Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of insect respiration

Abstract

Insect respiration is characterized by the rapid transport of respiratory gases within the organism and efficient exchange with the external environment. The unique respiratory system of insects comprises a network of tracheal tubes that directly supply oxygen to the cells throughout the body of an insect, eliminating the need for blood as an intermediate oxygen carrier. The remarkable diversity of insects and their exceptionally high aerobic scope, possibly the highest in the animal kingdom, demonstrate the success of their respiratory strategy. Microfluidic technology, particularly in the domain of gas microfluidics, also stands to benefit from emulating the mechanical proficiency demonstrated by insects in manipulating fluids at the microscale. Despite this significance, current understanding of the fundamental principles underlying insect respiration is incomplete. This Review presents an overview of insect respiratory physics and identifies promising areas for future investigations.

Key points

  • Insects achieve some of the highest mass-specific metabolic rates in the animal kingdom owing to their unique, efficient respiratory systems that rapidly transport oxygen directly to the tissues.

  • The flow physics of insect respiration is notable because the respiratory airflows of insects involve both low Reynolds numbers and high Knudsen numbers, placing them simultaneously in the slow, creeping and rarefied flow regimes — an unusual intersection.

  • The respiratory efficiency of insects may also be attributed to hydrodynamic slip in a substantial proportion of tracheae, which reduces viscous losses.

  • Respiratory air flows in the rhythmic tracheal compression regime may be actuated and controlled via a single actuation signal — the abdominal compression frequency of an insect — working in conjunction with the intelligent, distributed, passive collapse mechanics of the tracheal network.

  • Mathematical, computational and microfluidic models of insect respiration are essential for deepening our understanding of insect respiratory mechanisms and for translating their highly efficient microscale fluid-handling strategies into technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The three broad patterns of gas exchange in insects are continuous, cyclic and discontinuous gas exchange.
Fig. 2: Mechanisms exist for reducing viscous losses in both mammalian and insect oxygen delivery pathways.
Fig. 3: Tracheal collapse drives convective airflow in insect respiration.
Fig. 4: The unique respiratory systems of insects transport oxygen directly to tissues via tracheal networks, bypassing the need for blood as an intermediate carrier and thereby achieving some of the highest aerobic scopes and mass-specific metabolic rates in the animal kingdom.
Fig. 5: Multiscale irregularities and disorder may enhance fluid-mediated transport in insect respiratory systems.

Similar content being viewed by others

References

  1. Mayhew, P. J. Why are there so many insect species? Perspectives from fossils and phylogenies. Biol. Rev. 82, 425–454 (2007).

    Article  MATH  Google Scholar 

  2. Wegener, G. Flying insects: model systems in exercise physiology. Experientia 52, 404–412 (1996).

    Article  MATH  Google Scholar 

  3. May, R. M. How many species are there on earth? Science 241, 1441–1449 (1988).

    Article  ADS  MATH  Google Scholar 

  4. Chapman, A. D. Numbers of Living Species in Australia and the World 2nd edn (Department of the Environment, Water, Heritage and the Arts: Canberra, 2009).

  5. Wigglesworth, V. B. A theory of tracheal respiration in insects. Proc. R. Soc. Lond. B 106, 229–250 (1930).

    Article  ADS  MATH  Google Scholar 

  6. Wigglesworth, V. B. The respiration of insects. Biol. Rev. 6, 181–220 (1931).

    Article  MATH  Google Scholar 

  7. Wigglesworth, V. B. The Principles of Insect Physiology (Methuen & Co., 1950).

  8. Wigglesworth, V. B. The hormonal regulation of growth and reproduction in insects. Adv. Insect Physiol. 2, 247–336 (1964).

    Article  MATH  Google Scholar 

  9. Wigglesworth, V. B. The physiology of insect tracheoles. Adv. Insect Physiol. 17, 85–148 (1983).

    Article  MATH  Google Scholar 

  10. Wigglesworth, V. B. The properties of the lining membrane of the insect tracheal system. Tissue Cell 22, 231–238 (1990).

    Article  MATH  Google Scholar 

  11. Gnaiger, E., Steinlechner-Maran, R., Méndez, G., Eberl, T. & Margreiter, R. Control of mitochondrial and cellular respiration by oxygen. J. Bioenerg. Biomembr. 27, 583–596 (1995).

    Article  Google Scholar 

  12. Weibel, E. R. The Pathway for Oxygen: Structure and Function in the Mammalian Respiratory System (Harvard Univ. Press, 1984).

  13. Locke, M. The structure of insect tracheae. J. Cell Sci. 3, 487–492 (1957).

    Article  MATH  Google Scholar 

  14. Pickard, W. F. Transition regime diffusion and the structure of the insect tracheolar system. J. Insect Physiol. 20, 947–956 (1974).

    Article  MATH  Google Scholar 

  15. Adams, J., Attinger, E. & Attinger, F. Cluster analysis of respiratory time series. Biol. Cybern. 28, 183–190 (1978).

    Article  MATH  Google Scholar 

  16. Harrison, J. F., Woods, H. A. & Roberts, S. P. Ecological and Environmental Physiology of Insects (Oxford Univ. Press, 2012).

  17. Contreras, H. L. & Bradley, T. J. The effect of ambient humidity and metabolic rate on the gas-exchange pattern of the semi-aquatic insect Aquarius remigis. J. Exp. Biol. 214, 1086–1091 (2011).

    Article  Google Scholar 

  18. Schimpf, N. G., Matthews, P. G., Wilson, R. S. & White, C. R. Cockroaches breathe discontinuously to reduce respiratory water loss. J. Exp. Biol. 212, 2773–2780 (2009).

    Article  Google Scholar 

  19. Terblanche, J. S., White, C. R., Blackburn, T. M., Marais, E. & Chown, S. L. Scaling of gas exchange cycle frequency in insects. Biol. Lett. 4, 127–129 (2008).

    Article  Google Scholar 

  20. Terblanche, J. S. & Chown, S. L. Effects of flow rate and temperature on cyclic gas exchange in tsetse flies (Diptera, Glossinidae). J. Insect Physiol. 56, 513–521 (2010).

    Article  MATH  Google Scholar 

  21. Hetz, S. K. The role of the spiracles in gas exchange during development of Samia cynthia (Lepidoptera, Saturniidae). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 148, 743–754 (2007).

    Article  MATH  Google Scholar 

  22. Matthews, P. G. & White, C. R. Discontinuous gas exchange in insects: is it all in their heads? Am. Nat. 177, 130–134 (2011).

    Article  MATH  Google Scholar 

  23. Grimaldi, D, Engel, M. S, Engel, M. S & Engel, M. S. Evolution of the Insects (Cambridge Univ. Press, 2005).

  24. Challita, E. J., Seghal, P., Krugner, R. & Bhamla, M. S. Droplet superpropulsion in an energetically constrained insect. Nat. Commun. 14, 860 (2023).

    Article  ADS  Google Scholar 

  25. Buck, J. Some physical aspects of insect respiration. Annu. Rev. Entomol. 7, 27–56 (1962).

    Article  MATH  Google Scholar 

  26. Harrison, J. F. et al. How locusts breathe. Physiology 28, 18–27 (2013).

    Article  Google Scholar 

  27. Pendar, H., Kenny, M. C. & Socha, J. J. Tracheal compression in pupae of the beetle Zophobas morio. Biol. Lett. 11, 20150259 (2015).

    Article  Google Scholar 

  28. Pendar, H., Aviles, J., Adjerid, K., Schoenewald, C. & Socha, J. J. Functional compartmentalization in the hemocoel of insects. Sci. Rep. 9, 1–12 (2019).

    Article  Google Scholar 

  29. Westneat, M. W., Socha, J. J. & Lee, W.-K. Advances in biological structure, function, and physiology using synchrotron X-ray imaging. Annu. Rev. Physiol. 70, 119–142 (2008).

    Article  MATH  Google Scholar 

  30. Westneat, M. W. et al. Tracheal respiration in insects visualized with synchrotron X-ray imaging. Science 299, 558–560 (2003).

    Article  ADS  MATH  Google Scholar 

  31. Wasserthal, L. T. Interaction of circulation and tracheal ventilation in holometabolous insects. Adv. Insect Physiol. 26, 297–351 (1996).

    Article  Google Scholar 

  32. Wasserthal, L. The open hemolymph system of holometabola and its relation to the tracheal space. Microsc. Anat. Invertebr. 11B, 583–620 (1998).

    Google Scholar 

  33. Wasserthal, L. T., Cloetens, P. & Fink, R. Synchrotron X-ray-videography and -tomography combined with physiological measurements for analysis of circulation and respiration dynamics in insects (Drosophila and Calliphora). In Proc. German Conference for Research with Synchrotron Radiation, Neutrons and Ion Beams at Large-Scale Facilities, Hamburg (SNI, 2006).

  34. Socha, J. J. & De Carlo, F. Use of synchrotron tomography to image naturalistic anatomy in insects. In Proc. SPIE: Developments in X-Ray Tomography VI Vol. 7078, 82–88 (SPIE, 2008).

  35. Wasserthal, L. T., Cloetens, P., Fink, R. H. & Wasserthal, L. K. X-ray computed tomography study of the flight-adapted tracheal system in the blowfly Calliphora vicina, analysing the ventilation mechanism and flow-directing valves. J. Exp. Biol. 221, jeb176024 (2018).

    Article  Google Scholar 

  36. Alba-Tercedor, J., Alba-Alejandre, I. & Vega, F. E. Revealing the respiratory system of the coffee berry borer (Hypothenemus hampei; Coleoptera: Curculionidae: Scolytinae) using micro-computed tomography. Sci. Rep. 9, 17753 (2019).

    Article  ADS  Google Scholar 

  37. Harrison, J. F. et al. Developmental plasticity and stability in the tracheal networks supplying Drosophila flight muscle in response to rearing oxygen level. J. Insect Physiol. 106, 189–198 (2018).

    Article  MATH  Google Scholar 

  38. Nation, J. L. A new method using hexamethyldisilazane for preparation of soft insect tissues for scanning electron microscopy. Stain Technol. 58, 347–351 (1983).

    Article  MATH  Google Scholar 

  39. Meyer, E. P. Corrosion casts as a method for investigation of the insect tracheal system. Cell Tissue Res. 256, 1–6 (1989).

    Article  MATH  Google Scholar 

  40. Wasserthal, L. T. Functional morphology of the heart and of a new cephalic pulsatile organ in the blowfly Calliphora vicina (Diptera: Calliphoridae) and their roles in hemolymph transport and tracheal ventilation. Int. J. Insect Morphol. Embryol. 28, 111–129 (1999).

    Article  Google Scholar 

  41. Webster, M. R., Socha, J. J., Teresi, L., Nardinocchi, P. & De Vita, R. Structure of tracheae and the functional implications for collapse in the American cockroach. Bioinspir. Biomim. 10, 066011 (2015).

    Article  ADS  MATH  Google Scholar 

  42. Sánchez-Higueras, C., Sotillos, S. & Hombría, J. C.-G. Common origin of insect trachea and endocrine organs from a segmentally repeated precursor. Curr. Biol. 24, 76–81 (2014).

    Article  Google Scholar 

  43. Jang, S. et al. Dual oxidase enables insect gut symbiosis by mediating respiratory network formation. Proc. Natl Acad. Sci. USA 118, e2020922118 (2021).

    Article  Google Scholar 

  44. Krogh, A. The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. J. Physiol. 52, 409 (1919).

    Article  MATH  Google Scholar 

  45. Krogh, A. Studien über tracheenrespiration: II. Über gasdiffusion in den tracheen. Pflüger’s Arch. 179, 95–112 (1920).

    Article  MATH  Google Scholar 

  46. Krogh, A. The Comparative Physiology of Respiratory Mechanisms (Univ. of Pennsylvania Press, 1941).

  47. Simelane, S., Abelman, S. & Duncan, F. Gas exchange models for a flexible insect tracheal system. Acta Biotheor. 64, 161–196 (2016).

    Article  MATH  Google Scholar 

  48. Lawley, S. D., Reed, M. C. & Nijhout, H. F. Spiracular fluttering increases oxygen uptake. PLoS One 15, e0232450 (2020).

    Article  MATH  Google Scholar 

  49. Berezhkovskii, A. M. & Shvartsman, S. Y. Diffusive flux in a model of stochastically gated oxygen transport in insect respiration. J. Chem. Phys. 144, 204101 (2016).

  50. Grieshaber, B. J. & Terblanche, J. S. A computational model of insect discontinuous gas exchange: a two-sensor, control systems approach. J. Theor. Biol. 374, 138–151 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  51. Snyder, G., Sheafor, B., Scholnick, D. & Farrelly, C. Gas exchange in the insect tracheal system. J. Theor. Biol. 172, 199–207 (1995).

    Article  ADS  MATH  Google Scholar 

  52. Crisp, D. in Recent Progress in Surface Science Vol. 2, 377–425 (Elsevier, 1964).

  53. Rahn, H. & Paganelli, C. V. Gas exchange in gas gills of diving insects. Respir. Physiol. 5, 145–164 (1968).

    Article  MATH  Google Scholar 

  54. Flynn, M. R. & Bush, J. W. Underwater breathing: the mechanics of plastron respiration. J. Fluid Mech. 608, 275–296 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Roh, C. & Gharib, M. Asymmetry in the jet opening: underwater jet vectoring mechanism by dragonfly larvae. Bioinspir. Biomim. 13, 046007 (2018).

    Article  ADS  MATH  Google Scholar 

  56. Roh, C. & Gharib, M. Honeybees use their wings for water surface locomotion. Proc. Natl Acad. Sci. USA 116, 24446–24451 (2019).

    Article  ADS  MATH  Google Scholar 

  57. Byron, M. L. et al. Metachronal motion across scales: current challenges and future directions. Integr. Comp. Biol. 61, 1674–1688 (2021).

    Article  MATH  Google Scholar 

  58. Chantarawong, N. & Byron, M. Boatmen and backswimmers and beetles, oh my: intermediate Reynolds number locomotion in aquatic insects. Integr Comp. Biol. 61, E1076–E1077 (2021).

    Google Scholar 

  59. Sensenig, A. T., Kiger, K. T. & Shultz, J. W. Hydrodynamic pumping by serial gill arrays in the mayfly nymph Centroptilum triangulifer. J. Exp. Biol. 213, 3319–3331 (2010).

    Article  Google Scholar 

  60. Chown, S. & Nicolson, S. Insect Physiological Ecology: Mechanisms and Patterns (Oxford Univ. Press, 2004).

  61. Lighton, J. R. Discontinuous gas exchange in insects. Annu. Rev. Entomol. 41, 309–324 (1996).

    Article  MATH  Google Scholar 

  62. Quinlan, M. C. & Gibbs, A. G. Discontinuous gas exchange in insects. Respir. Physiol. Neurobiol. 154, 18–29 (2006).

    Article  MATH  Google Scholar 

  63. Aboelkassem, Y., Staples, A. E. & Socha, J. J. Microscale flow pumping inspired by rhythmic tracheal compressions in insects. In Proc. ASME 2011 Pressure Vessels and Piping Conference. Volume 4: Fluid-Structure Interaction 471–479 (ASME, 2011).

  64. Aboelkassem, Y. Novel Bioinspired Pumping Models for Microscale Flow Transport. PhD thesis, Virginia Tech (2012).

  65. Aboelkassem, Y. & Staples, A. E. Flow transport in a microchannel induced by moving wall contractions: a novel micropumping mechanism. Acta Mech. 223, 463–480 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  66. Aboelkassem, Y. & Staples, A. E. Selective pumping in a network: insect-style microscale flow transport. Bioinspir. Biomim. 8, 026004 (2013).

    Article  ADS  MATH  Google Scholar 

  67. Aboelkassem, Y. & Staples, A. E. A bioinspired pumping model for flow in a microtube with rhythmic wall contractions. J. Fluids Struct. 42, 187–204 (2013).

    Article  ADS  MATH  Google Scholar 

  68. Aboelkassem, Y. & Staples, A. E. Stokeslets-meshfree computations and theory for flow in a collapsible microchannel. Theor. Comput. Fluid Dyn. 27, 681–700 (2013).

    Article  MATH  Google Scholar 

  69. Aboelkassem, Y. & Staples, A. E. A three-dimensional model for flow pumping in a microchannel inspired by insect respiration. Acta Mech. 225, 493–507 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  70. Aboelkassem, Y. Insect-inspired micropump: flow in a tube with local contractions. Micromachines 6, 1143–1156 (2015).

    Article  MATH  Google Scholar 

  71. Chatterjee, K. & Staples, A. Slip flow in a microchannel driven by rhythmic wall contractions. Acta Mech. 229, 4113–4129 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  72. Simelane, S., Abelman, S. & Duncan, F. Microscale gaseous slip flow in the insect trachea and tracheoles. Acta Biotheor. 65, 211–231 (2017).

    Article  MATH  Google Scholar 

  73. Chatterjee, K., Graybill, P. M., Socha, J. J., Davalos, R. V. & Staples, A. E. Frequency-specific, valveless flow control in insect-mimetic microfluidic devices. Bioinspir. Biomim. 16, 036004 (2021).

    Article  Google Scholar 

  74. Bhandari, D., Tripathi, D. & Narla, V. Pumping flow model for couple stress fluids with a propagative membrane contraction. Int. J. Mech. Sci. 188, 105949 (2020).

    Article  MATH  Google Scholar 

  75. Bhandari, D., Tripathi, D. & Prakash, J. Insight into Newtonian fluid flow and heat transfer in vertical microchannel subject to rhythmic membrane contraction due to pressure gradient and buoyancy forces. Int. J. Heat Mass Transf. 184, 122249 (2022).

    Article  Google Scholar 

  76. Tripathi, D., Narla, V. & Aboelkassem, Y. Electrokinetic membrane pumping flow model in a microchannel. Phys. Fluids 32, 082004 (2020).

    Article  ADS  MATH  Google Scholar 

  77. Narla, V., Tripathi, D., Bhandari, D. & Bég, O. A. Electrokinetic insect-bioinspired membrane pumping in a high aspect ratio bio-microfluidic system. Microfluid. Nanofluid. 26, 85 (2022).

    Article  MATH  Google Scholar 

  78. Zaslavsky, S. et al. Scaling analysis of taenidia in beetle (Zophobas morio) tracheae. In Proc. 2024 Society for Integrative and Comparative Biology Annual Meeting Vol. 64, S557–S558 (Oxford Univ. Press, 2024).

  79. Chown, S. L. & Gaston, K. J. Exploring links between physiology and ecology at macro-scales: the role of respiratory metabolism in insects. Biol. Rev. 74, 87–120 (1999).

    MATH  Google Scholar 

  80. Gudowska, A., Boardman, L. & Terblanche, J. S. The closed spiracle phase of discontinuous gas exchange predicts diving duration in the grasshopper Paracinema tricolor. J. Exp. Biol. 219, 2423–2425 (2016).

    Google Scholar 

  81. Matthews, P. G. & Seymour, R. S. Diving insects boost their buoyancy bubbles. Nature 441, 171 (2006).

    Article  ADS  Google Scholar 

  82. Chown, S. L. et al. Discontinuous gas exchange in insects: a clarification of hypotheses and approaches. Physiol. Biochem. Zool. 79, 333–343 (2006).

    Article  MATH  Google Scholar 

  83. Groenewald, B., Chown, S. L. & Terblanche, J. S. A hierarchy of factors influence discontinuous gas exchange in the grasshopper Paracinema tricolor (Orthoptera: Acrididae). J. Exp. Biol. 217, 3407–3415 (2014).

    Google Scholar 

  84. Lehmann, F.-O. Matching spiracle opening to metabolic need during flight in Drosophila. Science 294, 1926–1929 (2001).

    Article  ADS  MATH  Google Scholar 

  85. Lehmann, F.-O. & Heymann, N. Unconventional mechanisms control cyclic respiratory gas release in flying Drosophila. J. Exp. Biol. 208, 3645–3654 (2005).

    Article  MATH  Google Scholar 

  86. Marais, E., Klok, C. J., Terblanche, J. S. & Chown, S. L. Insect gas exchange patterns: a phylogenetic perspective. J. Exp. Biol. 208, 4495–4507 (2005).

    Article  Google Scholar 

  87. Wilkins, M. A temperature-dependent endogenous rhythm in the rate of carbon dioxide output of Periplaneta americana. Nature 185, 481–482 (1960).

    Article  ADS  MATH  Google Scholar 

  88. Punt, A., Parser, W. & Kuchlein, J. Oxygen uptake in insects with cyclic CO2 release. Biol. Bull. 112, 108–119 (1957).

    Article  Google Scholar 

  89. Schneiderman, H. A. Discontinuous respiration in insects: role of the spiracles. Biol. Bull. 119, 494–528 (1960).

    Article  MATH  Google Scholar 

  90. Schneiderman, H. A. & Schechter, A. N. Discontinuous respiration in insects — V. Pressure and volume changes in the tracheal system of silkworm pupae. J. Insect Physiol. 12, 1143–1170 (1966).

    Article  MATH  Google Scholar 

  91. Levy, R. I. & Schneiderman, H. A. Discontinuous respiration in insects — II. the direct measurement and significance of changes in tracheal gas composition during the respiratory cycle of silkworm pupae. J. Insect Physiol. 12, 83–104 (1966).

    Article  Google Scholar 

  92. Lighton, J. R. & Berrigan, D. Questioning paradigms: caste-specific ventilation in harvester ants, Messor pergandei and M. julianus (Hymenoptera: Formicidae). J. Exp. Biol. 198, 521–530 (1995).

    Article  Google Scholar 

  93. Hoffmann, K. H. Environmental Physiology and Biochemistry of Insects (Springer, 2012).

  94. Chown, S. Respiratory water loss in insects. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 133, 791–804 (2002).

    Article  MATH  Google Scholar 

  95. Terblanche, J. S. & Woods, H. A. Why do models of insect respiratory patterns fail? J. Exp. Biol. 221, jeb130039 (2018).

    Article  MATH  Google Scholar 

  96. Waters, J. S., Lee, W.-K., Westneat, M. W. & Socha, J. J. Dynamics of tracheal compression in the horned passalus beetle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 304, R621–R627 (2013).

    Article  Google Scholar 

  97. Greenlee, K. J. et al. Hypoxia-induced compression in the tracheal system of the tobacco hornworm caterpillar, Manduca sexta. J. Exp. Biol. 216, 2293–2301 (2013).

    MATH  Google Scholar 

  98. Hochgraf, J. S., Waters, J. S. & Socha, J. J. Patterns of tracheal compression in the thorax of the ground beetle, Platynus decentis. Yale J. Biol. Med. 91, 409 (2018).

    MATH  Google Scholar 

  99. Abbas, W., Withers, P. C. & Evans, T. A. Gas exchange patterns for a small, stored-grain insect pest, Tribolium castaneum. Bull. Entomol. Res. 113, 361–367 (2023).

    Article  MATH  Google Scholar 

  100. Bradley, T. J. in Hypoxia and The Circulation (eds Roach, R. C. et al.) 211–220 (Springer, 2007).

  101. Arkilic, E. B., Schmidt, M. A. & Breuer, K. S. Gaseous slip flow in long microchannels. J. Microelectromech. Syst. 6, 167–178 (1997).

    Article  MATH  Google Scholar 

  102. Adjerid, K. The Biomechanics of Tracheal Compression in the Darkling Beetle, Zophobas morio. PhD thesis, Virginia Tech (2019).

  103. Murray, C. D. The physiological principle of minimum work: I. The vascular system and the cost of blood volume. Proc. Natl Acad. Sci. USA 12, 207–214 (1926).

    Article  ADS  MATH  Google Scholar 

  104. Murray, C. D. The physiological principle of minimum work: II. Oxygen exchange in capillaries. Proc. Natl Acad. Sci. USA 12, 299–304 (1926).

    Article  ADS  MATH  Google Scholar 

  105. Sherman, T. F. On connecting large vessels to small. The meaning of Murray’s law. J. Gen. Physiol. 78, 431–453 (1981).

    Article  MATH  Google Scholar 

  106. McCulloh, K. A., Sperry, J. S. & Adler, F. R. Water transport in plants obeys Murray’s law. Nature 421, 939–942 (2003).

    Article  ADS  MATH  Google Scholar 

  107. McCulloh, K. A. & Sperry, J. S. in Ecology and Biomechanics (eds Herrel, A. et al) 85–100 (Taylor & Francis, 2006).

  108. Williams, H. R., Trask, R. S., Weaver, P. M. & Bond, I. P. Minimum mass vascular networks in multifunctional materials. J. R. Soc. Interface 5, 55–65 (2008).

    Article  MATH  Google Scholar 

  109. Socha, J. J., Förster, T. D. & Greenlee, K. J. Issues of convection in insect respiration: insights from synchrotron X-ray imaging and beyond. Respir. Physiol. Neurobiol. 173, S65–S73 (2010).

    Article  Google Scholar 

  110. Aitkenhead, I. J. et al. Tracheal branching in ants is area-decreasing, violating a central assumption of network transport models. PLoS Comput. Biol. https://doi.org/10.1371/journal.pcbi.1007853 (2020).

  111. Zheng, X. et al. Bio-inspired Murray materials for mass transfer and activity. Nat. Commun. 8, 14921 (2017).

    Article  ADS  MATH  Google Scholar 

  112. Wiedeman, M. P., Tuma, R. F. & Mayrovitz, H. N. Defining the precapillary sphincter. Microvasc. Res. 12, 71–75 (1976).

    Article  Google Scholar 

  113. Segal, S. S. Regulation of blood flow in the microcirculation. Microcirculation 12, 33–45 (2005).

    Article  MATH  Google Scholar 

  114. Gutterman, D. D. et al. The human microcirculation: regulation of flow and beyond. Circ. Res. 118, 157–172 (2016).

    Article  MATH  Google Scholar 

  115. Harrison, J. F. in Encyclopedia of Insects 1011–1015 (Elsevier, 2009).

  116. Snelling, E. P., Seymour, R. S., Runciman, S., Matthews, P. G. & White, C. R. Symmorphosis and the insect respiratory system: allometric variation. J. Exp. Biol. 214, 3225–3237 (2011).

    Article  Google Scholar 

  117. Snelling, E. P., Seymour, R. S., Matthews, P. G. & White, C. R. Maximum metabolic rate, relative lift, wingbeat frequency and stroke amplitude during tethered flight in the adult locust Locusta migratoria. J. Exp. Biol. 215, 3317–3323 (2012).

    Google Scholar 

  118. Snelling, E. P., Seymour, R. S., Runciman, S., Matthews, P. G. & White, C. R. Symmorphosis and the insect respiratory system: a comparison between flight and hopping muscle. J. Exp. Biol. 215, 3324–3333 (2012).

    Google Scholar 

  119. Ikada, Y. Challenges in tissue engineering. J. R. Soc. Interface 3, 589–601 (2006).

    Article  MATH  Google Scholar 

  120. Ramirez-San Juan, G. R. et al. Multi-scale spatial heterogeneity enhances particle clearance in airway ciliary arrays. Nat. Phys. 16, 958–964 (2020).

    Article  MATH  Google Scholar 

  121. Lighton, J. R. Discontinuous ventilation in terrestrial insects. Physiol. Zool. 67, 142–162 (1994).

    Article  Google Scholar 

  122. Greenlee, K. J. et al. Synchrotron imaging of the grasshopper tracheal system: morphological and physiological components of tracheal hypermetry. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297, R1343–R1350 (2009).

    Article  MATH  Google Scholar 

  123. Nunome, J. Studies on the respiration of the silkworm. (I) Diffusion of oxygen in the respiratory system of the silkworm. Bull. Ser. Exp. Stn Jpn 12, 17–39 (1944).

    Google Scholar 

  124. Nunome, J. Studies on the respiration of the silkworm. (III) On the air current of respiration. J. Sericult. Sci. Jpn 20, 111–127 (1951).

    Google Scholar 

  125. Weis-Fogh, T. Diffusion in insect wing muscle, the most active tissue known. J. Exp. Biol. 41, 229–256 (1964).

    Article  Google Scholar 

  126. Pfitzner, J. Poiseuille and his law. Anaesthesia 31, 273–275 (1976).

    Article  MATH  Google Scholar 

  127. Polilov, A. Anatomy of the feather-winged beetles Acrotrichis montandoni and Ptilium myrmecophilum (Coleoptera, Ptiliidae). Zool. Zhurnal 84, 181–189 (2005).

    Google Scholar 

  128. Polilov, A. Features of the structure of hymenoptera associated with miniaturization: 1. Anatomy of the fairyfly Anaphes flavipes (Hymenoptera, Mymaridae). Entomol. Rev. 96, 407–418 (2016).

    Article  Google Scholar 

  129. Beament, J. The waterproofing mechanism of arthropods: II. The permeability of the cuticle of some aquatic insects. J. Exp. Biol. 38, 277–290 (1961).

    Article  Google Scholar 

  130. Jones, K. K., Cooper, S. J. & Seymour, R. S. Cutaneous respiration by diving beetles from underground aquifers of Western Australia (Coleoptera: Dytiscidae). J. Exp. Biol. 222, jeb196659 (2019).

    Article  Google Scholar 

  131. Thorpe, W. Tracheal and blood gills in aquatic insect larvae. Nature 131, 549–550 (1933).

    Article  ADS  MATH  Google Scholar 

  132. Kehl, S. & Dettner, K. Surviving submerged-setal tracheal gills for gas exchange in adult rheophilic diving beetles. J. Morphol. 270, 1348–1355 (2009).

    Article  Google Scholar 

  133. Thorpe, W. H. & Crisp, D. Studies on plastron respiration: I. The biology of Aphelocheirus [Hemiptera, Aphelocheiridae (Naucoridae)] and the mechanism of plastron retention. J. Exp. Biol. 24, 227–269 (1947).

    Article  Google Scholar 

  134. Thorpe, W. Plastron respiration in aquatic insects. Biol. Rev. 25, 344–390 (1950).

    Article  MATH  Google Scholar 

  135. Socha, J. J. et al. Correlated patterns of tracheal compression and convective gas exchange in a carabid beetle. J. Exp. Biol. 211, 3409–3420 (2008).

    Article  MATH  Google Scholar 

  136. Lawley, S. D., Nijhout, H. F. & Reed, M. C. Spiracular fluttering decouples oxygen uptake and water loss: a stochastic PDE model of respiratory water loss in insects. J. Math. Biol. 84, 40 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  137. Tripathi, D., Bhandari, D. & Bég, O. A. A critical review on micro-scale pumping based on insect-inspired membrane kinematics. Sens. Actuators A Phys. 114518 (2023).

  138. Stefan, S. & Lee, J. Deep learning toolbox for automated enhancement, segmentation, and graphing of cortical optical coherence tomography microangiograms. Biomed. Opt. Express 11, 7325–7342 (2020).

    Article  MATH  Google Scholar 

  139. Deshpande, A. et al. Automatic segmentation, feature extraction and comparison of healthy and stroke cerebral vasculature. Neuroimage Clin. 30, 102573 (2021).

    Article  MATH  Google Scholar 

  140. Orlovsky, G. N., Deliagina, T. G. & Grillner, S. in Neuronal Control of Locomotion: From Mollusc to Man 98–110 (Oxford Univ. Press, 1999).

  141. Arieli, R. & Lehrer, C. Recording of locust breathing frequency by barometric method exemplified by hypoxic exposure. J. Insect Physiol. 34, 325–328 (1988).

    Article  MATH  Google Scholar 

  142. Klowden, M. J. in Physiological Systems in Insects 3rd edn (ed. Klowden, M. J.) 445–474 (Academic, 2013).

  143. Laschke, M. & Menger, M. Vascularization in tissue engineering: angiogenesis versus inosculation. Eur. Surg. Res. 48, 85–92 (2012).

    Article  Google Scholar 

  144. Bradley, T. J. Discontinuous ventilation in insects: protecting tissues from O2. Respir. Physiol. Neurobiol. 154, 30–36 (2006).

    Article  Google Scholar 

  145. Lighton, J. R. & Duncan, F. D. Standard and exercise metabolism and the dynamics of gas exchange in the giant red velvet mite, Dinothrombium magnificum. J. Insect Physiol. 41, 877–884 (1995).

    Article  Google Scholar 

  146. Wasserthal, L. T. Oscillating haemolymph ‘circulation’ and discontinuous tracheal ventilation in the giant silk moth Attacus atlas L. J. Comp. Physiol. 145, 1–15 (1981).

    Article  Google Scholar 

  147. Kaiser, A. et al. Increase in tracheal investment with beetle size supports hypothesis of oxygen limitation on insect gigantism. Proc. Natl Acad. Sci. USA 104, 13198–13203 (2007).

    Article  ADS  MATH  Google Scholar 

  148. Schmitz, A. & Perry, S. F. Stereological determination of tracheal volume and diffusing capacity of the tracheal walls in the stick insect Carausius morosus (Phasmatodea, Lonchodidae). Physiol. Biochem. Zool. 72, 205–218 (1999).

    Article  MATH  Google Scholar 

  149. Schmitz, A. & Perry, S. Respiratory system of arachnids I: morphology of the respiratory system of Salticus scenicus and Euophrys lanigera (Arachnida, Araneae, Salticidae). Arthropod Struct. Dev. 29, 3–12 (2000).

    Article  Google Scholar 

  150. Schmitz, A. & Perry, S. F. Bimodal breathing in jumping spiders: morphometric partitioning of the lungs and tracheae in Salticus scenicus (Arachnida, Araneae, Salticidae). J. Exp. Biol. 204, 4321–4334 (2001).

    Article  MATH  Google Scholar 

  151. Schmitz, A. & Perry, S. F. Respiratory organs in wolf spiders: morphometric analysis of lungs and tracheae in Pardosa lugubris (L.) (Arachnida, Araneae, Lycosidae). Arthropod Struct. Dev. 31, 217–230 (2002).

    Article  Google Scholar 

  152. Webster, M. R., De Vita, R., Twigg, J. N. & Socha, J. J. Mechanical properties of tracheal tubes in the American cockroach (Periplaneta americana). Smart Mater. Struct. 20, 094017 (2011).

    Article  ADS  MATH  Google Scholar 

  153. Whitten, J. M. Comparative anatomy of the tracheal system. Annu. Rev. Entomol. 17, 373–402 (1972).

    Article  ADS  MATH  Google Scholar 

  154. Matusek, T. et al. The Drosophila formin DAAM regulates the tracheal cuticle pattern through organizing the actin cytoskeleton. Development 133, 957–966 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

A.E.S. discloses support for this work from the US National Science Foundation (grant numbers 0938047, 1437387 and 2014181). S.K. discloses support for this work from the BIOTRANS Interdisciplinary Graduate Education Program at Virginia Tech. The authors thank J. Socha, S. Wilmsen and K. Adjerid for many helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

A.E.S. conceived this Review; S.K. formed the bibliography, wrote the article and created the initial figures. A.E.S. guided the article structure and development and conceived the Murray’s law additions discussed in the article. Both authors reviewed and edited the article extensively.

Corresponding authors

Correspondence to Saadbin Khan or Anne E. Staples.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Patrick Tabeling and Jane Waters for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Haemolymph

Blood analogue in the open circulatory system of invertebrates, composed of plasma and haemocytes, transporting nutrients, hormones, metabolites and antimicrobial peptides (AMPs) to inhibit bacterial growth.

Knudsen number

In the context of insect respiration, the Knudsen number is defined as the ratio of the molecular mean free path of air to the characteristic length scale of the tracheal system, the tracheal diameter.

Oxidative stress

A condition wherein reactive oxygen molecules exceed the ability of the body to neutralize them, causing potential damage to cellular components such as proteins, lipids and DNA.

Plastron

In aquatic biology, a plastron is an air-retaining structure used for underwater respiration.

Ramifying

A process which refers to branching into successively smaller branches.

Taenidial

Pertaining to taenidia, which are spiral circumferential thickenings on the inner wall of insect tracheae and tracheoles, preventing airway collapse.

Unsteady Reynolds number

Numbers that are often defined for a fluid system with cyclic motions; they encode frequency information and represent the ratio of unsteady inertial forces to viscous forces in the system.

Womersley numbers

Dimensionless numbers for cyclic internal fluid flows that represent the relative importance of transient inertial forces compared to viscous forces in the system; an unsteady Reynolds number.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S., Staples, A.E. Mechanisms of insect respiration. Nat Rev Phys 7, 135–148 (2025). https://doi.org/10.1038/s42254-025-00811-x

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s42254-025-00811-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing