Abstract
Insect respiration is characterized by the rapid transport of respiratory gases within the organism and efficient exchange with the external environment. The unique respiratory system of insects comprises a network of tracheal tubes that directly supply oxygen to the cells throughout the body of an insect, eliminating the need for blood as an intermediate oxygen carrier. The remarkable diversity of insects and their exceptionally high aerobic scope, possibly the highest in the animal kingdom, demonstrate the success of their respiratory strategy. Microfluidic technology, particularly in the domain of gas microfluidics, also stands to benefit from emulating the mechanical proficiency demonstrated by insects in manipulating fluids at the microscale. Despite this significance, current understanding of the fundamental principles underlying insect respiration is incomplete. This Review presents an overview of insect respiratory physics and identifies promising areas for future investigations.
Key points
-
Insects achieve some of the highest mass-specific metabolic rates in the animal kingdom owing to their unique, efficient respiratory systems that rapidly transport oxygen directly to the tissues.
-
The flow physics of insect respiration is notable because the respiratory airflows of insects involve both low Reynolds numbers and high Knudsen numbers, placing them simultaneously in the slow, creeping and rarefied flow regimes — an unusual intersection.
-
The respiratory efficiency of insects may also be attributed to hydrodynamic slip in a substantial proportion of tracheae, which reduces viscous losses.
-
Respiratory air flows in the rhythmic tracheal compression regime may be actuated and controlled via a single actuation signal — the abdominal compression frequency of an insect — working in conjunction with the intelligent, distributed, passive collapse mechanics of the tracheal network.
-
Mathematical, computational and microfluidic models of insect respiration are essential for deepening our understanding of insect respiratory mechanisms and for translating their highly efficient microscale fluid-handling strategies into technologies.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Mayhew, P. J. Why are there so many insect species? Perspectives from fossils and phylogenies. Biol. Rev. 82, 425–454 (2007).
Wegener, G. Flying insects: model systems in exercise physiology. Experientia 52, 404–412 (1996).
May, R. M. How many species are there on earth? Science 241, 1441–1449 (1988).
Chapman, A. D. Numbers of Living Species in Australia and the World 2nd edn (Department of the Environment, Water, Heritage and the Arts: Canberra, 2009).
Wigglesworth, V. B. A theory of tracheal respiration in insects. Proc. R. Soc. Lond. B 106, 229–250 (1930).
Wigglesworth, V. B. The respiration of insects. Biol. Rev. 6, 181–220 (1931).
Wigglesworth, V. B. The Principles of Insect Physiology (Methuen & Co., 1950).
Wigglesworth, V. B. The hormonal regulation of growth and reproduction in insects. Adv. Insect Physiol. 2, 247–336 (1964).
Wigglesworth, V. B. The physiology of insect tracheoles. Adv. Insect Physiol. 17, 85–148 (1983).
Wigglesworth, V. B. The properties of the lining membrane of the insect tracheal system. Tissue Cell 22, 231–238 (1990).
Gnaiger, E., Steinlechner-Maran, R., Méndez, G., Eberl, T. & Margreiter, R. Control of mitochondrial and cellular respiration by oxygen. J. Bioenerg. Biomembr. 27, 583–596 (1995).
Weibel, E. R. The Pathway for Oxygen: Structure and Function in the Mammalian Respiratory System (Harvard Univ. Press, 1984).
Locke, M. The structure of insect tracheae. J. Cell Sci. 3, 487–492 (1957).
Pickard, W. F. Transition regime diffusion and the structure of the insect tracheolar system. J. Insect Physiol. 20, 947–956 (1974).
Adams, J., Attinger, E. & Attinger, F. Cluster analysis of respiratory time series. Biol. Cybern. 28, 183–190 (1978).
Harrison, J. F., Woods, H. A. & Roberts, S. P. Ecological and Environmental Physiology of Insects (Oxford Univ. Press, 2012).
Contreras, H. L. & Bradley, T. J. The effect of ambient humidity and metabolic rate on the gas-exchange pattern of the semi-aquatic insect Aquarius remigis. J. Exp. Biol. 214, 1086–1091 (2011).
Schimpf, N. G., Matthews, P. G., Wilson, R. S. & White, C. R. Cockroaches breathe discontinuously to reduce respiratory water loss. J. Exp. Biol. 212, 2773–2780 (2009).
Terblanche, J. S., White, C. R., Blackburn, T. M., Marais, E. & Chown, S. L. Scaling of gas exchange cycle frequency in insects. Biol. Lett. 4, 127–129 (2008).
Terblanche, J. S. & Chown, S. L. Effects of flow rate and temperature on cyclic gas exchange in tsetse flies (Diptera, Glossinidae). J. Insect Physiol. 56, 513–521 (2010).
Hetz, S. K. The role of the spiracles in gas exchange during development of Samia cynthia (Lepidoptera, Saturniidae). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 148, 743–754 (2007).
Matthews, P. G. & White, C. R. Discontinuous gas exchange in insects: is it all in their heads? Am. Nat. 177, 130–134 (2011).
Grimaldi, D, Engel, M. S, Engel, M. S & Engel, M. S. Evolution of the Insects (Cambridge Univ. Press, 2005).
Challita, E. J., Seghal, P., Krugner, R. & Bhamla, M. S. Droplet superpropulsion in an energetically constrained insect. Nat. Commun. 14, 860 (2023).
Buck, J. Some physical aspects of insect respiration. Annu. Rev. Entomol. 7, 27–56 (1962).
Harrison, J. F. et al. How locusts breathe. Physiology 28, 18–27 (2013).
Pendar, H., Kenny, M. C. & Socha, J. J. Tracheal compression in pupae of the beetle Zophobas morio. Biol. Lett. 11, 20150259 (2015).
Pendar, H., Aviles, J., Adjerid, K., Schoenewald, C. & Socha, J. J. Functional compartmentalization in the hemocoel of insects. Sci. Rep. 9, 1–12 (2019).
Westneat, M. W., Socha, J. J. & Lee, W.-K. Advances in biological structure, function, and physiology using synchrotron X-ray imaging. Annu. Rev. Physiol. 70, 119–142 (2008).
Westneat, M. W. et al. Tracheal respiration in insects visualized with synchrotron X-ray imaging. Science 299, 558–560 (2003).
Wasserthal, L. T. Interaction of circulation and tracheal ventilation in holometabolous insects. Adv. Insect Physiol. 26, 297–351 (1996).
Wasserthal, L. The open hemolymph system of holometabola and its relation to the tracheal space. Microsc. Anat. Invertebr. 11B, 583–620 (1998).
Wasserthal, L. T., Cloetens, P. & Fink, R. Synchrotron X-ray-videography and -tomography combined with physiological measurements for analysis of circulation and respiration dynamics in insects (Drosophila and Calliphora). In Proc. German Conference for Research with Synchrotron Radiation, Neutrons and Ion Beams at Large-Scale Facilities, Hamburg (SNI, 2006).
Socha, J. J. & De Carlo, F. Use of synchrotron tomography to image naturalistic anatomy in insects. In Proc. SPIE: Developments in X-Ray Tomography VI Vol. 7078, 82–88 (SPIE, 2008).
Wasserthal, L. T., Cloetens, P., Fink, R. H. & Wasserthal, L. K. X-ray computed tomography study of the flight-adapted tracheal system in the blowfly Calliphora vicina, analysing the ventilation mechanism and flow-directing valves. J. Exp. Biol. 221, jeb176024 (2018).
Alba-Tercedor, J., Alba-Alejandre, I. & Vega, F. E. Revealing the respiratory system of the coffee berry borer (Hypothenemus hampei; Coleoptera: Curculionidae: Scolytinae) using micro-computed tomography. Sci. Rep. 9, 17753 (2019).
Harrison, J. F. et al. Developmental plasticity and stability in the tracheal networks supplying Drosophila flight muscle in response to rearing oxygen level. J. Insect Physiol. 106, 189–198 (2018).
Nation, J. L. A new method using hexamethyldisilazane for preparation of soft insect tissues for scanning electron microscopy. Stain Technol. 58, 347–351 (1983).
Meyer, E. P. Corrosion casts as a method for investigation of the insect tracheal system. Cell Tissue Res. 256, 1–6 (1989).
Wasserthal, L. T. Functional morphology of the heart and of a new cephalic pulsatile organ in the blowfly Calliphora vicina (Diptera: Calliphoridae) and their roles in hemolymph transport and tracheal ventilation. Int. J. Insect Morphol. Embryol. 28, 111–129 (1999).
Webster, M. R., Socha, J. J., Teresi, L., Nardinocchi, P. & De Vita, R. Structure of tracheae and the functional implications for collapse in the American cockroach. Bioinspir. Biomim. 10, 066011 (2015).
Sánchez-Higueras, C., Sotillos, S. & Hombría, J. C.-G. Common origin of insect trachea and endocrine organs from a segmentally repeated precursor. Curr. Biol. 24, 76–81 (2014).
Jang, S. et al. Dual oxidase enables insect gut symbiosis by mediating respiratory network formation. Proc. Natl Acad. Sci. USA 118, e2020922118 (2021).
Krogh, A. The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. J. Physiol. 52, 409 (1919).
Krogh, A. Studien über tracheenrespiration: II. Über gasdiffusion in den tracheen. Pflüger’s Arch. 179, 95–112 (1920).
Krogh, A. The Comparative Physiology of Respiratory Mechanisms (Univ. of Pennsylvania Press, 1941).
Simelane, S., Abelman, S. & Duncan, F. Gas exchange models for a flexible insect tracheal system. Acta Biotheor. 64, 161–196 (2016).
Lawley, S. D., Reed, M. C. & Nijhout, H. F. Spiracular fluttering increases oxygen uptake. PLoS One 15, e0232450 (2020).
Berezhkovskii, A. M. & Shvartsman, S. Y. Diffusive flux in a model of stochastically gated oxygen transport in insect respiration. J. Chem. Phys. 144, 204101 (2016).
Grieshaber, B. J. & Terblanche, J. S. A computational model of insect discontinuous gas exchange: a two-sensor, control systems approach. J. Theor. Biol. 374, 138–151 (2015).
Snyder, G., Sheafor, B., Scholnick, D. & Farrelly, C. Gas exchange in the insect tracheal system. J. Theor. Biol. 172, 199–207 (1995).
Crisp, D. in Recent Progress in Surface Science Vol. 2, 377–425 (Elsevier, 1964).
Rahn, H. & Paganelli, C. V. Gas exchange in gas gills of diving insects. Respir. Physiol. 5, 145–164 (1968).
Flynn, M. R. & Bush, J. W. Underwater breathing: the mechanics of plastron respiration. J. Fluid Mech. 608, 275–296 (2008).
Roh, C. & Gharib, M. Asymmetry in the jet opening: underwater jet vectoring mechanism by dragonfly larvae. Bioinspir. Biomim. 13, 046007 (2018).
Roh, C. & Gharib, M. Honeybees use their wings for water surface locomotion. Proc. Natl Acad. Sci. USA 116, 24446–24451 (2019).
Byron, M. L. et al. Metachronal motion across scales: current challenges and future directions. Integr. Comp. Biol. 61, 1674–1688 (2021).
Chantarawong, N. & Byron, M. Boatmen and backswimmers and beetles, oh my: intermediate Reynolds number locomotion in aquatic insects. Integr Comp. Biol. 61, E1076–E1077 (2021).
Sensenig, A. T., Kiger, K. T. & Shultz, J. W. Hydrodynamic pumping by serial gill arrays in the mayfly nymph Centroptilum triangulifer. J. Exp. Biol. 213, 3319–3331 (2010).
Chown, S. & Nicolson, S. Insect Physiological Ecology: Mechanisms and Patterns (Oxford Univ. Press, 2004).
Lighton, J. R. Discontinuous gas exchange in insects. Annu. Rev. Entomol. 41, 309–324 (1996).
Quinlan, M. C. & Gibbs, A. G. Discontinuous gas exchange in insects. Respir. Physiol. Neurobiol. 154, 18–29 (2006).
Aboelkassem, Y., Staples, A. E. & Socha, J. J. Microscale flow pumping inspired by rhythmic tracheal compressions in insects. In Proc. ASME 2011 Pressure Vessels and Piping Conference. Volume 4: Fluid-Structure Interaction 471–479 (ASME, 2011).
Aboelkassem, Y. Novel Bioinspired Pumping Models for Microscale Flow Transport. PhD thesis, Virginia Tech (2012).
Aboelkassem, Y. & Staples, A. E. Flow transport in a microchannel induced by moving wall contractions: a novel micropumping mechanism. Acta Mech. 223, 463–480 (2012).
Aboelkassem, Y. & Staples, A. E. Selective pumping in a network: insect-style microscale flow transport. Bioinspir. Biomim. 8, 026004 (2013).
Aboelkassem, Y. & Staples, A. E. A bioinspired pumping model for flow in a microtube with rhythmic wall contractions. J. Fluids Struct. 42, 187–204 (2013).
Aboelkassem, Y. & Staples, A. E. Stokeslets-meshfree computations and theory for flow in a collapsible microchannel. Theor. Comput. Fluid Dyn. 27, 681–700 (2013).
Aboelkassem, Y. & Staples, A. E. A three-dimensional model for flow pumping in a microchannel inspired by insect respiration. Acta Mech. 225, 493–507 (2014).
Aboelkassem, Y. Insect-inspired micropump: flow in a tube with local contractions. Micromachines 6, 1143–1156 (2015).
Chatterjee, K. & Staples, A. Slip flow in a microchannel driven by rhythmic wall contractions. Acta Mech. 229, 4113–4129 (2018).
Simelane, S., Abelman, S. & Duncan, F. Microscale gaseous slip flow in the insect trachea and tracheoles. Acta Biotheor. 65, 211–231 (2017).
Chatterjee, K., Graybill, P. M., Socha, J. J., Davalos, R. V. & Staples, A. E. Frequency-specific, valveless flow control in insect-mimetic microfluidic devices. Bioinspir. Biomim. 16, 036004 (2021).
Bhandari, D., Tripathi, D. & Narla, V. Pumping flow model for couple stress fluids with a propagative membrane contraction. Int. J. Mech. Sci. 188, 105949 (2020).
Bhandari, D., Tripathi, D. & Prakash, J. Insight into Newtonian fluid flow and heat transfer in vertical microchannel subject to rhythmic membrane contraction due to pressure gradient and buoyancy forces. Int. J. Heat Mass Transf. 184, 122249 (2022).
Tripathi, D., Narla, V. & Aboelkassem, Y. Electrokinetic membrane pumping flow model in a microchannel. Phys. Fluids 32, 082004 (2020).
Narla, V., Tripathi, D., Bhandari, D. & Bég, O. A. Electrokinetic insect-bioinspired membrane pumping in a high aspect ratio bio-microfluidic system. Microfluid. Nanofluid. 26, 85 (2022).
Zaslavsky, S. et al. Scaling analysis of taenidia in beetle (Zophobas morio) tracheae. In Proc. 2024 Society for Integrative and Comparative Biology Annual Meeting Vol. 64, S557–S558 (Oxford Univ. Press, 2024).
Chown, S. L. & Gaston, K. J. Exploring links between physiology and ecology at macro-scales: the role of respiratory metabolism in insects. Biol. Rev. 74, 87–120 (1999).
Gudowska, A., Boardman, L. & Terblanche, J. S. The closed spiracle phase of discontinuous gas exchange predicts diving duration in the grasshopper Paracinema tricolor. J. Exp. Biol. 219, 2423–2425 (2016).
Matthews, P. G. & Seymour, R. S. Diving insects boost their buoyancy bubbles. Nature 441, 171 (2006).
Chown, S. L. et al. Discontinuous gas exchange in insects: a clarification of hypotheses and approaches. Physiol. Biochem. Zool. 79, 333–343 (2006).
Groenewald, B., Chown, S. L. & Terblanche, J. S. A hierarchy of factors influence discontinuous gas exchange in the grasshopper Paracinema tricolor (Orthoptera: Acrididae). J. Exp. Biol. 217, 3407–3415 (2014).
Lehmann, F.-O. Matching spiracle opening to metabolic need during flight in Drosophila. Science 294, 1926–1929 (2001).
Lehmann, F.-O. & Heymann, N. Unconventional mechanisms control cyclic respiratory gas release in flying Drosophila. J. Exp. Biol. 208, 3645–3654 (2005).
Marais, E., Klok, C. J., Terblanche, J. S. & Chown, S. L. Insect gas exchange patterns: a phylogenetic perspective. J. Exp. Biol. 208, 4495–4507 (2005).
Wilkins, M. A temperature-dependent endogenous rhythm in the rate of carbon dioxide output of Periplaneta americana. Nature 185, 481–482 (1960).
Punt, A., Parser, W. & Kuchlein, J. Oxygen uptake in insects with cyclic CO2 release. Biol. Bull. 112, 108–119 (1957).
Schneiderman, H. A. Discontinuous respiration in insects: role of the spiracles. Biol. Bull. 119, 494–528 (1960).
Schneiderman, H. A. & Schechter, A. N. Discontinuous respiration in insects — V. Pressure and volume changes in the tracheal system of silkworm pupae. J. Insect Physiol. 12, 1143–1170 (1966).
Levy, R. I. & Schneiderman, H. A. Discontinuous respiration in insects — II. the direct measurement and significance of changes in tracheal gas composition during the respiratory cycle of silkworm pupae. J. Insect Physiol. 12, 83–104 (1966).
Lighton, J. R. & Berrigan, D. Questioning paradigms: caste-specific ventilation in harvester ants, Messor pergandei and M. julianus (Hymenoptera: Formicidae). J. Exp. Biol. 198, 521–530 (1995).
Hoffmann, K. H. Environmental Physiology and Biochemistry of Insects (Springer, 2012).
Chown, S. Respiratory water loss in insects. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 133, 791–804 (2002).
Terblanche, J. S. & Woods, H. A. Why do models of insect respiratory patterns fail? J. Exp. Biol. 221, jeb130039 (2018).
Waters, J. S., Lee, W.-K., Westneat, M. W. & Socha, J. J. Dynamics of tracheal compression in the horned passalus beetle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 304, R621–R627 (2013).
Greenlee, K. J. et al. Hypoxia-induced compression in the tracheal system of the tobacco hornworm caterpillar, Manduca sexta. J. Exp. Biol. 216, 2293–2301 (2013).
Hochgraf, J. S., Waters, J. S. & Socha, J. J. Patterns of tracheal compression in the thorax of the ground beetle, Platynus decentis. Yale J. Biol. Med. 91, 409 (2018).
Abbas, W., Withers, P. C. & Evans, T. A. Gas exchange patterns for a small, stored-grain insect pest, Tribolium castaneum. Bull. Entomol. Res. 113, 361–367 (2023).
Bradley, T. J. in Hypoxia and The Circulation (eds Roach, R. C. et al.) 211–220 (Springer, 2007).
Arkilic, E. B., Schmidt, M. A. & Breuer, K. S. Gaseous slip flow in long microchannels. J. Microelectromech. Syst. 6, 167–178 (1997).
Adjerid, K. The Biomechanics of Tracheal Compression in the Darkling Beetle, Zophobas morio. PhD thesis, Virginia Tech (2019).
Murray, C. D. The physiological principle of minimum work: I. The vascular system and the cost of blood volume. Proc. Natl Acad. Sci. USA 12, 207–214 (1926).
Murray, C. D. The physiological principle of minimum work: II. Oxygen exchange in capillaries. Proc. Natl Acad. Sci. USA 12, 299–304 (1926).
Sherman, T. F. On connecting large vessels to small. The meaning of Murray’s law. J. Gen. Physiol. 78, 431–453 (1981).
McCulloh, K. A., Sperry, J. S. & Adler, F. R. Water transport in plants obeys Murray’s law. Nature 421, 939–942 (2003).
McCulloh, K. A. & Sperry, J. S. in Ecology and Biomechanics (eds Herrel, A. et al) 85–100 (Taylor & Francis, 2006).
Williams, H. R., Trask, R. S., Weaver, P. M. & Bond, I. P. Minimum mass vascular networks in multifunctional materials. J. R. Soc. Interface 5, 55–65 (2008).
Socha, J. J., Förster, T. D. & Greenlee, K. J. Issues of convection in insect respiration: insights from synchrotron X-ray imaging and beyond. Respir. Physiol. Neurobiol. 173, S65–S73 (2010).
Aitkenhead, I. J. et al. Tracheal branching in ants is area-decreasing, violating a central assumption of network transport models. PLoS Comput. Biol. https://doi.org/10.1371/journal.pcbi.1007853 (2020).
Zheng, X. et al. Bio-inspired Murray materials for mass transfer and activity. Nat. Commun. 8, 14921 (2017).
Wiedeman, M. P., Tuma, R. F. & Mayrovitz, H. N. Defining the precapillary sphincter. Microvasc. Res. 12, 71–75 (1976).
Segal, S. S. Regulation of blood flow in the microcirculation. Microcirculation 12, 33–45 (2005).
Gutterman, D. D. et al. The human microcirculation: regulation of flow and beyond. Circ. Res. 118, 157–172 (2016).
Harrison, J. F. in Encyclopedia of Insects 1011–1015 (Elsevier, 2009).
Snelling, E. P., Seymour, R. S., Runciman, S., Matthews, P. G. & White, C. R. Symmorphosis and the insect respiratory system: allometric variation. J. Exp. Biol. 214, 3225–3237 (2011).
Snelling, E. P., Seymour, R. S., Matthews, P. G. & White, C. R. Maximum metabolic rate, relative lift, wingbeat frequency and stroke amplitude during tethered flight in the adult locust Locusta migratoria. J. Exp. Biol. 215, 3317–3323 (2012).
Snelling, E. P., Seymour, R. S., Runciman, S., Matthews, P. G. & White, C. R. Symmorphosis and the insect respiratory system: a comparison between flight and hopping muscle. J. Exp. Biol. 215, 3324–3333 (2012).
Ikada, Y. Challenges in tissue engineering. J. R. Soc. Interface 3, 589–601 (2006).
Ramirez-San Juan, G. R. et al. Multi-scale spatial heterogeneity enhances particle clearance in airway ciliary arrays. Nat. Phys. 16, 958–964 (2020).
Lighton, J. R. Discontinuous ventilation in terrestrial insects. Physiol. Zool. 67, 142–162 (1994).
Greenlee, K. J. et al. Synchrotron imaging of the grasshopper tracheal system: morphological and physiological components of tracheal hypermetry. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297, R1343–R1350 (2009).
Nunome, J. Studies on the respiration of the silkworm. (I) Diffusion of oxygen in the respiratory system of the silkworm. Bull. Ser. Exp. Stn Jpn 12, 17–39 (1944).
Nunome, J. Studies on the respiration of the silkworm. (III) On the air current of respiration. J. Sericult. Sci. Jpn 20, 111–127 (1951).
Weis-Fogh, T. Diffusion in insect wing muscle, the most active tissue known. J. Exp. Biol. 41, 229–256 (1964).
Pfitzner, J. Poiseuille and his law. Anaesthesia 31, 273–275 (1976).
Polilov, A. Anatomy of the feather-winged beetles Acrotrichis montandoni and Ptilium myrmecophilum (Coleoptera, Ptiliidae). Zool. Zhurnal 84, 181–189 (2005).
Polilov, A. Features of the structure of hymenoptera associated with miniaturization: 1. Anatomy of the fairyfly Anaphes flavipes (Hymenoptera, Mymaridae). Entomol. Rev. 96, 407–418 (2016).
Beament, J. The waterproofing mechanism of arthropods: II. The permeability of the cuticle of some aquatic insects. J. Exp. Biol. 38, 277–290 (1961).
Jones, K. K., Cooper, S. J. & Seymour, R. S. Cutaneous respiration by diving beetles from underground aquifers of Western Australia (Coleoptera: Dytiscidae). J. Exp. Biol. 222, jeb196659 (2019).
Thorpe, W. Tracheal and blood gills in aquatic insect larvae. Nature 131, 549–550 (1933).
Kehl, S. & Dettner, K. Surviving submerged-setal tracheal gills for gas exchange in adult rheophilic diving beetles. J. Morphol. 270, 1348–1355 (2009).
Thorpe, W. H. & Crisp, D. Studies on plastron respiration: I. The biology of Aphelocheirus [Hemiptera, Aphelocheiridae (Naucoridae)] and the mechanism of plastron retention. J. Exp. Biol. 24, 227–269 (1947).
Thorpe, W. Plastron respiration in aquatic insects. Biol. Rev. 25, 344–390 (1950).
Socha, J. J. et al. Correlated patterns of tracheal compression and convective gas exchange in a carabid beetle. J. Exp. Biol. 211, 3409–3420 (2008).
Lawley, S. D., Nijhout, H. F. & Reed, M. C. Spiracular fluttering decouples oxygen uptake and water loss: a stochastic PDE model of respiratory water loss in insects. J. Math. Biol. 84, 40 (2022).
Tripathi, D., Bhandari, D. & Bég, O. A. A critical review on micro-scale pumping based on insect-inspired membrane kinematics. Sens. Actuators A Phys. 114518 (2023).
Stefan, S. & Lee, J. Deep learning toolbox for automated enhancement, segmentation, and graphing of cortical optical coherence tomography microangiograms. Biomed. Opt. Express 11, 7325–7342 (2020).
Deshpande, A. et al. Automatic segmentation, feature extraction and comparison of healthy and stroke cerebral vasculature. Neuroimage Clin. 30, 102573 (2021).
Orlovsky, G. N., Deliagina, T. G. & Grillner, S. in Neuronal Control of Locomotion: From Mollusc to Man 98–110 (Oxford Univ. Press, 1999).
Arieli, R. & Lehrer, C. Recording of locust breathing frequency by barometric method exemplified by hypoxic exposure. J. Insect Physiol. 34, 325–328 (1988).
Klowden, M. J. in Physiological Systems in Insects 3rd edn (ed. Klowden, M. J.) 445–474 (Academic, 2013).
Laschke, M. & Menger, M. Vascularization in tissue engineering: angiogenesis versus inosculation. Eur. Surg. Res. 48, 85–92 (2012).
Bradley, T. J. Discontinuous ventilation in insects: protecting tissues from O2. Respir. Physiol. Neurobiol. 154, 30–36 (2006).
Lighton, J. R. & Duncan, F. D. Standard and exercise metabolism and the dynamics of gas exchange in the giant red velvet mite, Dinothrombium magnificum. J. Insect Physiol. 41, 877–884 (1995).
Wasserthal, L. T. Oscillating haemolymph ‘circulation’ and discontinuous tracheal ventilation in the giant silk moth Attacus atlas L. J. Comp. Physiol. 145, 1–15 (1981).
Kaiser, A. et al. Increase in tracheal investment with beetle size supports hypothesis of oxygen limitation on insect gigantism. Proc. Natl Acad. Sci. USA 104, 13198–13203 (2007).
Schmitz, A. & Perry, S. F. Stereological determination of tracheal volume and diffusing capacity of the tracheal walls in the stick insect Carausius morosus (Phasmatodea, Lonchodidae). Physiol. Biochem. Zool. 72, 205–218 (1999).
Schmitz, A. & Perry, S. Respiratory system of arachnids I: morphology of the respiratory system of Salticus scenicus and Euophrys lanigera (Arachnida, Araneae, Salticidae). Arthropod Struct. Dev. 29, 3–12 (2000).
Schmitz, A. & Perry, S. F. Bimodal breathing in jumping spiders: morphometric partitioning of the lungs and tracheae in Salticus scenicus (Arachnida, Araneae, Salticidae). J. Exp. Biol. 204, 4321–4334 (2001).
Schmitz, A. & Perry, S. F. Respiratory organs in wolf spiders: morphometric analysis of lungs and tracheae in Pardosa lugubris (L.) (Arachnida, Araneae, Lycosidae). Arthropod Struct. Dev. 31, 217–230 (2002).
Webster, M. R., De Vita, R., Twigg, J. N. & Socha, J. J. Mechanical properties of tracheal tubes in the American cockroach (Periplaneta americana). Smart Mater. Struct. 20, 094017 (2011).
Whitten, J. M. Comparative anatomy of the tracheal system. Annu. Rev. Entomol. 17, 373–402 (1972).
Matusek, T. et al. The Drosophila formin DAAM regulates the tracheal cuticle pattern through organizing the actin cytoskeleton. Development 133, 957–966 (2006).
Acknowledgements
A.E.S. discloses support for this work from the US National Science Foundation (grant numbers 0938047, 1437387 and 2014181). S.K. discloses support for this work from the BIOTRANS Interdisciplinary Graduate Education Program at Virginia Tech. The authors thank J. Socha, S. Wilmsen and K. Adjerid for many helpful discussions.
Author information
Authors and Affiliations
Contributions
A.E.S. conceived this Review; S.K. formed the bibliography, wrote the article and created the initial figures. A.E.S. guided the article structure and development and conceived the Murray’s law additions discussed in the article. Both authors reviewed and edited the article extensively.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Physics thanks Patrick Tabeling and Jane Waters for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Haemolymph
-
Blood analogue in the open circulatory system of invertebrates, composed of plasma and haemocytes, transporting nutrients, hormones, metabolites and antimicrobial peptides (AMPs) to inhibit bacterial growth.
- Knudsen number
-
In the context of insect respiration, the Knudsen number is defined as the ratio of the molecular mean free path of air to the characteristic length scale of the tracheal system, the tracheal diameter.
- Oxidative stress
-
A condition wherein reactive oxygen molecules exceed the ability of the body to neutralize them, causing potential damage to cellular components such as proteins, lipids and DNA.
- Plastron
-
In aquatic biology, a plastron is an air-retaining structure used for underwater respiration.
- Ramifying
-
A process which refers to branching into successively smaller branches.
- Taenidial
-
Pertaining to taenidia, which are spiral circumferential thickenings on the inner wall of insect tracheae and tracheoles, preventing airway collapse.
- Unsteady Reynolds number
-
Numbers that are often defined for a fluid system with cyclic motions; they encode frequency information and represent the ratio of unsteady inertial forces to viscous forces in the system.
- Womersley numbers
-
Dimensionless numbers for cyclic internal fluid flows that represent the relative importance of transient inertial forces compared to viscous forces in the system; an unsteady Reynolds number.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Khan, S., Staples, A.E. Mechanisms of insect respiration. Nat Rev Phys 7, 135–148 (2025). https://doi.org/10.1038/s42254-025-00811-x
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s42254-025-00811-x