Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Photogalvanic effects in non-centrosymmetric halide perovskites

Abstract

Photogalvanic effects are characterized by the presence of light-polarization-dependent non-zero short circuit photocurrent and non-zero open circuit voltage in junction-free bulk non-centrosymmetric semiconductors and metals and have been attributed to the non-trivial Berry parameters of matter. Non-centrosymmetric ferroelectric and piezoelectric halide perovskites demonstrate a coexistence of excellent semiconducting properties, switchable or tunable Berry parameters and spin–momentum locking, and strong spin–orbit coupling, making them an ideal model system to explore the photogalvanic effects, and its use in characterizing topological properties, and to develop novel devices. In this Perspective, we describe various mechanisms to break inversion symmetry in halide perovskites and present the theory and mechanisms of the linear and circular photogalvanic effect in non-centrosymmetric halide perovskites. We discuss the roles of symmetry, strain, chemistry, interface and electric polarization on the linear and circular photogalvanic effect in non-centrosymmetric halide perovskites. We present the key opportunities and challenges of designing and harnessing photogalvanic effects in non-centrosymmetric halide perovskites for unconventional devices for spin computing, sensing and solar energy applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Theory of photogalvanic effect.
Fig. 2: Experimental observations of the linear photogalvanic effect.
Fig. 3: Experimental observation of the circular photogalvanic effect.
Fig. 4: Symmetry engineering for tuning the light polarization-dependent photovoltaic effects.
Fig. 5: Glass coefficients and spin–orbit coupling in non-centrosymmetric halide perovskites.

Similar content being viewed by others

References

  1. Stranks, S. D. et al. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

    ADS  Google Scholar 

  2. Huang, P.-J., Taniguchi, K. & Miyasaka, H. Bulk photovoltaic effect in a pair of chiral–polar layered perovskite-type lead iodides altered by chirality of organic cations. J. Am. Chem. Soc. 141, 14520–14523 (2019).

    Google Scholar 

  3. Kim, M., Im, J., Freeman, A. J., Ihm, J. & Jin, H. Switchable S = 1/2 and J = 1/2 Rashba bands in ferroelectric halide perovskites. Proc. Natl Acad. Sci. USA 111, 6900–6904 (2014).

    ADS  Google Scholar 

  4. Liao, W.-Q. et al. A lead-halide perovskite molecular ferroelectric semiconductor. Nat. Commun. 6, 7338 (2015).

    ADS  Google Scholar 

  5. Shu, L. et al. Photoflexoelectric effect in halide perovskites. Nat. Mater. 19, 605–609 (2020).

    ADS  Google Scholar 

  6. Wang, Z. et al. Flexophotovoltaic effect and above-band-gap photovoltage induced by strain gradients in halide perovskites. Phys. Rev. Lett. 132, 086902 (2024).

    ADS  Google Scholar 

  7. Ye, H.-Y., Zhang, Y., Fu, D.-W. & Xiong, R.-G. An above-room-temperature ferroelectric organo-metal halide perovskite: (3-pyrrolinium)(CdCl3). Angew. Chem. Int. Ed. Engl. 53, 11242–11247 (2014).

    Google Scholar 

  8. Zhai, Y. et al. Giant Rashba splitting in 2D organic–inorganic halide perovskites measured by transient spectroscopies. Sci. Adv. 3, e1700704 (2017).

    ADS  Google Scholar 

  9. Zhang, L. et al. Room-temperature electrically switchable spin–valley coupling in a van der Waals ferroelectric halide perovskite with persistent spin helix. Nat. Photon. 16, 529–537 (2022).

    ADS  Google Scholar 

  10. Zheng, F., Takenaka, H., Wang, F., Koocher, N. Z. & Rappe, A. M. First-principles calculation of the bulk photovoltaic effect in CH3NH3PbI3 and CH3NH3PbI3−xClx. J. Phys. Chem. Lett. 6, 31–37 (2015).

    Google Scholar 

  11. Sturman, B. I. Ballistic and shift currents in the bulk photovoltaic effect theory. Phys. Uspekhi 63, 407 (2020).

    ADS  Google Scholar 

  12. Ellis, S. G. et al. Photovoltages larger than the band gap in zinc sulfide crystals. Phys. Rev. 109, 1860–1860 (1958).

    ADS  Google Scholar 

  13. Glass, A. M., von der Linde, D. & Negran, T. J. High‐voltage bulk photovoltaic effect and the photorefractive process in LiNbO3. Appl. Phys. Lett. 25, 233–235 (1974).

    ADS  Google Scholar 

  14. Goldstein, L. & Pensak, L. High-voltage photovoltaic effect. J. Appl. Phys. 30, 155–161 (1959).

    ADS  Google Scholar 

  15. Koch, W. T. H., Munser, R., Ruppel, W. & Würfel, P. Anomalous photovoltage in BaTiO3. Ferroelectrics 13, 305–307 (1976).

    ADS  Google Scholar 

  16. Asnin, V. M. et al. ‘Circular’ photogalvanic effect in optically active crystals. Solid State Commun. 30, 565–570 (1979).

    ADS  Google Scholar 

  17. de Juan, F., Grushin, A. G., Morimoto, T. & Moore, J. E. Quantized circular photogalvanic effect in Weyl semimetals. Nat. Commun. 8, 15995 (2017).

    ADS  Google Scholar 

  18. Hosur, P. Circular photogalvanic effect on topological insulator surfaces: Berry-curvature-dependent response. Phys. Rev. B 83, 035309 (2011).

    ADS  Google Scholar 

  19. Ma, C. et al. Intelligent infrared sensing enabled by tunable moiré quantum geometry. Nature 604, 266–272 (2022).

    ADS  Google Scholar 

  20. Ma, Q. et al. Direct optical detection of Weyl fermion chirality in a topological semimetal. Nat. Phys. 13, 842–847 (2017).

    Google Scholar 

  21. Ma, Q. et al. Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature 565, 337–342 (2019).

    ADS  Google Scholar 

  22. Olbrich, P. et al. Room-temperature high-frequency transport of Dirac fermions in epitaxially grown Sb2Te3- and Bi2Te3-based topological insulators. Phys. Rev. Lett. 113, 096601 (2014).

    ADS  Google Scholar 

  23. Osterhoudt, G. B. et al. Colossal mid-infrared bulk photovoltaic effect in a type-I Weyl semimetal. Nat. Mater. 18, 471–475 (2019).

    ADS  Google Scholar 

  24. Rees, D. et al. Helicity-dependent photocurrents in the chiral Weyl semimetal RhSi. Sci. Adv. 6, eaba0509 (2020).

    ADS  Google Scholar 

  25. Wu, Q. S., Zhang, S. N., Fang, Z. & Dai, X. Photogalvanic in ultrathin film of topological insulator. Phys. E Low Dimens. Syst. Nanostruct. 44, 895–899 (2012).

    ADS  Google Scholar 

  26. Gao, J.-X., Zhang, W.-Y., Wu, Z.-G., Zheng, Y.-X. & Fu, D.-W. Enantiomorphic perovskite ferroelectrics with circularly polarized luminescence. J. Am. Chem. Soc. 142, 4756–4761 (2020).

    Google Scholar 

  27. Jia, R. et al. Composition gradient-enabled circular photogalvanic effect in inorganic halide perovskites. Appl. Phys. Lett. 120, 211901 (2022).

    ADS  Google Scholar 

  28. Liu, X. et al. Circular photogalvanic spectroscopy of Rashba splitting in 2D hybrid organic–inorganic perovskite multiple quantum wells. Nat. Commun. 11, 323 (2020).

    ADS  Google Scholar 

  29. Liu, Y. et al. Ferroic halide perovskite optoelectronics. Adv. Funct. Mater. 31, 2102793 (2021).

    Google Scholar 

  30. Sun, Z. et al. A photoferroelectric perovskite-type organometallic halide with exceptional anisotropy of bulk photovoltaic effects. Angew. Chem. Int. Ed. Engl. 55, 6545–6550 (2016).

    Google Scholar 

  31. Sturman, B. & Fridkin, V. Photovoltaic and Photo-refractive Effects in Noncentrosymmetric Materials 1st edn (Routledge, 1992).

  32. Nagaosa, N. & Morimoto, T. Concept of quantum geometry in optoelectronic processes in solids: application to solar cells. Adv. Mater. 29, 1603345 (2017).

    Google Scholar 

  33. Young, S. M. & Rappe, A. M. First principles calculation of the shift current photovoltaic effect in ferroelectrics. Phys. Rev. Lett. 109, 116601 (2012).

    ADS  Google Scholar 

  34. Tan, L. Z. et al. Shift current bulk photovoltaic effect in polar materials — hybrid and oxide perovskites and beyond. npj Comput. Mater. 2, 16026 (2016).

    ADS  Google Scholar 

  35. Cook, A. M., Fregoso, B. M., de Juan, F., Coh, S. & Moore, J. E. Design principles for shift current photovoltaics. Nat. Commun. 8, 14176 (2017).

    ADS  Google Scholar 

  36. Burger, A. M. et al. Direct observation of shift and ballistic photovoltaic currents. Sci. Adv. 5, eaau5588 (2019).

    ADS  Google Scholar 

  37. Fregoso, B. M., Morimoto, T. & Moore, J. E. Quantitative relationship between polarization differences and the zone-averaged shift photocurrent. Phys. Rev. B 96, 075421 (2017).

    ADS  Google Scholar 

  38. Resta, R. Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Rev. Mod. Phys. 66, 899–915 (1994).

    ADS  Google Scholar 

  39. Resta, R. Modern theory of polarization in ferroelectrics. Ferroelectrics 151, 49–58 (1994).

    ADS  Google Scholar 

  40. Jiang, J. et al. Flexo-photovoltaic effect in MoS2. Nat. Nanotechnol. 16, 894–901 (2021).

    ADS  Google Scholar 

  41. Ganichev, S. D. & Prettl, W. Intense Terahertz Excitation Semiconductors (Clarendon Press, 2005).

  42. Bernevig, B. A., Orenstein, J. & Zhang, S.-C. Exact SU(2) symmetry and persistent spin helix in a spin–orbit coupled system. Phys. Rev. Lett. 97, 236601 (2006).

    ADS  Google Scholar 

  43. Dresselhaus, G. Spin–orbit coupling effects in zinc blende structures. Phys. Rev. 100, 580–586 (1955).

    ADS  Google Scholar 

  44. Rashba, E. I. & Sheka, V. I. Symmetry of energy bands in crystals of wurtzite type II. Symmetry of bands with spin–orbit interaction included. New J. Phys. 17, 050202 (2015).

    Google Scholar 

  45. Ding, K. et al. Superior ferroelectricity and nonlinear optical response in a hybrid germanium iodide hexagonal perovskite. Nat. Commun. 14, 2863 (2023).

    ADS  Google Scholar 

  46. Ding, R. et al. Effective piezo-phototronic enhancement of flexible photodetectors based on 2D hybrid perovskite ferroelectric single-crystalline thin-films. Adv. Mater. 33, 2101263 (2021).

    Google Scholar 

  47. Ji, C. et al. Bandgap narrowing of lead-free perovskite-type hybrids for visible-light-absorbing ferroelectric semiconductors. J. Phys. Chem. Lett. 8, 2012–2018 (2017).

    Google Scholar 

  48. Pan, Q. et al. A three-dimensional molecular perovskite ferroelectric: (3-ammoniopyrrolidinium)RbBr3. J. Am. Chem. Soc. 139, 3954–3957 (2017).

    Google Scholar 

  49. Park, I.-H. et al. Self-powered photodetector using two-dimensional ferroelectric Dion–Jacobson hybrid perovskites. J. Am. Chem. Soc. 142, 18592–18598 (2020).

    Google Scholar 

  50. Sha, T.-T. et al. Fluorinated 2D lead iodide perovskite ferroelectrics. Adv. Mater. 31, 1901843 (2019).

    Google Scholar 

  51. Stroppa, A. et al. Tunable ferroelectric polarization and its interplay with spin–orbit coupling in tin iodide perovskites. Nat. Commun. 5, 5900 (2014).

    ADS  Google Scholar 

  52. Wang, C. et al. Two-dimensional (n = 1) ferroelectric film solar cells. Natl Sci. Rev. 10, nwad061 (2023).

    Google Scholar 

  53. Wei, W. et al. The first 2D organic–inorganic hybrid relaxor-ferroelectric single crystal. Sci. China Chem. 66, 466–474 (2023).

    Google Scholar 

  54. Zheng, W. et al. Emerging halide perovskite ferroelectrics. Adv. Mater. 35, 2205410 (2023).

    Google Scholar 

  55. Chang, G. et al. Topological quantum properties of chiral crystals. Nat. Mater. 17, 978–985 (2018).

    ADS  Google Scholar 

  56. Iwasaki, H., Miyazawa, S., Koizumi, H., Sugii, K. & Niizeki, N. Ferroelectric and optical properties of Pb5Ge3O11 and its isomorphous compound Pb5Ge2SiO11. J. Appl. Phys. 43, 4907–4915 (1972).

    ADS  Google Scholar 

  57. Aglagul, D. & Shi, J. Strain-induced Kramers–Weyl phase in III–V zinc blende systems. Appl. Phys. Lett. 126, 083102 (2025).

    Google Scholar 

  58. Hu, Y. et al. A chiral switchable photovoltaic ferroelectric 1D perovskite. Sci. Adv. 6, eaay4213 (2020).

    ADS  Google Scholar 

  59. Niesner, D. et al. Structural fluctuations cause spin-split states in tetragonal (CH3NH3)PbI3 as evidenced by the circular photogalvanic effect. Proc. Natl Acad. Sci. USA 115, 9509–9514 (2018).

    ADS  Google Scholar 

  60. Ai, Y., Lv, H.-P., Wang, Z.-X., Liao, W.-Q. & Xiong, R.-G. H/F substitution for advanced molecular ferroelectrics. Trends Chem. 3, 1088–1099 (2021).

    Google Scholar 

  61. Cai, Y., Chippindale, A. M., Curry, R. J. & Vaqueiro, P. Multiple roles of 1,4-diazabicyclo[2.2.2]octane in the solvothermal synthesis of iodobismuthates. Inorg. Chem. 60, 5333–5342 (2021).

    Google Scholar 

  62. Son, J. et al. Unraveling chirality transfer mechanism by structural isomer-derived hydrogen bonding interaction in 2D chiral perovskite. Nat. Commun. 14, 3124 (2023).

    ADS  Google Scholar 

  63. Xie, Y. et al. The soft molecular polycrystalline ferroelectric realized by the fluorination effect. J. Am. Chem. Soc. 142, 12486–12492 (2020).

    Google Scholar 

  64. Yang, C.-K. et al. The first 2D homochiral lead iodide perovskite ferroelectrics: [R- and S-1-(4-chlorophenyl)ethylammonium]2PbI4. Adv. Mater. 31, 1808088 (2019).

    Google Scholar 

  65. Zhang, W.-Y. et al. Precise molecular design of high-Tc 3D organic–inorganic perovskite ferroelectric: [MeHdabco]RbI3 (MeHdabco = N-methyl-1,4-diazoniabicyclo[2.2.2]octane). J. Am. Chem. Soc. 139, 10897–10902 (2017).

    Google Scholar 

  66. Zhang, Y. et al. Ferroelectricity induced by ordering of twisting motion in a molecular rotor. J. Am. Chem. Soc. 134, 11044–11049 (2012).

    Google Scholar 

  67. Zhao, X.-M. et al. Polar molecule-based material with optic–electric switching constructed by polar anions. Inorg. Chem. 59, 5475–5482 (2020).

    Google Scholar 

  68. Ai, Y. et al. Fluorine substitution induced high Tc of enantiomeric perovskite ferroelectrics: (R)- and (S)-3-(fluoropyrrolidinium)MnCl3. J. Am. Chem. Soc. 141, 4474–4479 (2019).

    Google Scholar 

  69. Jach, E. et al. Dynamics of organic cations in switchable quinuclidinium metal chloride dielectrics. J. Phys. Chem. C 127, 2589–2602 (2023).

    Google Scholar 

  70. Wojcik, N. A. et al. Tunable dielectric switching of (quinuclidinium)[MnCl4] hybrid compounds. J. Phys. Chem. C 125, 16810–16818 (2021).

    Google Scholar 

  71. Jung, M.-H. The dual band and white-light emission from piperazine halide perovskites. CrystEngComm 24, 1413–1423 (2022).

    Google Scholar 

  72. Liu, G. et al. Thermally induced reversible double phase transitions in an organic–inorganic hybrid iodoplumbate C4H12NPbI3 with symmetry breaking. Inorg. Chem. 55, 8025–8030 (2016).

    Google Scholar 

  73. Zhang, H.-Y. et al. Methylphosphonium tin bromide: a 3D perovskite molecular ferroelectric semiconductor. Adv. Mater. 32, 2005213 (2020).

    Google Scholar 

  74. Liu, Y. et al. Giant polarization sensitivity via the anomalous photovoltaic effect in a two-dimensional perovskite ferroelectric. J. Am. Chem. Soc. 145, 16193–16199 (2023).

    Google Scholar 

  75. Yuan, Y. et al. Anomalous photovoltaic effect in organic–inorganic hybrid perovskite solar cells. Sci. Adv. 3, e1602164 (2017).

    ADS  Google Scholar 

  76. Koralek, J. D. et al. Emergence of the persistent spin helix in semiconductor quantum wells. Nature 458, 610–613 (2009).

    ADS  Google Scholar 

  77. Walser, M. P., Reichl, C., Wegscheider, W. & Salis, G. Direct mapping of the formation of a persistent spin helix. Nat. Phys. 8, 757–762 (2012).

    Google Scholar 

  78. Jana, M. K. et al. Structural descriptor for enhanced spin-splitting in 2D hybrid perovskites. Nat. Commun. 12, 4982 (2021).

    ADS  Google Scholar 

  79. Chen, R. et al. Ferroelectric CsGeI3 single crystals with a perovskite structure grown from aqueous solution. J. Phys. Chem. C 127, 635–641 (2023).

    ADS  Google Scholar 

  80. Chen, Z. et al. Searching for circular photo galvanic effect in oxyhalide perovskite Bi4NbO8Cl. Adv. Funct. Mater. 32, 2206343 (2022).

    Google Scholar 

  81. Swift, M. W. & Lyons, J. L. Lone-pair stereochemistry induces ferroelectric distortion and the Rashba effect in inorganic halide perovskites. Chem. Mater. 35, 9370–9377 (2023).

    Google Scholar 

  82. Zhang, Y. et al. Ferroelectricity in a semiconducting all-inorganic halide perovskite. Sci. Adv. 8, eabj5881 (2022).

    Google Scholar 

  83. Smith, E. H., Benedek, N. A. & Fennie, C. J. Interplay of octahedral rotations and lone pair ferroelectricity in CsPbF3. Inorg. Chem. 54, 8536–8543 (2015).

    Google Scholar 

  84. Hua, L. et al. Acquiring bulk anomalous photovoltaic effect in single crystals of a lead-free double perovskite with aromatic and alkali mixed-cations. Small 19, 2207393 (2023).

    Google Scholar 

  85. Lei, Y. et al. Bulk photovoltaic effect of a hybrid ferroelectric semiconductor. Phys. Rev. B 109, 104110 (2024).

    ADS  Google Scholar 

  86. Spanier, J. E. et al. Power conversion efficiency exceeding the Shockley–Queisser limit in a ferroelectric insulator. Nat. Photon. 10, 611–616 (2016).

    ADS  Google Scholar 

  87. Pusch, A., Römer, U., Culcer, D. & Ekins-Daukes, N. J. Energy conversion efficiency of the bulk photovoltaic effect. PRX Energy 2, 013006 (2023).

    Google Scholar 

  88. Jiang, J., Pendse, S., Zhang, L. & Shi, J. Strain related new sciences and devices in low-dimensional binary oxides. Nano Energy 104, 107917 (2022).

    Google Scholar 

  89. Schlom, D. G. et al. Elastic strain engineering of ferroic oxides. MRS Bull. 39, 118–130 (2014).

    ADS  Google Scholar 

  90. Liu, S., Kim, Y., Tan, L. Z. & Rappe, A. M. Strain-induced ferroelectric topological insulator. Nano Lett. 16, 1663–1668 (2016).

    ADS  Google Scholar 

  91. Yang, M.-M., Kim, D. J. & Alexe, M. Flexo-photovoltaic effect. Science 360, 904–907 (2018).

    ADS  Google Scholar 

  92. Guo, H., Li, Z. J., Kim, S. C., Han, G. S. & Jung, H. S. Strain in halide perovskite solar cells: origins, impacts, and regulation. Sol. RRL 8, 2400203 (2024).

    Google Scholar 

  93. Zhu, C. et al. Strain engineering in perovskite solar cells and its impacts on carrier dynamics. Nat. Commun. 10, 815 (2019).

    ADS  Google Scholar 

  94. Du, T. et al. Additive-free, low-temperature crystallization of stable α-FAPbI3 perovskite. Adv. Mater. 34, 2107850 (2022).

    Google Scholar 

  95. Li, J. & Haney, P. M. Circular photogalvanic effect in organometal halide perovskite CH3NH3PbI3. Appl. Phys. Lett. 109, 193903 (2016).

    ADS  Google Scholar 

  96. Xiao, Z. et al. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 14, 193–198 (2015).

    ADS  MathSciNet  Google Scholar 

  97. Zhang, S. et al. Moiré superlattices in twisted two-dimensional halide perovskites. Nat. Mater. 23, 1222–1229 (2024).

    Google Scholar 

  98. Ji, Z. et al. Photocurrent detection of the orbital angular momentum of light. Science 368, 763–767 (2020).

    ADS  MathSciNet  Google Scholar 

  99. Huang, P.-J. et al. Chirality-dependent circular photogalvanic effect in enantiomorphic 2D organic–inorganic hybrid perovskites. Adv. Mater. 33, 2008611 (2021).

    Google Scholar 

  100. Zhu, Z. et al. Metal halide perovskites: stability and sensing-ability. J. Mater. Chem. C 6, 10121–10137 (2018).

    Google Scholar 

  101. Cai, Y. et al. A van der Waals photo-ferroelectric synapse. Adv. Electron. Mater. 8, 2200326 (2022).

    Google Scholar 

  102. Gou, G., Young, J., Liu, X. & Rondinelli, J. M. Interplay of cation ordering and ferroelectricity in perovskite tin iodides: designing a polar halide perovskite for photovoltaic applications. Inorg. Chem. 56, 26–32 (2017).

    Google Scholar 

  103. Lopez-Varo, P. et al. Physical aspects of ferroelectric semiconductors for photovoltaic solar energy conversion. Phys. Rep. 653, 1–40 (2016).

    ADS  MathSciNet  Google Scholar 

  104. Gao, Y. et al. Molecular engineering of organic–inorganic hybrid perovskites quantum wells. Nat. Chem. 11, 1151–1157 (2019).

    Google Scholar 

  105. Bartel, C. J. et al. New tolerance factor to predict the stability of perovskite oxides and halides. Sci. Adv. 5, eaav0693 (2019).

    ADS  Google Scholar 

  106. Ünlü, F. et al. Understanding the interplay of stability and efficiency in A-site engineered lead halide perovskites. APL Mater. 8, 070901 (2020).

    ADS  Google Scholar 

Download references

Acknowledgements

J.B. acknowledges support from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 101001626). J.S. acknowledges the support from US AFOSR under award number FA9550-23-1-0310; the US National Science Foundation under Award Nos 2024972, 2031692 and 2312944; and New York State’s Empire State Development’s Division of Science Technology and Innovation through Focus Center Contract No. C180117.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing of the manuscript equally.

Corresponding authors

Correspondence to Joe Briscoe or Jian Shi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Briscoe, J., Shi, J. Photogalvanic effects in non-centrosymmetric halide perovskites. Nat Rev Phys 7, 270–279 (2025). https://doi.org/10.1038/s42254-025-00822-8

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s42254-025-00822-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing