Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The physics of respiratory particle generation, fate in the air, and inhalation

Abstract

Given that breathing is one of the most fundamental physiological functions, there is an urgent need to broaden our understanding of the fluid dynamics that governs it. There would be many benefits from doing so, including a better assessment of respiratory health, a basis for more precise delivery of pharmaceutical drugs for treatment, and the understanding and potential minimization of respiratory infection transmission. We review the physics of particle generation in the respiratory tract, the fate of these particles in the air on exhalation and the physics of particle inhalation. The main focus is on evidence from experimental studies. We conclude that although there is qualitative understanding of the generation of particles in the respiratory tract, a basic quantitative knowledge of the characteristics of the particles emitted during respiratory activities and their fate after emission, and a theoretical understanding of particle deposition during inhalation, nevertheless the general understanding of the entire process is rudimentary, and many open questions remain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sites and mechanisms of particle generation.
Fig. 2: A trimodal distribution of particles emitted by speaking subjects, and their cumulative emissions.
Fig. 3: Total deposition fraction for healthy adults.

Similar content being viewed by others

References

  1. Morawska, L. & Buonanno, G. The physics of particle formation and deposition during breathing. Nat. Rev. Phys. 3, 300–301 (2021).

    Article  Google Scholar 

  2. Wei, J. & Li, Y. Airborne spread of infectious agents in the indoor environment. Am. J. Infect. Control. 44, S102–S108 (2016).

    Article  Google Scholar 

  3. Rayleigh, L. On the stability, or instability, of certain fluid motions. Proc. Lond. Math. Soc. 1, 57–72 (1879).

    Article  MathSciNet  MATH  Google Scholar 

  4. Stadnytskyi, V., Anfinrud, P. & Bax, A. Breathing, speaking, coughing or sneezing: what drives transmission of SARS-CoV-2?J. Intern. Med. 290, 1010–1027 (2021).

    Article  Google Scholar 

  5. Johnson, G. et al. Modality of human expired aerosol size distributions. J. Aerosol Sci. 42, 839–851 (2011).

    Article  ADS  Google Scholar 

  6. Abkarian, M. & Stone, H. Stretching and break-up of saliva filaments during speech: a route for pathogen aerosolization and its potential mitigation. Phys. Rev. Fluids 5, 102301 (2020).

    Article  ADS  Google Scholar 

  7. Bake, B., Larsson, P., Ljungkvist, G., Ljungström, E. & Olin, A. Exhaled particles and small airways. Respir. Res. 20, 8 (2019).

    Article  Google Scholar 

  8. Almstrand, A.-C. et al. Effect of airway opening on production of exhaled particles. J. Appl. Physiol. 108, 584–588 (2010).

    Article  Google Scholar 

  9. Fahy, J. V. & Dickey, B. F. Airway mucus function and dysfunction. N. Engl. J. Med. 363, 2233–2247 (2010).

    Article  Google Scholar 

  10. Patterson, B. & Wood, R. Is cough really necessary for TB transmission? Tuberculosis 117, 31–35 (2019).

    Article  Google Scholar 

  11. Johnson, G. R. & Morawska, L. The mechanism of breath aerosol formation. J. Aerosol Med. Pulm. Drug Deliv. 22, 229–237 (2009).

    Article  Google Scholar 

  12. Balachandar, S., Zaleski, S., Soldati, A., Ahmadi, G. & Bourouiba, L. Host-to-host airborne transmission as a multiphase flow problem for science-based social distance guidelines. Int. J. Multiph. Flow. 132, 103439 (2020).

    Article  MathSciNet  Google Scholar 

  13. Collins, L. & Dawes, C. The surface area of the adult human mouth and thickness of the salivary film covering the teeth and oral mucosa. J. Dent. Res. 66, 1300–1302 (1987).

    Article  Google Scholar 

  14. Kaufman, E. & Lamster, I. B. The diagnostic applications of saliva — a review. Crit. Rev. Oral. Biol. Med. 13, 197–212 (2002).

    Article  Google Scholar 

  15. Fennelly, K. P. Particle sizes of infectious aerosols: implications for infection control. Lancet Respir. Med. 8, 914–924 (2020).

    Article  Google Scholar 

  16. Effros, R. M. et al. Dilution of respiratory solutes in exhaled condensates. Am. J. Respir. Crit. Care Med. 165, 663–669 (2002).

    Article  Google Scholar 

  17. Stadnytskyi, V., Bax, C. E., Bax, A. & Anfinrud, P. The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission. Proc. Natl Acad. Sci. USA 117, 11875–11877 (2020).

    Article  ADS  Google Scholar 

  18. Anand, S. & Mayya, Y. Size distribution of virus laden droplets from expiratory ejecta of infected subjects. Sci. Rep. 10, 21174 (2020).

    Article  ADS  Google Scholar 

  19. Basu, S. Computational characterization of inhaled droplet transport to the nasopharynx. Sci. Rep. 11, 6652 (2021).

    Article  ADS  Google Scholar 

  20. Bar-On, Y. M., Flamholz, A., Phillips, R. & Milo, R. Science Forum: SARS-CoV-2 (COVID-19) by the numbers. eLife 9, e57309 (2020).

    Article  Google Scholar 

  21. Zayas, G. et al. Cough aerosol in healthy participants: fundamental knowledge to optimize droplet-spread infectious respiratory disease management. BMC Pulm. Med. 12, 11 (2012).

    Article  Google Scholar 

  22. Lindsley, W. G. et al. Viable influenza A virus in airborne particles expelled during coughs versus exhalations. Influenza Other Respir. Viruses 10, 404–413 (2016).

    Article  Google Scholar 

  23. Castleman, R. A. The mechanism of the atomization of liquids. J. Res. Natl Bur. Stand. 7, 269–376 (1931).

    Google Scholar 

  24. Wells, W. F. Airborne Contagion and Air Hygiene: An Ecological Study of Droplet Infections (Harvard Univ. Press, 1955).

  25. Descamps, M., Matas, J.-P. & Cartellier, A. H. Gas–liquid atomisation: gas phase characteristics by PIV measurements and spatial evolution of the spray. In 2nd colloque INCA, Initiative en Combustion Avancée, 1 (HAL Open Science, 2008); https://hal.archives-ouvertes.fr/hal-00704346.

  26. Scheubel, F. N. On atomization in carburetors. National Advisory Committee for Aeronautics Technical Memorandum 644 (1927); https://ntrs.nasa.gov/api/citations/19930094772/downloads/19930094772.pdf?attachment=true

  27. Sauter, J. Untersuchung der von Spritzvergasern gelieten Zerstäubung. Forschungsarbeiten auf dem Gebiete des Ingenieurwesens, Vol. 312 (Springer, 1928).

  28. Hong, M., Cartellier, A. & Hopfinger, E. J. Characterization of phase detection optical probes for the measurement of the dispersed phase parameters in sprays. Int. J. Multiph. Flow 30, 615–648 (2004).

    Article  MATH  Google Scholar 

  29. Edwards, D. A. et al. Inhaling to mitigate exhaled bioaerosols. Proc. Natl Acad. Sci. USA 101, 17383–17388 (2004).

    Article  ADS  Google Scholar 

  30. Zayas, G., Dimitry, J., Zayas, A., O’Brien, D. & King, M. A new paradigm in respiratory hygiene: increasing the cohesivity of airway secretions to improve cough interaction and reduce aerosol dispersion. BMC Pulm. Med. 5, https://doi.org/10.1186/1471-2466-5-11 (2005).

  31. Hasan, M. A., Lange, C. F. & King, M. L. Effect of artificial mucus properties on the characteristics of airborne bioaerosol droplets generated during simulated coughing. J. Nonnewton. Fluid Mech. 165, 1431–1441 (2010).

    Article  Google Scholar 

  32. Vasudevan, M. & Lange, C. F. Surface tension effects on instability in viscoelastic respiratory fluids. Math. Biosci. 205, 180–194 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  33. Lasheras, J., Villermaux, E. & Hopfinger, E. Break-up and atomization of a round water jet by a high-speed annular air jet. J. Fluid Mech. 357, 351–379 (1998).

    Article  ADS  Google Scholar 

  34. Villermaux, E. Fragmentation versus cohesion. J. Fluid Mech. 898, P1 (2020).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Chen, Z. et al. Determination of rheology and surface tension of airway surface liquid: a review of clinical relevance and measurement techniques. Respir. Res. 20, 274 (2019).

    Article  Google Scholar 

  36. Brown, E. S., Johnson, R. P. & Clements, J. A. Pulmonary surface tension. J. Appl. Physiol. 14, 717–720 (1959).

    Article  Google Scholar 

  37. Schürch, S., Bachofen, H., Goerke, J. & Green, F. Surface properties of rat pulmonary surfactant studied with the captive bubble method: adsorption, hysteresis, stability. Biochim. Biophys. Acta 1103, 127–136 (1992).

    Article  Google Scholar 

  38. Keshavarz, B. et al. Studying the effects of elongational properties on atomization of weakly viscoelastic solutions using Rayleigh Ohnesorge jetting extensional rheometry (ROJER). J. Nonnewton. Fluid Mech. 222, 171–189 (2015).

    Article  MathSciNet  Google Scholar 

  39. Watanabe, W. et al. Why inhaling salt water changes what we exhale. J. Colloid Interface Sci. 307, 71–78 (2007).

    Article  ADS  Google Scholar 

  40. Keshavarz, B., Houze, E. C., Moore, J. R., Koerner, M. R. & McKinley, G. H. Ligament mediated fragmentation of viscoelastic liquids. Phys. Rev. Lett. 117, 154502 (2016).

    Article  ADS  Google Scholar 

  41. Edwards, D. A. et al. Exhaled aerosol increases with COVID-19 infection, age, and obesity. Proc. Natl Acad. Sci. USA 118, e2021830118 (2021).

    Article  Google Scholar 

  42. Fairchild, C. & Stampfer, J. Particle concentration in exhaled breath. Am. Ind. Hyg. Assoc. J. 48, 948–949 (1987).

    Article  Google Scholar 

  43. Asadi, S. et al. Effect of voicing and articulation manner on aerosol particle emission during human speech. PLoS ONE 15, e0227699 (2020).

    Article  Google Scholar 

  44. Asadi, S. et al. Aerosol emission and superemission during human speech increase with voice loudness. Sci. Rep. 9, 2348 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  45. Alsved, M. et al. Exhaled respiratory particles during singing and talking. Aerosol Sci. Technol. 54, 1245–1248 (2020).

    Article  ADS  Google Scholar 

  46. Oratis, A. T., Bush, J. W., Stone, H. A. & Bird, J. C. A new wrinkle on liquid sheets: turning the mechanism of viscous bubble collapse upside down. Science 369, 685–688 (2020).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Fiegel, J., Clarke, R. & Edwards, D. A. Airborne infectious disease and the suppression of pulmonary bioaerosols. Drug Discov. Today 11, 51–57 (2006).

    Article  Google Scholar 

  48. Bake, B. et al. Exhaled particles after a standardized breathing maneuver. J. Aerosol Med. Pulm. Drug Deliv. 30, 267–273 (2017).

    Article  Google Scholar 

  49. Merghani, K. M. M., Sagot, B., Gehin, E., Da, G. & Motzkus, C. A review on the applied techniques of exhaled airflow and droplets characterization. Indoor Air 31, 7–25 (2021).

    Article  Google Scholar 

  50. Gupta, J., Lin, C. H. & Chen, Q. Flow dynamics and characterization of a cough. Indoor Air 19, 517–525 (2009).

    Article  Google Scholar 

  51. Gupta, J. K., Lin, C. H. & Chen, Q. Characterizing exhaled airflow from breathing and talking. Indoor Air 20, 31–39 (2010).

    Article  Google Scholar 

  52. Xu, C., Nielsen, P., Gong, G., Liu, L. & Jensen, R. Measuring the exhaled breath of a manikin and human subjects. Indoor Air 25, 188–197 (2015).

    Article  Google Scholar 

  53. Xu, C., Nielsen, P. V., Liu, L., Jensen, R. L. & Gong, G. Human exhalation characterization with the aid of schlieren imaging technique. Build. Environ. 112, 190–199 (2017).

    Article  Google Scholar 

  54. Papineni, R. S. & Rosenthal, F. S. The size distribution of droplets in the exhaled breath of healthy human subjects. J. Aerosol Med. 10, 105–116 (1997).

    Article  Google Scholar 

  55. Yang, S., Lee, G. W., Chen, C.-M., Wu, C.-C. & Yu, K.-P. The size and concentration of droplets generated by coughing in human subjects. J. Aerosol Med. 20, 484–494 (2007).

    Article  Google Scholar 

  56. Morawska, L. et al. Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities. J. Aerosol Sci. 40, 256–269 (2009).

    Article  ADS  Google Scholar 

  57. Hersen, G. et al. Impact of health on particle size of exhaled respiratory aerosols: case-control study. Clean 36, 572–577 (2008).

    Google Scholar 

  58. Chao, C. Y. H. et al. Characterization of expiration air jets and droplet size distributions immediately at the mouth opening. J. Aerosol Sci. 40, 122–133 (2009).

    Article  ADS  Google Scholar 

  59. Duguid, J. The size and the duration of air-carriage of respiratory droplets and droplet-nuclei. Epidemiol. Infect. 44, 471–479 (1946).

    Article  Google Scholar 

  60. Loudon, R. G. & Roberts, R. M. Droplet expulsion from the respiratory tract. Am. Rev. Respir. Dis. 95, 435–442 (1967).

    Google Scholar 

  61. Lindsley, W. G. et al. Quantity and size distribution of cough-generated aerosol particles produced by influenza patients during and after illness. J. Occup. Environ. Hyg. 9, 443–449 (2012).

    Article  Google Scholar 

  62. Buonanno, G., Morawska, L. & Stabile, L. Quantitative assessment of the risk of airborne transmission of SARS-CoV-2 infection: prospective and retrospective applications. Environ. Int. 145, 106112 (2020).

    Article  Google Scholar 

  63. Wells, W. F. On air-borne infection. Study II. Droplet and droplet nuclei. Am. J. Epidemiol. 20, 611–618 (1934).

    Article  Google Scholar 

  64. Xie, X., Li, Y., Chwang, A., Ho, P. & Seto, W. How far droplets can move in indoor environments — revisiting the Wells evaporation–falling curve. Indoor Air 17, 211–225 (2007).

    Article  Google Scholar 

  65. Scientific Brief, 7 May 2021: SARS-CoV-2 transmission (CDC, 2021).

  66. Coronavirus disease (COVID-19): How is it transmitted? https://www.who.int/news-room/q-a-detail/coronavirus-disease-covid-19-how-is-it-transmitted (WHO, 2021).

  67. Bourouiba, L., Dehandschoewercker, E. & Bush, J. W. M. Violent expiratory events: on coughing and sneezing. J. Fluid Mech. 745, 537–563 (2014).

    Article  ADS  Google Scholar 

  68. Asgharian, B. A model of deposition of hygroscopic particles in the human lung. Aerosol Sci. Technol. 38, 938–947 (2004).

    Article  ADS  Google Scholar 

  69. Baturin, V. V. Fundamentals of Industrial Ventilation (Pergamon, 1972).

  70. Rajaratnam, N. Turbulent Jets (Elsevier, 1976).

  71. Turner, J. S. Buoyancy Effects in Fluids (Cambridge Univ. Press, 1979).

  72. Ng, C. S. et al. Growth of respiratory droplets in cold and humid air. Phys. Rev. Fluids 6, 054303 (2021).

    Article  ADS  Google Scholar 

  73. Bradley, R., Evans, M. G. & Whytlaw-Gray, R. The rate of evaporation of droplets. evaporation and diffusion coefficients, and vapour pressures of dibutyl phthalate and butyl stearate. Proc. R. Soc. A 186, 368–390 (1946).

    ADS  Google Scholar 

  74. Langmuir, I. The evaporation of small spheres. Phys. Rev. 12, 368 (1918).

    Article  ADS  Google Scholar 

  75. Pirhadi, M., Sajadi, B., Ahmadi, G. & Malekian, D. Phase change and deposition of inhaled droplets in the human nasal cavity under cyclic inspiratory airflow. J. Aerosol Sci. 118, 64–81 (2018).

    Article  ADS  Google Scholar 

  76. Sazhin, S. S. Advanced models of fuel droplet heating and evaporation. Prog. Energy Combust. Sci. 32, 162–214 (2006).

    Article  ADS  Google Scholar 

  77. Božič, A. & Kanduč, M. Relative humidity in droplet and airborne transmission of disease. J. Biol. Phys. 47, 1–29 (2021).

    Article  Google Scholar 

  78. Kukkonen, J., Vesala, T. & Kulmala, M. The interdependence of evaporation and settling for airborne freely falling droplets. J. Aerosol Sci. 20, 749–763 (1989).

    Article  ADS  Google Scholar 

  79. Netz, R. R. Mechanisms of airborne infection via evaporating and sedimenting droplets produced by speaking. J. Phys. Chem. B 124, 7093–7101 (2020).

    Article  Google Scholar 

  80. Netz, R. R. & Eaton, W. A. Physics of virus transmission by speaking droplets. Proc. Natl Acad. Sci. USA 117, 25209–25211 (2020).

    Article  ADS  Google Scholar 

  81. Nicas, M., Nazaroff, W. W. & Hubbard, A. Toward understanding the risk of secondary airborne infection: emission of respirable pathogens. J. Occup. Environ. Hyg. 2, 143–154 (2005).

    Article  Google Scholar 

  82. Liu, L., Wei, J., Li, Y. & Ooi, A. Evaporation and dispersion of respiratory droplets from coughing. Indoor Air 27, 179–190 (2017).

    Article  Google Scholar 

  83. Villermaux, E., Moutte, A., Amielh, M. & Meunier, P. Fine structure of the vapor field in evaporating dense sprays. Phys. Rev. Fluids 2, 074501 (2017).

    Article  ADS  Google Scholar 

  84. de Oliveira, P. M., Mesquita, L. C., Gkantonas, S., Giusti, A. & Mastorakos, E. Evolution of spray and aerosol from respiratory releases: theoretical estimates for insight on viral transmission. Proc. R. Soc. A 477, 20200584 (2021).

    Article  MathSciNet  Google Scholar 

  85. Chong, K. L. et al. Extended lifetime of respiratory droplets in a turbulent vapor puff and its implications on airborne disease transmission. Phys. Rev. Lett. 126, 034502 (2021).

    Article  ADS  Google Scholar 

  86. Smith, S. H. et al. Aerosol persistence in relation to possible transmission of SARS-CoV-2. Phys. Fluids 32, 107108 (2020).

    Article  ADS  Google Scholar 

  87. Ai, Z. T. & Melikov, A. K. Airborne spread of expiratory droplet nuclei between the occupants of indoor environments: a review. Indoor Air 28, 500–524 (2018).

    Article  Google Scholar 

  88. Mui, K. W., Wong, L. T., Wu, C. & Lai, A. C. Numerical modeling of exhaled droplet nuclei dispersion and mixing in indoor environments. J. Hazard. Mater. 167, 736–744 (2009).

    Article  Google Scholar 

  89. Nielsen, P. V. & Xu, C. Multiple airflow patterns in human microenvironment and the influence on short-distance airborne cross-infection — a review. Indoor Built Environ. https://doi.org/10.1177/1420326X211048539 (2021).

    Article  Google Scholar 

  90. Riediker, M. et al. Particle toxicology and health — where are we? Particle and fibre. Toxicology 16, 19 (2019).

    Google Scholar 

  91. Hopke, P. K., Dai, Q., Li, L. & Feng, Y. Global review of recent source apportionments for airborne particulate matter. Sci. Total. Environ. 740, 140091 (2020).

    Article  ADS  Google Scholar 

  92. Kerminen, V.-M. et al. Atmospheric new particle formation and growth: review of field observations. Environ. Res. Lett. 13, 103003 (2018).

    Article  ADS  Google Scholar 

  93. Kittelson, B. D. Engines and nanoparticles: a review. J. Aerosol Sci. 29, 575–588 (1998).

    Article  ADS  Google Scholar 

  94. Kumar, P., Pirjola, L., Ketzel, M. & Harrison, R. M. Nanoparticle emissions from 11 non-vehicle exhaust sources–A review. Atmos. Environ. 67, 252–277 (2013).

    Article  ADS  Google Scholar 

  95. Querol, X. et al. Speciation and origin of PM10 and PM2.5 in selected European cities. Atmos. Environ. 38, 6547–6555 (2004).

    Article  ADS  Google Scholar 

  96. Peters, A. et al. Translocation and potential neurological effects of fine and ultrafine particles a critical update. Part. Fibre Toxicol. 3, 13 (2006).

    Article  Google Scholar 

  97. Kreyling, W. et al. Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J. Toxicol. Environ. Health A 65, 1513–1530 (2002).

    Article  Google Scholar 

  98. Oberdörster, G. et al. Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol. 16, 437–445 (2004).

    Article  Google Scholar 

  99. Beelen, R. et al. Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project. Lancet 383, 785–795 (2014).

    Article  Google Scholar 

  100. Weichenthal, S. Selected physiological effects of ultrafine particles in acute cardiovascular morbidity. Environ. Res. 115, 26–36 (2012).

    Article  Google Scholar 

  101. Fu, P., Guo, X., Cheung, F. M. H. & Yung, K. K. L. The association between PM2.5 exposure and neurological disorders: a systematic review and meta-analysis. Sci. Total Environ. 655, 1240–1248 (2019).

    Article  ADS  Google Scholar 

  102. Raaschou-Nielsen, O. et al. Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European study of cohorts for air pollution effects (ESCAPE). Lancet Oncol. 14, 813–822 (2013).

    Article  Google Scholar 

  103. Donaldson, K., Stone, V., Clouter, A., Renwick, L. & MacNee, W. Ultrafine particles. Occup. Environ. Med. 58, 211–216 (2001).

    Article  Google Scholar 

  104. Global Burden of Disease (GBD) Visualization Hub. https://vizhub.healthdata.org/gbd-compare/ (GBD, 2020).

  105. Wölfel, R. et al. Virological assessment of hospitalized patients with COVID-2019. Nature 581, 465–469 (2020).

    Article  ADS  Google Scholar 

  106. Morawska, L. & Cao, J. Airborne transmission of SARS-CoV-2: the world should face the reality. Environ. Int. 139, 105730 (2020).

    Article  Google Scholar 

  107. Van Doremalen, N. et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med. 382, 1564–1567 (2020).

    Article  Google Scholar 

  108. Watanabe, T., Bartrand, T. A., Weir, M. H., Omura, T. & Haas, C. N. Development of a dose-response model for SARS coronavirus. Risk Anal. 30, 1129–1138 (2010).

    Article  Google Scholar 

  109. Schmid, O. & Cassee, F. R. On the pivotal role of dose for particle toxicology and risk assessment: exposure is a poor surrogate for delivered dose. Part. Fibre Toxicol. 14, 52 (2017).

    Article  Google Scholar 

  110. Schmid, O. et al. Dosimetry and toxicology of inhaled ultrafine particles. Biomarkers 14, 67–73 (2009).

    Article  Google Scholar 

  111. Licina, D., Tian, Y. & Nazaroff, W. W. Inhalation intake fraction of particulate matter from localized indoor emissions. Build. Environ. 123, 14–22 (2017).

    Article  Google Scholar 

  112. Morawska, L. et al. A paradigm shift to combat indoor respiratory infection. Science 372, 689–691 (2021).

    Article  ADS  Google Scholar 

  113. Human Respiratory Tract Model for Radiological Protection (ICRP, 1994).

  114. Tsuda, A., Henry, F. S. & Butler, J. P. Particle transport and deposition: basic physics of particle kinetics. Compr. Physiol. 3, 1437–1471 (2011).

    Google Scholar 

  115. Wang, C.-s. Inhaled Particles (Elsevier Academic, 2005).

  116. Yeh, H.-C. & Schum, G. Models of human lung airways and their application to inhaled particle deposition. Bull. Math. Biol. 42, 461–480 (1980).

    Article  MATH  Google Scholar 

  117. Altshuler, B., Palmes, E., Yarmus, L. & Nelson, N. Intrapulmonary mixing of gases studied with aerosols. J. Appl. Physiol. 14, 321–327 (1959).

    Article  Google Scholar 

  118. Ferron, G., Haider, B. & Kreyling, W. Inhalation of salt aerosol particles — I. Estimation of the temperature and relative humidity of the air in the human upper airways. J. Aerosol Sci. 19, 343–363 (1988).

    Article  ADS  Google Scholar 

  119. Vu, T. V., Delgado-Saborit, J. M. & Harrison, R. M. A review of hygroscopic growth factors of submicron aerosols from different sources and its implication for calculation of lung deposition efficiency of ambient aerosols. Air Qual. Atmos. Health 8, 429–440 (2015).

    Article  Google Scholar 

  120. Christou, S. et al. Anatomical variability in the upper tracheobronchial tree: sex-based differences and implications for personalized inhalation therapies. J. Appl. Physiol. 130, 678–707 (2021).

    Article  Google Scholar 

  121. Hussain, M., Renate, W.-H. & Werner, H. Effect of intersubject variability of extrathoracic morphometry, lung airways dimensions and respiratory parameters on particle deposition. J. Thorac. Dis. 3, 156 (2011).

    Google Scholar 

  122. Poorbahrami, K., Vignon-Clementel, I. E., Shadden, S. C. & Oakes, J. M. A whole lung in silico model to estimate age dependent particle dosimetry. Sci. Rep. 11, 11180 (2021).

    Article  ADS  Google Scholar 

  123. Martonen, T., Zhang, Z. & Lessmann, R. Fluid dynamics of the human larynx and upper tracheobronchial airways. Aerosol Sci. Technol. 19, 133–156 (1993).

    Article  ADS  Google Scholar 

  124. Banko, A. J., Coletti, F., Elkins, C. J. & Eaton, J. K. Oscillatory flow in the human airways from the mouth through several bronchial generations. Int. J. Heat. Fluid Flow. 61, 45–57 (2016).

    Article  Google Scholar 

  125. Hofmann, W. Modelling inhaled particle deposition in the human lung — a review. J. Aerosol Sci. 42, 693–724 (2011).

    Article  ADS  Google Scholar 

  126. Guo, L. L., Johnson, G. R., Hofmann, W., Wang, H. & Morawska, L. Deposition of ambient ultrafine particles in the respiratory tract of children: a novel experimental method and its application. J. Aerosol Sci. 139, 105465 (2020).

    Article  ADS  Google Scholar 

  127. Guo, L. et al. Experimentally determined deposition of ambient urban ultrafine particles in the respiratory tract of children. Environ. Int. 145, 106094 (2020).

    Article  Google Scholar 

  128. Londahl, J. et al. A set-up for field studies of respiratory tract deposition of fine and ultrafine particles in humans. J. Aerosol Sci. 37, 1152–1163 (2006).

    Article  ADS  Google Scholar 

  129. Morawska, L., Hofmann, W., Hitchins-Loveday, J., Swanson, C. & Mengersen, K. Experimental study of the deposition of combustion aerosols in the human respiratory tract. J. Aerosol Sci. 36, 939–957 (2005).

    Article  ADS  Google Scholar 

  130. Heyder, J., Gebhart, J., Rudolf, G., Schiller, C. F. & Stahlhofen, W. Deposition of particles in the human respiratory tract in the size range 0.005–15 μm. J. Aerosol Sci. 17, 811–825 (1986).

    Article  ADS  Google Scholar 

  131. Jaques, P. A. & Kim, C. S. Measurement of total lung deposition of inhaled ultrafine particles in healthy men and women. Inhal. Toxicol. 12, 715–731 (2000).

    Article  Google Scholar 

  132. Kim, C. S. & Jaques, P. A. Analysis of total respiratory deposition of inhaled ultrafine particles in adult subjects at various breathing patterns. Aerosol Sci. Technol. 38, 525–540 (2004).

    Article  ADS  Google Scholar 

  133. Kim, C. S. & Jaques, P. A. Total lung deposition of ultrafine particles in elderly subjects during controlled breathing. Inhal. Toxicol. 17, 387–399 (2005).

    Article  Google Scholar 

  134. Lin, C.-W. et al. Experimental measurements of regional lung deposition in Taiwanese. Aerosol Air Qual. Res. 19, 832–839 (2019).

    Article  Google Scholar 

  135. Montoya, L. et al. Continuous measurements of ambient particle deposition in human subjects. Aerosol Sci. Technol. 38, 980–990 (2004).

    Article  ADS  Google Scholar 

  136. Rissler, J. et al. Deposition efficiency of inhaled particles (15–5000 nm) related to breathing pattern and lung function: an experimental study in healthy children and adults. Part. Fibre Toxicol. 14, 10 (2017).

    Article  Google Scholar 

  137. Jakobsson, J. K. et al. Altered deposition of inhaled nanoparticles in subjects with chronic obstructive pulmonary disease. BMC Pulm. Med. 18, 129 (2018).

    Article  Google Scholar 

  138. Möller, W. et al. Deposition, retention, and translocation of ultrafine particles from the central airways and lung periphery. Am. J. Respir. Crit. Care Med. 177, 426–432 (2008).

    Article  Google Scholar 

  139. Sturm, R. Total deposition of ultrafine particles in the lungs of healthy men and women: experimental and theoretical results. Ann. Transl. Med. 4, 234 (2016).

    Article  Google Scholar 

  140. Daigle, C. C. et al. Ultrafine particle deposition in humans during rest and exercise. Inhal. Toxicol. 15, 539–552 (2003).

    Article  Google Scholar 

  141. Altshuler, B., Yarmxus, L., Palmes, E. & Nelson, K. Aerosol deposition in the human respiratory tract. I. Experimental procedures and total deposition. Arch. Ind. Health 15, 293–303 (1957).

    Google Scholar 

  142. Emmett, P., Aitken, R. & Hannan, W. Measurements of the total and regional deposition of inhaled particles in the human respiratory tract. J. Aerosol Sci. 13, 549–560 (1982).

    Article  ADS  Google Scholar 

  143. Foord, N., Black, A. & Walsh, M. Regional deposition of 2.5–7.5 μm diameter inhaled particles in healthy male non-smokers. J. Aerosol Sci. 9, 343–357 (1978).

    Article  ADS  Google Scholar 

  144. Giacomelli-Maltoni, G., Melandri, C., Prodis, V. & Tarroni, G. Deposition efficiency of monodisperse particles in human respiratory tract. Am. Ind. Hyg. Assoc. J. 33, 603–610 (1972).

    Article  Google Scholar 

  145. Stahlhofen, W., Gebhart, J. & Heyder, J. Experimental determination of the regional deposition of aerosol particles in the human respiratory tract. Am. Ind. Hyg. Assoc. J. 41, 385–398a (1980).

    Article  Google Scholar 

  146. Löndahl, J. et al. Measurement techniques for respiratory tract deposition of airborne nanoparticles: a critical review. J. Aerosol Med. Pulm. Drug Deliv. 27, 229–254 (2014).

    Article  Google Scholar 

  147. Dautrebande, L., Beckmann, H. & Walkenhorst, W. in Die Staublungenerkrankungen (eds Jötten, K. W. & Klosterkötter, W.) 297–307 (Springer, 1958).

  148. Heyder, J., Armbruster, L., Gebhart, J., Grein, E. & Stahlhofen, W. Total deposition of aerosol particles in the human respiratory tract for nose and mouth breathing. J. Aerosol Sci. 6, 311–328 (1975).

    Article  ADS  Google Scholar 

  149. Landahl, H., Tracewell, T. & Lassen, W. On the retention of air-borne particulates in the human lung: II. Arch. Ind. Hyg. Occup. Med. 3, 359–366 (1951).

    Google Scholar 

  150. Landahl, H., Tuacewell, T. & Lassen, W. Retention of air-borne particulates in the human lung: III. Arch. Ind. Hyg. Occup. Med. 6, 508–511 (1952).

    Google Scholar 

  151. Morawska, L., Barron, W. & Hitchins, J. Experimental deposition of environmental tobacco smoke submicrometer particulate matter in the human respiratory tract. Am. Ind. Hyg. Assoc. J. 60, 334–339 (1999).

    Article  Google Scholar 

  152. Geiser, M. & Kreyling, W. G. Deposition and biokinetics of inhaled nanoparticles. Part. Fibre Toxicol. 7, 2 (2010).

    Article  Google Scholar 

  153. Cheng, Y.-S., Zhou, Y. & Chen, B. T. Particle deposition in a cast of human oral airways. Aerosol Sci. Technol. 31, 286–300 (1999).

    Article  ADS  Google Scholar 

  154. Carvalho, T. C., Peters, J. I. & Williams, R. O. III Influence of particle size on regional lung deposition — what evidence is there? Int. J. Pharm. 406, 1–10 (2011).

    Article  Google Scholar 

  155. Zhou, Y. & Cheng, Y.-S. Particle deposition in a cast of human tracheobronchial airways. Aerosol Sci. Technol. 39, 492–500 (2005).

    Article  ADS  Google Scholar 

  156. Taylor, G. et al. Gamma scintigraphic pulmonary deposition study of glycopyrronium/formoterol metered dose inhaler formulated using co-suspension delivery technology. Eur. J. Pharm. Sci. 111, 450–457 (2018).

    Article  Google Scholar 

  157. Ghazwani, A., Biddiscombe, M. & Usmani, O. Comparing lung geometrical areas of interest in gamma scintigraphy as assessment tool for inhaled drug deposition. Eur. Respir. J. 52, PA1022 (2018).

    Google Scholar 

  158. Häussermann, S., Sommerer, K. & Scheuch, G. Regional lung deposition: in vivo data. J. Aerosol Med. Pulm. Drug Deliv. 33, 291–299 (2020).

    Article  Google Scholar 

  159. Dubsky, S. & Fouras, A. Imaging regional lung function: a critical tool for developing inhaled antimicrobial therapies. Adv. Drug Deliv. Rev. 85, 100–109 (2015).

    Article  Google Scholar 

  160. Porra, L. et al. Quantitative imaging of regional aerosol deposition, lung ventilation and morphology by synchrotron radiation CT. Sci. Rep. 8, 3519 (2018).

    Article  ADS  Google Scholar 

  161. Phalen, R. & Raabe, O. The evolution of inhaled particle dose modeling: a review. J. Aerosol Sci. 99, 7–13 (2016).

    Article  ADS  Google Scholar 

  162. Sze To, G. N. & Chao, C. Y. H. Review and comparison between the Wells–Riley and dose–response approaches to risk assessment of infectious respiratory diseases. Indoor Air 20, 2–16 (2010).

    Article  Google Scholar 

  163. Duguid, J. The numbers and the sites of origin of the droplets expelled during expiratory activities. Edinb. Med. J. 52, 385 (1945).

    Google Scholar 

  164. Xie, X., Li, Y., Sun, H. & Liu, L. Exhaled droplets due to talking and coughing. J. R. Soc. Interface 6, S703–S714 (2009).

    Article  Google Scholar 

  165. Ehrenstein, D. How speaking creates droplets that may spread COVID-19. Physics 13, 157 (2020).

    Article  Google Scholar 

  166. Randall, K., Ewing, E. T., Marr, L., Jimenez, J. & Bourouiba, L. How did we get here: what are droplets and aerosols and how far do they go? A historical perspective on the transmission of respiratory infectious diseases. Interface Focus 11, 20210049 (2021).

    Article  Google Scholar 

  167. Kulkarni, P., Baron, P. A. & Willeke, K. Aerosol Measurement: Principles, Techniques, and Applications (Wiley, 2011).

  168. Milton, D. K. A Rosetta stone for understanding infectious drops and aerosols. J. Pediatr. Infect. Dis. Soc. 9, 413–415 (2020).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing of this manuscript.

Corresponding author

Correspondence to Lidia Morawska.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks the anonymous referees for their contributions to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morawska, L., Buonanno, G., Mikszewski, A. et al. The physics of respiratory particle generation, fate in the air, and inhalation. Nat Rev Phys 4, 723–734 (2022). https://doi.org/10.1038/s42254-022-00506-7

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s42254-022-00506-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing