Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neutrinos from explosive transients at the dawn of multi-messenger astronomy

Abstract

With the advent of time-domain astronomy and the game-changing next generation of telescopes, we have unprecedented opportunities to explore the most energetic events in our Universe through electromagnetic radiation, gravitational waves and neutrinos. These are elementary particles, which exist in three different flavours and change the latter as they propagate in the dense core of astrophysical sources as well as en route to Earth. To capitalize on existing and upcoming multi-messenger opportunities, it is crucial to understand: (1) the role of neutrinos in explosive transient sources as well as in the synthesis of the elements heavier than iron; (2) the impact of neutrino physics on the multi-messenger observables and (3) the information on the source physics carried by the detectable neutrino signal. In this Review, the status of this exciting and fast-moving field is outlined, focusing on astrophysical sources linked to collapsing massive stars and neutron-star mergers. In the light of the upcoming plethora of multi-messenger data, outstanding open issues concerning the optimization of multi-messenger detection strategies are discussed.

Key points

  • Neutrinos are fundamental to the core collapse of a massive star and carry 99% of the supernova binding energy.

  • Although neutrino flavour conversion is expected to take place in the core of a supernova, potentially affecting the explosion mechanism and the related multi-messenger emission, it is not accounted for in hydrodynamic simulations.

  • The detection of neutrinos from a Galactic supernova will be essential to alert observers focusing on the electromagnetic spectrum to the upcoming collapse and provide information on the pre-explosion physics (complementing the input coming from gravitational waves), as well as the nature and properties of the central compact object.

  • The detection of the diffuse emission of neutrinos from all supernovae in our Universe (the diffuse supernova neutrino background) would be key to probing the properties of the population of collapsing massive stars, complementing electromagnetic data.

  • Neutrinos are as abundant in core-collapse supernovae as in neutron-star merger remnants, with electron neutrinos having a larger local number density than electron neutrinos in merger remnants. Neutrinos and their flavour conversion physics can influence the abundance/species of nuclei synthetized through the r-process, but the detection of neutrinos from these merger remnants is unlikely.

  • Neutrinos can be produced in high-energy astrophysical transients owing to the interaction of accelerated protons with the photon and/or baryon backgrounds.

  • In the aftermath of the core collapse of a massive star or the merger of two neutron stars, non-thermal neutrinos could be produced along the jet, in the magnetar wind, as the shock propagates in the circumstellar medium and possibly from the interaction of the ejecta with the jet.

  • The non-thermal neutrino signal carries signatures of the source power engine. Therefore, it offers a probe of the source physics and plasma physics in magnetized media.

  • Multi-messenger transient astronomy is undergoing a revolution with an unprecedented amount of data. It is necessary to swiftly develop the infrastructure necessary to cross-correlate and analyse large multi-messenger data sets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Antineutrino fluence from a supernova and a neutron-star merger and cumulative flux of neutrinos from all supernovae in our Universe.
Fig. 2: Regions of flavour conversion of neutrinos in a core-collapse supernova and a neutron-star merger remnant with outflows powering a kilonova and a γ-ray burst.
Fig. 3: Sketch of the sites of non-thermal neutrino production in a collapsing massive star and a neutron-star merger remnant.
Fig. 4: Muon neutrino and antineutrino fluences as functions of the neutrino energy expected for representative transients stemming from collapsing massive stars and neutron-star mergers (located at different distances from Earth).

Similar content being viewed by others

References

  1. Vitagliano, E., Tamborra, I. & Raffelt, G. G. Grand Unified Neutrino Spectrum at Earth: sources and spectral components. Rev. Mod. Phys. 92, 45006 (2020).

    Article  Google Scholar 

  2. Aartsen, M. G. et al. The IceCube Neutrino Observatory: instrumentation and online systems. J. Instrum. 12, P03012 (2017).

    Article  Google Scholar 

  3. Aartsen, M. G. et al. Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science 361, eaat1378 (2018).

    Article  ADS  Google Scholar 

  4. Abbasi, R. et al. Evidence for neutrino emission from the nearby active galaxy NGC 1068. Science 378, 538–543 (2022).

    Article  ADS  Google Scholar 

  5. Abbasi, R. et al. Observation of high-energy neutrinos from the Galactic plane. Science 380, adc9818 (2023).

    Google Scholar 

  6. Margutti, R. & Chornock, R. First multimessenger observations of a neutron star merger. Annu. Rev. Astron. Astrophys. 59, 155–202 (2021).

    Article  ADS  Google Scholar 

  7. Nicholl, M. & Andreoni, I. Electromagnetic follow-up of gravitational waves: review and lessons learned. Preprint at https://arxiv.org/abs/2410.18274 (2024).

  8. Albert, A. et al. Search for high-energy neutrinos from binary neutron star merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory. Astrophys. J. Lett. 850, L35 (2017).

    Article  ADS  Google Scholar 

  9. Hayato, Y. et al. Search for neutrinos in Super-Kamiokande associated with the GW170817 neutron-star merger. Astrophys. J. Lett. 857, L4 (2018).

    Article  ADS  Google Scholar 

  10. Foucart, F. Neutrinos in colliding neutron stars and black holes. Preprint at https://arxiv.org/abs/2410.03646 (2024).

  11. Ehring, J., Abbar, S., Janka, H.-T., Raffelt, G. G. & Tamborra, I. Fast neutrino flavor conversions can help and hinder neutrino-driven explosions. Phys. Rev. Lett. 131, 061401 (2023).

    Article  ADS  Google Scholar 

  12. Nagakura, H. Roles of fast neutrino-flavor conversion on the neutrino-heating mechanism of core-collapse supernova. Phys. Rev. Lett. 130, 211401 (2023).

    Article  ADS  Google Scholar 

  13. Wu, M.-R., Tamborra, I., Just, O. & Janka, H.-T. Imprints of neutrino-pair flavor conversions on nucleosynthesis in ejecta from neutron-star merger remnants. Phys. Rev. D 96, 123015 (2017).

    Article  ADS  Google Scholar 

  14. Just, O. et al. Fast neutrino conversion in hydrodynamic simulations of neutrino-cooled accretion disks. Phys. Rev. D 105, 083024 (2022).

    Article  ADS  Google Scholar 

  15. Li, X. & Siegel, D. M. Neutrino fast flavor conversions in neutron-star postmerger accretion disks. Phys. Rev. Lett. 126, 251101 (2021).

    Article  ADS  Google Scholar 

  16. Yang, Y.-H. et al. A lanthanide-rich kilonova in the aftermath of a long gamma-ray burst. Nature 626, 742–745 (2024).

    Article  ADS  Google Scholar 

  17. Sneppen, A. et al. Spherical symmetry in the kilonova AT2017gfo/GW170817. Nature 614, 436–439 (2023).

    Article  ADS  Google Scholar 

  18. Padovani, P. et al. High-energy neutrinos from the vicinity of the supermassive black hole in NGC 1068. Nat. Astron. 8, 1077–1087 (2024).

    Article  Google Scholar 

  19. Drout, M. R. et al. Rapidly-evolving and luminous transients from Pan-STARRS1. Astrophys. J. 794, 23 (2014).

    Article  ADS  Google Scholar 

  20. Ho, A. Y. Q. et al. A search for extragalactic fast blue optical transients in ZTF and the rate of AT2018cow-like transients. Astrophys. J. 949, 120 (2023).

    Article  ADS  Google Scholar 

  21. Blaufuss, E. AT2018cow: IceCube Neutrino search. The Astronomer’s Telegram No. 11785 (27 June 2018).

  22. Fryer, C. L. & Woosley, S. E. Helium star/black hole mergers: a new gamma-ray burst model. Astrophys. J. Lett. 502, L9–L12 (1998).

    Article  ADS  Google Scholar 

  23. Martínez-Miravé, P., Tamborra, I. & Vigna-Gómez, A. Identifying Thorne-Żytkow objects through neutrinos. Astrophys J. Lett. 984, L2 (2025).

    Article  Google Scholar 

  24. DeMarchi, L., Sanders, J. R. & Levesque, E. M. Prospects for multimessenger observations of Thorne-Żytkow objects. Astrophys. J. 911, 101 (2021).

    Article  ADS  Google Scholar 

  25. Metzger, B. D. Luminous fast blue optical transients and type Ibn/Icn SNe from Wolf-Rayet/black hole mergers. Astrophys. J. 932, 84 (2022).

    Article  ADS  Google Scholar 

  26. Soker, N. A Common Envelope Jets Supernova (CEJSN) impostor scenario for fast blue optical transients. Res. Astron. Astrophys. 22, 055010 (2022).

    Article  ADS  Google Scholar 

  27. Janka, H.-T., Langanke, K., Marek, A., Martinez-Pinedo, G. & Mueller, B. Theory of core-collapse supernovae. Phys. Rep. 442, 38–74 (2007).

    Article  ADS  Google Scholar 

  28. Burrows, A. & Vartanyan, D. Core-collapse supernova explosion theory. Nature 589, 29–39 (2021).

    Article  ADS  Google Scholar 

  29. Bethe, H. A. Supernova mechanisms. Rev. Mod. Phys. 62, 801–866 (1990).

    Article  ADS  Google Scholar 

  30. Blondin, J. M., Mezzacappa, A. & DeMarino, C. Stability of standing accretion shocks, with an eye toward core collapse supernovae. Astrophys. J. 584, 971–980 (2003).

    Article  ADS  Google Scholar 

  31. Tamborra, I. et al. Self-sustained asymmetry of lepton-number emission: a new phenomenon during the supernova shock-accretion phase in three dimensions. Astrophys. J. 792, 96 (2014).

    Article  ADS  Google Scholar 

  32. Hobbs, G., Lorimer, D. R., Lyne, A. G. & Kramer, M. A statistical study of 233 pulsar proper motions. Mon. Not. R. Astron. Soc. 360, 974–992 (2005).

    Article  ADS  Google Scholar 

  33. Janka, H.-T. & Kresse, D. Interplay between neutrino kicks and hydrodynamic kicks of neutron stars and black holes. Astrophys. Space Sci. 369, 80 (2024).

    Article  Google Scholar 

  34. Burrows, A., Wang, T., Vartanyan, D. & Coleman, M. S. B. A theory for neutron star and black hole kicks and induced spins. Astrophys. J. 963, 63 (2024).

    Article  ADS  Google Scholar 

  35. Vigna-Gómez, A. et al. Constraints on neutrino natal kicks from black-hole binary VFTS 243. Phys. Rev. Lett. 132, 191403 (2024).

    Article  ADS  Google Scholar 

  36. Bambi, C. et al. (eds) New Frontiers in GRMHD Simulations (Springer, 2025).

  37. Mösta, P. et al. A large scale dynamo and magnetoturbulence in rapidly rotating core-collapse supernovae. Nature 528, 376 (2015).

    Article  ADS  Google Scholar 

  38. Obergaulinger, M. & Aloy, M.-A. Magnetorotational core collapse of possible GRB progenitors. III. Three-dimensional models. Mon. Not. R. Astron. Soc. 503, 4942–4963 (2021).

    Article  ADS  Google Scholar 

  39. Mirizzi, A. et al. Supernova neutrinos: production, oscillations and detection. Riv. Nuovo Cimento 39, 1–112 (2016).

    Google Scholar 

  40. Burrows, A., Reddy, S. & Thompson, T. A. Neutrino opacities in nuclear matter. Nucl. Phys. A 777, 356–394 (2006).

    Article  ADS  Google Scholar 

  41. Lohs, A. Neutrino Reactions in Hot and Dense Matter. PhD thesis, TU Darmstadt (2015).

  42. Koshiba, M. Observational neutrino astrophysics. Phys. Rep. 220, 229–381 (1992).

    Article  ADS  Google Scholar 

  43. Hirata, K. et al. Observation of a neutrino burst from the supernova SN 1987a. Phys. Rev. Lett. 58, 1490–1493 (1987).

    Article  ADS  Google Scholar 

  44. Bionta, R. M. et al. Observation of a neutrino burst in coincidence with supernova SN 1987a in the Large Magellanic Cloud. Phys. Rev. Lett. 58, 1494 (1987).

    Article  ADS  Google Scholar 

  45. Fiorillo, D. F. G. et al. Supernova simulations confront SN 1987A neutrinos. Phys. Rev. D 108, 083040 (2023).

    Article  ADS  Google Scholar 

  46. Izaguirre, I., Raffelt, G. G. & Tamborra, I. Fast pairwise conversion of supernova neutrinos: a dispersion-relation approach. Phys. Rev. Lett. 118, 021101 (2017).

    Article  ADS  Google Scholar 

  47. Chakraborty, S., Hansen, R., Izaguirre, I. & Raffelt, G. G. Collective neutrino flavor conversion: recent developments. Nucl. Phys. B 908, 366–381 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  48. Glas, R. et al. Fast neutrino flavor instability in the neutron-star convection layer of three-dimensional supernova models. Phys. Rev. D 101, 063001 (2020).

    Article  ADS  Google Scholar 

  49. Nagakura, H., Johns, L., Burrows, A. & Fuller, G. M. Where, when, and why: occurrence of fast-pairwise collective neutrino oscillation in three-dimensional core-collapse supernova models. Phys. Rev. D 104, 083025 (2021).

    Article  ADS  Google Scholar 

  50. Johns, L. Collisional flavor instabilities of supernova neutrinos. Phys. Rev. Lett. 130, 191001 (2023).

    Article  ADS  Google Scholar 

  51. Shalgar, S. & Tamborra, I. Do neutrinos become flavor unstable due to collisions with matter in the supernova decoupling region? Phys. Rev. D 109, 103011 (2024).

    Article  ADS  Google Scholar 

  52. Nagakura, H. & Zaizen, M. Basic characteristics of neutrino flavor conversions in the postshock regions of core-collapse supernova. Phys. Rev. D 108, 123003 (2023).

    Article  ADS  Google Scholar 

  53. Shalgar, S. & Tamborra, I. A change of direction in pairwise neutrino conversion physics: the effect of collisions. Phys. Rev. D 103, 063002 (2021).

    Article  ADS  Google Scholar 

  54. Xiong, Z. et al. Fast neutrino flavor conversions in a supernova: emergence, evolution, and effects. Phys. Rev. D 109, 123008 (2024).

    Article  ADS  Google Scholar 

  55. Horiuchi, S. & Kneller, J. P. What can be learned from a future supernova neutrino detection? J. Phys. G Nucl. Part. Phys. 45, 043002 (2018).

    Article  ADS  Google Scholar 

  56. Fischer, T. et al. Neutrinos and nucleosynthesis of elements. Prog. Part. Nucl. Phys. 137, 104107 (2024).

    Article  Google Scholar 

  57. Tamborra, I. & Shalgar, S. New developments in flavor evolution of a dense neutrino gas. Annu. Rev. Nucl. Part. Sci. 71, 165–188 (2021).

    Article  ADS  Google Scholar 

  58. Janka, H. T., Melson, T. & Summa, A. Physics of core-collapse supernovae in three dimensions: a sneak preview. Annu. Rev. Nucl. Part. Sci. 66, 341–375 (2016).

    Article  ADS  Google Scholar 

  59. Mezzacappa, A., Endeve, E., Bronson Messer, O. E. & Bruenn, S. W. Physical, numerical, and computational challenges of modeling neutrino transport in core-collapse supernovae. Living Rev. Comput. Astrophys. 6, 4 (2020).

    Article  ADS  Google Scholar 

  60. Dasgupta, B., O’Connor, E. P. & Ott, C. D. The role of collective neutrino flavor oscillations in core-collapse supernova shock revival. Phys. Rev. D 85, 065008 (2012).

    Article  ADS  Google Scholar 

  61. Shalgar, S. & Tamborra, I. Neutrino decoupling is altered by flavor conversion. Phys. Rev. D 108, 043006 (2023).

    Article  ADS  Google Scholar 

  62. Kashiwagi, Y. et al. Performance of SK-Gd’s upgraded real-time supernova monitoring system. Astrophys. J. 970, 93 (2024).

    Article  Google Scholar 

  63. Abbasi, R. et al. IceCube sensitivity for low-energy neutrinos from nearby supernovae. Astron. Astrophys. 535, A109 (2011).

    Article  Google Scholar 

  64. Scholberg, K. Supernova signatures of neutrino mass ordering. J. Phys. G Nucl. Part. Phys. 45, 014002 (2018).

    Article  ADS  Google Scholar 

  65. Al Kharusi, S. et al. SNEWS 2.0: a next-generation supernova early warning system for multi-messenger astronomy. New J. Phys. 23, 031201 (2021).

    Article  ADS  Google Scholar 

  66. Abe, S. et al. Combined pre-supernova alert system with KamLAND and Super-Kamiokande. Astrophys. J. 973, 140 (2024).

    Article  Google Scholar 

  67. Valtonen-Mattila, N. Realtime follow-up of external alerts with the IceCube Supernova Data Acquisition System. In Proc. XVIII International Conference on Topics in Astroparticle and Underground Physics (TAUP2023) (Proceedings of Science, 2024).

  68. Hyper-Kamiokande Proto-Collaboration et al. Hyper-Kamiokande design report. Preprint at https://arxiv.org/abs/1805.04163 (2018).

  69. Abusleme, A. et al. Real-time monitoring for the next core-collapse supernova in JUNO. J. Cosmol. Astropart. Phys. 2024, 057 (2024).

    Article  Google Scholar 

  70. Abi, B. et al. Supernova neutrino burst detection with the Deep Underground Neutrino Experiment. Eur. Phys. J. C Part. Fields 81, 423 (2021).

    Article  ADS  Google Scholar 

  71. Lang, R. F., McCabe, C., Reichard, S., Selvi, M. & Tamborra, I. Supernova neutrino physics with xenon dark matter detectors: a timely perspective. Phys. Rev. D 94, 103009 (2016).

    Article  ADS  Google Scholar 

  72. Pattavina, L., Ferreiro Iachellini, N. & Tamborra, I. Neutrino observatory based on archaeological lead. Phys. Rev. D 102, 063001 (2020).

    Article  ADS  Google Scholar 

  73. Waxman, E. & Katz, B. Shock breakout theory. in Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 967 (Springer, 2017).

  74. Nakamura, K. et al. Multimessenger signals of long-term core-collapse supernova simulations: synergetic observation strategies. Mon. Not. R. Astron. Soc. 461, 3296–3313 (2016).

    Article  ADS  Google Scholar 

  75. Drago, M., Andresen, H., Di Palma, I., Tamborra, I. & Torres-Forné, A. Multimessenger observations of core-collapse supernovae: exploiting the standing accretion shock instability. Phys. Rev. D 108, 103036 (2023).

    Article  ADS  Google Scholar 

  76. Patton, K. M., Lunardini, C., Farmer, R. J. & Timmes, F. X. Neutrinos from beta processes in a presupernova: probing the isotopic evolution of a massive star. Astrophys. J. 851, 6 (2017).

    Article  ADS  Google Scholar 

  77. Farag, E., Timmes, F. X., Taylor, M., Patton, K. M. & Farmer, R. On stellar evolution in a neutrino Hertzsprung–Russell diagram. Astrophys. J. 893, 133 (2020).

    Article  ADS  Google Scholar 

  78. O’Connor, E. & Ott, C. D. Black hole formation in failing core-collapse supernovae. Astrophys. J. 730, 70 (2011).

    Article  ADS  Google Scholar 

  79. Neustadt, J. M. M. et al. The search for failed supernovae with the Large Binocular Telescope: a new candidate and the failed SN fraction with 11 yr of data. Mon. Not. R. Astron. Soc. 508, 516–528 (2021).

    Article  ADS  Google Scholar 

  80. Tamborra, I., Hanke, F., Müller, B., Janka, H.-T. & Raffelt, G. G. Neutrino signature of supernova hydrodynamical instabilities in three dimensions. Phys. Rev. Lett. 111, 121104 (2013).

    Article  ADS  Google Scholar 

  81. Walk, L., Tamborra, I., Janka, H.-T. & Summa, A. Identifying rotation in SASI-dominated core-collapse supernovae with a neutrino gyroscope. Phys. Rev. D 98, 123001 (2018).

    Article  ADS  Google Scholar 

  82. Takiwaki, T. & Kotake, K. Anisotropic emission of neutrino and gravitational-wave signals from rapidly rotating core-collapse supernovae. Mon. Not. R. Astron. Soc. 475, L91–L95 (2018).

    Article  ADS  Google Scholar 

  83. Gallo Rosso, A., Abbar, S., Vissani, F. & Volpe, M. C. Late time supernova neutrino signal and proto-neutron star radius. J. Cosmol. Astropart. Phys. 12, 006 (2018).

    Article  ADS  Google Scholar 

  84. Li, S. W., Roberts, L. F. & Beacom, J. F. Exciting prospects for detecting late-time neutrinos from core-collapse supernovae. Phys. Rev. D 103, 023016 (2021).

    Article  ADS  Google Scholar 

  85. Huber, P. et al. Snowmass Neutrino Frontier Report. Report No. FERMILAB-FN-1215-ND-PPD-SCD (US Department of Energy, 2022).

  86. MacDonald, M., Martínez-Miravé, P. & Tamborra, I. The unknowns of the diffuse supernova neutrino background hinder new physics searches. J. Cosmol. Astropart. Phys. 2025, 062 (2025).

    Article  Google Scholar 

  87. Ando, S., Ekanger, N., Horiuchi, S. & Koshio, Y. Diffuse neutrino background from past core collapse supernovae. Proc. Jpn Acad. Ser. B Phys. Biol. Sci. 99, 460–479 (2023).

    Article  ADS  Google Scholar 

  88. Ekanger, N., Horiuchi, S., Nagakura, H. & Reitz, S. Diffuse supernova neutrino background with up-to-date star formation rate measurements and long-term multidimensional supernova simulations. Phys. Rev. D 109, 023024 (2024).

    Article  ADS  Google Scholar 

  89. Ziegler, J. J. et al. Non-universal stellar initial mass functions: large uncertainties in star formation rates at z ≈ 2–4 and other astrophysical probes. Mon. Not. R. Astron. Soc. 517, 2471–2484 (2022).

    Article  ADS  Google Scholar 

  90. Lunardini, C. Diffuse neutrino flux from failed supernovae. Phys. Rev. Lett. 102, 231101 (2009).

    Article  ADS  Google Scholar 

  91. Martínez-Miravé, P., Tamborra, I., Aloy, M. A. & Obergaulinger, M. Diffuse neutrino background from magnetorotational stellar core collapses. Phys. Rev. D 110, 103029 (2024).

    Article  Google Scholar 

  92. Ashida, Y., Nakazato, K. & Tsujimoto, T. Diffuse neutrino flux based on the rates of core-collapse supernovae and black hole formation deduced from a novel galactic chemical evolution model. Astrophys. J. 953, 151 (2023).

    Article  ADS  Google Scholar 

  93. Horiuchi, S., Kinugawa, T., Takiwaki, T., Takahashi, K. & Kotake, K. Impact of binary interactions on the diffuse supernova neutrino background. Phys. Rev. D 103, 043003 (2021).

    Article  ADS  Google Scholar 

  94. Kresse, D., Ertl, T. & Janka, H.-T. Stellar collapse diversity and the diffuse supernova neutrino background. Astrophys. J. 909, 169 (2021).

    Article  ADS  Google Scholar 

  95. Lunardini, C. & Tamborra, I. Diffuse supernova neutrinos: oscillation effects, stellar cooling and progenitor mass dependence. J. Cosmol. Astropart. Phys. 07, 012 (2012).

    Article  ADS  Google Scholar 

  96. Lien, A., Fields, B. D. & Beacom, J. F. Synoptic sky surveys and the diffuse supernova neutrino background: removing astrophysical uncertainties and revealing invisible supernovae. Phys. Rev. D 81, 083001 (2010).

    Article  ADS  Google Scholar 

  97. Harada, M. et al. Search for astrophysical electron antineutrinos in Super-Kamiokande with 0.01% gadolinium-loaded water. Astrophys. J. Lett. 951, L27 (2023).

    Article  ADS  Google Scholar 

  98. Harada, M. Review of diffuse SN neutrino background. Zenodo https://doi.org/10.5281/zenodo.12726429 (2024).

  99. Abusleme, A. et al. Prospects for detecting the diffuse supernova neutrino background with JUNO. J. Cosmol. Astropart. Phys. 10, 033 (2022).

    Article  ADS  Google Scholar 

  100. Suliga, A. M., Beacom, J. F. & Tamborra, I. Towards probing the diffuse supernova neutrino background in all flavors. Phys. Rev. D 105, 043008 (2022).

    Article  ADS  Google Scholar 

  101. Metzger, B. D. Kilonovae. Living Rev. Relativ. 23, 1 (2020).

    Article  Google Scholar 

  102. Foucart, F. et al. Robustness of neutron star merger simulations to changes in neutrino transport and neutrino–matter interactions. Phys. Rev. D 110, 083028 (2024).

    Article  Google Scholar 

  103. Kiuchi, K., Reboul-Salze, A., Shibata, M. & Sekiguchi, Y. A large-scale magnetic field produced by a solar-like dynamo in binary neutron star mergers. Nat. Astron. 8, 298–307 (2024).

    Article  ADS  Google Scholar 

  104. Janka, H.-T. & Bauswein, A. Dynamics and equation of state dependencies of relevance for nucleosynthesis in supernovae and neutron star mergers. In Handbook of Nuclear Physics (eds Tanihata, I. et al.) 1–98 (Springer, 2023).

  105. Baumgarte, T. W., Shapiro, S. L. & Shibata, M. On the maximum mass of differentially rotating neutron stars. Astrophys. J. Lett. 528, L29 (2000).

    Article  ADS  Google Scholar 

  106. Cook, G. B., Shapiro, S. L. & Teukolsky, S. A. Spin-up of a rapidly rotating star by angular momentum loss: effects of general relativity. Astrophys. J. 398, 203 (1992).

    Article  ADS  Google Scholar 

  107. Shibata, M. & Hotokezaka, K. Merger and mass ejection of neutron-star binaries. Annu. Rev. Nucl. Part. Sci. 69, 41–64 (2019).

    Article  ADS  Google Scholar 

  108. Fernández, R. & Metzger, B. D. Delayed outflows from black hole accretion tori following neutron star binary coalescence. Mon. Not. R. Astron. Soc. 435, 502 (2013).

    Article  ADS  Google Scholar 

  109. Abbott, B. P. et al. Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys. J. Lett. 848, L13 (2017).

    Article  ADS  Google Scholar 

  110. Eichler, D., Livio, M., Piran, T. & Schramm, D. N. Nucleosynthesis, neutrino bursts and gamma-rays from coalescing neutron stars. Nature 340, 126–128 (1989).

    Article  ADS  Google Scholar 

  111. Rastinejad, J. C. et al. A kilonova following a long-duration gamma-ray burst at 350 Mpc. Nature 612, 223–227 (2022).

    Article  ADS  Google Scholar 

  112. Gottlieb, O. et al. A unified picture of short and long gamma-ray bursts from compact binary mergers. Astrophys. J. Lett. 958, L33 (2023).

    Article  ADS  Google Scholar 

  113. Chi-Kit Cheong, P., Pitik, T., Longo Micchi, L. F. & Radice, D. Gamma-ray bursts and kilonovae from the accretion-induced collapse of white dwarfs. Astrophys. J. Lett. 978, L38 (2025).

    Article  Google Scholar 

  114. Kyutoku, K. & Kashiyama, K. Detectability of thermal neutrinos from binary-neutron-star mergers and implication to neutrino physics. Phys. Rev. D 97, 103001 (2018).

    Article  ADS  Google Scholar 

  115. Malkus, A., Kneller, J. P., McLaughlin, G. C. & Surman, R. Neutrino oscillations above black hole accretion disks: disks with electron-flavor emission. Phys. Rev. D 86, 085015 (2012).

    Article  ADS  Google Scholar 

  116. Padilla-Gay, I., Shalgar, S. & Tamborra, I. Symmetry breaking due to multi-angle matter–neutrino resonance in neutron star merger remnants. J. Cosmol. Astropart. Phys. 05, 037 (2024).

    Article  ADS  Google Scholar 

  117. Fernández, R., Richers, S., Mulyk, N. & Fahlman, S. Fast flavor instability in hypermassive neutron star disk outflows. Phys. Rev. D 106, 103003 (2022).

    Article  ADS  Google Scholar 

  118. Ciolfi, R. The key role of magnetic fields in binary neutron star mergers. Gen. Relativ. Gravit. 52, 59 (2020).

    Article  ADS  Google Scholar 

  119. Hayashi, K., Kiuchi, K., Kyutoku, K., Sekiguchi, Y. & Shibata, M. General-relativistic neutrino-radiation magnetohydrodynamics simulation of seconds-long black hole-neutron star mergers: dependence on the initial magnetic field strength, configuration, and neutron-star equation of state. Phys. Rev. D 107, 123001 (2023).

    Article  ADS  Google Scholar 

  120. Mandel, I. & Broekgaarden, F. S. Rates of compact object coalescences. Living Rev. Relativ. 25, 1 (2022).

    Article  ADS  Google Scholar 

  121. Schilbach, T. S. H., Caballero, O. L. & McLaughlin, G. C. Black hole accretion disk diffuse neutrino background. Phys. Rev. D 100, 043008 (2019).

    Article  ADS  Google Scholar 

  122. Abbasi, R. et al. IceCat-1: The IceCube event catalog of alert tracks. Astrophys. J. Suppl. Ser. 269, 25 (2023).

    Article  ADS  Google Scholar 

  123. Abbasi, R. et al. Time-integrated southern-sky neutrino source searches with 10 years of IceCube starting-track events at energies down to 1 TeV. Preprint at https://arxiv.org/abs/2501.16440 (2025).

  124. Guarini, E., Tamborra, I., Margutti, R. & Ramirez-Ruiz, E. Transients stemming from collapsing massive stars: the missing pieces to advance joint observations of photons and high-energy neutrinos. Phys. Rev. D 108, 083035 (2023).

    Article  ADS  Google Scholar 

  125. Fang, K., Metzger, B. D., Vurm, I., Aydi, E. & Chomiuk, L. High-energy neutrinos and gamma rays from nonrelativistic shock-powered transients. Astrophys. J. 904, 4 (2020).

    Article  ADS  Google Scholar 

  126. Kelner, S. R., Aharonian, F. A. & Bugayov, V. V. Energy spectra of gamma-rays, electrons and neutrinos produced at proton–proton interactions in the very high energy regime. Phys. Rev. D 74, 034018 (2006).

    Article  ADS  Google Scholar 

  127. Kelner, S. R. & Aharonian, F. A. Energy spectra of gamma-rays, electrons and neutrinos produced at interactions of relativistic protons with low energy radiation. Phys. Rev. D 78, 034013 (2008).

    Article  ADS  Google Scholar 

  128. Murase, K., Thompson, T. A., Lacki, B. C. & Beacom, J. F. New class of high-energy transients from crashes of supernova ejecta with massive circumstellar material shells. Phys. Rev. D 84, 043003 (2011).

    Article  ADS  Google Scholar 

  129. Sarmah, P., Chakraborty, S., Tamborra, I. & Auchettl, K. High energy particles from young supernovae: gamma-ray and neutrino connections. J. Cosmol. Astropart. Phys. 08, 011 (2022).

    Article  ADS  Google Scholar 

  130. Pitik, T., Tamborra, I., Lincetto, M. & Franckowiak, A. Optically informed searches of high-energy neutrinos from interaction-powered supernovae. Mon. Not. R. Astron. Soc. 524, 3366–3384 (2023).

    Article  ADS  Google Scholar 

  131. Abbasi, R. et al. Constraining high-energy neutrino emission from supernovae with IceCube. Astrophys. J. Lett. 949, L12 (2023).

    Article  ADS  Google Scholar 

  132. Waxman, E., Wasserman, T., Ofek, E. & Gal-Yam, A. Shock breakouts from compact circumstellar medium surrounding core-collapse supernova progenitors may contribute significantly to the observed 10 TeV neutrino background. Astrophys. J. 978, 133 (2025).

    Article  Google Scholar 

  133. Fang, K., Metzger, B. D., Murase, K., Bartos, I. & Kotera, K. Multimessenger implications of AT2018cow: high-energy cosmic-ray and neutrino emissions from magnetar-powered superluminous transients. Astrophys. J. 878, 34 (2019).

    Article  ADS  Google Scholar 

  134. Gottlieb, O. & Globus, N. The role of jet–cocoon mixing, magnetization, and shock breakout in neutrino and cosmic-ray emission from short gamma-ray bursts. Astrophys. J. Lett. 915, L4 (2021).

    Article  ADS  Google Scholar 

  135. Guarini, E., Tamborra, I. & Gottlieb, O. State-of-the-art collapsar jet simulations imply undetectable subphotospheric neutrinos. Phys. Rev. D 107, 023001 (2023).

    Article  ADS  Google Scholar 

  136. Rudolph, A., Tamborra, I. & Gottlieb, O. Subphotospheric emission from short gamma-ray bursts: protons mold the multimessenger signals. Astrophys. J. Lett. 961, L7 (2024).

    Article  ADS  Google Scholar 

  137. Pitik, T., Tamborra, I. & Petropoulou, M. Neutrino signal dependence on gamma-ray burst emission mechanism. J. Cosmol. Astropart. Phys. 05, 034 (2021).

    Article  ADS  Google Scholar 

  138. Kimura, S. S. Neutrinos from gamma-ray bursts. in The Encyclopedia of Cosmology 433–482 (World Scientific, 2023).

  139. Horiuchi, S., Murase, K., Ioka, K. & Mészáros, P. The survival of nuclei in jets associated with core-collapse supernovae and gamma-ray bursts. Astrophys. J. 753, 69 (2012).

    Article  ADS  Google Scholar 

  140. De Lia, V. & Tamborra, I. High energy neutrino production in gamma-ray bursts: dependence of the neutrino signal on the jet composition. J. Cosmol. Astropart. Phys. 10, 054 (2024).

    Article  Google Scholar 

  141. Biehl, D., Boncioli, D., Fedynitch, A. & Winter, W. Cosmic-ray and neutrino emission from gamma-ray bursts with a nuclear cascade. Astron. Astrophys. 611, A101 (2018).

    Article  ADS  Google Scholar 

  142. Abbasi, R. et al. Search for 10–1000 GeV neutrinos from gamma-ray bursts with IceCube. Astrophys. J. 964, 126 (2024).

    Article  ADS  Google Scholar 

  143. Ho, A. Y. Q. et al. Minutes-duration optical flares with supernova luminosities. Nature 623, 927–931 (2023).

    Article  ADS  Google Scholar 

  144. Cao, Z., Jonker, P. G., Wen, S. & Zabludoff, A. I. Slim-disk modeling reveals an accreting intermediate-mass black hole in the luminous fast blue optical transient AT2018cow. Astron. Astrophys. 691, A228 (2024).

    Article  Google Scholar 

  145. Gottlieb, O., Tchekhovskoy, A. & Margutti, R. Shocked jets in CCSNe can power the zoo of fast blue optical transients. Mon. Not. R. Astron. Soc. 513, 3810–3817 (2022).

    Article  ADS  Google Scholar 

  146. Guarini, E., Tamborra, I. & Margutti, R. Neutrino emission from luminous fast blue optical transients. Astrophys. J. 935, 157 (2022).

    Article  ADS  Google Scholar 

  147. Fang, K. & Metzger, B. D. High-energy neutrinos from millisecond magnetars formed from the merger of binary neutron stars. Astrophys. J. 849, 153 (2017).

    Article  ADS  Google Scholar 

  148. Mukhopadhyay, M., Kimura, S. S. & Metzger, B. D. High-energy neutrino signatures from pulsar remnants of binary neutron-star mergers: coincident detection prospects with gravitational waves. Preprint at https://arxiv.org/abs/2407.04767 (2024).

  149. Biehl, D., Heinze, J. & Winter, W. Expected neutrino fluence from short gamma-ray burst 170817A and off-axis angle constraints. Mon. Not. R. Astron. Soc. 476, 1191–1197 (2018).

    Article  ADS  Google Scholar 

  150. Kimura, S. S. et al. Transejecta high-energy neutrino emission from binary neutron star mergers. Phys. Rev. D 98, 043020 (2018).

    Article  ADS  Google Scholar 

  151. Guo, G., Qian, Y.-Z. & Wu, M.-R. Effects of annihilation with low-energy neutrinos on high-energy neutrinos from binary neutron star mergers and rare core-collapse supernovae. Phys. Rev. D 109, 083020 (2024).

    Article  ADS  Google Scholar 

  152. Hambleton, K. M. et al. Rubin Observatory LSST Transients and variable stars roadmap. Publ. Astron. Soc. Pac. 135, 105002 (2023).

    Article  ADS  Google Scholar 

  153. Shvartzvald, Y. et al. ULTRASAT: a wide-field time-domain UV space telescope. Astrophys. J. 964, 74 (2024).

    Article  ADS  Google Scholar 

  154. Doré, O. et al. WFIRST Science Investigation Team ‘Cosmology with the high latitude survey’ Annual Report 2017. Preprint at https://arxiv.org/abs/1804.03628 (2018).

  155. Actis, M. et al. Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy. Exp. Astron. 32, 193–316 (2011).

    Article  ADS  Google Scholar 

  156. Dekany, R. et al. The Zwicky Transient Facility: observing system. Publ. Astron. Soc. Pac. 132, 038001 (2020).

    Article  ADS  Google Scholar 

  157. Chambers, K. C. et al. The Pan-STARRS1 Surveys. Preprint at https://arxiv.org/abs/1612.05560 (2016).

  158. Roming, P. W. A. et al. The swift ultra-violet/optical telescope. Space Sci. Rev. 120, 95–142 (2005).

    Article  ADS  Google Scholar 

  159. Levan, A. J. et al. Heavy-element production in a compact object merger observed by JWST. Nature 626, 737–741 (2024).

    Article  ADS  Google Scholar 

  160. Evans, M. et al. Cosmic Explorer: A Submission to the NSF MPSAC ngGW Subcommittee. Preprint at https://arxiv.org/abs/2306.13745 (2023).

  161. Badaracco, F. Einstein telescope: science and technology. Nuovo Cimento C 47, 66 (2024).

    Google Scholar 

  162. Abbott, B. P. et al. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Rev. Relativ. 19, 1 (2016).

    Article  ADS  Google Scholar 

  163. Kurahashi, N., Murase, K. & Santander, M. High-energy extragalactic neutrino astrophysics. Annu. Rev. Nucl. Part. Sci. 72, 365 (2022).

    Article  ADS  Google Scholar 

  164. Aiello, S. et al. Astronomy potential of KM3NeT/ARCA. Eur. Phys. J. C Part. Fields 84, 885 (2024).

    Google Scholar 

  165. Aartsen, M. G. et al. IceCube-Gen2: the window to the extreme Universe. J. Phys. G Nucl. Part. Phys. 48, 060501 (2021).

    Article  ADS  Google Scholar 

  166. Álvarez-Muñiz, J. et al. The Giant Radio Array for Neutrino Detection (GRAND): science and design. Sci. China Phys. Mech. Astron. 63, 219501 (2020).

    Article  ADS  Google Scholar 

  167. Agostini, M. et al. The Pacific Ocean Neutrino Experiment. Nat. Astron. 4, 913–915 (2020).

    Article  ADS  Google Scholar 

  168. Guépin, C., Kotera, K. & Oikonomou, F. High-energy neutrino transients and the future of multi-messenger astronomy. Nat. Rev. Phys. 4, 697–712 (2022).

    Article  Google Scholar 

  169. Abbasi, R. et al. Follow-up of astrophysical transients in real time with the IceCube Neutrino Observatory. Astrophys. J. 910, 4 (2021).

    Article  ADS  Google Scholar 

  170. Stein, R. et al. Neutrino follow-up with the Zwicky Transient Facility: results from the first 24 campaigns. Mon. Not. R. Astron. Soc. 521, 4 (2023).

    Article  Google Scholar 

  171. Kankare, E. et al. Search for transient optical counterparts to high-energy IceCube Neutrinos with Pan-STARRS1. Astron. Astrophys. 626, A117 (2019).

    Article  Google Scholar 

  172. Necker, J. et al. ASAS-SN follow-up of IceCube high-energy neutrino alerts. Mon. Not. R. Astron. Soc. 516, 2455–2469 (2022).

    Article  ADS  Google Scholar 

  173. Morgan, R. et al. A DECam Search for explosive optical transients associated with IceCube Neutrinos. Astrophys. J. 883, 125 (2019).

    Article  ADS  Google Scholar 

  174. Acciari, V. A. et al. Searching for VHE gamma-ray emission associated with IceCube Neutrino alerts using FACT, H.E.S.S., MAGIC, and VERITAS. In Proc. 37th International Cosmic Ray Conference (ICRC2021) (Proceedings of Science, 2022).

  175. Garrappa, S. et al. Fermi-LAT realtime follow-ups of high-energy neutrino alerts. In Proc. 37th International Cosmic Ray Conference (ICRC2021) (Proceedings of Science, 2022).

  176. Baxter, A. L. et al. Collaborative experience between scientific software projects using Agile Scrum Development. Softw. Pract. Exp. 52, 2077–2096 (2022).

    Article  Google Scholar 

  177. Smale, A. et al. Time-domain Astronomy Coordination Hub (TACH). In American Astronomical Society Meeting No. 235, 107.15 (American Astronomical Society, 2020).

  178. Smith, N., Li, W., Filippenko, A. V. & Chornock, R. Observed fractions of core-collapse supernova types and initial masses of their single and binary progenitor stars. Mon. Not. R. Astron. Soc. 412, 1522 (2011).

    Article  ADS  Google Scholar 

  179. Zha, S., Müller, B., Weir, A. & Heger, A. Light curves of type IIP supernovae from neutrino-driven explosions of red supergiants obtained by a semianalytic approach. Astrophys. J. 952, 155 (2023).

    Article  ADS  Google Scholar 

  180. Szczepanczyk, M. et al. Detecting and reconstructing gravitational waves from the next galactic core-collapse supernova in the advanced detector era. Phys. Rev. D 104, 102002 (2021).

    Article  ADS  Google Scholar 

  181. Salmaso, I. et al. The diversity of strongly interacting type IIn supernovae. Astron. Astrophys. 695, A29 (2025).

    Article  Google Scholar 

  182. Li, W. et al. Nearby supernova rates from the Lick Observatory Supernova Search. II. The observed luminosity functions and fractions of supernovae in a complete sample. Mon. Not. R. Astron. Soc. 412, 1441 (2011).

    Article  ADS  Google Scholar 

  183. Sollerman, J. et al. Maximum luminosities of normal stripped-envelope supernovae are brighter than explosion models allow. Astron. Astrophys. 657, A64 (2022).

    Article  Google Scholar 

  184. Prajs, S. et al. The volumetric rate of superluminous supernovae at z~1. Mon. Not. R. Astron. Soc. 464, 3568–3579 (2017).

    Article  ADS  Google Scholar 

  185. Gal-Yam, A. The most luminous supernovae. Annu. Rev. Astron. Astrophys. 57, 305–333 (2019).

    Article  ADS  Google Scholar 

  186. Abbott, R. et al. Population of merging compact binaries inferred using gravitational waves through GWTC-3. Phys. Rev. X 13, 011048 (2023).

    Google Scholar 

  187. Drout, M. R. et al. Light curves of the neutron star merger GW170817/SSS17a: implications for R-process nucleosynthesis. Science 358, 1570–1574 (2017).

    Article  ADS  Google Scholar 

  188. Zappa, F., Bernuzzi, S., Radice, D., Perego, A. & Dietrich, T. Gravitational-wave luminosity of binary neutron stars mergers. Phys. Rev. Lett. 120, 111101 (2018).

    Article  ADS  Google Scholar 

  189. Andreoni, I. et al. Fast-transient searches in real time with ZTFReST: identification of three optically discovered gamma-ray burst afterglows and new constraints on the kilonova rate. Astrophys. J. 918, 63 (2021).

    Article  ADS  Google Scholar 

  190. Lan, G.-X., Zeng, H.-D., Wei, J.-J. & Wu, X.-F. The luminosity function and formation rate of a complete sample of long gamma-ray bursts. Mon. Not. R. Astron. Soc. 488, 4607–4613 (2019).

    Article  ADS  Google Scholar 

  191. Pescalli, A. et al. The rate and luminosity function of long gamma ray bursts. Astron. Astrophys. 587, A40 (2016).

    Article  Google Scholar 

  192. Gottlieb, O. et al. Jetted and turbulent stellar deaths: new LVK-detectable gravitational-wave sources. Astrophys. J. Lett. 951, L30 (2023).

    Article  ADS  Google Scholar 

  193. Zevin, M. et al. Observational inference on the delay time distribution of short gamma-ray bursts. Astrophys. J. Lett. 940, L18 (2022).

    Article  ADS  Google Scholar 

  194. Ghirlanda, G. et al. Short gamma-ray bursts at the dawn of the gravitational wave era. Astron. Astrophys. 594, A84 (2016).

    Article  Google Scholar 

  195. Coppejans, D. L. et al. A mildly relativistic outflow from the energetic, fast-rising blue optical transient CSS161010 in a dwarf galaxy. Astrophys. J. Lett. 895, L23 (2020).

    Article  ADS  Google Scholar 

  196. Stein, R. Search for neutrinos from populations of optical transients. In Proc. 36th International Cosmic Ray Conference (ICRC2019) (Proceedings of Science, 2021).

  197. The Garching core-collapse supernova research. Max Planck Institute for Astrophysics https://wwwmpa.mpa-garching.mpg.de/ccsnarchive/ (2013).

  198. Steiner, A. W., Hempel, M. & Fischer, T. Core-collapse supernova equations of state based on neutron star observations. Astrophys. J. 774, 17 (2013).

    Article  ADS  Google Scholar 

  199. Kiuchi, K. et al. Self-consistent picture of the mass ejection from a one second long binary neutron star merger leaving a short-lived remnant in a general-relativistic neutrino-radiation magnetohydrodynamic simulation. Phys. Rev. Lett. 131, 011401 (2023).

    Article  ADS  Google Scholar 

  200. Møller, K., Suliga, A. M., Tamborra, I. & Denton, P. B. Measuring the supernova unknowns at the next-generation neutrino telescopes through the diffuse neutrino background. J. Cosmol. Astropart. Phys. 05, 066 (2018).

    Article  ADS  Google Scholar 

  201. Pitik, T., Tamborra, I., Angus, C. R. & Auchettl, K. Is the high-energy neutrino event IceCube-200530A associated with a hydrogen-rich superluminous supernova? Astrophys. J. 929, 163 (2022).

    Article  ADS  Google Scholar 

  202. Sigl, G. & Raffelt, G. G. General kinetic description of relativistic mixed neutrinos. Nucl. Phys. B 406, 423–451 (1993).

    Article  ADS  Google Scholar 

  203. Duan, H., Fuller, G. M., Carlson, J. & Qian, Y.-Z. Simulation of coherent non-linear neutrino flavor transformation in the supernova environment. 1. Correlated neutrino trajectories. Phys. Rev. D 74, 105014 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author is grateful to P. Martínez-Miravé, T. Pitik, G. Raffelt and M.-R. Wu for insightful feedback on the manuscript, as well as K. Kiuchi and D. Kresse for helpful discussions. As the literature on this subject evolves at a very fast pace, the author apologizes in advance for any contribution that could not be adequately covered in this Review. Support from the Danmarks Frie Forskningsfond (Project No. 8049-00038B), the Carlsberg Foundation (CF18-0183), the Villum Foundation (Project No. 13164), the European Union (ERC, ANET, Project No. 101087058) and the Deutsche Forschungsgemeinschaft through Sonderforschungsbereich SFB 1258 ‘Neutrinos and dark matter in astro- and particle physics’ (NDM) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Tamborra.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamborra, I. Neutrinos from explosive transients at the dawn of multi-messenger astronomy. Nat Rev Phys 7, 285–298 (2025). https://doi.org/10.1038/s42254-025-00828-2

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s42254-025-00828-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing