Abstract
The rapid pace of development in quantum computing technology has sparked a proliferation of benchmarks to assess the performance of quantum computing hardware and software. However, not all benchmarks are of equal merit. Good ones empower scientists, engineers, programmers and users to understand the power of a computing system, whereas bad ones can misdirect research and inhibit progress. In this Perspective, we survey the science of quantum computer benchmarking. We discuss the role of benchmarks and benchmarking and how good benchmarks can drive and measure progress towards the long-term goal of useful quantum computations, known as quantum utility. We explain how different kinds of benchmark quantify the performance of different parts of a quantum computer, discuss existing benchmarks, examine recent trends in benchmarking, and highlight important open research questions in this field.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Hashim, A. et al. A practical introduction to benchmarking and characterization of quantum computers. Preprint at https://doi.org/10.48550/arXiv.2408.12064 (2024).
Barends, R. et al. Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508, 500–503 (2014).
Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).
Bluvstein, D. et al. Logical quantum processor based on reconfigurable atom arrays. Nature https://doi.org/10.1038/s41586-023-06927-3 (2023).
Kim, Y. et al. Evidence for the utility of quantum computing before fault tolerance. Nature 618, 500–505 (2023).
Moses, S. A. et al. A race-track trapped-ion quantum processor. Phys. Rev. X 13, 041052 (2023).
Chen, J.-S. et al. Benchmarking a trapped-ion quantum computer with 30 qubits. Quantum 8, 1516 (2024).
Gidney, C. & Ekerå, M. How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits. Quantum 5, 433 (2021).
Lee, J. et al. Even more efficient quantum computations of chemistry through tensor hypercontraction. PRX Quantum 2, 030305 (2021).
Rubin, N. C. et al. Quantum computation of stopping power for inertial fusion target design. Proc. Natl Acad. Sci. USA 121, e2317772121 (2024).
Childs, A. M., Maslov, D., Nam, Y., Ross, N. J. & Su, Y. Toward the first quantum simulation with quantum speedup. Proc. Natl Acad. Sci. USA 115, 9456–9461 (2018).
Dongarra, J. J., Luszczek, P. & Petitet, A. The LINPACK benchmark: past, present and future. Concurr. Comput. 15, 803–820 (2003).
Standard Performance Evaluation Corporation. https://spec.org/. Accessed: 2023-12-19.
Ziegler, J. F. & Lanford, W. A. Effect of cosmic rays on computer memories. Science 206, 776–788 (1979).
Tomita, Y. & Svore, K. M. Low-distance surface codes under realistic quantum noise. Phys. Rev. A 90, 062320 (2014).
Campbell, E. T., Terhal, B. M. & Vuillot, C. Roads towards fault-tolerant universal quantum computation. Nature 549, 172–179 (2017).
Eastin, B. & Knill, E. Restrictions on transversal encoded quantum gate sets. Phys. Rev. Lett. 102, 110502 (2009).
Litinski, D. Magic state distillation: not as costly as you think. Quantum 3, 205 (2019).
Krinner, S. et al. Realizing repeated quantum error correction in a distance-three surface code. Nature 605, 669–674 (2022).
Google Quantum AI. Suppressing quantum errors by scaling a surface code logical qubit. Nature 614, 676–681 (2023).
Gupta, R. S. et al. Encoding a magic state with beyond break-even fidelity. Nature 625, 259–263 (2024).
Emerson, J., Alicki, R. & Życzkowski, K. Scalable noise estimation with random unitary operators. J. Opt. B Quantum Semiclass. Opt. 7, S347 (2005).
Emerson, J. et al. Symmetrized characterization of noisy quantum processes. Science 317, 1893–1896 (2007).
Knill, E. et al. Randomized benchmarking of quantum gates. Phys. Rev. A 77, 012307 (2008).
Magesan, E., Gambetta, J. M. & Emerson, J. Scalable and robust randomized benchmarking of quantum processes. Phys. Rev. Lett. 106, 180504 (2011).
Proctor, T. J. et al. Direct randomized benchmarking for multiqubit devices. Phys. Rev. Lett. 123, 030503 (2019).
Hines, J., Hothem, D., Blume-Kohout, R., Whaley, B. & Proctor, T. Fully scalable randomized benchmarking without motion reversal. PRX Quantum 5, 030334 (2024).
McKay, D. C. et al. Benchmarking quantum processor performance at scale. Preprint at https://doi.org/10.48550/arXiv.2311.05933 (2023).
Proctor, T. et al. Scalable randomized benchmarking of quantum computers using mirror circuits. Phys. Rev. Lett. 129, 150502 (2022).
Hines, J. et al. Demonstrating scalable randomized benchmarking of universal gate sets. Phys. Rev. X 13, 041030 (2023).
Combes, J., Granade, C., Ferrie, C. & Flammia, S. T. Logical randomized benchmarking. Preprint at https://doi.org/10.48550/arXiv.1702.03688 (2017).
Helsen, J., Xue, X., Vandersypen, L. M. K. & Wehner, S. A new class of efficient randomized benchmarking protocols. npj Quantum Inf. 5, 71 (2019).
Helsen, J., Roth, I., Onorati, E., Werner, A. H. & Eisert, J. General framework for randomized benchmarking. PRX Quantum 3, 020357 (2022).
Magesan, E. et al. Efficient measurement of quantum gate error by interleaved randomized benchmarking. Phys. Rev. Lett. 109, 080505 (2012).
Córcoles, A. D. et al. Challenges and opportunities of near-term quantum computing systems. Proc. IEEE 108, 1338–1352 (2020).
Eisert, J. et al. Quantum certification and benchmarking. Nat. Rev. Phys. 2, 382–390 (2020).
Kliesch, M. & Roth, I. Theory of quantum system certification. PRX Quantum 2, 010201 (2021).
Carrasco, J., Elben, A., Kokail, C., Kraus, B. & Zoller, P. Theoretical and experimental perspectives of quantum verification. PRX Quantum 2, 010102 (2021).
Chuang, I. L. & Nielsen, M. A. Prescription for experimental determination of the dynamics of a quantum black box. J. Mod. Opt. 44, 2455–2467 (1997).
Gale, W., Guth, E. & Trammell, G. T. Determination of the quantum state by measurements. Phys. Rev. 165, 1434–1436 (1968).
Hradil, Z. Quantum-state estimation. Phys. Rev. A 55, R1561–R1564 (1997).
Poyatos, J. F., Cirac, J. I. & Zoller, P. Complete characterization of a quantum process: the two-bit quantum gate. Phys. Rev. Lett. 78, 390–393 (1997).
Nielsen, E. et al. Gate set tomography. Quantum 5, 557 (2021).
Monroe, C., Meekhof, D. M., King, B. E., Itano, W. M. & Wineland, D. J. Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75, 4714–4717 (1995).
Chuang, I. L., Gershenfeld, N. & Kubinec, M. Experimental implementation of fast quantum searching. Phys. Rev. Lett. 80, 3408–3411 (1998).
Cross, A. W., Bishop, L. S., Sheldon, S., Nation, P. D. & Gambetta, J. M. Validating quantum computers using randomized model circuits. Phys. Rev. A 100, 032328 (2019).
Linke, N. M. et al. Experimental comparison of two quantum computing architectures. Proc. Natl Acad. Sci. USA 114, 3305–3310 (2017).
Blume-Kohout, R. & Young, K. C. A volumetric framework for quantum computer benchmarks. Quantum 4, 362 (2020).
Boixo, S. et al. Characterizing quantum supremacy in near-term devices. Nat. Phys. 14, 595–600 (2018).
Erhard, A. et al. Characterizing large-scale quantum computers via cycle benchmarking. Nat. Commun. 10, 5347 (2019).
Proctor, T., Rudinger, K., Young, K., Nielsen, E. & Blume-Kohout, R. Measuring the capabilities of quantum computers. Nat. Phys. 18, 75–79 (2021).
Gulde, S. et al. Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer. Nature 421, 48–50 (2003).
Negrevergne, C. et al. Benchmarking quantum control methods on a 12-qubit system. Phys. Rev. Lett. 96, 170501 (2006).
Lanyon, B. P. et al. Experimental demonstration of a compiled version of Shor’s algorithm with quantum entanglement. Phys. Rev. Lett. 99, 250505 (2007).
DiCarlo, L. et al. Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 460, 240–244 (2009).
Knill, E., Laflamme, R., Martinez, R. & Tseng, C. H. An algorithmic benchmark for quantum information processing. Nature 404, 368–370 (2000).
Jurcevic, P. et al. Demonstration of quantum volume 64 on a superconducting quantum computing system. Quantum Sci. Technol. 6, 025020 (2021).
Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).
Bharti, K. et al. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 94, 015004 (2022).
Chen, S., Cotler, J., Huang, H.-Y. & Li, J. The complexity of NISQ. Nat. Commun. 14, 6001 (2023).
Chen, K. et al. VeriQBench: a benchmark for multiple types of quantum circuits. Preprint at https://doi.org/10.48550/arXiv.2206.10880 (2022).
Wright, K. et al. Benchmarking an 11-qubit quantum computer. Nat. Commun. 10, 5464 (2019).
Tomesh, T. et al. SupermarQ: a scalable quantum benchmark suite. In 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA) 587–603 (IEEE, 2022).
Murali, P. et al. Full-stack, real-system quantum computer studies: architectural comparisons and design insights. In Proc. 46th International Symposium on Computer Architecture (ISCA ’19) 527–540 (ACM, 2019).
Donkers, H., Mesman, K., Al-Ars, Z. & Möller, M. QPack scores: quantitative performance metrics for application-oriented quantum computer benchmarking. Preprint at https://doi.org/10.48550/arXiv.2205.12142 (2022).
Finžgar, J. R., Ross, P., Klepsch, J. & Luckow, A. QUARK: a framework for quantum computing application benchmarking. In 2022 IEEE International Conference on Quantum Computing and Engineering (QCE) 226–237 (IEEE, 2022).
Mills, D., Sivarajah, S., Scholten, T. L. & Duncan, R. Application-motivated, holistic benchmarking of a full quantum computing stack. Quantum 5, 415 (2021).
Lubinski, T. et al. Application-oriented performance benchmarks for quantum computing. IEEE Trans. Quantum Eng. 4, 1–32 (2023).
Lubinski, T. et al. Quantum algorithm exploration using application-oriented performance benchmarks. Preprint at https://doi.org/10.48550/arXiv.2402.08985 (2024).
Lubinski, T. et al. Optimization applications as quantum performance benchmarks. Preprint at https://doi.org/10.48550/arXiv.2302.02278 (2023).
Benedetti, M. et al. A generative modeling approach for benchmarking and training shallow quantum circuits. npj Quantum Inf. 5, 45 (2019).
Li, A. & Krishnamoorthy, S. QASMBench: a low-level QASM benchmark suite for NISQ evaluation and simulation. Preprint at https://doi.org/10.48550/arXiv.2005.13018 (2020).
Quetschlich, N., Burgholzer, L. & Wille, R. MQT bench: benchmarking software and design automation tools for quantum computing. Quantum 7, 1062 (2023).
Dong, Y. & Lin, L. Random circuit block-encoded matrix and a proposal of quantum LINPACK benchmark. Phys. Rev. A 103, 062412 (2021).
Martiel, S., Ayral, T. & Allouche, C. Benchmarking quantum coprocessors in an application-centric, hardware-agnostic, and scalable way. IEEE Trans. Quantum Eng. 2, 1–11 (2021).
van der Schoot, W., Leermakers, D., Wezeman, R., Neumann, N. & Phillipson, F. Evaluating the Q-score of quantum annealers. In 2022 IEEE International Conference on Quantum Software (QSW) 9–16 (2022).
van der Schoot, W., Wezeman, R., Neumann, N. M. P., Phillipson, F. & Kooij, R. Extending the Q-score to an application-level quantum metric framework. Preprint at https://doi.org/10.48550/arXiv.2302.00639 (2023).
Cornelissen, A., Bausch, J. & Gilyén, A. Scalable benchmarks for gate-based quantum computers. Preprint at https://doi.org/10.48550/arXiv.2104.10698 (2021).
Georgopoulos, K., Emary, C. & Zuliani, P. Quantum computer benchmarking via quantum algorithms. Preprint at https://doi.org/10.48550/arXiv.2112.09457 (2021).
Dong, Y., Whaley, K. B. & Lin, L. A quantum Hamiltonian simulation benchmark. npj Quantum Inf. 8, 1–8 (2022).
Kelly, J. et al. Optimal quantum control using randomized benchmarking. Phys. Rev. Lett. 112, 240504 (2014).
Rol, M. A. et al. Restless tuneup of high-fidelity qubit gates. Phys. Rev. Appl. 7, 041001 (2017).
Egger, D. J. & Wilhelm, F. K. Adaptive hybrid optimal quantum control for imprecisely characterized systems. Phys. Rev. Lett. 112, 240503 (2014).
Pino, J. M. et al. Demonstration of the trapped-ion quantum CCD computer architecture. Nature 592, 209–213 (2021).
Sarovar, M. et al. Detecting crosstalk errors in quantum information processors. Quantum 4, 321 (2020).
Gambetta, J. M. et al. Characterization of addressability by simultaneous randomized benchmarking. Phys. Rev. Lett. 109, 240504 (2012).
Harper, R. & Flammia, S. T. Learning correlated noise in a 39-qubit quantum processor. PRX Quantum 4, 040311 (2023).
McKay, D. C., Sheldon, S., Smolin, J. A., Chow, J. M. & Gambetta, J. M. Three-qubit randomized benchmarking. Phys. Rev. Lett. 122, 200502 (2019).
Blume-Kohout, R. et al. A taxonomy of small Markovian errors. PRX Quantum 3, 020335 (2022).
Merkel, S. T., Pritchett, E. J. & Fong, B. H. Randomized benchmarking as convolution: Fourier analysis of gate dependent errors. Quantum 5, 581 (2021).
Proctor, T., Rudinger, K., Young, K., Sarovar, M. & Blume-Kohout, R. What randomized benchmarking actually measures. Phys. Rev. Lett. 119, 130502 (2017).
Wallman, J. J. Randomized benchmarking with gate-dependent noise. Quantum 2, 47 (2018).
Wood, C. J. & Gambetta, J. M. Quantification and characterization of leakage errors. Phys. Rev. A 97, 032306 (2018).
Figueroa-Romero, P., Modi, K., Harris, R. J., Stace, T. M. & Hsieh, M.-H. Randomized benchmarking for non-Markovian noise. PRX Quantum 2, 040351 (2021).
Figueroa-Romero, P. et al. Operational markovianization in randomized benchmarking. Quantum Sci. Technol. 9, 035020 (2024).
Proctor, T. et al. Detecting and tracking drift in quantum information processors. Nat. Commun. 11, 5396 (2020).
Hines, J. & Proctor, T. Scalable full-stack benchmarks for quantum computers. IEEE Trans. Quantum Eng. 5, 1–12 (2024).
Cai, Z. et al. Quantum error mitigation. Rev. Mod. Phys. 95, 045005 (2023).
Kharkov, Y., Ivanova, A., Mikhantiev, E. & Kotelnikov, A. Arline benchmarks: automated benchmarking platform for quantum compilers. Preprint at https://doi.org/10.48550/arXiv.2202.14025 (2022).
Singh, H., Majumder, S. & Mishra, S. Benchmarking of different optimizers in the variational quantum algorithms for applications in quantum chemistry. J. Chem. Phys. https://doi.org/10.1063/5.0161057 (2023).
Efthymiou, S. et al. Qibolab: an open-source hybrid quantum operating system. Quantum 8, 1247 (2024).
Smolin, J. A., Smith, G. & Vargo, A. Oversimplifying quantum factoring. Nature 499, 163–165 (2013).
Google AI Quantum and Collaborators. Hartree-Fock on a superconducting qubit quantum computer. Science 369, 1084–1089 (2020).
Harrigan, M. P. et al. Quantum approximate optimization of non-planar graph problems on a planar superconducting processor. Nat. Phys. 17, 332–336 (2021).
Graham, T. M. et al. Multi-qubit entanglement and algorithms on a neutral-atom quantum computer. Nature 604, 457–462 (2022).
Heinrich, M., Kliesch, M. & Roth, I. Randomized benchmarking with random quantum circuits. Preprint at https://doi.org/10.48550/arXiv.2212.06181 (2022).
Horsman, D., Fowler, A. G., Devitt, S. & Van Meter, R. Surface code quantum computing by lattice surgery. New J. Phys. 14, 123011 (2012).
Govia, L. C. G., Jurcevic, P., Merkel, S. T. & McKay, D. C. A randomized benchmarking suite for mid-circuit measurements. New J. Phys. 25, 123016 (2023).
Hines, J. & Proctor, T. Pauli noise learning for mid-circuit measurements. Preprint at https://doi.org/10.48550/arXiv.2406.09299 (2024).
Zhang, Z., Chen, S., Liu, Y. & Jiang, L. A generalized cycle benchmarking algorithm for characterizing mid-circuit measurements. Preprint at https://doi.org/10.48550/arXiv.2406.02669 (2024).
Begušić, T., Gray, J. & Chan, G. K.-L. Fast and converged classical simulations of evidence for the utility of quantum computing before fault tolerance. Sci. Adv. 10, eadk4321 (2024).
Tindall, J., Fishman, M., Stoudenmire, E. M. & Sels, D. Efficient tensor network simulation of IBM’s Eagle kicked Ising experiment. PRX Quantum 5, 010308 (2024).
Anonymous. Quantum disadvantage: or, simulating IBM’s ‘quantum utility’ experiment with a Commodore 64. In SIGBOVIK24 199–205 (2024).
Fu, R. et al. Achieving energetic superiority through system-level quantum circuit simulation. Preprint at https://doi.org/10.48550/arXiv.2407.00769 (2024).
Willsch, D., Willsch, M., Jin, F., De Raedt, H. & Michielsen, K. Large-scale simulation of Shor’s quantum factoring algorithm. Mathematics 11, 4222 (2023).
Li, Z., Li, J., Dattani, N. S., Umrigar, C. & Chan, G. K. The electronic complexity of the ground-state of the FeMo cofactor of nitrogenase as relevant to quantum simulations. J. Chem. Phys. https://doi.org/10.1063/1.5063376 (2019).
Lee, S. et al. Evaluating the evidence for exponential quantum advantage in ground-state quantum chemistry. Nat. Commun. 14, 1952 (2023).
Reiher, M., Wiebe, N., Svore, K. M., Wecker, D. & Troyer, M. Elucidating reaction mechanisms on quantum computers. Proc. Natl Acad. Sci. USA 114, 7555–7560 (2017).
von Burg, V. et al. Quantum computing enhanced computational catalysis. Phys. Rev. Res. 3, 033055 (2021).
Babbush, R. et al. Encoding electronic spectra in quantum circuits with linear T complexity. Phys. Rev. X 8, 041015 (2018).
Sanders, Y. R. et al. Compilation of fault-tolerant quantum heuristics for combinatorial optimization. PRX Quantum 1, 020312 (2020).
Campbell, E. T. Early fault-tolerant simulations of the Hubbard model. Quantum Sci. Technol. 7, 015007 (2021).
Lemieux, J., Duclos-Cianci, G., Sénéchal, D. & Poulin, D. Resource estimate for quantum many-body ground-state preparation on a quantum computer. Phys. Rev. A 103, 052408 (2021).
Su, Y., Berry, D. W., Wiebe, N., Rubin, N. & Babbush, R. Fault-tolerant quantum simulations of chemistry in first quantization. PRX Quantum 2, 040332 (2021).
Delgado, A. et al. Simulating key properties of lithium-ion batteries with a fault-tolerant quantum computer. Phys. Rev. A 106, 032428 (2022).
Goings, J. J. et al. Reliably assessing the electronic structure of cytochrome P450 on today’s classical computers and tomorrow’s quantum computers. Proc. Natl Acad. Sci. USA 119, e2203533119 (2022).
Kim, I. H. et al. Fault-tolerant resource estimate for quantum chemical simulations: case study on Li-ion battery electrolyte molecules. Phys. Rev. Res. 4, 023019 (2022).
Berry, D. W. et al. Quantum simulation of realistic materials in first quantization using non-local pseudopotentials. Preprint at https://doi.org/10.48550/arXiv.2312.07654 (2023).
Pathak, S., Russo, A. E., Seritan, S. K. & Baczewski, A. D. Quantifying T-gate-count improvements for ground-state-energy estimation with near-optimal state preparation. Phys. Rev. A 107, L040601 (2023).
Rubin, N. C. et al. Fault-tolerant quantum simulation of materials using Bloch orbitals. PRX Quantum 4, 040303 (2023).
Steudtner, M. et al. Fault-tolerant quantum computation of molecular observables. Quantum 7, 1164 (2023).
Zini, M. S. et al. Quantum simulation of battery materials using ionic pseudopotentials. Quantum 7, 1049 (2023).
Agrawal, A. A. et al. Quantifying fault tolerant simulation of strongly correlated systems using the Fermi-Hubbard model. Preprint at https://doi.org/10.48550/arXiv.2406.06511 (2024).
Bellonzi, N. et al. Feasibility of accelerating homogeneous catalyst discovery with fault-tolerant quantum computers. Preprint at https://doi.org/10.48550/arXiv.2406.06335 (2024).
Berry, D. W. et al. Analyzing prospects for quantum advantage in topological data analysis. PRX Quantum 5, 010319 (2024).
Clinton, L. et al. Towards near-term quantum simulation of materials. Nat. Commun. 15, 211 (2024).
Cortes, C. L. et al. Fault-tolerant quantum algorithm for symmetry-adapted perturbation theory. PRX Quantum 5, 010336 (2024).
Elenewski, J. E., Camara, C. M. & Kalev, A. Prospects for NMR spectral prediction on fault-tolerant quantum computers. Preprint at https://doi.org/10.48550/arXiv.2406.09340 (2024).
Fomichev, S. et al. Simulating X-ray absorption spectroscopy of battery materials on a quantum computer. Preprint at https://doi.org/10.48550/arXiv.2405.11015 (2024).
Nguyen, N. et al. Quantum computing for corrosion-resistant materials and anti-corrosive coatings design. Preprint at https://doi.org/10.48550/arXiv.2406.18759 (2024).
Otten, M. et al. Quantum resources required for binding affinity calculations of amyloid beta. Preprint at https://doi.org/10.48550/arXiv.2406.18744 (2024).
Penuel, J. et al. Feasibility of accelerating incompressible computational fluid dynamics simulations with fault-tolerant quantum computers. Preprint at https://doi.org/10.48550/arXiv.2406.06323 (2024).
Pathak, S. et al. Requirements for building effective Hamiltonians using quantum-enhanced density matrix downfolding. Preprint at https://doi.org/10.48550/arXiv.2403.01043 (2024).
Rhodes, M., Kreshchuk, M. & Pathak, S. Exponential improvements in the simulation of lattice gauge theories using near-optimal techniques. Preprint at https://doi.org/10.48550/arXiv.2405.10416 (2024).
Saadatmand, S. et al. Fault-tolerant resource estimation using graph-state compilation on a modular superconducting architecture. Preprint at https://doi.org/10.48550/arXiv.2406.06015 (2024).
Babbush, R. et al. Focus beyond quadratic speedups for error-corrected quantum advantage. PRX Quantum 2, 010103 (2021).
Hoefler, T., Häner, T. & Troyer, M. Disentangling hype from practicality: on realistically achieving quantum advantage. Commun. ACM 66, 82–87 (2023).
Kubica, A. & Beverland, M. E. Universal transversal gates with color codes: a simplified approach. Phys. Rev. A 91, 032330 (2015).
Hothem, D., Young, K., Catanach, T. & Proctor, T. Learning a quantum computer’s capability. IEEE Trans. Quantum Eng. 5, 1–26 (2024).
Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge Univ. Press, 2012).
Murphy, D. C. & Brown, K. R. Controlling error orientation to improve quantum algorithm success rates. Phys. Rev. A 99, 032318 (2019).
Shor, P. W. Algorithms for quantum computation: discrete logarithms and factoring. In Proc. 35th Annual Symposium on Foundations of Computer Science 124–134 https://doi.org/10.1109/SFCS.1994.365700 (IEEE, 1994).
Aharonov, D. & Ben-Or, M. Fault-tolerant quantum computation with constant error rate. SIAM J. Comput. 38, 1207–1282 (2008).
Hangleiter, D., Kliesch, M., Eisert, J. & Gogolin, C. Sample complexity of device-independently certified “quantum supremacy”. Phys. Rev. Lett. 122, 210502 (2019).
Hangleiter, D. & Eisert, J. Computational advantage of quantum random sampling. Rev. Mod. Phys. 95, 035001 (2023).
Gheorghiu, A., Kapourniotis, T. & Kashefi, E. Verification of quantum computation: an overview of existing approaches. Theory Comput. Syst. 63, 715–808 (2019).
Hangleiter, D. & Gullans, M. J. Bell sampling from quantum circuits. Phys. Rev. Lett. 133, 020601 (2024).
Elben, A. et al. Cross-platform verification of intermediate scale quantum devices. Phys. Rev. Lett. 124, 010504 (2020).
Proctor, T. et al. Establishing trust in quantum computations. Preprint at https://doi.org/10.48550/arXiv.2204.07568 (2022).
Ferracin, S., Merkel, S. T., McKay, D. & Datta, A. Experimental accreditation of outputs of noisy quantum computers. Phys. Rev. A 104, 042603 (2021).
Acknowledgements
This material was funded in part by the US Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Quantum Testbed Pathfinder Program. T.P. acknowledges support from an Office of Advanced Scientific Computing Research Early Career award. A.D.B. acknowledges support from the National Nuclear Security Administration’s Advanced Simulation and Computing Program and the Department of Energy (DOE) Office of Fusion Energy Sciences ‘Foundations for quantum simulation of warm dense matter’ project. Sandia National Laboratories is a multi-programme laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the US Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525. All statements of fact, opinion or conclusions contained herein are those of the authors and should not be construed as representing the official views or policies of the US Department of Energy or the US Government.
Author information
Authors and Affiliations
Contributions
All authors contributed to developing the perspective presented here. T.P. and R.B.-K. led the writing of the manuscript, with all authors contributing.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Physics thanks Cornelius Hempel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Proctor, T., Young, K., Baczewski, A.D. et al. Benchmarking quantum computers. Nat Rev Phys 7, 105–118 (2025). https://doi.org/10.1038/s42254-024-00796-z
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s42254-024-00796-z
This article is cited by
-
Measuring error rates of mid-circuit measurements
Nature Communications (2025)