Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Benchmarking quantum computers

Abstract

The rapid pace of development in quantum computing technology has sparked a proliferation of benchmarks to assess the performance of quantum computing hardware and software. However, not all benchmarks are of equal merit. Good ones empower scientists, engineers, programmers and users to understand the power of a computing system, whereas bad ones can misdirect research and inhibit progress. In this Perspective, we survey the science of quantum computer benchmarking. We discuss the role of benchmarks and benchmarking and how good benchmarks can drive and measure progress towards the long-term goal of useful quantum computations, known as quantum utility. We explain how different kinds of benchmark quantify the performance of different parts of a quantum computer, discuss existing benchmarks, examine recent trends in benchmarking, and highlight important open research questions in this field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Quantum computer benchmarks.
Fig. 2: Kinds of benchmark.
Fig. 3: How benchmarks interact with integrated quantum computers.
Fig. 4: Assessing quantum computer performance via capability.

Similar content being viewed by others

References

  1. Hashim, A. et al. A practical introduction to benchmarking and characterization of quantum computers. Preprint at https://doi.org/10.48550/arXiv.2408.12064 (2024).

  2. Barends, R. et al. Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508, 500–503 (2014).

    ADS  MATH  Google Scholar 

  3. Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    ADS  MATH  Google Scholar 

  4. Bluvstein, D. et al. Logical quantum processor based on reconfigurable atom arrays. Nature https://doi.org/10.1038/s41586-023-06927-3 (2023).

  5. Kim, Y. et al. Evidence for the utility of quantum computing before fault tolerance. Nature 618, 500–505 (2023).

    ADS  MATH  Google Scholar 

  6. Moses, S. A. et al. A race-track trapped-ion quantum processor. Phys. Rev. X 13, 041052 (2023).

    MATH  Google Scholar 

  7. Chen, J.-S. et al. Benchmarking a trapped-ion quantum computer with 30 qubits. Quantum 8, 1516 (2024).

    MATH  Google Scholar 

  8. Gidney, C. & Ekerå, M. How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits. Quantum 5, 433 (2021).

    MATH  Google Scholar 

  9. Lee, J. et al. Even more efficient quantum computations of chemistry through tensor hypercontraction. PRX Quantum 2, 030305 (2021).

    ADS  Google Scholar 

  10. Rubin, N. C. et al. Quantum computation of stopping power for inertial fusion target design. Proc. Natl Acad. Sci. USA 121, e2317772121 (2024).

    MATH  Google Scholar 

  11. Childs, A. M., Maslov, D., Nam, Y., Ross, N. J. & Su, Y. Toward the first quantum simulation with quantum speedup. Proc. Natl Acad. Sci. USA 115, 9456–9461 (2018).

    ADS  MathSciNet  MATH  Google Scholar 

  12. Dongarra, J. J., Luszczek, P. & Petitet, A. The LINPACK benchmark: past, present and future. Concurr. Comput. 15, 803–820 (2003).

    MATH  Google Scholar 

  13. Standard Performance Evaluation Corporation. https://spec.org/. Accessed: 2023-12-19.

  14. Ziegler, J. F. & Lanford, W. A. Effect of cosmic rays on computer memories. Science 206, 776–788 (1979).

    ADS  MATH  Google Scholar 

  15. Tomita, Y. & Svore, K. M. Low-distance surface codes under realistic quantum noise. Phys. Rev. A 90, 062320 (2014).

    ADS  MATH  Google Scholar 

  16. Campbell, E. T., Terhal, B. M. & Vuillot, C. Roads towards fault-tolerant universal quantum computation. Nature 549, 172–179 (2017).

    ADS  MATH  Google Scholar 

  17. Eastin, B. & Knill, E. Restrictions on transversal encoded quantum gate sets. Phys. Rev. Lett. 102, 110502 (2009).

    ADS  MATH  Google Scholar 

  18. Litinski, D. Magic state distillation: not as costly as you think. Quantum 3, 205 (2019).

    MATH  Google Scholar 

  19. Krinner, S. et al. Realizing repeated quantum error correction in a distance-three surface code. Nature 605, 669–674 (2022).

    ADS  MATH  Google Scholar 

  20. Google Quantum AI. Suppressing quantum errors by scaling a surface code logical qubit. Nature 614, 676–681 (2023).

    ADS  MATH  Google Scholar 

  21. Gupta, R. S. et al. Encoding a magic state with beyond break-even fidelity. Nature 625, 259–263 (2024).

    ADS  MATH  Google Scholar 

  22. Emerson, J., Alicki, R. & Życzkowski, K. Scalable noise estimation with random unitary operators. J. Opt. B Quantum Semiclass. Opt. 7, S347 (2005).

    ADS  MathSciNet  MATH  Google Scholar 

  23. Emerson, J. et al. Symmetrized characterization of noisy quantum processes. Science 317, 1893–1896 (2007).

    ADS  MATH  Google Scholar 

  24. Knill, E. et al. Randomized benchmarking of quantum gates. Phys. Rev. A 77, 012307 (2008).

    ADS  MATH  Google Scholar 

  25. Magesan, E., Gambetta, J. M. & Emerson, J. Scalable and robust randomized benchmarking of quantum processes. Phys. Rev. Lett. 106, 180504 (2011).

    ADS  MATH  Google Scholar 

  26. Proctor, T. J. et al. Direct randomized benchmarking for multiqubit devices. Phys. Rev. Lett. 123, 030503 (2019).

    ADS  MATH  Google Scholar 

  27. Hines, J., Hothem, D., Blume-Kohout, R., Whaley, B. & Proctor, T. Fully scalable randomized benchmarking without motion reversal. PRX Quantum 5, 030334 (2024).

    Google Scholar 

  28. McKay, D. C. et al. Benchmarking quantum processor performance at scale. Preprint at https://doi.org/10.48550/arXiv.2311.05933 (2023).

  29. Proctor, T. et al. Scalable randomized benchmarking of quantum computers using mirror circuits. Phys. Rev. Lett. 129, 150502 (2022).

    ADS  MATH  Google Scholar 

  30. Hines, J. et al. Demonstrating scalable randomized benchmarking of universal gate sets. Phys. Rev. X 13, 041030 (2023).

    MATH  Google Scholar 

  31. Combes, J., Granade, C., Ferrie, C. & Flammia, S. T. Logical randomized benchmarking. Preprint at https://doi.org/10.48550/arXiv.1702.03688 (2017).

  32. Helsen, J., Xue, X., Vandersypen, L. M. K. & Wehner, S. A new class of efficient randomized benchmarking protocols. npj Quantum Inf. 5, 71 (2019).

    ADS  MATH  Google Scholar 

  33. Helsen, J., Roth, I., Onorati, E., Werner, A. H. & Eisert, J. General framework for randomized benchmarking. PRX Quantum 3, 020357 (2022).

    ADS  Google Scholar 

  34. Magesan, E. et al. Efficient measurement of quantum gate error by interleaved randomized benchmarking. Phys. Rev. Lett. 109, 080505 (2012).

    ADS  MATH  Google Scholar 

  35. Córcoles, A. D. et al. Challenges and opportunities of near-term quantum computing systems. Proc. IEEE 108, 1338–1352 (2020).

    MATH  Google Scholar 

  36. Eisert, J. et al. Quantum certification and benchmarking. Nat. Rev. Phys. 2, 382–390 (2020).

    MATH  Google Scholar 

  37. Kliesch, M. & Roth, I. Theory of quantum system certification. PRX Quantum 2, 010201 (2021).

    MATH  Google Scholar 

  38. Carrasco, J., Elben, A., Kokail, C., Kraus, B. & Zoller, P. Theoretical and experimental perspectives of quantum verification. PRX Quantum 2, 010102 (2021).

    MATH  Google Scholar 

  39. Chuang, I. L. & Nielsen, M. A. Prescription for experimental determination of the dynamics of a quantum black box. J. Mod. Opt. 44, 2455–2467 (1997).

    ADS  MATH  Google Scholar 

  40. Gale, W., Guth, E. & Trammell, G. T. Determination of the quantum state by measurements. Phys. Rev. 165, 1434–1436 (1968).

    ADS  MATH  Google Scholar 

  41. Hradil, Z. Quantum-state estimation. Phys. Rev. A 55, R1561–R1564 (1997).

    ADS  MathSciNet  MATH  Google Scholar 

  42. Poyatos, J. F., Cirac, J. I. & Zoller, P. Complete characterization of a quantum process: the two-bit quantum gate. Phys. Rev. Lett. 78, 390–393 (1997).

    ADS  MATH  Google Scholar 

  43. Nielsen, E. et al. Gate set tomography. Quantum 5, 557 (2021).

    MATH  Google Scholar 

  44. Monroe, C., Meekhof, D. M., King, B. E., Itano, W. M. & Wineland, D. J. Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75, 4714–4717 (1995).

    ADS  MathSciNet  MATH  Google Scholar 

  45. Chuang, I. L., Gershenfeld, N. & Kubinec, M. Experimental implementation of fast quantum searching. Phys. Rev. Lett. 80, 3408–3411 (1998).

    ADS  MATH  Google Scholar 

  46. Cross, A. W., Bishop, L. S., Sheldon, S., Nation, P. D. & Gambetta, J. M. Validating quantum computers using randomized model circuits. Phys. Rev. A 100, 032328 (2019).

    ADS  Google Scholar 

  47. Linke, N. M. et al. Experimental comparison of two quantum computing architectures. Proc. Natl Acad. Sci. USA 114, 3305–3310 (2017).

    ADS  MATH  Google Scholar 

  48. Blume-Kohout, R. & Young, K. C. A volumetric framework for quantum computer benchmarks. Quantum 4, 362 (2020).

    MATH  Google Scholar 

  49. Boixo, S. et al. Characterizing quantum supremacy in near-term devices. Nat. Phys. 14, 595–600 (2018).

    MATH  Google Scholar 

  50. Erhard, A. et al. Characterizing large-scale quantum computers via cycle benchmarking. Nat. Commun. 10, 5347 (2019).

    ADS  MATH  Google Scholar 

  51. Proctor, T., Rudinger, K., Young, K., Nielsen, E. & Blume-Kohout, R. Measuring the capabilities of quantum computers. Nat. Phys. 18, 75–79 (2021).

    MATH  Google Scholar 

  52. Gulde, S. et al. Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer. Nature 421, 48–50 (2003).

    ADS  MATH  Google Scholar 

  53. Negrevergne, C. et al. Benchmarking quantum control methods on a 12-qubit system. Phys. Rev. Lett. 96, 170501 (2006).

    ADS  MATH  Google Scholar 

  54. Lanyon, B. P. et al. Experimental demonstration of a compiled version of Shor’s algorithm with quantum entanglement. Phys. Rev. Lett. 99, 250505 (2007).

    ADS  MATH  Google Scholar 

  55. DiCarlo, L. et al. Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 460, 240–244 (2009).

    ADS  MATH  Google Scholar 

  56. Knill, E., Laflamme, R., Martinez, R. & Tseng, C. H. An algorithmic benchmark for quantum information processing. Nature 404, 368–370 (2000).

    ADS  MATH  Google Scholar 

  57. Jurcevic, P. et al. Demonstration of quantum volume 64 on a superconducting quantum computing system. Quantum Sci. Technol. 6, 025020 (2021).

    ADS  MATH  Google Scholar 

  58. Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).

    MATH  Google Scholar 

  59. Bharti, K. et al. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 94, 015004 (2022).

    ADS  MathSciNet  MATH  Google Scholar 

  60. Chen, S., Cotler, J., Huang, H.-Y. & Li, J. The complexity of NISQ. Nat. Commun. 14, 6001 (2023).

    ADS  MATH  Google Scholar 

  61. Chen, K. et al. VeriQBench: a benchmark for multiple types of quantum circuits. Preprint at https://doi.org/10.48550/arXiv.2206.10880 (2022).

  62. Wright, K. et al. Benchmarking an 11-qubit quantum computer. Nat. Commun. 10, 5464 (2019).

    ADS  MATH  Google Scholar 

  63. Tomesh, T. et al. SupermarQ: a scalable quantum benchmark suite. In 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA) 587–603 (IEEE, 2022).

  64. Murali, P. et al. Full-stack, real-system quantum computer studies: architectural comparisons and design insights. In Proc. 46th International Symposium on Computer Architecture (ISCA19) 527–540 (ACM, 2019).

  65. Donkers, H., Mesman, K., Al-Ars, Z. & Möller, M. QPack scores: quantitative performance metrics for application-oriented quantum computer benchmarking. Preprint at https://doi.org/10.48550/arXiv.2205.12142 (2022).

  66. Finžgar, J. R., Ross, P., Klepsch, J. & Luckow, A. QUARK: a framework for quantum computing application benchmarking. In 2022 IEEE International Conference on Quantum Computing and Engineering (QCE) 226–237 (IEEE, 2022).

  67. Mills, D., Sivarajah, S., Scholten, T. L. & Duncan, R. Application-motivated, holistic benchmarking of a full quantum computing stack. Quantum 5, 415 (2021).

    Google Scholar 

  68. Lubinski, T. et al. Application-oriented performance benchmarks for quantum computing. IEEE Trans. Quantum Eng. 4, 1–32 (2023).

    Google Scholar 

  69. Lubinski, T. et al. Quantum algorithm exploration using application-oriented performance benchmarks. Preprint at https://doi.org/10.48550/arXiv.2402.08985 (2024).

  70. Lubinski, T. et al. Optimization applications as quantum performance benchmarks. Preprint at https://doi.org/10.48550/arXiv.2302.02278 (2023).

  71. Benedetti, M. et al. A generative modeling approach for benchmarking and training shallow quantum circuits. npj Quantum Inf. 5, 45 (2019).

    ADS  MATH  Google Scholar 

  72. Li, A. & Krishnamoorthy, S. QASMBench: a low-level QASM benchmark suite for NISQ evaluation and simulation. Preprint at https://doi.org/10.48550/arXiv.2005.13018 (2020).

  73. Quetschlich, N., Burgholzer, L. & Wille, R. MQT bench: benchmarking software and design automation tools for quantum computing. Quantum 7, 1062 (2023).

    MATH  Google Scholar 

  74. Dong, Y. & Lin, L. Random circuit block-encoded matrix and a proposal of quantum LINPACK benchmark. Phys. Rev. A 103, 062412 (2021).

    ADS  MathSciNet  MATH  Google Scholar 

  75. Martiel, S., Ayral, T. & Allouche, C. Benchmarking quantum coprocessors in an application-centric, hardware-agnostic, and scalable way. IEEE Trans. Quantum Eng. 2, 1–11 (2021).

    MATH  Google Scholar 

  76. van der Schoot, W., Leermakers, D., Wezeman, R., Neumann, N. & Phillipson, F. Evaluating the Q-score of quantum annealers. In 2022 IEEE International Conference on Quantum Software (QSW) 9–16 (2022).

  77. van der Schoot, W., Wezeman, R., Neumann, N. M. P., Phillipson, F. & Kooij, R. Extending the Q-score to an application-level quantum metric framework. Preprint at https://doi.org/10.48550/arXiv.2302.00639 (2023).

  78. Cornelissen, A., Bausch, J. & Gilyén, A. Scalable benchmarks for gate-based quantum computers. Preprint at https://doi.org/10.48550/arXiv.2104.10698 (2021).

  79. Georgopoulos, K., Emary, C. & Zuliani, P. Quantum computer benchmarking via quantum algorithms. Preprint at https://doi.org/10.48550/arXiv.2112.09457 (2021).

  80. Dong, Y., Whaley, K. B. & Lin, L. A quantum Hamiltonian simulation benchmark. npj Quantum Inf. 8, 1–8 (2022).

    MATH  Google Scholar 

  81. Kelly, J. et al. Optimal quantum control using randomized benchmarking. Phys. Rev. Lett. 112, 240504 (2014).

    ADS  MATH  Google Scholar 

  82. Rol, M. A. et al. Restless tuneup of high-fidelity qubit gates. Phys. Rev. Appl. 7, 041001 (2017).

    ADS  MATH  Google Scholar 

  83. Egger, D. J. & Wilhelm, F. K. Adaptive hybrid optimal quantum control for imprecisely characterized systems. Phys. Rev. Lett. 112, 240503 (2014).

    ADS  MATH  Google Scholar 

  84. Pino, J. M. et al. Demonstration of the trapped-ion quantum CCD computer architecture. Nature 592, 209–213 (2021).

    ADS  MATH  Google Scholar 

  85. Sarovar, M. et al. Detecting crosstalk errors in quantum information processors. Quantum 4, 321 (2020).

    MATH  Google Scholar 

  86. Gambetta, J. M. et al. Characterization of addressability by simultaneous randomized benchmarking. Phys. Rev. Lett. 109, 240504 (2012).

    ADS  MATH  Google Scholar 

  87. Harper, R. & Flammia, S. T. Learning correlated noise in a 39-qubit quantum processor. PRX Quantum 4, 040311 (2023).

    ADS  MATH  Google Scholar 

  88. McKay, D. C., Sheldon, S., Smolin, J. A., Chow, J. M. & Gambetta, J. M. Three-qubit randomized benchmarking. Phys. Rev. Lett. 122, 200502 (2019).

    ADS  Google Scholar 

  89. Blume-Kohout, R. et al. A taxonomy of small Markovian errors. PRX Quantum 3, 020335 (2022).

    ADS  MATH  Google Scholar 

  90. Merkel, S. T., Pritchett, E. J. & Fong, B. H. Randomized benchmarking as convolution: Fourier analysis of gate dependent errors. Quantum 5, 581 (2021).

    MATH  Google Scholar 

  91. Proctor, T., Rudinger, K., Young, K., Sarovar, M. & Blume-Kohout, R. What randomized benchmarking actually measures. Phys. Rev. Lett. 119, 130502 (2017).

    ADS  MathSciNet  Google Scholar 

  92. Wallman, J. J. Randomized benchmarking with gate-dependent noise. Quantum 2, 47 (2018).

    MATH  Google Scholar 

  93. Wood, C. J. & Gambetta, J. M. Quantification and characterization of leakage errors. Phys. Rev. A 97, 032306 (2018).

    ADS  MATH  Google Scholar 

  94. Figueroa-Romero, P., Modi, K., Harris, R. J., Stace, T. M. & Hsieh, M.-H. Randomized benchmarking for non-Markovian noise. PRX Quantum 2, 040351 (2021).

    ADS  Google Scholar 

  95. Figueroa-Romero, P. et al. Operational markovianization in randomized benchmarking. Quantum Sci. Technol. 9, 035020 (2024).

    ADS  MATH  Google Scholar 

  96. Proctor, T. et al. Detecting and tracking drift in quantum information processors. Nat. Commun. 11, 5396 (2020).

    ADS  MATH  Google Scholar 

  97. Hines, J. & Proctor, T. Scalable full-stack benchmarks for quantum computers. IEEE Trans. Quantum Eng. 5, 1–12 (2024).

    MATH  Google Scholar 

  98. Cai, Z. et al. Quantum error mitigation. Rev. Mod. Phys. 95, 045005 (2023).

    ADS  MathSciNet  MATH  Google Scholar 

  99. Kharkov, Y., Ivanova, A., Mikhantiev, E. & Kotelnikov, A. Arline benchmarks: automated benchmarking platform for quantum compilers. Preprint at https://doi.org/10.48550/arXiv.2202.14025 (2022).

  100. Singh, H., Majumder, S. & Mishra, S. Benchmarking of different optimizers in the variational quantum algorithms for applications in quantum chemistry. J. Chem. Phys. https://doi.org/10.1063/5.0161057 (2023).

  101. Efthymiou, S. et al. Qibolab: an open-source hybrid quantum operating system. Quantum 8, 1247 (2024).

    MATH  Google Scholar 

  102. Smolin, J. A., Smith, G. & Vargo, A. Oversimplifying quantum factoring. Nature 499, 163–165 (2013).

    ADS  MATH  Google Scholar 

  103. Google AI Quantum and Collaborators. Hartree-Fock on a superconducting qubit quantum computer. Science 369, 1084–1089 (2020).

    MathSciNet  MATH  Google Scholar 

  104. Harrigan, M. P. et al. Quantum approximate optimization of non-planar graph problems on a planar superconducting processor. Nat. Phys. 17, 332–336 (2021).

    MATH  Google Scholar 

  105. Graham, T. M. et al. Multi-qubit entanglement and algorithms on a neutral-atom quantum computer. Nature 604, 457–462 (2022).

    ADS  MATH  Google Scholar 

  106. Heinrich, M., Kliesch, M. & Roth, I. Randomized benchmarking with random quantum circuits. Preprint at https://doi.org/10.48550/arXiv.2212.06181 (2022).

  107. Horsman, D., Fowler, A. G., Devitt, S. & Van Meter, R. Surface code quantum computing by lattice surgery. New J. Phys. 14, 123011 (2012).

    ADS  MathSciNet  MATH  Google Scholar 

  108. Govia, L. C. G., Jurcevic, P., Merkel, S. T. & McKay, D. C. A randomized benchmarking suite for mid-circuit measurements. New J. Phys. 25, 123016 (2023).

    ADS  Google Scholar 

  109. Hines, J. & Proctor, T. Pauli noise learning for mid-circuit measurements. Preprint at https://doi.org/10.48550/arXiv.2406.09299 (2024).

  110. Zhang, Z., Chen, S., Liu, Y. & Jiang, L. A generalized cycle benchmarking algorithm for characterizing mid-circuit measurements. Preprint at https://doi.org/10.48550/arXiv.2406.02669 (2024).

  111. Begušić, T., Gray, J. & Chan, G. K.-L. Fast and converged classical simulations of evidence for the utility of quantum computing before fault tolerance. Sci. Adv. 10, eadk4321 (2024).

    Google Scholar 

  112. Tindall, J., Fishman, M., Stoudenmire, E. M. & Sels, D. Efficient tensor network simulation of IBM’s Eagle kicked Ising experiment. PRX Quantum 5, 010308 (2024).

    ADS  MATH  Google Scholar 

  113. Anonymous. Quantum disadvantage: or, simulating IBM’s ‘quantum utility’ experiment with a Commodore 64. In SIGBOVIK24 199–205 (2024).

  114. Fu, R. et al. Achieving energetic superiority through system-level quantum circuit simulation. Preprint at https://doi.org/10.48550/arXiv.2407.00769 (2024).

  115. Willsch, D., Willsch, M., Jin, F., De Raedt, H. & Michielsen, K. Large-scale simulation of Shor’s quantum factoring algorithm. Mathematics 11, 4222 (2023).

    MATH  Google Scholar 

  116. Li, Z., Li, J., Dattani, N. S., Umrigar, C. & Chan, G. K. The electronic complexity of the ground-state of the FeMo cofactor of nitrogenase as relevant to quantum simulations. J. Chem. Phys. https://doi.org/10.1063/1.5063376 (2019).

  117. Lee, S. et al. Evaluating the evidence for exponential quantum advantage in ground-state quantum chemistry. Nat. Commun. 14, 1952 (2023).

    ADS  MATH  Google Scholar 

  118. Reiher, M., Wiebe, N., Svore, K. M., Wecker, D. & Troyer, M. Elucidating reaction mechanisms on quantum computers. Proc. Natl Acad. Sci. USA 114, 7555–7560 (2017).

    ADS  Google Scholar 

  119. von Burg, V. et al. Quantum computing enhanced computational catalysis. Phys. Rev. Res. 3, 033055 (2021).

    Google Scholar 

  120. Babbush, R. et al. Encoding electronic spectra in quantum circuits with linear T complexity. Phys. Rev. X 8, 041015 (2018).

    MATH  Google Scholar 

  121. Sanders, Y. R. et al. Compilation of fault-tolerant quantum heuristics for combinatorial optimization. PRX Quantum 1, 020312 (2020).

    MATH  Google Scholar 

  122. Campbell, E. T. Early fault-tolerant simulations of the Hubbard model. Quantum Sci. Technol. 7, 015007 (2021).

    ADS  MATH  Google Scholar 

  123. Lemieux, J., Duclos-Cianci, G., Sénéchal, D. & Poulin, D. Resource estimate for quantum many-body ground-state preparation on a quantum computer. Phys. Rev. A 103, 052408 (2021).

    ADS  MathSciNet  Google Scholar 

  124. Su, Y., Berry, D. W., Wiebe, N., Rubin, N. & Babbush, R. Fault-tolerant quantum simulations of chemistry in first quantization. PRX Quantum 2, 040332 (2021).

    ADS  MATH  Google Scholar 

  125. Delgado, A. et al. Simulating key properties of lithium-ion batteries with a fault-tolerant quantum computer. Phys. Rev. A 106, 032428 (2022).

    ADS  MATH  Google Scholar 

  126. Goings, J. J. et al. Reliably assessing the electronic structure of cytochrome P450 on today’s classical computers and tomorrow’s quantum computers. Proc. Natl Acad. Sci. USA 119, e2203533119 (2022).

    Google Scholar 

  127. Kim, I. H. et al. Fault-tolerant resource estimate for quantum chemical simulations: case study on Li-ion battery electrolyte molecules. Phys. Rev. Res. 4, 023019 (2022).

    MATH  Google Scholar 

  128. Berry, D. W. et al. Quantum simulation of realistic materials in first quantization using non-local pseudopotentials. Preprint at https://doi.org/10.48550/arXiv.2312.07654 (2023).

  129. Pathak, S., Russo, A. E., Seritan, S. K. & Baczewski, A. D. Quantifying T-gate-count improvements for ground-state-energy estimation with near-optimal state preparation. Phys. Rev. A 107, L040601 (2023).

    ADS  Google Scholar 

  130. Rubin, N. C. et al. Fault-tolerant quantum simulation of materials using Bloch orbitals. PRX Quantum 4, 040303 (2023).

    ADS  MATH  Google Scholar 

  131. Steudtner, M. et al. Fault-tolerant quantum computation of molecular observables. Quantum 7, 1164 (2023).

    MATH  Google Scholar 

  132. Zini, M. S. et al. Quantum simulation of battery materials using ionic pseudopotentials. Quantum 7, 1049 (2023).

    MATH  Google Scholar 

  133. Agrawal, A. A. et al. Quantifying fault tolerant simulation of strongly correlated systems using the Fermi-Hubbard model. Preprint at https://doi.org/10.48550/arXiv.2406.06511 (2024).

  134. Bellonzi, N. et al. Feasibility of accelerating homogeneous catalyst discovery with fault-tolerant quantum computers. Preprint at https://doi.org/10.48550/arXiv.2406.06335 (2024).

  135. Berry, D. W. et al. Analyzing prospects for quantum advantage in topological data analysis. PRX Quantum 5, 010319 (2024).

    ADS  MATH  Google Scholar 

  136. Clinton, L. et al. Towards near-term quantum simulation of materials. Nat. Commun. 15, 211 (2024).

    ADS  MATH  Google Scholar 

  137. Cortes, C. L. et al. Fault-tolerant quantum algorithm for symmetry-adapted perturbation theory. PRX Quantum 5, 010336 (2024).

    ADS  MATH  Google Scholar 

  138. Elenewski, J. E., Camara, C. M. & Kalev, A. Prospects for NMR spectral prediction on fault-tolerant quantum computers. Preprint at https://doi.org/10.48550/arXiv.2406.09340 (2024).

  139. Fomichev, S. et al. Simulating X-ray absorption spectroscopy of battery materials on a quantum computer. Preprint at https://doi.org/10.48550/arXiv.2405.11015 (2024).

  140. Nguyen, N. et al. Quantum computing for corrosion-resistant materials and anti-corrosive coatings design. Preprint at https://doi.org/10.48550/arXiv.2406.18759 (2024).

  141. Otten, M. et al. Quantum resources required for binding affinity calculations of amyloid beta. Preprint at https://doi.org/10.48550/arXiv.2406.18744 (2024).

  142. Penuel, J. et al. Feasibility of accelerating incompressible computational fluid dynamics simulations with fault-tolerant quantum computers. Preprint at https://doi.org/10.48550/arXiv.2406.06323 (2024).

  143. Pathak, S. et al. Requirements for building effective Hamiltonians using quantum-enhanced density matrix downfolding. Preprint at https://doi.org/10.48550/arXiv.2403.01043 (2024).

  144. Rhodes, M., Kreshchuk, M. & Pathak, S. Exponential improvements in the simulation of lattice gauge theories using near-optimal techniques. Preprint at https://doi.org/10.48550/arXiv.2405.10416 (2024).

  145. Saadatmand, S. et al. Fault-tolerant resource estimation using graph-state compilation on a modular superconducting architecture. Preprint at https://doi.org/10.48550/arXiv.2406.06015 (2024).

  146. Babbush, R. et al. Focus beyond quadratic speedups for error-corrected quantum advantage. PRX Quantum 2, 010103 (2021).

    MATH  Google Scholar 

  147. Hoefler, T., Häner, T. & Troyer, M. Disentangling hype from practicality: on realistically achieving quantum advantage. Commun. ACM 66, 82–87 (2023).

    Google Scholar 

  148. Kubica, A. & Beverland, M. E. Universal transversal gates with color codes: a simplified approach. Phys. Rev. A 91, 032330 (2015).

    ADS  MATH  Google Scholar 

  149. Hothem, D., Young, K., Catanach, T. & Proctor, T. Learning a quantum computer’s capability. IEEE Trans. Quantum Eng. 5, 1–26 (2024).

    Google Scholar 

  150. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge Univ. Press, 2012).

  151. Murphy, D. C. & Brown, K. R. Controlling error orientation to improve quantum algorithm success rates. Phys. Rev. A 99, 032318 (2019).

    ADS  Google Scholar 

  152. Shor, P. W. Algorithms for quantum computation: discrete logarithms and factoring. In Proc. 35th Annual Symposium on Foundations of Computer Science 124–134 https://doi.org/10.1109/SFCS.1994.365700 (IEEE, 1994).

  153. Aharonov, D. & Ben-Or, M. Fault-tolerant quantum computation with constant error rate. SIAM J. Comput. 38, 1207–1282 (2008).

    MathSciNet  MATH  Google Scholar 

  154. Hangleiter, D., Kliesch, M., Eisert, J. & Gogolin, C. Sample complexity of device-independently certified “quantum supremacy”. Phys. Rev. Lett. 122, 210502 (2019).

    ADS  MATH  Google Scholar 

  155. Hangleiter, D. & Eisert, J. Computational advantage of quantum random sampling. Rev. Mod. Phys. 95, 035001 (2023).

    ADS  MathSciNet  MATH  Google Scholar 

  156. Gheorghiu, A., Kapourniotis, T. & Kashefi, E. Verification of quantum computation: an overview of existing approaches. Theory Comput. Syst. 63, 715–808 (2019).

    MathSciNet  MATH  Google Scholar 

  157. Hangleiter, D. & Gullans, M. J. Bell sampling from quantum circuits. Phys. Rev. Lett. 133, 020601 (2024).

    MathSciNet  Google Scholar 

  158. Elben, A. et al. Cross-platform verification of intermediate scale quantum devices. Phys. Rev. Lett. 124, 010504 (2020).

    ADS  Google Scholar 

  159. Proctor, T. et al. Establishing trust in quantum computations. Preprint at https://doi.org/10.48550/arXiv.2204.07568 (2022).

  160. Ferracin, S., Merkel, S. T., McKay, D. & Datta, A. Experimental accreditation of outputs of noisy quantum computers. Phys. Rev. A 104, 042603 (2021).

    ADS  Google Scholar 

Download references

Acknowledgements

This material was funded in part by the US Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Quantum Testbed Pathfinder Program. T.P. acknowledges support from an Office of Advanced Scientific Computing Research Early Career award. A.D.B. acknowledges support from the National Nuclear Security Administration’s Advanced Simulation and Computing Program and the Department of Energy (DOE) Office of Fusion Energy Sciences ‘Foundations for quantum simulation of warm dense matter’ project. Sandia National Laboratories is a multi-programme laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the US Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525. All statements of fact, opinion or conclusions contained herein are those of the authors and should not be construed as representing the official views or policies of the US Department of Energy or the US Government.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to developing the perspective presented here. T.P. and R.B.-K. led the writing of the manuscript, with all authors contributing.

Corresponding author

Correspondence to Timothy Proctor.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Cornelius Hempel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Proctor, T., Young, K., Baczewski, A.D. et al. Benchmarking quantum computers. Nat Rev Phys 7, 105–118 (2025). https://doi.org/10.1038/s42254-024-00796-z

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s42254-024-00796-z

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics