Abstract
With the advent of time-domain astronomy and the game-changing next generation of telescopes, we have unprecedented opportunities to explore the most energetic events in our Universe through electromagnetic radiation, gravitational waves and neutrinos. These are elementary particles, which exist in three different flavours and change the latter as they propagate in the dense core of astrophysical sources as well as en route to Earth. To capitalize on existing and upcoming multi-messenger opportunities, it is crucial to understand: (1) the role of neutrinos in explosive transient sources as well as in the synthesis of the elements heavier than iron; (2) the impact of neutrino physics on the multi-messenger observables and (3) the information on the source physics carried by the detectable neutrino signal. In this Review, the status of this exciting and fast-moving field is outlined, focusing on astrophysical sources linked to collapsing massive stars and neutron-star mergers. In the light of the upcoming plethora of multi-messenger data, outstanding open issues concerning the optimization of multi-messenger detection strategies are discussed.
Key points
-
Neutrinos are fundamental to the core collapse of a massive star and carry 99% of the supernova binding energy.
-
Although neutrino flavour conversion is expected to take place in the core of a supernova, potentially affecting the explosion mechanism and the related multi-messenger emission, it is not accounted for in hydrodynamic simulations.
-
The detection of neutrinos from a Galactic supernova will be essential to alert observers focusing on the electromagnetic spectrum to the upcoming collapse and provide information on the pre-explosion physics (complementing the input coming from gravitational waves), as well as the nature and properties of the central compact object.
-
The detection of the diffuse emission of neutrinos from all supernovae in our Universe (the diffuse supernova neutrino background) would be key to probing the properties of the population of collapsing massive stars, complementing electromagnetic data.
-
Neutrinos are as abundant in core-collapse supernovae as in neutron-star merger remnants, with electron neutrinos having a larger local number density than electron neutrinos in merger remnants. Neutrinos and their flavour conversion physics can influence the abundance/species of nuclei synthetized through the r-process, but the detection of neutrinos from these merger remnants is unlikely.
-
Neutrinos can be produced in high-energy astrophysical transients owing to the interaction of accelerated protons with the photon and/or baryon backgrounds.
-
In the aftermath of the core collapse of a massive star or the merger of two neutron stars, non-thermal neutrinos could be produced along the jet, in the magnetar wind, as the shock propagates in the circumstellar medium and possibly from the interaction of the ejecta with the jet.
-
The non-thermal neutrino signal carries signatures of the source power engine. Therefore, it offers a probe of the source physics and plasma physics in magnetized media.
-
Multi-messenger transient astronomy is undergoing a revolution with an unprecedented amount of data. It is necessary to swiftly develop the infrastructure necessary to cross-correlate and analyse large multi-messenger data sets.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Vitagliano, E., Tamborra, I. & Raffelt, G. G. Grand Unified Neutrino Spectrum at Earth: sources and spectral components. Rev. Mod. Phys. 92, 45006 (2020).
Aartsen, M. G. et al. The IceCube Neutrino Observatory: instrumentation and online systems. J. Instrum. 12, P03012 (2017).
Aartsen, M. G. et al. Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science 361, eaat1378 (2018).
Abbasi, R. et al. Evidence for neutrino emission from the nearby active galaxy NGC 1068. Science 378, 538–543 (2022).
Abbasi, R. et al. Observation of high-energy neutrinos from the Galactic plane. Science 380, adc9818 (2023).
Margutti, R. & Chornock, R. First multimessenger observations of a neutron star merger. Annu. Rev. Astron. Astrophys. 59, 155–202 (2021).
Nicholl, M. & Andreoni, I. Electromagnetic follow-up of gravitational waves: review and lessons learned. Preprint at https://arxiv.org/abs/2410.18274 (2024).
Albert, A. et al. Search for high-energy neutrinos from binary neutron star merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory. Astrophys. J. Lett. 850, L35 (2017).
Hayato, Y. et al. Search for neutrinos in Super-Kamiokande associated with the GW170817 neutron-star merger. Astrophys. J. Lett. 857, L4 (2018).
Foucart, F. Neutrinos in colliding neutron stars and black holes. Preprint at https://arxiv.org/abs/2410.03646 (2024).
Ehring, J., Abbar, S., Janka, H.-T., Raffelt, G. G. & Tamborra, I. Fast neutrino flavor conversions can help and hinder neutrino-driven explosions. Phys. Rev. Lett. 131, 061401 (2023).
Nagakura, H. Roles of fast neutrino-flavor conversion on the neutrino-heating mechanism of core-collapse supernova. Phys. Rev. Lett. 130, 211401 (2023).
Wu, M.-R., Tamborra, I., Just, O. & Janka, H.-T. Imprints of neutrino-pair flavor conversions on nucleosynthesis in ejecta from neutron-star merger remnants. Phys. Rev. D 96, 123015 (2017).
Just, O. et al. Fast neutrino conversion in hydrodynamic simulations of neutrino-cooled accretion disks. Phys. Rev. D 105, 083024 (2022).
Li, X. & Siegel, D. M. Neutrino fast flavor conversions in neutron-star postmerger accretion disks. Phys. Rev. Lett. 126, 251101 (2021).
Yang, Y.-H. et al. A lanthanide-rich kilonova in the aftermath of a long gamma-ray burst. Nature 626, 742–745 (2024).
Sneppen, A. et al. Spherical symmetry in the kilonova AT2017gfo/GW170817. Nature 614, 436–439 (2023).
Padovani, P. et al. High-energy neutrinos from the vicinity of the supermassive black hole in NGC 1068. Nat. Astron. 8, 1077–1087 (2024).
Drout, M. R. et al. Rapidly-evolving and luminous transients from Pan-STARRS1. Astrophys. J. 794, 23 (2014).
Ho, A. Y. Q. et al. A search for extragalactic fast blue optical transients in ZTF and the rate of AT2018cow-like transients. Astrophys. J. 949, 120 (2023).
Blaufuss, E. AT2018cow: IceCube Neutrino search. The Astronomer’s Telegram No. 11785 (27 June 2018).
Fryer, C. L. & Woosley, S. E. Helium star/black hole mergers: a new gamma-ray burst model. Astrophys. J. Lett. 502, L9–L12 (1998).
Martínez-Miravé, P., Tamborra, I. & Vigna-Gómez, A. Identifying Thorne-Żytkow objects through neutrinos. Astrophys J. Lett. 984, L2 (2025).
DeMarchi, L., Sanders, J. R. & Levesque, E. M. Prospects for multimessenger observations of Thorne-Żytkow objects. Astrophys. J. 911, 101 (2021).
Metzger, B. D. Luminous fast blue optical transients and type Ibn/Icn SNe from Wolf-Rayet/black hole mergers. Astrophys. J. 932, 84 (2022).
Soker, N. A Common Envelope Jets Supernova (CEJSN) impostor scenario for fast blue optical transients. Res. Astron. Astrophys. 22, 055010 (2022).
Janka, H.-T., Langanke, K., Marek, A., Martinez-Pinedo, G. & Mueller, B. Theory of core-collapse supernovae. Phys. Rep. 442, 38–74 (2007).
Burrows, A. & Vartanyan, D. Core-collapse supernova explosion theory. Nature 589, 29–39 (2021).
Bethe, H. A. Supernova mechanisms. Rev. Mod. Phys. 62, 801–866 (1990).
Blondin, J. M., Mezzacappa, A. & DeMarino, C. Stability of standing accretion shocks, with an eye toward core collapse supernovae. Astrophys. J. 584, 971–980 (2003).
Tamborra, I. et al. Self-sustained asymmetry of lepton-number emission: a new phenomenon during the supernova shock-accretion phase in three dimensions. Astrophys. J. 792, 96 (2014).
Hobbs, G., Lorimer, D. R., Lyne, A. G. & Kramer, M. A statistical study of 233 pulsar proper motions. Mon. Not. R. Astron. Soc. 360, 974–992 (2005).
Janka, H.-T. & Kresse, D. Interplay between neutrino kicks and hydrodynamic kicks of neutron stars and black holes. Astrophys. Space Sci. 369, 80 (2024).
Burrows, A., Wang, T., Vartanyan, D. & Coleman, M. S. B. A theory for neutron star and black hole kicks and induced spins. Astrophys. J. 963, 63 (2024).
Vigna-Gómez, A. et al. Constraints on neutrino natal kicks from black-hole binary VFTS 243. Phys. Rev. Lett. 132, 191403 (2024).
Bambi, C. et al. (eds) New Frontiers in GRMHD Simulations (Springer, 2025).
Mösta, P. et al. A large scale dynamo and magnetoturbulence in rapidly rotating core-collapse supernovae. Nature 528, 376 (2015).
Obergaulinger, M. & Aloy, M.-A. Magnetorotational core collapse of possible GRB progenitors. III. Three-dimensional models. Mon. Not. R. Astron. Soc. 503, 4942–4963 (2021).
Mirizzi, A. et al. Supernova neutrinos: production, oscillations and detection. Riv. Nuovo Cimento 39, 1–112 (2016).
Burrows, A., Reddy, S. & Thompson, T. A. Neutrino opacities in nuclear matter. Nucl. Phys. A 777, 356–394 (2006).
Lohs, A. Neutrino Reactions in Hot and Dense Matter. PhD thesis, TU Darmstadt (2015).
Koshiba, M. Observational neutrino astrophysics. Phys. Rep. 220, 229–381 (1992).
Hirata, K. et al. Observation of a neutrino burst from the supernova SN 1987a. Phys. Rev. Lett. 58, 1490–1493 (1987).
Bionta, R. M. et al. Observation of a neutrino burst in coincidence with supernova SN 1987a in the Large Magellanic Cloud. Phys. Rev. Lett. 58, 1494 (1987).
Fiorillo, D. F. G. et al. Supernova simulations confront SN 1987A neutrinos. Phys. Rev. D 108, 083040 (2023).
Izaguirre, I., Raffelt, G. G. & Tamborra, I. Fast pairwise conversion of supernova neutrinos: a dispersion-relation approach. Phys. Rev. Lett. 118, 021101 (2017).
Chakraborty, S., Hansen, R., Izaguirre, I. & Raffelt, G. G. Collective neutrino flavor conversion: recent developments. Nucl. Phys. B 908, 366–381 (2016).
Glas, R. et al. Fast neutrino flavor instability in the neutron-star convection layer of three-dimensional supernova models. Phys. Rev. D 101, 063001 (2020).
Nagakura, H., Johns, L., Burrows, A. & Fuller, G. M. Where, when, and why: occurrence of fast-pairwise collective neutrino oscillation in three-dimensional core-collapse supernova models. Phys. Rev. D 104, 083025 (2021).
Johns, L. Collisional flavor instabilities of supernova neutrinos. Phys. Rev. Lett. 130, 191001 (2023).
Shalgar, S. & Tamborra, I. Do neutrinos become flavor unstable due to collisions with matter in the supernova decoupling region? Phys. Rev. D 109, 103011 (2024).
Nagakura, H. & Zaizen, M. Basic characteristics of neutrino flavor conversions in the postshock regions of core-collapse supernova. Phys. Rev. D 108, 123003 (2023).
Shalgar, S. & Tamborra, I. A change of direction in pairwise neutrino conversion physics: the effect of collisions. Phys. Rev. D 103, 063002 (2021).
Xiong, Z. et al. Fast neutrino flavor conversions in a supernova: emergence, evolution, and effects. Phys. Rev. D 109, 123008 (2024).
Horiuchi, S. & Kneller, J. P. What can be learned from a future supernova neutrino detection? J. Phys. G Nucl. Part. Phys. 45, 043002 (2018).
Fischer, T. et al. Neutrinos and nucleosynthesis of elements. Prog. Part. Nucl. Phys. 137, 104107 (2024).
Tamborra, I. & Shalgar, S. New developments in flavor evolution of a dense neutrino gas. Annu. Rev. Nucl. Part. Sci. 71, 165–188 (2021).
Janka, H. T., Melson, T. & Summa, A. Physics of core-collapse supernovae in three dimensions: a sneak preview. Annu. Rev. Nucl. Part. Sci. 66, 341–375 (2016).
Mezzacappa, A., Endeve, E., Bronson Messer, O. E. & Bruenn, S. W. Physical, numerical, and computational challenges of modeling neutrino transport in core-collapse supernovae. Living Rev. Comput. Astrophys. 6, 4 (2020).
Dasgupta, B., O’Connor, E. P. & Ott, C. D. The role of collective neutrino flavor oscillations in core-collapse supernova shock revival. Phys. Rev. D 85, 065008 (2012).
Shalgar, S. & Tamborra, I. Neutrino decoupling is altered by flavor conversion. Phys. Rev. D 108, 043006 (2023).
Kashiwagi, Y. et al. Performance of SK-Gd’s upgraded real-time supernova monitoring system. Astrophys. J. 970, 93 (2024).
Abbasi, R. et al. IceCube sensitivity for low-energy neutrinos from nearby supernovae. Astron. Astrophys. 535, A109 (2011).
Scholberg, K. Supernova signatures of neutrino mass ordering. J. Phys. G Nucl. Part. Phys. 45, 014002 (2018).
Al Kharusi, S. et al. SNEWS 2.0: a next-generation supernova early warning system for multi-messenger astronomy. New J. Phys. 23, 031201 (2021).
Abe, S. et al. Combined pre-supernova alert system with KamLAND and Super-Kamiokande. Astrophys. J. 973, 140 (2024).
Valtonen-Mattila, N. Realtime follow-up of external alerts with the IceCube Supernova Data Acquisition System. In Proc. XVIII International Conference on Topics in Astroparticle and Underground Physics (TAUP2023) (Proceedings of Science, 2024).
Hyper-Kamiokande Proto-Collaboration et al. Hyper-Kamiokande design report. Preprint at https://arxiv.org/abs/1805.04163 (2018).
Abusleme, A. et al. Real-time monitoring for the next core-collapse supernova in JUNO. J. Cosmol. Astropart. Phys. 2024, 057 (2024).
Abi, B. et al. Supernova neutrino burst detection with the Deep Underground Neutrino Experiment. Eur. Phys. J. C Part. Fields 81, 423 (2021).
Lang, R. F., McCabe, C., Reichard, S., Selvi, M. & Tamborra, I. Supernova neutrino physics with xenon dark matter detectors: a timely perspective. Phys. Rev. D 94, 103009 (2016).
Pattavina, L., Ferreiro Iachellini, N. & Tamborra, I. Neutrino observatory based on archaeological lead. Phys. Rev. D 102, 063001 (2020).
Waxman, E. & Katz, B. Shock breakout theory. in Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 967 (Springer, 2017).
Nakamura, K. et al. Multimessenger signals of long-term core-collapse supernova simulations: synergetic observation strategies. Mon. Not. R. Astron. Soc. 461, 3296–3313 (2016).
Drago, M., Andresen, H., Di Palma, I., Tamborra, I. & Torres-Forné, A. Multimessenger observations of core-collapse supernovae: exploiting the standing accretion shock instability. Phys. Rev. D 108, 103036 (2023).
Patton, K. M., Lunardini, C., Farmer, R. J. & Timmes, F. X. Neutrinos from beta processes in a presupernova: probing the isotopic evolution of a massive star. Astrophys. J. 851, 6 (2017).
Farag, E., Timmes, F. X., Taylor, M., Patton, K. M. & Farmer, R. On stellar evolution in a neutrino Hertzsprung–Russell diagram. Astrophys. J. 893, 133 (2020).
O’Connor, E. & Ott, C. D. Black hole formation in failing core-collapse supernovae. Astrophys. J. 730, 70 (2011).
Neustadt, J. M. M. et al. The search for failed supernovae with the Large Binocular Telescope: a new candidate and the failed SN fraction with 11 yr of data. Mon. Not. R. Astron. Soc. 508, 516–528 (2021).
Tamborra, I., Hanke, F., Müller, B., Janka, H.-T. & Raffelt, G. G. Neutrino signature of supernova hydrodynamical instabilities in three dimensions. Phys. Rev. Lett. 111, 121104 (2013).
Walk, L., Tamborra, I., Janka, H.-T. & Summa, A. Identifying rotation in SASI-dominated core-collapse supernovae with a neutrino gyroscope. Phys. Rev. D 98, 123001 (2018).
Takiwaki, T. & Kotake, K. Anisotropic emission of neutrino and gravitational-wave signals from rapidly rotating core-collapse supernovae. Mon. Not. R. Astron. Soc. 475, L91–L95 (2018).
Gallo Rosso, A., Abbar, S., Vissani, F. & Volpe, M. C. Late time supernova neutrino signal and proto-neutron star radius. J. Cosmol. Astropart. Phys. 12, 006 (2018).
Li, S. W., Roberts, L. F. & Beacom, J. F. Exciting prospects for detecting late-time neutrinos from core-collapse supernovae. Phys. Rev. D 103, 023016 (2021).
Huber, P. et al. Snowmass Neutrino Frontier Report. Report No. FERMILAB-FN-1215-ND-PPD-SCD (US Department of Energy, 2022).
MacDonald, M., Martínez-Miravé, P. & Tamborra, I. The unknowns of the diffuse supernova neutrino background hinder new physics searches. J. Cosmol. Astropart. Phys. 2025, 062 (2025).
Ando, S., Ekanger, N., Horiuchi, S. & Koshio, Y. Diffuse neutrino background from past core collapse supernovae. Proc. Jpn Acad. Ser. B Phys. Biol. Sci. 99, 460–479 (2023).
Ekanger, N., Horiuchi, S., Nagakura, H. & Reitz, S. Diffuse supernova neutrino background with up-to-date star formation rate measurements and long-term multidimensional supernova simulations. Phys. Rev. D 109, 023024 (2024).
Ziegler, J. J. et al. Non-universal stellar initial mass functions: large uncertainties in star formation rates at z ≈ 2–4 and other astrophysical probes. Mon. Not. R. Astron. Soc. 517, 2471–2484 (2022).
Lunardini, C. Diffuse neutrino flux from failed supernovae. Phys. Rev. Lett. 102, 231101 (2009).
Martínez-Miravé, P., Tamborra, I., Aloy, M. A. & Obergaulinger, M. Diffuse neutrino background from magnetorotational stellar core collapses. Phys. Rev. D 110, 103029 (2024).
Ashida, Y., Nakazato, K. & Tsujimoto, T. Diffuse neutrino flux based on the rates of core-collapse supernovae and black hole formation deduced from a novel galactic chemical evolution model. Astrophys. J. 953, 151 (2023).
Horiuchi, S., Kinugawa, T., Takiwaki, T., Takahashi, K. & Kotake, K. Impact of binary interactions on the diffuse supernova neutrino background. Phys. Rev. D 103, 043003 (2021).
Kresse, D., Ertl, T. & Janka, H.-T. Stellar collapse diversity and the diffuse supernova neutrino background. Astrophys. J. 909, 169 (2021).
Lunardini, C. & Tamborra, I. Diffuse supernova neutrinos: oscillation effects, stellar cooling and progenitor mass dependence. J. Cosmol. Astropart. Phys. 07, 012 (2012).
Lien, A., Fields, B. D. & Beacom, J. F. Synoptic sky surveys and the diffuse supernova neutrino background: removing astrophysical uncertainties and revealing invisible supernovae. Phys. Rev. D 81, 083001 (2010).
Harada, M. et al. Search for astrophysical electron antineutrinos in Super-Kamiokande with 0.01% gadolinium-loaded water. Astrophys. J. Lett. 951, L27 (2023).
Harada, M. Review of diffuse SN neutrino background. Zenodo https://doi.org/10.5281/zenodo.12726429 (2024).
Abusleme, A. et al. Prospects for detecting the diffuse supernova neutrino background with JUNO. J. Cosmol. Astropart. Phys. 10, 033 (2022).
Suliga, A. M., Beacom, J. F. & Tamborra, I. Towards probing the diffuse supernova neutrino background in all flavors. Phys. Rev. D 105, 043008 (2022).
Metzger, B. D. Kilonovae. Living Rev. Relativ. 23, 1 (2020).
Foucart, F. et al. Robustness of neutron star merger simulations to changes in neutrino transport and neutrino–matter interactions. Phys. Rev. D 110, 083028 (2024).
Kiuchi, K., Reboul-Salze, A., Shibata, M. & Sekiguchi, Y. A large-scale magnetic field produced by a solar-like dynamo in binary neutron star mergers. Nat. Astron. 8, 298–307 (2024).
Janka, H.-T. & Bauswein, A. Dynamics and equation of state dependencies of relevance for nucleosynthesis in supernovae and neutron star mergers. In Handbook of Nuclear Physics (eds Tanihata, I. et al.) 1–98 (Springer, 2023).
Baumgarte, T. W., Shapiro, S. L. & Shibata, M. On the maximum mass of differentially rotating neutron stars. Astrophys. J. Lett. 528, L29 (2000).
Cook, G. B., Shapiro, S. L. & Teukolsky, S. A. Spin-up of a rapidly rotating star by angular momentum loss: effects of general relativity. Astrophys. J. 398, 203 (1992).
Shibata, M. & Hotokezaka, K. Merger and mass ejection of neutron-star binaries. Annu. Rev. Nucl. Part. Sci. 69, 41–64 (2019).
Fernández, R. & Metzger, B. D. Delayed outflows from black hole accretion tori following neutron star binary coalescence. Mon. Not. R. Astron. Soc. 435, 502 (2013).
Abbott, B. P. et al. Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys. J. Lett. 848, L13 (2017).
Eichler, D., Livio, M., Piran, T. & Schramm, D. N. Nucleosynthesis, neutrino bursts and gamma-rays from coalescing neutron stars. Nature 340, 126–128 (1989).
Rastinejad, J. C. et al. A kilonova following a long-duration gamma-ray burst at 350 Mpc. Nature 612, 223–227 (2022).
Gottlieb, O. et al. A unified picture of short and long gamma-ray bursts from compact binary mergers. Astrophys. J. Lett. 958, L33 (2023).
Chi-Kit Cheong, P., Pitik, T., Longo Micchi, L. F. & Radice, D. Gamma-ray bursts and kilonovae from the accretion-induced collapse of white dwarfs. Astrophys. J. Lett. 978, L38 (2025).
Kyutoku, K. & Kashiyama, K. Detectability of thermal neutrinos from binary-neutron-star mergers and implication to neutrino physics. Phys. Rev. D 97, 103001 (2018).
Malkus, A., Kneller, J. P., McLaughlin, G. C. & Surman, R. Neutrino oscillations above black hole accretion disks: disks with electron-flavor emission. Phys. Rev. D 86, 085015 (2012).
Padilla-Gay, I., Shalgar, S. & Tamborra, I. Symmetry breaking due to multi-angle matter–neutrino resonance in neutron star merger remnants. J. Cosmol. Astropart. Phys. 05, 037 (2024).
Fernández, R., Richers, S., Mulyk, N. & Fahlman, S. Fast flavor instability in hypermassive neutron star disk outflows. Phys. Rev. D 106, 103003 (2022).
Ciolfi, R. The key role of magnetic fields in binary neutron star mergers. Gen. Relativ. Gravit. 52, 59 (2020).
Hayashi, K., Kiuchi, K., Kyutoku, K., Sekiguchi, Y. & Shibata, M. General-relativistic neutrino-radiation magnetohydrodynamics simulation of seconds-long black hole-neutron star mergers: dependence on the initial magnetic field strength, configuration, and neutron-star equation of state. Phys. Rev. D 107, 123001 (2023).
Mandel, I. & Broekgaarden, F. S. Rates of compact object coalescences. Living Rev. Relativ. 25, 1 (2022).
Schilbach, T. S. H., Caballero, O. L. & McLaughlin, G. C. Black hole accretion disk diffuse neutrino background. Phys. Rev. D 100, 043008 (2019).
Abbasi, R. et al. IceCat-1: The IceCube event catalog of alert tracks. Astrophys. J. Suppl. Ser. 269, 25 (2023).
Abbasi, R. et al. Time-integrated southern-sky neutrino source searches with 10 years of IceCube starting-track events at energies down to 1 TeV. Preprint at https://arxiv.org/abs/2501.16440 (2025).
Guarini, E., Tamborra, I., Margutti, R. & Ramirez-Ruiz, E. Transients stemming from collapsing massive stars: the missing pieces to advance joint observations of photons and high-energy neutrinos. Phys. Rev. D 108, 083035 (2023).
Fang, K., Metzger, B. D., Vurm, I., Aydi, E. & Chomiuk, L. High-energy neutrinos and gamma rays from nonrelativistic shock-powered transients. Astrophys. J. 904, 4 (2020).
Kelner, S. R., Aharonian, F. A. & Bugayov, V. V. Energy spectra of gamma-rays, electrons and neutrinos produced at proton–proton interactions in the very high energy regime. Phys. Rev. D 74, 034018 (2006).
Kelner, S. R. & Aharonian, F. A. Energy spectra of gamma-rays, electrons and neutrinos produced at interactions of relativistic protons with low energy radiation. Phys. Rev. D 78, 034013 (2008).
Murase, K., Thompson, T. A., Lacki, B. C. & Beacom, J. F. New class of high-energy transients from crashes of supernova ejecta with massive circumstellar material shells. Phys. Rev. D 84, 043003 (2011).
Sarmah, P., Chakraborty, S., Tamborra, I. & Auchettl, K. High energy particles from young supernovae: gamma-ray and neutrino connections. J. Cosmol. Astropart. Phys. 08, 011 (2022).
Pitik, T., Tamborra, I., Lincetto, M. & Franckowiak, A. Optically informed searches of high-energy neutrinos from interaction-powered supernovae. Mon. Not. R. Astron. Soc. 524, 3366–3384 (2023).
Abbasi, R. et al. Constraining high-energy neutrino emission from supernovae with IceCube. Astrophys. J. Lett. 949, L12 (2023).
Waxman, E., Wasserman, T., Ofek, E. & Gal-Yam, A. Shock breakouts from compact circumstellar medium surrounding core-collapse supernova progenitors may contribute significantly to the observed ≳10 TeV neutrino background. Astrophys. J. 978, 133 (2025).
Fang, K., Metzger, B. D., Murase, K., Bartos, I. & Kotera, K. Multimessenger implications of AT2018cow: high-energy cosmic-ray and neutrino emissions from magnetar-powered superluminous transients. Astrophys. J. 878, 34 (2019).
Gottlieb, O. & Globus, N. The role of jet–cocoon mixing, magnetization, and shock breakout in neutrino and cosmic-ray emission from short gamma-ray bursts. Astrophys. J. Lett. 915, L4 (2021).
Guarini, E., Tamborra, I. & Gottlieb, O. State-of-the-art collapsar jet simulations imply undetectable subphotospheric neutrinos. Phys. Rev. D 107, 023001 (2023).
Rudolph, A., Tamborra, I. & Gottlieb, O. Subphotospheric emission from short gamma-ray bursts: protons mold the multimessenger signals. Astrophys. J. Lett. 961, L7 (2024).
Pitik, T., Tamborra, I. & Petropoulou, M. Neutrino signal dependence on gamma-ray burst emission mechanism. J. Cosmol. Astropart. Phys. 05, 034 (2021).
Kimura, S. S. Neutrinos from gamma-ray bursts. in The Encyclopedia of Cosmology 433–482 (World Scientific, 2023).
Horiuchi, S., Murase, K., Ioka, K. & Mészáros, P. The survival of nuclei in jets associated with core-collapse supernovae and gamma-ray bursts. Astrophys. J. 753, 69 (2012).
De Lia, V. & Tamborra, I. High energy neutrino production in gamma-ray bursts: dependence of the neutrino signal on the jet composition. J. Cosmol. Astropart. Phys. 10, 054 (2024).
Biehl, D., Boncioli, D., Fedynitch, A. & Winter, W. Cosmic-ray and neutrino emission from gamma-ray bursts with a nuclear cascade. Astron. Astrophys. 611, A101 (2018).
Abbasi, R. et al. Search for 10–1000 GeV neutrinos from gamma-ray bursts with IceCube. Astrophys. J. 964, 126 (2024).
Ho, A. Y. Q. et al. Minutes-duration optical flares with supernova luminosities. Nature 623, 927–931 (2023).
Cao, Z., Jonker, P. G., Wen, S. & Zabludoff, A. I. Slim-disk modeling reveals an accreting intermediate-mass black hole in the luminous fast blue optical transient AT2018cow. Astron. Astrophys. 691, A228 (2024).
Gottlieb, O., Tchekhovskoy, A. & Margutti, R. Shocked jets in CCSNe can power the zoo of fast blue optical transients. Mon. Not. R. Astron. Soc. 513, 3810–3817 (2022).
Guarini, E., Tamborra, I. & Margutti, R. Neutrino emission from luminous fast blue optical transients. Astrophys. J. 935, 157 (2022).
Fang, K. & Metzger, B. D. High-energy neutrinos from millisecond magnetars formed from the merger of binary neutron stars. Astrophys. J. 849, 153 (2017).
Mukhopadhyay, M., Kimura, S. S. & Metzger, B. D. High-energy neutrino signatures from pulsar remnants of binary neutron-star mergers: coincident detection prospects with gravitational waves. Preprint at https://arxiv.org/abs/2407.04767 (2024).
Biehl, D., Heinze, J. & Winter, W. Expected neutrino fluence from short gamma-ray burst 170817A and off-axis angle constraints. Mon. Not. R. Astron. Soc. 476, 1191–1197 (2018).
Kimura, S. S. et al. Transejecta high-energy neutrino emission from binary neutron star mergers. Phys. Rev. D 98, 043020 (2018).
Guo, G., Qian, Y.-Z. & Wu, M.-R. Effects of annihilation with low-energy neutrinos on high-energy neutrinos from binary neutron star mergers and rare core-collapse supernovae. Phys. Rev. D 109, 083020 (2024).
Hambleton, K. M. et al. Rubin Observatory LSST Transients and variable stars roadmap. Publ. Astron. Soc. Pac. 135, 105002 (2023).
Shvartzvald, Y. et al. ULTRASAT: a wide-field time-domain UV space telescope. Astrophys. J. 964, 74 (2024).
Doré, O. et al. WFIRST Science Investigation Team ‘Cosmology with the high latitude survey’ Annual Report 2017. Preprint at https://arxiv.org/abs/1804.03628 (2018).
Actis, M. et al. Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy. Exp. Astron. 32, 193–316 (2011).
Dekany, R. et al. The Zwicky Transient Facility: observing system. Publ. Astron. Soc. Pac. 132, 038001 (2020).
Chambers, K. C. et al. The Pan-STARRS1 Surveys. Preprint at https://arxiv.org/abs/1612.05560 (2016).
Roming, P. W. A. et al. The swift ultra-violet/optical telescope. Space Sci. Rev. 120, 95–142 (2005).
Levan, A. J. et al. Heavy-element production in a compact object merger observed by JWST. Nature 626, 737–741 (2024).
Evans, M. et al. Cosmic Explorer: A Submission to the NSF MPSAC ngGW Subcommittee. Preprint at https://arxiv.org/abs/2306.13745 (2023).
Badaracco, F. Einstein telescope: science and technology. Nuovo Cimento C 47, 66 (2024).
Abbott, B. P. et al. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Rev. Relativ. 19, 1 (2016).
Kurahashi, N., Murase, K. & Santander, M. High-energy extragalactic neutrino astrophysics. Annu. Rev. Nucl. Part. Sci. 72, 365 (2022).
Aiello, S. et al. Astronomy potential of KM3NeT/ARCA. Eur. Phys. J. C Part. Fields 84, 885 (2024).
Aartsen, M. G. et al. IceCube-Gen2: the window to the extreme Universe. J. Phys. G Nucl. Part. Phys. 48, 060501 (2021).
Álvarez-Muñiz, J. et al. The Giant Radio Array for Neutrino Detection (GRAND): science and design. Sci. China Phys. Mech. Astron. 63, 219501 (2020).
Agostini, M. et al. The Pacific Ocean Neutrino Experiment. Nat. Astron. 4, 913–915 (2020).
Guépin, C., Kotera, K. & Oikonomou, F. High-energy neutrino transients and the future of multi-messenger astronomy. Nat. Rev. Phys. 4, 697–712 (2022).
Abbasi, R. et al. Follow-up of astrophysical transients in real time with the IceCube Neutrino Observatory. Astrophys. J. 910, 4 (2021).
Stein, R. et al. Neutrino follow-up with the Zwicky Transient Facility: results from the first 24 campaigns. Mon. Not. R. Astron. Soc. 521, 4 (2023).
Kankare, E. et al. Search for transient optical counterparts to high-energy IceCube Neutrinos with Pan-STARRS1. Astron. Astrophys. 626, A117 (2019).
Necker, J. et al. ASAS-SN follow-up of IceCube high-energy neutrino alerts. Mon. Not. R. Astron. Soc. 516, 2455–2469 (2022).
Morgan, R. et al. A DECam Search for explosive optical transients associated with IceCube Neutrinos. Astrophys. J. 883, 125 (2019).
Acciari, V. A. et al. Searching for VHE gamma-ray emission associated with IceCube Neutrino alerts using FACT, H.E.S.S., MAGIC, and VERITAS. In Proc. 37th International Cosmic Ray Conference (ICRC2021) (Proceedings of Science, 2022).
Garrappa, S. et al. Fermi-LAT realtime follow-ups of high-energy neutrino alerts. In Proc. 37th International Cosmic Ray Conference (ICRC2021) (Proceedings of Science, 2022).
Baxter, A. L. et al. Collaborative experience between scientific software projects using Agile Scrum Development. Softw. Pract. Exp. 52, 2077–2096 (2022).
Smale, A. et al. Time-domain Astronomy Coordination Hub (TACH). In American Astronomical Society Meeting No. 235, 107.15 (American Astronomical Society, 2020).
Smith, N., Li, W., Filippenko, A. V. & Chornock, R. Observed fractions of core-collapse supernova types and initial masses of their single and binary progenitor stars. Mon. Not. R. Astron. Soc. 412, 1522 (2011).
Zha, S., Müller, B., Weir, A. & Heger, A. Light curves of type IIP supernovae from neutrino-driven explosions of red supergiants obtained by a semianalytic approach. Astrophys. J. 952, 155 (2023).
Szczepanczyk, M. et al. Detecting and reconstructing gravitational waves from the next galactic core-collapse supernova in the advanced detector era. Phys. Rev. D 104, 102002 (2021).
Salmaso, I. et al. The diversity of strongly interacting type IIn supernovae. Astron. Astrophys. 695, A29 (2025).
Li, W. et al. Nearby supernova rates from the Lick Observatory Supernova Search. II. The observed luminosity functions and fractions of supernovae in a complete sample. Mon. Not. R. Astron. Soc. 412, 1441 (2011).
Sollerman, J. et al. Maximum luminosities of normal stripped-envelope supernovae are brighter than explosion models allow. Astron. Astrophys. 657, A64 (2022).
Prajs, S. et al. The volumetric rate of superluminous supernovae at z~1. Mon. Not. R. Astron. Soc. 464, 3568–3579 (2017).
Gal-Yam, A. The most luminous supernovae. Annu. Rev. Astron. Astrophys. 57, 305–333 (2019).
Abbott, R. et al. Population of merging compact binaries inferred using gravitational waves through GWTC-3. Phys. Rev. X 13, 011048 (2023).
Drout, M. R. et al. Light curves of the neutron star merger GW170817/SSS17a: implications for R-process nucleosynthesis. Science 358, 1570–1574 (2017).
Zappa, F., Bernuzzi, S., Radice, D., Perego, A. & Dietrich, T. Gravitational-wave luminosity of binary neutron stars mergers. Phys. Rev. Lett. 120, 111101 (2018).
Andreoni, I. et al. Fast-transient searches in real time with ZTFReST: identification of three optically discovered gamma-ray burst afterglows and new constraints on the kilonova rate. Astrophys. J. 918, 63 (2021).
Lan, G.-X., Zeng, H.-D., Wei, J.-J. & Wu, X.-F. The luminosity function and formation rate of a complete sample of long gamma-ray bursts. Mon. Not. R. Astron. Soc. 488, 4607–4613 (2019).
Pescalli, A. et al. The rate and luminosity function of long gamma ray bursts. Astron. Astrophys. 587, A40 (2016).
Gottlieb, O. et al. Jetted and turbulent stellar deaths: new LVK-detectable gravitational-wave sources. Astrophys. J. Lett. 951, L30 (2023).
Zevin, M. et al. Observational inference on the delay time distribution of short gamma-ray bursts. Astrophys. J. Lett. 940, L18 (2022).
Ghirlanda, G. et al. Short gamma-ray bursts at the dawn of the gravitational wave era. Astron. Astrophys. 594, A84 (2016).
Coppejans, D. L. et al. A mildly relativistic outflow from the energetic, fast-rising blue optical transient CSS161010 in a dwarf galaxy. Astrophys. J. Lett. 895, L23 (2020).
Stein, R. Search for neutrinos from populations of optical transients. In Proc. 36th International Cosmic Ray Conference (ICRC2019) (Proceedings of Science, 2021).
The Garching core-collapse supernova research. Max Planck Institute for Astrophysics https://wwwmpa.mpa-garching.mpg.de/ccsnarchive/ (2013).
Steiner, A. W., Hempel, M. & Fischer, T. Core-collapse supernova equations of state based on neutron star observations. Astrophys. J. 774, 17 (2013).
Kiuchi, K. et al. Self-consistent picture of the mass ejection from a one second long binary neutron star merger leaving a short-lived remnant in a general-relativistic neutrino-radiation magnetohydrodynamic simulation. Phys. Rev. Lett. 131, 011401 (2023).
Møller, K., Suliga, A. M., Tamborra, I. & Denton, P. B. Measuring the supernova unknowns at the next-generation neutrino telescopes through the diffuse neutrino background. J. Cosmol. Astropart. Phys. 05, 066 (2018).
Pitik, T., Tamborra, I., Angus, C. R. & Auchettl, K. Is the high-energy neutrino event IceCube-200530A associated with a hydrogen-rich superluminous supernova? Astrophys. J. 929, 163 (2022).
Sigl, G. & Raffelt, G. G. General kinetic description of relativistic mixed neutrinos. Nucl. Phys. B 406, 423–451 (1993).
Duan, H., Fuller, G. M., Carlson, J. & Qian, Y.-Z. Simulation of coherent non-linear neutrino flavor transformation in the supernova environment. 1. Correlated neutrino trajectories. Phys. Rev. D 74, 105014 (2006).
Acknowledgements
The author is grateful to P. Martínez-Miravé, T. Pitik, G. Raffelt and M.-R. Wu for insightful feedback on the manuscript, as well as K. Kiuchi and D. Kresse for helpful discussions. As the literature on this subject evolves at a very fast pace, the author apologizes in advance for any contribution that could not be adequately covered in this Review. Support from the Danmarks Frie Forskningsfond (Project No. 8049-00038B), the Carlsberg Foundation (CF18-0183), the Villum Foundation (Project No. 13164), the European Union (ERC, ANET, Project No. 101087058) and the Deutsche Forschungsgemeinschaft through Sonderforschungsbereich SFB 1258 ‘Neutrinos and dark matter in astro- and particle physics’ (NDM) is acknowledged.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The author declares no competing interests.
Peer review
Peer review information
Nature Reviews Physics thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Tamborra, I. Neutrinos from explosive transients at the dawn of multi-messenger astronomy. Nat Rev Phys 7, 285–298 (2025). https://doi.org/10.1038/s42254-025-00828-2
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s42254-025-00828-2