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In a talk given in January 2007, computer scientist  
Jim Gray, recipient of the Turing Award, outlined the 
paradigms of science: first, empirical observations, 
second theory, third, computation. He coined the idea of 
a fourth paradigm: discovery enabled by the exploration 
of massive datasets1. “The techniques and technologies 
for data-​intensive science are so different that it is worth 
distinguishing data-​intensive science from computa-
tional science as a new, fourth paradigm for scientific 
exploration.” Gray suggested that the fourth paradigm 
unifies theory, experiment and simulation — he was 
right in a way he unfortunately did not get the chance to 
witness: later that month he was lost at sea.

Whether one chooses to trace back the links between 
machine learning and physics 40 years ago to John 
Hopfield and his Ising model of a neural network, 
or rather focus on more recent statistical mechanics 
insights into deep learning2, connections between the 
two fields run deep. Physicists have been early users of 
machine learning methods in data analysis, well before 
the advent of deep learning around 2012. For example, 
machine learning was already discussed at meetings in 
high-​energy and nuclear physics in 1990, with an earlier 
suggestion for the potential use of neural networks in 
experimental particle physics3.

The first, obvious use cases were in the analysis of the 
growing volumes of experimental data, a topic of ongoing 
focus (see this Review in this issue). As the technology 
advanced and the accessibility and ease of use of machine 
learning tools improved, other aspects of research have 
started to rely on them: experiment design and the 
optimization of operating parameters, data acquisition 
and pre-​processing. These applications are related to data 
analysis in the sense that they need to efficiently explore 
high-​dimensional parameter spaces, where human 
intuition is not necessarily a good guide.

What is perhaps less obviously related to data analysis 
is the use of machine learning in simulation, numerical 
computation and theory. For example, physics-​informed 
neural networks (see this Review) are driving new 
advances in fluid dynamics simulations, a field that has 
also been exploring the uses of machine learning since 
the 1990s. In a Comment in this issues, Ryan Pederson 
and colleagues overview the advances in using machine 
learning in density functional theory and ask whether 

there is still a place for human insight and intuition in 
designing functionals. In a Comment about the use of 
machine learning in mathematics and theoretical physics, 
Michael R. Douglas suggests that the combination of 
recent developments can be “as revolutionary for science 
as was the original development of scientific computation 
and simulation,” a view echoing Gray’s definition of the 
fourth paradigm.

With improved capability also come challenges. 
Examples include the integration of machine learning 
throughout experimental processes as outlined in this 
Comment; interpretability, discussed in this Comment; 
and the choice of methods given the wide availability of 
algorithms, addressed by the introduction of scientific 
benchmarks discussed in a Perspective in this issue.

We have collected Reviews, Comments and Tools 
of the Trade articles, illustrating the wide spectrum of 
machine learning applications in physics and discuss-
ing trends and challenges. We hope that this ongoing 
series will become both a useful resource and the start 
of a dialogue among theorists, experimentalists and 
computational scientists from different areas of physics. 
We also hope to offer in our pages a forum for discus-
sions on topics such as integration, verification and vali
dation, benchmarking, interpretability or uncertainty 
estimation.

Gray did not witness the full impact demonstrated by 
machine learning in science, yet he was absolutely right 
about theory, experiment and simulation being unified 
through data-​intensive science, albeit perhaps in a dif-
ferent way than he imagined 15 years ago. There is no 
reason why the fourth paradigm should be the last. As 
technology and human knowledge expand and evolve  
so will the ways we do science. A natural question is what 
will the fifth paradigm look like (and when will it arrive). 
Perhaps we already can foresee it: machines being no 
longer mere tools, but equal partners in scientific explo-
ration, exchanging ideas, intuition and understanding 
with the human peers. This vision may be closer than 
we imagine.
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Pervasive machine learning in physics
No longer restricted to data analysis, machine learning is now increasingly being used in theory, 
experiment and simulation — a sign that data-​intensive science is starting to encompass all 
traditional aspects of research.
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