitude and
phase—thereby enabling precise reconstruction and manipulation of scat-
tered light to visualize the object of interest'. For thin and transparent
samples, the phase component directly reflects intrinsic properties such as
refractive index and sample thickness, making holography particularly
valuable for quantitative phase imaging (QPI)”. As a result, QPI has been
widely applied in diverse biomedical fields, including histopathology™™,
microbiology”, hematology'*", cell biology'*™"*, and preclinical study'*™".
However, conventional holographic techniques typically rely on interfero-
metric measurements with an external reference arm. This requirement
increases the system complexity, introduces sensitivity to mechanical
vibrations and environmental noise, and limits scalability due to bulky
optical components. These limitations have motivated the development of
reference-free alternatives that retain the phase retrieval capability of
holography while simplifying the optical configuration.

The principle of non-interferometric holography fundamentally
stands on the close relation between phase and intensity, which is
represented by the Siegert relation® . The transport intensity equation
(TIE)** is one of the non-interferometric techniques and determinis-
tically derives the solution for the phase of light from two intensity

measurements: one in-plain and the other defocused. Differential phase
microscopy (DPC)**’ was proposed to retrieve quantitative wavefronts
using two asymmetric illumination patterns. Fourier ptychographic
microscopy (FPM)*"* reconstructs the light field by iteratively filling the
Fourier space from multiple intensity measurements from illumination
under various angles. An analytical approach using the Kramers—Kronig
(KK) relations™ ™ suggested that under specific sample and illumination
conditions, the real part of a complex light field determines the imaginary
part, and vice versa, and unravels the intertwined relationship between
phase and intensity.

Unfortunately, although the referred methods show promising cap-
ability in phase recovery and reveal intriguing physical implications, they
have some limitations. The TIE does not provide a universal solution and
needs approximations, such as the linear relationship between phase and
intensity or strong assumptions for boundary conditions””. DPC linearizes
the transmittance function of a sample, and KK holographic imaging derives
holomorphic properties under the weak object approximation. FPM and
KK holographic imaging demand multiple intensity maps to obtain a
complete phase image, which hinders the observation of fast dynamics in
biological objects. In addition, FPM has a heavy computational cost. It
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should be noted that non-interferometric methods based on the synthetic
aperture approach limit the imaging to thin samples.

Recently, reciprocal diffractive imaging (RDI)* has been proposed for
imaging of diffusive objects via non-interferometric detection from a single-
shot intensity image. RDI retrieves the complex optical field by reciprocally
harnessing the reconstruction principle of coherent diffractive imaging. A
Fourier mask that has an asymmetric shape at the pupil plane plays the role
of the support in Fienup’s hybrid input-output (HIO) algorithm®, and the
constraints in Fourier and image spaces are iteratively applied to the output
field in the previous step to reconstruct accurate scattered complex field.
This approach provides a unique capability in retrieving diffusive fields, but
the application to biological science and more general samples is restricted
because the strong components around the DC term are problematic in
meeting the condition that the support boundary should be clearly defined.

In this study, we present a generalized form of RDI that enables QPI of
samples with dominant low-frequency (DC) components—such as biolo-
gical cells and thin tissues—which are not compatible with the original RDI
framework. To achieve this, we introduce a Fourier-plane modulation
scheme using a custom-designed asymmetric mask combined with a neutral
density (ND) filter, which attenuates the central spectrum and facilitates the
definition of a well-bounded support. We validate the method through both
simulation and experimental reconstruction of amplitude and phase objects,
including biological cells and tissue sections. The results demonstrate that
the proposed approach successfully extends RDI to a broader class of spe-
cimens while retaining a compact, reference-free optical setup. Owing to its
simplicity, flexibility, and robustness, the generalized RDI method offers a
powerful stand-alone solution for label-free, quantitative imaging across
diverse biological applications.

Results

Principle

RDI exploits the HIO algorithm and is a reciprocal version of coherent
diffractive imaging*’~*, where the roles of the pupil and image plane are
inverted. The measured intensity at the image plane and the known
support at the pupil plane are used as constraints. A non-
centrosymmetric Fourier mask located at the Fourier plane crops the
Fourier field to make it asymmetric; this condition is required for the
algorithm to lead to convergence to the correct solution®*. If the Fourier
mask is centrosymmetric, the iteration process fails, as shown in Fig. S1.
When applying RDI to diffusive objects, the tight edge condition for the
support can be easily met because the Fourier spectrum of the scattered

field evenly fills the pupil plane. However, in the case of samples not in the
diffusive regime, the vicinity of the DC term of a Fourier field generally
has a far stronger intensity than the support boundary, which makes the
convergence of the HIO algorithm unstable; in this case, the support
boundary is not well defined. This issue can be ascertained intuitively or
empirically. If the intensity of the part far from the boundary is very
strong, the intensity near the boundary will be seen as almost zero,
making it difficult to satisfy the ‘compact support’ condition**.
Figure S2 exhibits how the intensity of the region far from the support
boundary affects the reconstruction fidelity. The reconstruction fidelity
decreases as the vicinity of the DC term becomes more dominant.

In particular, samples of major interest in biological and medical study,
including cells and thin pathological tissue, have a dominant DC term. This
means that the previous configuration of RDI cannot be utilized for such
samples™. To resolve this issue, we modulated the Fourier spectrum by
setting an ND filter and an obstruction with a Fourier mask at the Fourier
plane to attenuate the intensity of the DC term of the Fourier field. The
proposed method was simply implemented in a conventional microscope
setup without a reference arm, as shown in Fig. 1a. The only difference with a
conventional microscope was that RDI requires locating a Fourier mask at
the pupil plane. An ND filter is attached to the Fourier mask to attenuate the
low-frequency components (Fig. 1b). This Fourier field modulation via the
Fourier mask and an ND filter is described with a formula and the specific
values of the numerical aperture (Fig. S3). Additional implementation
details, including the mask layout and the optical setup, are presented in the
Methods and Fig. S4.

In this study, the amplitude attenuation was set to 1% (1/100), a value
determined through simulations considering noise effects (see Fig. S5). This
choice reflects a trade-off between suppressing the dominant DC term and
maintaining robustness under low signal-to-noise ratio (SNR) conditions.
While weaker attenuation (e.g., 1/10) resulted in lower overall reconstruc-
tion fidelity, stronger attenuation (e.g., 1/1000) yielded higher fidelity in
noiseless cases but greatly reduced robustness as noise increased. The
selected 1/100 condition provided the best balance between fidelity and
noise tolerance.

The mask was fabricated by cutting aluminum, offering a simple and
low-cost solution. However, this method limits the ability to produce fine or
thin features. Lithographic fabrication enables higher precision but at a
higher cost. While spatial light modulators offer flexibility for dynamic mask
shaping, they are costly and introduce bulk, potentially offsetting the
compactness and simplicity of the proposed system.

Fig. 1 | Schematics of reciprocal diffractive ima-
ging for general samples. a The scattered field from
a sample is transferred to a detector by relay lenses.
The combination of the Fourier mask and an ND
filter modulates the light in the Fourier plane.

b Photograph of the Fourier mask and the ND filter.
The low spatial frequency components in the
Fourier spectrum are attenuated by the ND filter,
and the light passes through the outermost ring
shape. Created with BioRender.com.
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Fig. 2 | Principle of reciprocal diffractive imaging for general samples. A sche-
matic overview of the RDI process. The two-dimensional Fourier transform of a
complex sample field—comprising both amplitude and phase—is spatially modu-
lated at the pupil plane using a designed Fourier mask. The intensity image acquired
at the detector corresponds to the inverse Fourier transform of the modulated
spectrum. The RDI algorithm, based on the iterative hybrid input-output (HIO)
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method, reconstructs the Fourier field from this intensity data. By isolating the
outermost ring-shaped region of the reconstructed spectrum and applying an
inverse Fourier transform, a band-limited estimate of the sample field is obtained.
The reconstructed field is quantitatively compared with the ground truth using three
fidelity metrics.

In addition to diminishing the low spatial frequency components of the
Fourier spectrum using an ND filter, criteria for the design of the Fourier
mask should be considered: maximizing the reconstruction fidelity while
minimizing signal loss. The stronger the strength of the boundary part of the
support compared with the interior, the higher the reconstruction fidelity.
However, due to the loss of light and vulnerability to noise, the intensity of
the low frequencies cannot be lowered indefinitely. To address this issue, we
found that cropping near the boundary increases the reconstruction fidelity.
Also, it was confirmed through simulation that as the outermost ring part is
thinner, the reconstruction fidelity increases. The simulation results
depending on the cropping area and the outermost ring part are shown in
Figs. S6 and S7. It is presumed that this is because the boundary becomes
more dominant compared to the ambient areas. Finally, non-
centrosymmetry was ensured by cropping a portion of the support edge.
The shape of the used mask was determined as in Fig. 1b. These design
criteria are elucidated in Fig. S8.

Figure 1b describes the reconstruction process of the proposed RDI
method based on the HIO algorithm. The algorithm reconstructs the sample
field using the measured intensity and the information in the Fourier space.
This algorithm is a reciprocal version of the HIO algorithm. The sample field
to be reconstructed is s(x, y). S(u,v) denotes its two-dimensional (2D)
Fourier transform. The sample field is Fourier-transformed and restricted to
the shape of the Fourier filter. The intensity of the low-frequency compo-
nents is greatly reduced according to the ND filter specifications, and only
the boundary portion allows light to pass through as it is. The obstruction
between the attenuated components and the support boundary helps the
algorithm to converge. The modulated Fourier field is denoted by S'(u, v).
The intensity of the inverse transform of S'(u,v) gives a constraint in
image space:

Is'Ce, ) = 1F S (u, )], O

where F ! denotes the 2D inverse Fourier transform. Using the con-
straints of the Fourier support and |s'(x, )| in both Fourier and image
spaces, §'(u, v) is retrieved iteratively. The 2D inverse Fourier transform
of §'(u, v) is the bandlimited sample field. A detailed description of the
HIO algorithm can be found elsewhere’”. The feedback parameter in
the HIO algorithm was set to 0.6, and the iteration process was run up to
1000 steps. To enhance robustness under noisy conditions, we employed
a noise-robust version of the HIO algorithm"’. This approach addresses
convergence issues caused by inconsistencies between image and Fourier
domain constraints. The relaxation parameter was set to 0.005 for the
first 500 iterations and increased to 0.1 thereafter to accelerate
convergence.

In simulation, the reconstructed field shows a correlation of 1.0000
with the ground truth, as shown in (Fig. 2a). Note that the ground truth
means the numerical aperture-limited sample field. The generality of the
proposed RDI method can be seen by the reconstruction results of various
objects in Fig. S9, confirming its robustness across various imaging sce-
narios. The reconstruction fidelity depending on the iteration number and
the collapsed time depending on the number of reconstructed pixels are
described in Fig. S10. In the absence of noise, the reconstructed result
reached a correlation of 0.99999 with the ground truth by the 181st iteration.
Using a GPU (GeForce RTX 4090, NVIDIA Corp.), the reconstruction time
for a 100,000-pixel image was under 5 s.

Experimental validation

To validate the proposed RDI method, we first imaged well-characterized
reference samples: a United States Air Force (USAF) resolution target and
spherical microbeads as an amplitude object and a phase object, respectively.
The measured intensity images exhibited non-uniform distributions, with
high-frequency components near the support boundary appearing greatly
stronger than those in the central region—an expected outcome of the
Fourier-plane modulation.
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Fig. 3 | Experimental validation using known samples. The sample fields were
retrieved by the RDI algorithm: a United States Air Force resolution target (a),
spherical polystyrene microbead (b), and microbead cluster (c). The measured
intensities, retrieved Fourier fields, retrieved amplitudes, and retrieved phases are
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shown. The cross-section plots of the phase images are provided along the white
dotted lines in (b) and (c). The phase unwrapping algorithm was applied. The
Fourier spectrum is represented on a log scale.

The reconstructed amplitude image of the USAF target showed the
expected sample structure (Fig. 3a). The smallest pattern of the USAF target
(Group 9, Element 3) has 0.78 um spacing and was well resolved by the
imaging system whose theoretical resolution is 0.46 pm. The reconstructed
phase image of a microbead shows its expected spherical shapes (Fig. 3b).
The phase delay at the bead center was 3.41 rad, and this value is comparable
to the results from the off-axis holography setup in ref. 35. Furthermore, a
more complex configuration comprising multiple clustered beads was
successfully imaged, demonstrating the method’s robustness across varying
sample geometries (Fig. 3¢). Cross-section plots of the phase images provide
a more quantitative view of the sample’s phase distribution. The observed
background unevenness is likely due to static aberrations from the lenses or
the ND filter. These artifacts can be mitigated using a background sub-
traction method.

Biological application

To demonstrate the applicability of the proposed RDI method to real-world
biological specimens, we imaged animal tissues (BCN482, US Biolab Corp.)
to demonstrate the applicability of the proposed method. Three types of
tissue were successfully reconstructed, as shown in (Fig. 4a). Because these
tissues were stained, they also showed contrast in the amplitude images.
Both the reconstructed amplitude and phase maps exhibited high contrast
and resolution, revealing the appearance of discernible microscopic struc-
tures. Because phase unwrapping was broken due to high phase delay in the
granule structures, we presented these phase distributions without
unwrapping and with a cyclic color map.

Biological cells were also employed in the quantitative microscope.
Living biological cells COS7 and Hs68 were imaged, and the reconstructed
phase distribution showed the morphology and characteristics of the cells as
it is (Fig. 5a, b). In addition, a strong point of the RDI method is that this
technique only requires a single-shot intensity image, making it an excellent

candidate for the imaging of dynamic samples***. To highlight this cap-
ability, we imaged motile NTH3T3 cells and captured their temporal evo-
lution at a frame rate of 4.25 fps (Fig. 5¢). The temporal resolution is limited
only by the camera’s frame rate and can exceed 4.25 fps in faster imaging
setups. The cross-section plot of the NIH3T3 cell highlights the internal
structural heterogeneity of the sample.

Notably, the original RDI configuration was unable to reconstruct
these same samples, including the microbead cluster (Fig. 3¢) and moving
cells (Fig. 5¢), due to its sensitivity to dominant low-frequency components.
This performance gap is illustrated in Supplementary Fig. S11, underscoring
the effectiveness of the proposed generalized RDI approach.

Discussion

We proposed RDI for microscopy to retrieve the quantitative phase of
various samples. The design of the Fourier mask and the attenuation of the
ND filter effectively modulated the transmitted field at the pupil plane of the
microscope, enabling the RDI algorithm to work for samples with a strong
DC term. The fidelity of the proposed method was demonstrated via objects
with known structures. Imaging of biological tissues and cells revealed the
promising capability of the proposed method for biological studies.

The RDI method reconstructs complex sample fields from a single-
shot intensity measurement in a non-interferometric manner without
requiring special optics or a spatial light modulator. In addition, this method
does not require oversampling” beyond the Nyquist sampling rate, fully
utilizing the space-bandwidth product of the imaging system. Although
each imaging method has its own advantages, it is interesting to compare the
proposed method with the recently developed non-interferometric KK
holographic imaging as it has similar advantages. The RDI method only
requires a single-shot intensity image and does not exploit an illumination
unit. More importantly, the presented method has a significant advantage
over KK holography: the reconstruction fidelity is kept as the phase of a
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sample field increases (Fig. S12). Moreover, RDI is applicable to general
samples without relying on weak scattering or thin-sample assumptions,
unlike DPC microscopy or Fourier ptychography.

Despite its advantages, the proposed method has several limitations
that warrant further investigation. The ND filter attenuates not only the DC
term but also other frequency components, which may reduce recon-
struction fidelity in low-SNR conditions—especially for weak spectral
components (Fig. S5). This limitation could potentially be mitigated by
employing an apodizing or custom-designed ND filter that selectively
attenuates low-frequency components while preserving critical information
content. Another limitation is the reduced effective NA caused by Fourier-
space cropping from the mask geometry (Fig. S3), which may lower the
achievable space-bandwidth product. Nevertheless, the proposed method
remains data-efficient compared to iterative techniques like FPM, which
require redundant intensity measurements.

Although our implementation relies only on a simple aluminum mask
and a commercially available ND filter—highlighting the method’s
experimental simplicity—further optimization of the mask design could
improve NA utilization without compromising support constraints. In
particular, a Fisher information matrix-based optimization framework may
be employed to systematically tune the mask parameters under varying
imaging conditions and noise levels®”.

In addition, integration with recent advances in Fourier spectrum
modulation techniques may further enhance the performance of RDI in
optical microscopy. While the proposed method allows rapid acquisition of
dynamic samples, real-time visualization is limited by the iterative nature of
the reconstruction process (Fig. S10). This is a potential drawback compared

to methods like TTE, KK holography, and DPC microscopy, which support
near real-time reconstruction. To address this, future developments could
draw inspiration from phase retrieval approaches that incorporate Fourier
modulation strategies and artificial intelligence-based reconstruction fra-
meworks, such as machine learning™ **. Furthermore, adopting variants of
gradient descent-based algorithms may help reduce computational load by
decreasing both reconstruction time and the number of required iterations,
while also improving robustness under noisy conditions™". These direc-
tions collectively point toward the potential for real-time, high-fidelity, and
noise-resilient RDI implementations.

Process errors in mask fabrication can influence reconstruction fidelity.
To assess this, we simulated variations in mask radius under an SNR of 50
(Fig. S13). Even with a 15% deviation, the decrease in reconstruction fidelity
(complex correlation) was less than 0.5%. As actual fabrication errors are
expected to be within 10%, the impact is minimal. However, other forms of
deviation may also affect performance, and further investigation is
warranted.

Owing to its non-interferometric nature, the proposed method can be
readily integrated into optical systems employing spatially coherent
broadband light sources, such as superluminescent diodes. Additionally, the
use of temporally incoherent illumination may further suppress coherent
noise, thereby enhancing performance in applications such as nanoparticle
detection. Beyond two-dimensional imaging, the RDI framework can be
extended to holotomography or three-dimensional QPI™ by incorporating
beam-sweeping modules—such as LED arrays’* or digital micromirror
devices®">—to modulate the illumination wavefront. In such cases, the DC
component shifts according to the spatial frequency associated with each
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a COS-7 cell

C NIH3T3 cell

b Hs68 cell

Fig. 5 | Static and dynamic quantitative phase imaging of biological cells. The
reconstructed phase distributions of biological cells COS7 (a) and Hs68 (b). The
dotted-line boxes “i-iv” are enlarged to inset for visualization. ¢ Several frames for

the quantitative phase map over time of moving NIH3T3 cells. A cross-section plot
along the white dotted line is included as an inset. The phase unwrapping algorithm
was applied.

incident angle, forming a ring-shaped distribution in the Fourier plane. This
configuration allows for the use of annular ND filters optimized for angle-
dependent suppression of low-frequency components.

The reference-free and compact nature of our microscope makes it
well-suited for integration with other modalities, enabling multimodal
imaging applications such as molecular vibrational imaging™ and fluores-
cence microscopy™. For thick, heterogeneous samples like whole organs, the
proposed method could be combined with complementary techniques that
correct for sample-induced artifacts” . Given these extensions, we
anticipate that the RDI method will find broad utility not only in biological
imaging'>*** but also in other holography-driven fields, including precision

metrology and industrial inspection””".

Methods

Experimental setup

The detailed experimental setup is depicted in Fig. S4. The light source used
is a coherent diode-pumped solid-state laser with a wavelength of 531.65 nm
(Laserglow Technologies, S533001FX). A collimated plane wave illuminates
a sample after passing through a tube lens (L1) and a condenser lens (OL1,
Olympus Inc., LMPLFLN50X). The light scattered from the sample is col-
lected by an objective lens (OL2, Olympus Inc., UPLSAPO60XW). Then,
thelight in order passes through relay lenses (L2, L3) and is modulated in the
Fourier plane by the custom-made aluminum mask (Fourier mask) and an
ND filter (Edmund Optics Inc., 54-459). The modulated light is transferred
to a camera (XIMEA, MQ042MG-CM) by a lens (L4). A linear polarizer
(Thorlabs LPVISE100-A) is placed immediately before the camera to
enhance contrast; however, it is not essential for the operation of the
method. The camera records the intensity distribution of the transmitted
light. Using this intensity image and the known design of the Fourier mask,
the RDI algorithm reconstructs the complex optical field scattered by the
sample.

Preparation of biological cells
COS7(ATCC, CRL-1651), Hs68 (ATCC, CRL-1635), and NIH3T3(ATCC,
CRL-1658) cells were maintained in Dulbecco’s modified Eagle’s Medium

(DMEM; ATCC, 30-2002) supplemented with 10% fetal bovine
serum (Thermo FisherScientific Inc.) and 1% (v/v) penicillin/streptomycin
(Thermo Fisher Scientific Inc.) at 37 °C in a 5% CO, incubator. For imaging
experiments, cells were seeded into specialized glass-bottom imaging dishes
(TomoDish, Tomocube Inc.) with a coverslip thickness of #1.5H and an
80 um gap designed specifically for high-resolution microscopy, at a density
of ~1 x 10° cells/mL. Imaging was performed directly on live cells without
further fixation or staining.

Preparation of biological tissues

Animal tissues (BCN482, US Biolab Corp.) were formalin-fixed and
paraffin-embedded (FFPE). Specifically, tissues were fixed in 10% neutral-
buffered formalin (NBF) within 30 min post excision, embedded in
immunohistochemistry (IHC)-grade paraffin, and sectioned at ~5pm
thickness using standard histological methods. Sections were then mounted
onto standard microscope glass slides using an aqueous mounting medium
(e.g., Fluoromount-G; refractive index n = 1.37-1.38). Prior to imaging, the
samples were sealed to prevent drying and minimize optical artifacts.

Data availability

The sample data for the implementation of the RDI method are available at
our GitHub repository: github.com/BMOLKAIST/RDI-for-Microscopy-
2024.

Code availability

The MATLAB codes for the implementation of the RDI method are
available at our GitHub repository: github.com/BMOLKAIST/RDI-for-
Microscopy-2024.
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