
communications physics Article
A Nature Portfolio journal

https://doi.org/10.1038/s42005-025-02315-7

Predicting fracture in disordered network
materials using the local intelligent stress
threshold indicator
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Network glass fracture occurs as a sequence of elementary events occurring at weak sites in the glass
structure. Fracture is a highly complex process that occurs suddenly andwithout obvious structural or
thermodynamic signsprior to the event’soccurrence.Weshow that a stress threshold valuequantified
by local mechanical probing highly correlates with nanoscale crack nucleation in a two-dimensional
network glass. Subsequently, a neural network-based predictor, the local intelligent stress threshold
indicator (LISTI), links the local stress threshold with the undeformed local structural topology. LISTI
yields a reliable heatmap indicating soft spots that strongly correlate with the localized initiation and
development of the fracture process. Finally, we show that LISTI can be used to find local zones prone
to rearrangement in real-measured two-dimensional silica glass structures.

Fracture is a sudden phenomenon with potentially catastrophic con-
sequences for awide range ofmaterials that carrymechanical loads. Abetter
fundamental understanding of this phenomenon, especially the reliable
prediction of fracture initiation that can be connected to the geometric
structure of the material in the undeformed state, would significantly
improve available methods in material design and eventually lead to
advances in structural reliability.

Crystalline solids have a long-range order and may be numerically
generated by periodically duplicating a unit cell. However, the presence of
easily detectable local dislocations or lattice defects in crystals has driven
theoretical and experimental developments over the past century, leading to
highly developed methods of crystal plasticity that explain and model how
such well-defined defects govern the failure mechanisms of the otherwise
perfectly orderedmaterial1,2. If the topological structure has somany defects
that an underlying periodic lattice structure must be abandoned, one may
classify thematerial as disordered or non-crystalline3. Intriguingly, failure of
disordered materials also originates from local, nanoscale spots referred to
as shear transformation zones (STZs)–onemayconsider themanalogous to
dislocations in ordered structures – interacting with one another on a
coarser scale4–7. Notably, fracture in disordered solids often occurs as STZs
are activated sequentially in a short time, also referred to as avalanche events
in the literature8. While it is generally accepted in the literature that such
STZs are somehow encoded in thematerial structure as “soft spots", a priori
identification of such soft spots by correlating them with the local atomic

neighborhoods is one of the grand challenges in understanding the
mechanics of disordered materials9. In fact, without the ability to identify
soft spots in a material’s atomic structure, it is practically impossible to
define a defect in the same way defects are defined for crystalline solids.

Several strategies to correlate the local atomic structure to plastic
rearrangements and fracture have been developed in the last decades. These
include methods that correlate deformation with harmonic vibration
modes10,11, non-affine displacement fields12,13, local identifiers derived only
from the geometric constituents of the local atomic neighborhood9, as well
as experimental identification in colloidal glasses14. Ding et al.15 introduced a
local quantity called the flexibility volume that quantifies the local atomic
free volume with dynamical information from the atomic vibration,
showing promising correlationswith local rearrangement spots.Milkus and
Zaccone correlate non-affine softening with an order parameter describing
the local inversion symmetry in the glass structure16. This centrosymmetry
of nearest-neighbor polyhedra was introduced as a parameter that strongly
correlates with local mechanical instability17. Patinet et al.18 introduced a
local probing method receiving a predictive quantity, i.e., the local yield
stress, that has revealed the highest correlation with zones prone to atomic-
scale rearrangements in deeply quenched computational models. In their
methodology, they scan an entire (numerical) material sample, subjecting
every local atomic neighborhood to mechanical deformation in different
directions until the first inelastic response. It was shown that the local yield
stress parameter serves as an outstanding predictor. However, this method
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requires local stress-strain data from many local mechanical simulations,
which come at considerable computational cost.

The main motivation for defect identification and material failure
prediction lies in the ability to examine the local topology of amaterial spot,
i.e., exclusively geometric constituents, and predict its susceptibility to
structural rearrangement leading to failure. In other words, something that
is easily detectable by the human eye in crystals is, to date, well hidden in
disordered materials.

From this point of view, neural networks are attractive tools for
identifying structural features in disordered materials and correlating them
with highly nonlinear catastrophic rearrangements. The first attempts were
made by Cubuk et al.19, who could discern subtle structural features
responsible for such heterogeneous dynamics. Fan and Ma20 were able to
identify shear transformation zones in a Lennard-Jones glass and a CuZr
bulk metallic glass using convolutional neural networks, where the local
packing of the atoms was represented using a Gaussian-weighted spatial
density map. Recently, Hardin et al.21 used a manifold learning method to
characterize the local structure in disordered solids, but to date, the derived
neural network structural descriptors have not been successfully correlated
to localized deformation mechanisms. Lately, Jung et al.22 presented a
thorough review of how machine learning techniques, especially graph
neural networks and attention-based models, can be systematically utilized
to understand the relationship between the structure and the dynamics in
glassy systems.

Although glassy network materials respond fundamentally differently
to densely packed systems, we demonstrate in this paper that local
mechanical probing of the unstrained sample, initially proposed by Patinet
et al.18, also reveals “soft spots" in network glasses. Intriguingly, the pre-
diction ability of this method persists even for larger strains, where fracture
has alreadyprogressed significantly and large voids are present.Using a two-
dimensional representative of silica glass, which was experimentally
imaged23, the concept of scanning and local probing becomes even more
critical, as we can investigate and numerically probe atomic structures
whose coordinates are derived from real images. With this motivation in
mind, we predict zones susceptible to atomic-scale rearrangements in this
paper using a neural network-enhanced predictor, which we refer to as the
Local Intelligent Stress Indicator (LISTI). The LISTI, which is presented
schematically in Fig. 1, builds on the local probing concepts18 demonstrated
inFig. 1a, b. Thisway, localmechanical testing is performedwithin a circular
probing window in variable spots x�; y�

� �
generating a prediction map for

the susceptibility of mechanical instabilities for the entire sample. We show
that local mechanical probing of network glasses results in outstanding
prediction accuracies; however, it is computationally expensive, making a
direct application difficult. The LISTI comes with all the physical benefits of
local probing, and when appropriately trained, it has no restriction in terms
of computational efficiency. Following the concept of local probing,
extensive structural feature extraction is possible fromonly a relatively small
number of material samples. The approach then uses neural network
methods to predict the local stress thresholds of local structure, as shown in
Fig. 1c. The result is a neural networkmap of the threshold stress for a given
material sample (Fig. 1d).We demonstrate the LISTI on a two-dimensional
silica model glass, which is in-plane topologically equivalent to experi-
mentally imaged 2D silica bilayer structures23. Such materials inherit the
brittle behavior of the abundant bulk silica glass polymorph and generally
experience fracture processes of a somewhat brittle nature. Thus, material
failure typically occurs due to avalanche-type events, making event pre-
diction for larger strains particularly challenging. The LISTI allows for real-
time investigation of actual material images, which constitutes a direct
practical application of the technique.

Results
Predicting fracture performing local mechanical probing
LISTI requires an accurate local predictor of material performance and a
regressor that captures the relationship between the material structure and
the predictor. We chose the local mechanically induced threshold stress as

the predictor since low threshold stresses have been shown to correlate with
zones that experience rearrangements in densely packed systems18. This
way, a circularwindowscans the entire sample,performing localmechanical
probing, in which the local window is subjected to true shear deformation
(as shown in Fig. 1a) until the first local rearrangement occurs (indicated by
the stress drop inFig. 1b). The shear stress thresholdΔτ x�; y�

� �
is definedas

the critical stress τðcÞ x�; y�
� �

at which the rearrangement ocurrs minus the
initial local stress τðinÞ x�; y�

� �
in the undeformed state, as shown in Fig. 1b.

This value is extracted at the scanner position r� ¼ x�; y�
� �T

such that the
result of eachmechanical deformation protocol is one spot in the threshold
stress map shown in Fig. 1d. The blue regions represent local spots with
higher local stress threshold values, while the red regions correspond to
spots with smaller stress threshold values, i.e., regions that are expected to
have higher susceptibility to rearrangement. We present a more detailed
description of this local yield stress approach in theMethods section. LISTI
correlates the purely structural information at all spots to the threshold
stress, as indicated in Fig. 1c, d. Thus, LISTI marries the idea of a purely
structural indicator with the remarkable prediction accuracy derived from
local mechanical probing.

The two-dimensional silica sample presented in Fig. 1a is subjected to
pure shear deformation, which was performed by elongating the sample in
the first principal direction of shear while compressing the sample in the
second principal direction of shear so that the area of the sample remains
constant during the entire deformation protocol. Three snapshots at
selected strain values where local rearrangements during the deformation
protocol occur are depicted in Fig. 2. The location of local rearrangements in
the configurations is highlighted in red. The corresponding shear stress-
strain relations are shown below the configurations, with the stress drop
highlighted in red. Notably, local rearrangements mostly manifest as nano-
fracture events in this type of material. Bonds break, leading to nanovoids
that may transition into nano-cracks, further increasing the strain. The
bottom images in Fig. 2 present the non-affine displacement fields3,24 of the
selected local rearrangement events,which emphasize the idea of little nano-
fracture phenomena by revealing dipolar shapes, in contrast to metallic
glasses revealing rather quadrupolar shapes3. In particular, this phenom-
enon can be observed in network glass subjected to pure shear loading,
where typically lessmaterialflows into the secondprincipal directionof pure
shear, while more material flows into the first principal direction. Thus, the
local density decreases on average during an event, leading to the formation
of small voidswithin thematerial25,26. The local shear stress thresholdmap is
shown behind the non-affine displacement fields in these plots, showing
that the occurring rearrangements highly correlate with the predicted
regions of low local yield stress, as indicated in red. The actual recorded
rearrangement events occurring during remote deformation are also indi-
cated by whitemarks in Fig. 1c, with the number indicating the sequence in
which they occur, again emphasizing the high correlation between the
predicted and actual rearrangements. However, the great accuracy of this
local probing method comes at a high cost. In fact, ~5⋅105 local molecular
simulations are required to generate the rearrangement stress map for this
particular sample,with the exact numberdependingon the chosenscanning
grid size, as discussed in the Methods section. This pitfall leads to the local
yield stressmethod being up to a hundred times slower than performing the
remote deformation itself.

The critical takeaway here is that stress threshold maps are not only
applicable to predicting rearrangements in densely packed systems, such as
metallic glasses, but are also excellent predictors for glass fracture even at
larger strains where significant voids are already present in the material. A
more efficient method to obtain these local yield stress maps would,
therefore, enable incorporating prediction strategies into larger-scale
simulations. The underlying hypothesis is that, in the absence of thermal
vibration, there is a deterministic linkbetween the local atomic structure and
the local stress threshold, which is embedded in the very fine details hidden
in the local atomic configuration. We realize this connection through a
generic data-driven algorithm, the local intelligent stress threshold indicator
(LISTI), described next.
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The local intelligent stress threshold indicator (LISTI)
As shown in Fig. 1d, LISTI takes local topological data as input,
represented by purely structural information (i.e., atomic positions and
bond connections). The output of LISTI is the stress threshold value Δτ,
i.e., the Neural network prediction of the maximum occurring shear
stress minus the initial local stress during local probing at the occurrence
of the first local instability. For training the LISTI, a pool of local regions
and the corresponding shear stress thresholds must be harvested. The
data set must be chosen sufficiently large to characterize the unique
inelastic features of the disordered material. Notably, the idea of map-
ping every neighborhood in the material to a material performance
value (i.e., the local shear stress value) leads to LISTI being a regression
model. The large amount of local material data that can be extracted per
material sample leads to the essential advantage that useful predictions
can be made by harvesting only a relatively small number of material
samples.

The data generation process involves (i) the generation of a set of
material samples using molecular dynamics, (ii) the deformation of the
material samples to identify the actual rearrangement spots, (iii) local
mechanical probing across the material samples to generate stress
threshold maps and (iv) a statistical evaluation of its overall accuracy
using a relevant prediction quality metric. To construct the LISTI, we
evaluate different neural network architectures suitable for predicting the
local stress threshold based on purely structural inputs, i.e., atomic
coordinates and topological bond information. To test the LISTI, we will
statistically evaluate the accuracy of the prediction using two approaches.
The first test of the prediction reliability of LISTI is performed by pre-
dicting stress threshold values in generated material samples that LISTI
has not seen before. These generated samples are statistically equivalent
to our first benchmark sample, which is a real material patch

experimentally imaged by Lichtenstein et al.23. The second test of the
prediction reliability of LISTI is presented on network structures that are
experimentally extracted by Huang et al.27 from another material patch.
Notably, LISTI will not be trained on experimentally imaged network
structures but on artificially generated statistically equivalent network
structures.

The molecular models utilized in this paper are of an empirical nature
since they are generated based on a real image of a silica bilayer structure
taken by Lichtenstein et al.23. This flat silica polymorph can be seen as the
experimental confirmation of Zachariasen’s network theory28 and provides
proof of ring structures in silica glass by images characterized by ring sta-
tistics and the topological arrangements of rings in thematerial. To generate
material samples in step (i), whose topology is statistically equivalent to the
imaged material data, we use a dual Monte Carlo bond switching
algorithm29. The algorithm relies on aMarkov ChainMonte Carlo random
walk performing a sequence of topological flip transformations starting
from a purely hexagonal lattice. The algorithm is further discussed in the
Methods section. We generated 50 two-dimensional samples of 104 atoms.
Two-dimensional models are sufficient in our case since the topological
information from the images is exclusively two-dimensional. The Monte
Carlomethod ensures that every sample is disordered and unique, while the
statistical level of disorder represented by the ring statistics is the same for
every sample.

Mechanical deformation of the samples in step (ii) is performed
using the athermal quasistatic deformation method8,30, which is an
incremental sequence of deformation and minimization of the potential
energy, as further discussed in the Methods section. This allows for a
pure investigation of the atomic structure while ignoring any thermal
vibrations. This is a reasonable approximation since we consider
mechanical effects at temperatures significantly lower than the glass

Fig. 1 | Training the local intelligent stress
threshold indicator (LISTI) using mechanical
probing. a Local mechanical probing of a two-
dimensional network glass sample. A circular
material cutout is extracted, affinely deformed, and
divided into an outer region where the atoms are
frozen and an inner region where the atoms can
move freely due to their interaction. b Every local
cutout is deformed until the first inelastic response
can be identified, indicated by a stress drop occur-
ring at a local critical stress τðcÞ x�; y�

� �
. c Scanning

the threshold stress Δτ x�; y�
� �

for the entire sample
leads to the threshold stress map. Color coding
ranges from red to blue, whereas red refers to low
and blue refers to high threshold stress values. The
white markers refer to the first eight rearrangements
during fracture. We emphasize the accordance of
red areas in the threshold stress maps with actual
rearrangement spots. d Training the LISTI with
geometrical information from local circularmaterial
cutouts and the corresponding threshold stress
values.

https://doi.org/10.1038/s42005-025-02315-7 Article

Communications Physics |           (2025) 8:369 3

www.nature.com/commsphys


transition temperature. The samples are deformed by incrementally
altering the Bravais vectors of the simulation cell. We stretch the simu-
lation cell in the x-direction while compressing it in the y-direction. The
ratio of stretching and compressing the cell is chosen so that the area of
the cell remains constant throughout the entire deformation protocol.
This way, the sample is subjected to a pure shear deformation, where the
first and second principal directions of shear are parallel to the axes x1
and x2. We recorded all steps at which local rearrangement events
occur by detecting the stress drops from the stress-strain relations. The
positions of rearrangement are identified by locating the atom that
experienced the largest displacement in the configuration during
the event.

Quantifying the prediction quality
The local stress threshold maps are evaluated in step (iii) by scanning the
samples in their initial, undeformed state, subjecting the probing windows
to pure shear deformation, and extracting themaximum stress values at the
occurrence of the first stress drop as shown in Fig. 1a, b. This is discussed in
more detail in the Methods section. By deforming 50 material samples and
performing the corresponding local probing deformations, we can statisti-
cally quantify the prediction accuracy for the first n = 6 rearrangement
events. Local inspection of the deformation process shows that fracture has
already progressed significantly after six events. The predictive accuracy for
the first six events is assessed in step (iv) using the modified inverse
cumulative distribution function (Cτc ðnÞ) described in theMethods section,

(a) (b) (c)
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Fig. 2 | Remote deformation of a two-dimensional silica sample. The upper panel
shows the configuration snapshot after the selected atomic-scale rearrangements.
The middle panel represents the corresponding nonaffine displacement field after
the first rearrangement (a), the third rearrangement (b), and the sixth rearrange-
ment (c). The lowest panel represents the stress(τ)-strain(γ) relations with the
corresponding stress drop occurring during the selected rearrangements, colored in
red. In the middle panels, the non-affine displacement fields are plotted together

with the local shear stress threshold maps in the background. A high correlation is
observed between the actual and predicted zones of local rearrangements in the
upper and middle panels. The red color in the prediction maps indicates low
threshold stress values, i.e., zones that are expected to be susceptible to rearrange-
ments. The blue color indicates high threshold stress values, i.e., zones that are not
expected to be susceptible to rearrangements.
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which takes values ranging from−1.0 to 1.0. Forthwidth,wewill refer to this
quantifier as prediction goodness. A goodness value of 1.0 refers to a perfect
correlation between the prediction of the position of the event and its actual
site of occurrence. A value of 0.0 refers to no correlation, i.e., no predictive
information, while a value of−1.0 refers to perfect anti-correlation. Again,
we present detailed information regarding the evaluation of the prediction
goodness in the Methods section.

Figure 3 shows statistics of the goodness parameter inEq. (1) versus the
sequential number n of the event occurring for the first six events of the
50 samples in the data set. The statistics are represented by histograms (in
blue) and boxplots (in white) for every event sequence number. The red
dashed line shows a goodness value of one, which indicates perfect pre-
diction. The mean goodness values, represented by the blue line in Fig. 3,
show that the first few events are expected to be predicted almost perfectly.
For later events, the averageprediction goodness decreases. This is causedby
the strong nonlinearity of the system, leading to strong alterations in the
potential energy landscape in the course of inelastic events, which leads to a
load redistribution of the whole system. The more inelastic events with
increasing strain, the more severe the irreversible changes in the atomic
system. Nonetheless, the prediction goodness remains around 0.8 after six
rearrangement events, which is already at a deformation state where the
fracture process is relatively advanced. From the wider spread histograms
and the correspondingboxplots in Fig. 3, one also observes that the variance
increases with the number of rearrangement events, revealing that the
confidence in the prediction estimate decreases with the number of events.
This also makes sense because some samples have more advanced fracture
processes after n = 6 events (leading to less predictive accuracy), while other
samples have less advanced fracture processes at this stage and are therefore
closer to their original undamaged structural state (leading to higher pre-
dictive accuracy).

General LISTI development process
Next, we train the LISTI by selecting appropriate neural network models
and test the LISTI’s ability to predict local rearrangements. As shown in
Fig. 1d, the input consists of purely geometrical data (i.e., the atomic posi-
tions), while the output (i.e., the predictor) is the local shear stress threshold
that corresponds to the local configuration. The training dataset is taken
from 50 rearrangement stress maps and the corresponding local structural
data. Using a 50 × 50 scanning grid, we obtain a total of 1.25⋅105 training
samples.

The 50 material samples are divided into a training set of 40 samples
(105 data points), a validation set of five material samples (1.25⋅104 data
points), and a test set of five material samples (1.25⋅104 data points).
Additional ten test samples were generated to test the prediction cap-
ability of LISIT. During training, the network parameters were optimized
to represent the training set while ensuring that the validation loss
remained comparable to the training loss to avoid overfitting. This way,
the validation set is used to monitor the variance and bias of the pre-
dictions during training, while the test set serves as the final measure of

the model’s performance. During an initial training phase, we altered the
hyperparameters of the neural networks, such as the number of layers
and neurons per layer, to obtain optimal models for the problem at hand.
We refer the reader to the Methods section for more information
regarding the neural network training procedure, including the definition
of the loss function and specific architecture details. We tested three
different neural network architectures serving for the LISTI: a recurrent
long-short-term memory neural network, a convolutional neural net-
work, and a graph neural network.

A recurrent architecture using long-short term memory cells
The recurrent neural network (RNN) inputs are the center of the corner-
sharing SiO3 triangles in a matrix format in the circular probing region, as
shown in Fig. 4a.

The rows refer to the atoms, and the columns refer to their coordinates.
The network parameters converged after 1500 training epochs, as indicated
by the training and validation loss functions in Fig. 4b. The RNN’s per-
formance is presented in Fig. 4c, where the actual stress threshold values of
different samples are plotted versus their neural network-predicted coun-
terparts for the training and validation sets. Figure 4d gives the performance
of the RNNmodel for the test dataset, which was not seen by the network
while training; thus, testing the generalization ability of the RNN for an
unseen dataset. Notably, these figures present the performance of over
2.5⋅103 neural network predictions, where points that are located on the red
line indicate perfect prediction. The further away from the red line, the
worse the prediction accuracy. For this RNNarchitecture, a clear correlation
between target and prediction can be observed from Fig. 4c, although the
network systematically overestimates small stress thresholds while it
underestimates large stress thresholds. Furthermore, themodelwas not able
to give accurate predictions for the unseen dataset as shown in Fig. 4d. The
difference in the deviation of the data points shows that the generalization of
the trained RNN is not satisfactory. This might arise due to the model’s
inability to differentiate the input data, which is discussed further below.
Thus, we conclude that this neural network type can learn and predict the
general trends in the stress thresholds from the local structure, but with
limitations in its predictive accuracy. Although this incorporation of the
RNNhas shownsomepredictive power, there is onemajor drawback: it only
links the sequence of the atomic structure to the output shear stress
threshold. This makes the network permutation variant, and it needs to be
trained with all the variations of permutation possible for a single structure.
This is necessary because even if the sequence of the atoms changes, the
coordinates remain the same, ensuring consistent structural information.
However, trainingwith all the variations of permutation possible for a single
structure requires immense computational resources and is practically
unfeasible.

A convolutional neural network architecture
An alternative approach for processing the topology of local atomic struc-
tures is to generate images of the local structure to recognize particular

Fig. 3 | Statistical analysis of prediction goodness
for the first six rearrangement events from 50
material samples. The y-axis represents the pre-
diction goodness parameter ðCτc ðnÞÞ for each given
event (n). The box represents the spread of data
between quartiles 1 and 3, while the whiskers extend
from the box to the minimum andmaximum values
of the data.
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patterns and connect them with local shear stress thresholds. We trained a
convolutional neural network (CNN) model with the generated images of
the local atomic topology as input and the corresponding shear stress
thresholds as output, as presented in Fig. 5a. The topologies of the atomic
structures are captured as grayscale image data. The silica network is
represented by spheres, defining the center of the SiO3 triangles, and bonds,
represented by lines, referring to the corner-sharing connection of the SiO3

triangles with their respective neighbors. The images have size 220 × 220
pixelswhile each pixel is assigned a certain level of a grayscale. A sequence of
filters scans and transforms the image inputs, followed by a sequence of
feed-forward layers with the stress threshold as the final output quantity.
The training and validation loss showing network performance of the CNN
are presented in Fig. 5b over 300 epochs. Although the training loss
decreasedover further training, validation loss started to increase, indicating
overfitting, even though dropout was used in the model. Further dropouts
and regularization resulted in a higher loss, leading to less accurate pre-
dictions. Therefore, after comparing multiple variations in the architecture
and hyperparameters, the network parameters converged sufficiently after
300 epochs. The accuracy of the local stress threshold predictions is shown
in Fig. 5c, where the CNNpredictions are plotted against the true values for
the training and validation data sets. Notably, the CNN performs sig-
nificantly better inpredicting the local shear stress thresholds than theRNN.
Although the correlation between the local shear stress threshold and their
CNN predicted counterpart in Fig. 5c is higher than the respective corre-
lation from the RNN in Fig. 4c, we still detect some variations from the
perfect prediction line and in particular notice a general bias toward over-
prediction of the stress threshold.

A graph neural network architecture
Since ourmolecular system is composed of corner-sharing SiO3 triangles so
that the network topology results in various rings of different shapes and
sizes, we follow Franzblau’s original idea31 to represent the silica network
directly as a graph. Thisway, the centers of the corner-sharing SiO3 triangles
define the nodes, while the connections between the triangles define the
edges. Thus, the third neural network proposed here is a graph neural
network (GNN), where the final output quantity is the threshold stress.
GNNs perform computations over network structures based on the idea
that entities (in our case, the SiO3 triangles) exhibit certain relations with
their neighboring entities. From a mechanical perspective, this approach
originates from the idea that network materials transfer a great portion of
mechanical loading over covalent bonding. This way, the neural network
model receives not only the coordinates as nodal feature inputs, as imple-
mented in the RNN model above, but also receives additional information
between neighboring nodes (SiO3 triangles) using an adjacency matrix that
defines the entire network structure of the local probing region. Further-
more, we note that this graph-based approach also considers long-range
interactions to some extent, which is generally present in network glasses, by
taking not only direct covalent neighbors into account but also second to up
to fifth neighbors in the graph.

Figure 6a visualizes these two inputs and the associated graph repre-
sentation, followed by the GNN architecture. The training performance is
shown in Fig. 6b. Notably, the network considers information flow between
adjacent neighbors and walks deeper through the topological structure,
visiting multiple neighboring nodes. Furthermore, graph smoothing is
avoided, as discussed in more detail in the Methods section. This locality

Fig. 4 | Predicting local stress threshold values using a Recurrent Neural Net-
work. a The inset of the local probing region (x*, y*) represents the details of the
atomic structure and the sequence of atoms considered as the input for RNN. The
corresponding input is shown in the configuration, with the latter half of the image
illustrating the RNN architecture that predicts the shear stress threshold as output.

b Training and validation loss versus training epochs. c RNN predictions versus the
corresponding actual local stress threshold values for the training set. d RNN pre-
dictions versus the corresponding actual local stress threshold values for the testing
set. The red lines in (c) and (d) indicate 100% accurate predictions.
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aggregation approach gives each node information about the entire local
probing region, physically connecting this neural network model with the
idea of local probing. This physical relevance is reflected by the extra-
ordinary performance of the model. The prediction values reveal a high
correlation with the corresponding target values. The overall correlation
coefficient is 96%, which is significantly higher than the correlation coeffi-
cient of the two architectures presented above and is visualized by the
correlation plot in Fig. 6c.

Comparing the prediction quality
Next, we investigate the overall performance of each neural network model
in predicting elementary rearrangement events. The results in Fig. 7 illus-
trate how the goodness parameter, presented in Eq. (1) in the Method
section, changes based on the sequence number of failure events. For these
first statistics, we combined the training and validation sets for the three
neural network architectures. The red dashed line represents perfect pre-
diction, i.e., a prediction goodness parameter of one, whereas the black
dashed line represents no correlation or guessing.

The RNN’s prediction goodness is represented in blue in Fig. 7.
Although successful at the prediction of the very first events, the wide
whiskers of these box plots show less confidence in the estimate for the
first rearrangement event than the other networks. This demonstrates
that the network struggles to represent the physical relationship between
the atomic structure and the local shear stress threshold in the training
set. Moving further into the higher strain regions, the prediction accuracy
for the RNN model significantly decreases, and very large variability is
observed. Some outliers even suggested an inverse correlation between
the local atomic structure and the local shear stress threshold for events
following the first failure occurrence. This could be attributed to the
network’s reliance on the sequence of atoms. Though neighboring
sample structures didn’t have a huge variation, there is a considerable
difference in the local shear stress threshold. As a result, the network

consistently receives local structures that closely resemble neighboring
structures, causing the samples to become indistinguishable, leading to
bad predictions for later events. However, the network successfully
predicted the location of the first event with an average accuracy of 75%,
which is significantly higher than many conventional structural pre-
dictors, such as local free volume9. More details about the comparison
between the performance of two conventional structural predictors and
LISTI are presented in the Supplementary Note 2.

The red boxplot in Fig. 7 represents the prediction goodness of the
CNNmodel considering the training and validation sets. Despite receiving
similar input to the RNNmodel, the CNN can discern subtle differences in
the images and associate them with the local shear stress threshold. The
success of CNN models in representing molecular dynamics simulation
results can be attributed to their desirable inductive biases, weight sharing,
and locality. Consequently, the CNN model achieves an 82% accuracy in
predicting the first failure event, which is better than the RNN model.
Nonetheless, it struggles to predict rearrangements after the first event.
Moreover, the CNN is by far the most computationally expensive model to
train. The time taken to train and predict using the CNN model is much
longer than the RNNandGNNmodels; however, it is still much faster than
pure mechanical probing for predicting the first event.

The last boxplot in green color in Fig. 7 presents the goodness statistics
from the GNN predictions. The distributions show a high correlation with
the location of actual rearrangements and a low variation in prediction
accuracy, making this network architecture particularly promising for
linking the pure topology of the glass network structure with the onset of
material failure. In particular, the network canpredict thefirst damage event
with an accuracy of 96% and all subsequent events with an accuracy com-
parable to the purely mechanical local shear stress threshold approach,
which requires 2.5⋅103 molecular dynamics simulations per sample in our
case. Furthermore, the GNN regressor shows a high prediction accuracy
even at large strains when fracture has already progressed.

Fig. 5 | Predicting local shear stress threshold values using a Convolutional
Neural Network. a Local probing regions are transferred as an image of the topo-
logical structure at the coordinate (x*, y*). b Training and validation loss versus
training epochs. c CNN predictions versus the corresponding actual local shear

stress threshold values for the training set. d CNN predictions versus the corre-
sponding actual local stress threshold values for the testing set. The red lines in (c)
and (d) indicate 100% accurate predictions.
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Figure 8 showcases the ability of the proposed networks to predict the
local shear stress thresholdonanunseen test datasetwith15 samples in total.
The GNN, with a graph-level prediction, can successfully predict the local
shear stress threshold with high accuracy and outperform the other two
networks. The GNN predicts the first event, on average, with a goodness of
93% with low variation over different test samples and events. This shows
that even for an unseen dataset, the prediction accuracy was high across all
the samples. The figure also depicts the average prediction goodness of the
other two networks which is 75% and 50% for the Convolutional Neural
Network (CNN) and the Recurrent Neural Network (RNN), respectively.
Having statistically identifiedGNNsas the best candidate to be incorporated
into theLISTI,wevisualize oneprediction stress thresholdmap fromthe test
data set using purely mechanical testing in Fig. 9a and the corresponding
stress threshold map using the LISTI in Fig. 9b. The first six rearrangement
events are indicatedbywhite circles inFig. 9a.The striking similarityof these
heatmaps again underlines the high prediction goodness of the method
when exclusively using topological input data.

The local yield stress method requires 17 h to simulate and predict the
location of the first failure event for any given sample on anM1 Ultra chip.
Whereas RNN, CNN, and GNN require 2.30, 3.20, and 2.25 h, respectively,
to preprocess the data, train on the data, and predict the location of the first
failure event for any given sample on an M1 Ultra chip.

Predicting soft spots from a real imaged material patch
We then tested the LISTI on an experimentally imaged 2D silica sample.
Notably, our training sample was based on a first smaller material patch
imagedbyLichtenstein et al.23,whichwasused to extract the topological data
of the material in terms of the ring statistics and the ring neighborhood
statistics to ensure physically meaningful molecular dynamics models, as
discussed earlier and further detailed in the Methods section. Our second
experimentally extracted sample is the imageof a largermaterial patch taken
by Huang et al.27, as shown in Fig. 10. A square cutout of ~12 × 12 nm,
presented in green, was extracted for the simulations. The atomic coordi-
nates were directly extracted from the image, as indicated in the enlarged
circular area in Fig. 10b. Since one cannot apply periodic boundary con-
ditions to this square sample, a circular area with a radius of ~5 nm was
defined so that the remaining outside area was used as the frozen region
during deformation. Figure 10c presents the numerical twin extracted from
this green-boxed image area. More information regarding this process is
provided in the Methods section.

The benchmark solution for this problem was obtained by applying
athermal pure shear deformation to the material sample and recording
the atomic trajectories and the actual local rearrangement spots occur-
ring during deformation. Notably, in contrast to the simulations per-
formed with periodic boundary conditions, only the inner circular area

Fig. 6 | Predicting local stress thresholds using a Graph Neural Network. a The
inset of the local probing region (x*, y*) represents the details of the atomic structure
and the sequence of atoms that are considered as the input node features for the
GNN. The subsequent figures next to the inset depict the atom connectivity derived
from the valence information, which serves as the edge vector for the GNN. The
latter half of the image illustrates the GNN architecture that predicts the shear stress

threshold as a graph-level prediction. b Training and validation loss versus training
epochs. c GNN predictions versus the corresponding actual local stress thresholds
for the training set. d GNN predictions versus the corresponding actual local stress
thresholds for the test set. The red lines in (c) and (d) indicate 100% accurate
predictions.
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was allowed to relax during the minimization steps of the athermal
quasistatic deformation. Since the material is somewhat confined in this
circular area, only the material response until the first rearrangement
event is considered, since unwanted effects coming from the frozen
region during deformation increase significantly at very high strains. We
performed local probing using LISTI, resulting in a heatmap shown in
Fig. 10c, and qualitatively evaluated the prediction accuracy for the first
event. The first event in the deformed configuration is encircled
in Fig. 10d. The exact first event location is identified by the largest
displacement shown in the non-affine displacement field map in Fig. 10e;
this location is also plotted by a white dot in the LISTI heatmap. To
quantify the accuracy, the first rearrangement event coincides with the
predicted soft spot area with a prediction goodness correlation value of
0.96. Since experimental results of this kind are rare, a statistical eva-
luation of the goodness curve is not possible here. Moreover, since we
consider only the first event for the prediction here, we can only extract
this one value to quantify the accuracy of the prediction. This excellent
result highlights LISTI’s high level of generalization and its ability to
understand spots in networks prone to structural failure.

Discussion
We have proposed the local intelligent stress threshold indicator (LISTI),
which allows for the reliable and efficient identification of regions prone to
rearrangement in disordered network materials. Notably, the smallest local
shear stress threshold value for each sample, evaluated by local mechanical
probing, has shown a strong correlation with spots prone to rearrangement
innetwork glasses and servesas an excellent indicator for fracture prediction
in disordered network materials, while, to this date, existing purely struc-
tural indicators have shown a significantly lower correlation with material
regions prone to rearrangement. However, LISTI exclusively considers
input parameters from the unstrained material topology and, therefore,
represents a powerful purely structural predictor candidate.

When training LISTI with information of actually observed rearran-
gements, one could only consider a few training data spots per material
sample. This leads to a computational disaster when training data from the
simulation is harvested. Instead, we assess evenly selected material spots
across the sample, numerically represented by a discrete grid pattern, in
terms of a stress threshold value, which highly correlateswith the location of
the soft spot. This approachyields abundant training data, evenwhen only a
small number of material samples are available. Notably, prediction is not
defined by a binary “yes or no” identification in terms of explicit decoding of
topological information but by a smooth prediction coefficient map that
reveals a surprisingly high correlationwith the occurrence of rearrangement
spots in the material. We emphasize that LISTI is trained using data
obtained from the local shear stress threshold maps, which are evaluated
based purely on physical principles. Consequently, its highest performance
is expected to be equal to the local shear stress threshold maps, and LISTI
will never exceed the predictive ability of the purely mechanical probing
method.

In the current study, three different neural networkmodels were tested
as the regression model for the LISTI: recurrent, convolutional, and graph
neural network architectures. All three models perform reasonably well in
predicting events at relatively small strains, specifically the first rearrange-
ment event at the onset of material failure, with the graph neural network
demonstrating superior accuracy. The RNN is trained to map the atomic
sequence to the shear stress threshold. However, it is susceptible to index
permutation and requires training with all variations of sequences. This
requires a substantial amount of computational resources, which is practi-
cally infeasible. Additionally, the RNN lacks the ability to distinguish
between various input samples, as they overlap, and therefore cannot
accurately capture the variation between different samples. The CNN, on
the other hand, can capture the difference in neighboring samples despite an
overlap. However, it cannot be generalized to the unseen dataset since the
CNNcannot inherently handle newdata combinations due to its variational

Fig. 8 | Statistical analysis of the prediction
goodness for the first six rearrangement events
from the test set. The y-axis represents the predic-
tion goodness, Cτc ðnÞ, for each given event n. The
lines joining the means of all the boxplots showcase
the average prediction goodness of each neural
network with respect to the sequence of the events.
The box represents the spread of data between
quartiles 1 and 3, while the whiskers extend from the
box to the minimum and maximum values of
the data.

Fig. 7 | Statistical analysis of the prediction
goodness for the first six rearrangement events
from the training and validation sets. The y-axis
represents the prediction goodness, Cτc

ðnÞ, for
each given event n. The lines connecting the means
of all the boxplots indicate the trend in the predic-
tion goodness of each neural network as the event
number increases. The box represents the spread of
data between quartiles 1 and 3, while the whiskers
extend from the box to theminimum andmaximum
values of the data.
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inductive biases32. The CNN is also computationally more expensive than
the GNN. The GNN overcomes all the above-mentioned drawbacks and
predicts the rearrangement events with the highest accuracy. For larger
strains, the predictive power of the recurrent and the convolutional neural
networks degrades quickly, while the graph neural network model main-
tains reliable prediction accuracy even further into the fracture process at
large strains. Since a graphneural network considers the influenceof not just
its immediateneighbors but also the influenceof the neighbors of neighbors,
depending on the number of aggregation layers, we see that the phenom-
enon of fracture in network glasses is not only governed by nearest neighbor
states but is significantly influenced by the mechanical truss effects of the
covalent bond paths branching throughout the network glass structure.

Although this paper considers network glasses, the GNN could also be
implemented to effectively analyze a wide range of glass structures that
contain informationabout atomsand their respective bonds, inotherwords,
glass structures that can be represented as a graph. Another advantage of
GNNs is their ability to incorporate information about loading and
boundary conditions directly into the feature vector. This allows the net-
work to receive additional information related to the deformation protocols
as part of the input. Such an approach can be beneficial when developing
models to predict failures resulting from various deformation protocols.

Future work should focus on refining the concept of the LISTI fra-
mework and potentially expanding it by incorporating additional predictor
candidates. Firstly, incorporating further topological information into the
stress threshold, such as statistics of rings3, centrosymmetry of the local
region16,17, could significantly improve the model’s performance, as an
additional support for the neural network architecture to learn the under-
lying mechanical system. Additionally, local mechanical probing could be
enhanced by preventing possible overestimations of the local shear stress
threshold that may result from the frozen boundary conditions. Future
studies could employ variousmethods addressing this issue, such as the soft
matrix method33.

Methods
Two-dimensional silica samples
Although the experimental benchmark samples for this paper are bilayer
structures23, the topological network information is purely two-dimensional.
Thus, it is sufficient to perform the generation and mechanical testing
exclusively in a two-dimensional framework.

Artificial network glass samples. The network glass samples required
for this research were produced using the Monte Carlo bond switch
algorithm, which is a sequence of topological flip transformations
starting from a silica crystalline structure3. This algorithm is a Markov
Chain Monte Carlo method where the acceptance of every flip trans-
formation is statistically determined by chosen physical constraints of

target ring neighborhood statistics and target network heterogeneities.
These physical constraints ensure that the generated samples are, from a
topological perspective, statistically equivalent to our first benchmark
sample, an experimentally imaged material patch by Lichtenstein et al.23,
who identified and extracted atomic coordinates from their two-
dimensional silica images. More details about this comparison are pro-
vided in the Supplementary Methods. Switching is performed on two
lattices: the physical lattice using a Yukawa-type interatomic potential34

and the dual lattice using a harmonic ring-ring potential29. We generate
50 almost square-shaped samples with the dimension of 215 × 215 Å2,
containing 9600 atoms. The switching procedure was also performed
over the periodic boundary conditions. The generation of the two-
dimensional glass models is discussed in detail in Bamer et al.3. The
generation was done using our in-house code developed in Julia35.

We also modeled a second two-dimensional silica glass patch,
experimentally imaged by Huang et al.27, which served as an additional test
sample for the prediction power of LISTI. In contrast to the benchmark
sample above,whichwas used to generate the silica samples,wedid not have
atomic coordinates; we only had transmission electron microscopy images.
We detected the coordinates of the silicon atoms using a Marr-Hildreth
operator36. The SiO3 triangle network structure was identified by detecting
the nearest neighbor list. After that, the sample size was iteratively adjusted
until the average distance between all Si-Si bonds was 3.05 Å. Subsequently,
the oxygen bonds were placed at the center of all Si-Si bonds. Then, the
potential energy of the structure was minimized using the Yukawa
potential34, applying free boundary conditions in both the x- and y-direc-
tion. We checked the nearest neighbor distances between the Si atoms and
ensured that the network topology remained equivalent to the original
imaged data. The configuration was finally minimized using the Yukawa-
type interatomic potential. We note that no rearrangements occurred
during this minimization that would result in topological changes.

Athermal quasistatic deformation
The generated material samples were subjected to pure shear deformation
using the athermal quasistatic deformation method. The sequence of
loading steps was chosen sufficiently small to ensure that all elementary
fracture events are captured in thedeformationprotocol. Every deformation
was realized by altering the bravais vectors of the simulation cell and affinely
displacing the atomic positions. After the affine deformation step, the
potential energy was minimized using the conjugate gradient algorithm.
This way, the system remains at a local minimum in the potential energy
landscape throughout the entire deformation process. During deformation,
these minima transform into saddle nodes at the occurrence of elementary
events, and the system drops down into an adjacent minimum. The system
was deformed at a strain rate of 1.0⋅10−4 for a total number of 400 defor-
mation steps to ensure that fracture had sufficiently progressed in all

Fig. 9 | Threshold stress maps for one exemplary
test sample. a Heatmap obtained using local
mechanical probing. b Heatmap obtained using the
LISTI with theGNN architecture. The color codes of
the heatmap are defined such that the normalized
shear stress threshold value decreases from blue to
red. The normalization of the shear stress threshold
values is realized between zero and one. The rear-
rangement events actually occurring due to macro-
scopic deformation are indicated by white dots,
while the corresponding event number indicates
their sequences of occurrence.
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samples. All elementary eventswere detected by identifying the drops in the
resulting stress-strain curve.

Local probing using the shear stress threshold
The local probing method builds on the local yield stress method originally
introduced by Patinet et al.18, which is performed to predict plastic events in
densely packed systems. The entire two-dimensional sample is covered by
annx×ny grid.We chose a number of 50 fornx andny, resulting in distances
of ~4.3 Å in both directions. Local mechanical testing is performed in
circular material cutouts from the entire sample, with the center of every
cutout being located in the respective grid point, which results in 2.5⋅103
local samples per global configuration. Every local scanning region is divi-
ded into an inner circular region defined by the radius Rfree = 11 Å and an
outer ring with a thickness that is equal to the cutoff radius of the Yukawa
potential, i.e., 10.0Å. To find the optimal size for the local probing window,
Rfree, a rigorous parameter study was performed. More details are provided
in the SupplementaryNote 1.Mechanical deformation is realized by affinely
deforming the entire local structure but exclusivelyminimizing thematerial
inside Rfree. This way, one freezes the atoms outside the circular region and
the atoms inside can respond freely. We performed true shear deformation
protocols in the local regions. In other words, the material circles are
deformed to the shapes of ellipseswhere the original circle and the deformed
ellipsoid states have the same area. Following the literature18,37, one defines
the following parameters after mechanical investigation. The local shear
stress measured in the undeformed state at the local grid point x�; y�

� �T
is

referred to as the initial local shear stress τðinÞ x�; y�
� �

. The shear stress at
which the first rearrangement occurs is referred to as the critical stress

τðcÞ x�; y�
� �

. The local stress threshold is defined as:
Δτ x�; y�

� � ¼ τðcÞ x�; y�
� �� τðcÞ x�; y�

� �
, as shown in Fig. 1b. Notably, the

local structure of disordered solids is generally anisotropic. Thus, the stress
threshold changes when changing the pure shear directions. Consequently,
Patinet et al.18, and Barbot et al.37 also probed rotated local samples and
project the shear stress threshold into the remote loading direction. They
defined the minimum of all projections as the local yield stress, which
improved the prediction accuracy for densely packed systems. After rigor-
ous testing of themethod for network glasses, we did not see any prediction
improvements when performing this rotation approach. Consequently, we
use the shear stress threshold as the predictor, obtained by local prob-
ing into the direction that coincides with the direction of the remote
deformation.

Prediction goodness
Given the collection of Local shear stress threshold for every sample,
we evaluated the cumulative distribution function (CDF), FΔτ Δτ�ð Þ,
to estimate the probability that the shear stress threshold falls below
a particular threshold stress, Δτ*. Next, we observed the location of
the n actual rearrangement events and identify the corresponding
predicted stress threshold Δτ(i), i = 1, …, n at these positions. The
CDF value FΔτ ΔτðiÞ

� �
; i ¼ 1; . . . ; n returns the percentage of stress

thresholds lower than the assigned threshold stress at the actual
rearrangement spot. The prediction goodness is identified by the
corresponding modified complementary CDF:

CΔτðnÞ ¼ 1� 2 FΔτ ΔτðnÞ
� �

: ð1Þ

Fig. 10 | Prediction of atomic scale rearrange-
ments in experimental imaged materials. a Image
of a 2D silica sheet grown on graphene (original
image data are taken from Huang et al.27 with per-
mission by the publisher). bCircular enlargement of
the silica image with the extracted atomic position
for the numerical model. c Extracted square region
of material with the LISTI stress threshold map
shown on the deformed circular region, where blue
represents the region with the highest shear stress
threshold and red represents the region with the
lowest shear stress threshold. d Pure shear defor-
mation state directly after the first rearrangement
has occurred. e Non-affine displacement field of the
first occurring event.
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The modification here is that we subtract twice the cumulative distribution
function instead of just once, which would be the conventional com-
plementary cumulative distribution function. This way, the prediction
goodness assessment ranges from −1 to 1, with 1 referring to perfect pre-
diction and−1 to perfect anti-correlation.

Neural network models
The chosen neural network architecture must establish a relationship
between the local topology in the reference state and the corresponding
stress threshold value. This way, local structural information is passed to the
neural network, and the predicted threshold stress is returned. These values
are then correlated to spots prone to rearrangement at the onset of fracture,
as demonstrated in the Results section. Three neural network architectures
were proposed to be included in the LISTI: a Recurrent Long Short-Term
Memory (LSTM)Neural Network, a Convolutional Neural Network, and a
Graph Neural Network.

Recurrent neural networks. We used long short-termmemory (LSTM)
network38 in this work, which are a special type of Recurrent neural
networks (RNNs)39 capable of learning long-term dependencies. LSTMs
have the ability to take time and sequence into account and, therefore,
have a temporal dimension. They are advantageous for sequential data
and have been widely used for time-dependent and sequential
problems40–42. Consequently, LSTMs are suitable for processing the
sequence of coordinates at the probing locations that are used in local
probing. The critical stresses are predicted from this sequence of
coordinates.

In this paper, we used the local probing region from the local shear
stress threshold method to generate the input sequence for the RNN
architecture. Figure 4a represents one such sample with the enlarged
image of the local probing region emphasizing the corner-sharing SiO3

triangles. The coordinates of the Si atoms define the input sequence.
Implementation-wise, the input for every probing region is a two-column
matrix, whereas every row refers to an Si atom with its two spatial
coordinates x and y. The coordinates of all Si atoms within the probing
region are organized based on their bond connections. The sequence
numbering of atoms is defined from the initial crystalline lattice before
the Monte Carlo bond switching procedure. In particular, it is defined
along the armchair direction, which is parallel to the x-axis for our initial
samples, and the sequence increases from left to right. Once a row is fully
indexed, the next row below is selected, and one repeats indexing from
left to right. Atomic indexing for one of the local regions can be seen in
the illustration in Fig. 4a.

In one local probing region, the number of Si atoms is about 30–38, so
paddingwas required tomake the sequence length uniform. In otherwords,
the input matrix is set to a particular standard size whose number of rows
must be chosen as large as themaximum occurring number of atoms in the
local probing region. In contrast, the number of columns remains two in a
two-dimensional system. Therefore, the input shape for each LSTM layer is
(38,2), where 38 is the maximum number of Si atoms in the local probing
region and 2 represents the X and Y coordinates of each atom. When the
network receives an input smaller than the standard size, the remaining
rows are padded with a predefined constant number. This is performed by
the padding layer, as shown in Fig. 4a. Since this constant number is irre-
levant extra information and does not contribute to the network’s under-
standing of the relationship between structure and stress drop, it must be
masked during training. Themodel should be informed that this portion of
the data is padded and should be ignored. To address this, amasking layer is
added tohide this information fromall the downstream layers. The padding
andmasking layer is followed by the LSTMarchitecture, which consists of a
single LSTM layerwith 128 neurons denoted by LLSTM. The time dimension
or the sequence length of the LSTM layer for our model corresponds to the
sequence of Si atoms asmentioned above. Following this, a dense layer with
ten neurons, LD1

, and an output layer with one neuron, LD2
, predicting the

shear stress threshold value are implemented, as shown in Fig. 4a. We used

the AdaMax optimizer43 to update the gradient during the training proce-
dure. The learning rate was set to 10−3. The finalized network is the result of
careful hyperparameter tuning. Themean squared errorwas used as the loss
metric to train the RNN architecture and other architectures proposed in
this study.

Convolutional neural networks. Convolutional neural networks44 have
become a predominant machine-learning approach for visual object
recognition. Deep CNN architectures have gained wide acceptance in
recent years due to their ability to facilitate more non-linear activations
for the same effective size as a wider network, thereby improving their
accuracy45,46. Convolution-based algorithms are gaining momentum to
study complex patterns in MD simulations, facilitating accurate predic-
tions of material properties while saving a lot of computational time and
cost47. Since CNNs exhibit translation invariance, unlike RNNs, the order
or orientation of the input data doesn’t corrupt the outcome of prediction
as long as the structural information remains the same. They also account
for locality aggregation, where pixels closer to each other are related than
pixels that are farther apart. This ability of CNN enables it to capture the
spatial relationship in the data. Therefore, these features make CNNs
desirable for the current study.

Typically, the input for a two-dimensional CNN is a fourth-order
M ×H ×W ×C-shaped tensor, whereM denotes the number of samples,H
denotes the height (or the rows) of the data, W denotes the width (or the
columns) of the data, and C denotes the depth of the data which, in the case
of images, are the color channels. The CNN usually comprises a series of
convolutions, pooling, non-linear activation, and dropout layers, each ser-
ving a particular purpose. This way, a convolution layer abstracts the given
data into distinct feature maps using a two-dimensional array of weights
called the filter or kernel. The filter is smaller in size than the input tensor
and performs a scalar product with it several times by probing through the
rows and columns on a given stride. The feature map is then nonlinearly
transformed using functions such as rectified linear units or leaky rectified
linear units. Pooling layers help downsample these stacks of featuremaps by
selecting the predominant features. This is done either by max pooling,
which selects the maximum impacting features, or average pooling, which
averages over the features in a given probing window. Usually, a CNN has
multiple stacks of convolution and activation layers followed by a pooling
layer. Furthermore, dropout layers are added to the network to prevent
overfitting48.

In this study, the CNNuses image information from the local topology
of the structure and associates itwith the local shear stress threshold. To save
the data for training the CNN, the coordinates of the Si atoms and the
oxygen bonds are plotted and saved as an RGB image. The color channels
are not relevant for training since they don’t hold any relevant information
about the structure. Therefore, the images are converted to grayscale, which
clearly captures the structure of the sample and also reduces the size of the
input, thereby enabling faster training. The pixel intensities of a grayscale
image lie anywhere between 0-255 since the images were saved as 8-bit
unsigned integers. These images are then normalized using min-max nor-
malization to the range (0,1) infloats. Thus, the input for every pixel into the
CNN is a real number between 0 and 1. The input is then passed through a
series of 2Dconvolution layers and2Dmax-pooling layers. The convolution
layers each had a filter of size 5 × 5 with 32, 64, and 32 filters, respectively,
with a stride of 1. The max-pooling is performed with a pool size of 2 × 2.
The convolutedandpooled layers are thenflattened, followedby threedense
layers with 10 neurons each, rectified linear activation units, and a final
dense layer with 1 neuron and linear activation. The architecture of the
proposed CNN is shown in Fig. 5a.

However, CNNs have a particular limitation regarding generalization
over other networks, as they can only work within the range of data they
were trained on and cannot handle new data combinations. Additionally,
they are restricted to structured rectangular domains and cannot effectively
model complex structures on unstructured domains. This is where graph
neural networks (GNNs) come into play. GNNs operate on graphs and are
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designed based on relational inductive bias. Unlike CNNs, GNNs are not
limited by structural constraints and can effectively model complex and
unstructured domains based on the relationships between entities.

Graph neural networks. Graph neural networks49 perform computa-
tions over a graph based on the idea that connective entities exist that
exhibit certain relations. In other words, GNNs process data that can be
represented as a graph. For instance, the atoms and bonds of an atomic
structure and their relationship can bemodeled as the nodes and edges of
the graph20,50. Especially, network glasses, such as silica glass, have been
strongly connected with graph data and classified in terms of graph
topologies to identify structures of rings in the material31. This empha-
sizes implementing graph information into an artificial intelligence fra-
mework. Each node can influence other nodes further away through
multiple convolution operations on a graph. Therefore, the use of graph
neural networks in molecular mechanics is a promising direction, and
graph convolutional architectures have already been applied to predict
molecular51–53 and material54,55 properties. Graphs can be classified in
several ways: they can be directed or undirected, homogeneous or het-
erogeneous, and static or dynamic. This study uses an undirected,
homogeneous, and static graph architecture with padding for unequal
input lengths. The influence of the padded nodes was eliminated by the
adjacency matrix, as the dummy padded nodes have no connection or
influence on the neighboring nodes.

The GNN receives both node features and an adjacency matrix
connecting features. The nodes of the graph are the centers of the SiO3

triangles and were given features h in terms of their spatial coordinates,
similar to RNN. The relationship between neighboring nodes was
established using the adjacency matrix, as shown in Fig. 6a. The adja-
cency matrix is computed using the bond information saved during the
lattice generation, which gives a value of one if the bond is present and
zero if the bond is missing between the given pair of atoms. In Fig. 6a, one
local region is presented exemplarily, illustrating how the arrangement of
atoms within that area is defined. A small section of the figure is high-
lighted with an orange circle to provide an example of the adjacency
matrix. This matrix depicts all the connections associated with atom
number two. From the given matrix, we can see that atom two connects
to atom one, three, and six, which is denoted by a value of one, and the
atoms without any bond to atom two are assigned a value of zero in the
matrix. The influence of its neighbors was considered to determine the
future state of the nodal feature h. An aggregation function, which was a
graph convolution layer, was used for this purpose in our study. A multi-
layer perception was also used as a message-passing function. The
aggregation of the node features h, the subsequent message passing, and
the update of the node features are written as follows:

G ¼ ðhi; eijÞ ; ð2aÞ

αij ¼ softmaxj
ðWk

αh
k
i Þ

T ðWk
βh

k
j Þffiffiffi

d
p

0
@

1
A ; ð2bÞ

hkþ1
i ¼ Ukðhki ; αkijðhkj ÞÞ ; ð2cÞ

hkþ1
i ¼ MLPk

θ hki ; α
k
ijðhkj Þ

n o
; ð2dÞ

where hi is the node feature of the node being updated, hj is the node feature
of the neighboring node, eij is the edge tensor, U is the message-passing or
the state update function, α is the aggregation function and Wα,β are
trainable linear weights.

Firstly, the inputs are fed to two graph convolution network (GCN)
blocks, shown in Fig. 6a. The first GCN block consists of two graph con-
volution layers followed by a dense layer with a rectified linear unit acti-
vation function. The secondGCNblock contains a graph convolution layer

and a dense layer similar to the first block. In both blocks, the graph con-
volution layers are responsible for aggregating the influence of neighboring
nodes. The aggregated information was revised by an update function,
which can be a mean, a sum, or a neural network-based operation to
transform the aggregated information at the nodes. In this case, the update
function was dense layers in the GCN block. The aggregated and updated
graph is then transformed into a latent vector, which is a low-dimensional
representation of a higher-dimensional graph data, by means of a global
average pooling operation. The low-dimensional information in the latent
vectorwas thenpassedon to a feedforwardnetworkwith threehidden layers
consisting of 20, 10, and5neurons, respectively. Finally, the output layer had
one neuron, which corresponds to the local shear stress threshold.
Equivalently to the other two architectures, the AdaMax optimizer43 was
used to update the gradients, and the mean squared error was used as the
lossmetric during the training procedure. The networkwas trained for 1000
epochs. To ensure optimal performance, the hyperparameters, such as the
numberof graphconvolution layers, thenumberofunits in the latent vector,
and the number of layers and neurons in each layer in the feedforward
network, had to be carefully chosen.

Data availability
The data that supports the findings of this study are available from the
corresponding author upon reasonable request.

Code availability
The Code that supports the findings of this study is available from the
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