Abstract
The aim of rationally designed composites called metamaterials or metasurfaces is to achieve effective properties that go beyond those of their constituent parts. For periodic architectures, the design can draw on concepts from solid-state physics, such as crystal symmetries, reciprocal space, band structures and Floquet–Bloch eigenfunctions. Recently, nonlocality has emerged as a design paradigm, enabling both static and dynamic properties that are unattainable with a local design. In principle, all material properties described by linear response functions can be nonlocal, but for ordinary solids, local descriptions are mostly good approximations, leaving nonlocal effects as corrections. However, metamaterials and metasurfaces can be designed to go far beyond local behaviour. This Review covers these anomalous behaviours in elasticity, acoustics, electromagnetism, optics and diffusion. In the dynamic regime, nonlocal interactions enable versatile band structure and refraction engineering. In the static regime, they result in large decay lengths of ‘frozen’ evanescent Bloch modes, leading to strong size effects. For zero modes, the decay length diverges.
Key points
-
Metamaterials are rationally designed composites with effective properties that go beyond their constituents. Following this definition, metamaterials include photonic and phononic crystals.
-
(Meta)material response functions can be phenomenological or result from a theoretical homogenization procedure. For nonlocal materials, the response function at a given location depends not only on the field at that location but also on the field at other locations.
-
We review nonlocal metamaterials for diverse physical fields according to three unified physical mechanisms to incorporate nonlocality, that is, beyond-nearest-neighbour interactions, chirality and delocalized zero modes.
-
The nonlocal mechanisms mentioned earlier can lead to interesting wave properties, such as roton-like dispersion, topological insulators with large winding number, chiral eigenmodes and frequency splitting and anomalous dispersion cones.
-
Nonlocality also induces static properties with anomalously large characteristic lengths, connected to frozen evanescent modes (evanescent Bloch modes at zero frequency) emerging from local minima on dispersion relations.
-
Time dependence is introduced as a separate and emerging method to achieve nonlocal responses in metamaterials, that is, the time-reflection coefficient and time-refraction coefficient become spatially dispersive or wavenumber-dependent.
-
Nonlocal metasurfaces often use leaky-wave modes or physical coupling to build nonlocal interactions in metasurfaces, enabling high frequency selectivity or performing spatial derivatives on incident wave fields.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Kadic, M., Milton, G. W., van Hecke, M. & Wegener, M. 3D metamaterials. Nat. Rev. Phys. 1, 198 (2019).
Bertoldi, K., Vitelli, V., Christensen, J. & van Hecke, M. Flexible mechanical metamaterials. Nat. Rev. Mater. 2, 1 (2017).
Li, Y. et al. Transforming heat transfer with thermal metamaterials and devices. Nat. Rev. Mater. 6, 488 (2021).
Zhang, Z. et al. Diffusion metamaterials. Nat. Rev. Phys. 5, 218 (2023).
Landau, L. D. et al. Electrodynamics of Continuous Media (Elsevier, 2013).
Milton, G. W. The Theory of Composites (Cambridge Univ. Press, 2002).
Barron, L. D. Molecular Light Scattering and Optical Activity (Cambridge Univ. Press, 2004).
Bliokh, K. Y., Leykam, D., Lein, M. & Nori, F. Topological non-Hermitian origin of surface Maxwell waves. Nat. Commun. 10, 580 (2019).
Zhang, Z., Delplace, P. & Fleury, R. Superior robustness of anomalous non-reciprocal topological edge states. Nature 598, 293 (2021).
Chen, Q. et al. Anomalous and Chern topological waves in hyperbolic networks. Nat. Commun. 15, 2293 (2024).
Van Mechelen, T. & Jacob, Z. Universal spin-momentum locking of evanescent waves. Optica 3, 118 (2016).
Chen, Y. et al. Anomalous frozen evanescent phonons. Nat. Commun. 15, 8882 (2024).
Bossart, A. A. Nonlocally-Resonant Metamaterials (EPFL, 2023).
Kittel, C. & McEuen P. Introduction to Solid State Physics (Wiley, 1996).
Ciracì, C. et al. Probing the ultimate limits of plasmonic enhancement. Science 337, 1072 (2012).
Monticone, F. et al. Roadmap on nonlocality in photonic materials and metamaterials. Opt. Mater. Express https://doi.org/10.1364/OME.559374 (2025).
Alibert, J. & Seppecher, P. Closure of the set of diffusion functionals — the one dimensional case. Potential Anal. 28, 335 (2008).
Overvig, A. & Alù, A. Diffractive nonlocal metasurfaces. Laser Photon. Rev. 16, 2100633 (2022).
Shastri, K. & Monticone, F. Nonlocal flat optics. Nat. Photon. 17, 36 (2023).
Wang, X., Dong, R., Li, Y. & Jing Y. Non-local and non-Hermitian acoustic metasurfaces. Rep. Prog. Phys. https://doi.org/10.1088/1361-6633/acfbeb (2023).
Chen, Y., Kadic, M. & Wegener, M. Roton-like acoustical dispersion relations in 3D metamaterials. Nat. Commun. 12, 3278 (2021).
Fleury, R. Non-local oddities. Nat. Phys. 17, 766 (2021).
Julio-Andrés, I. et al. Experimental observation of roton-like dispersion relations in metamaterials. Sci. Adv. 7, m2189 (2021).
Cui, J., Yang, T., Niu, M. & Chen, L. Tunable roton-like dispersion relation with parametric excitations. J. Appl. Mech. 89, 111005 (2022).
Chaplain, G. J., Hooper, I. R., Hibbins, A. P. & Starkey, T. A. Reconfigurable elastic metamaterials: engineering dispersion with beyond nearest neighbors. Phys. Rev. Appl. 19, 44061 (2023).
Sepehri, S., Mashhadi, M. M. & Fakhrabadi, M. M. S. Nonlinear nonlocal phononic crystals with roton-like behavior. Nonlinear Dyn. 111, 8591 (2023).
Zhao, C., Zhang, K., Zhao, P., Hong, F. & Deng, Z. Bandgap merging and backward wave propagation in inertial amplification metamaterials. Int. J. Mech. Sci. 250, 108319 (2023).
Kazemi, A. et al. Drawing dispersion curves: band structure customization via nonlocal phononic crystals. Phys. Rev. Lett. 131, 176101 (2023).
Guarracino, F., Fraldi, M. & Pugno, N. M. Local-to-non-local transition laws for stiffness-tuneable monoatomic chains preserving springs mass. Philos. Trans. A Math. Phys. Eng. Sci. 382, 20240037 (2024).
Jin, Y., Liu, L., Duan, Z. & Yang, T. Non-smooth nonlocal mechanical diode. Int. J. Non Linear Mech. 164, 104773 (2024).
Deshmukh, K. J. Wave-freezing and other phenomena in temporal metasurfaces driven by nonlocal interactions. Preprint at https://arxiv.org/abs2404.09060 (2024).
Wang, K., Chen, Y., Kadic, M., Wang, C. & Wegener, M. Nonlocal interaction engineering of 2D roton-like dispersion relations in acoustic and mechanical metamaterials. Commun. Mater. 3, 35 (2022).
Zhu, Z. et al. Observation of multiple rotons and multidirectional roton-like dispersion relations in acoustic metamaterials. New J. Phys. 24, 123019 (2022).
Moore, D. B., Sambles, J. R., Hibbins, A. P., Starkey, T. A. & Chaplain, G. J. Acoustic surface modes on metasurfaces with embedded next-nearest-neighbor coupling. Phys. Rev. B 107, 144110 (2023).
Liu, H. et al. Acoustic topological metamaterials of large winding number. Phys. Rev. Appl. 19, 054028 (2023).
Chen, Y., Abouelatta, M. A. A., Wang, K., Kadic, M. & Wegener, M. Nonlocal cable-network metamaterials. Adv. Mater. 35, 2209988 (2023).
Sol, J., Röntgen, M. & Del Hougne, P. Covert scattering control in metamaterials with non-locally encoded hidden symmetry. Adv. Mater. 36, 2303891 (2024).
Iglesias-Martínez, J. A., Chen, Y. & Wegener, M. Nonlocal conduction in a metawire. Adv. Mater. 37, 2415278 (2025).
Bossart, A. & Fleury, R. Extreme spatial dispersion in nonlocally resonant elastic metamaterials. Phys. Rev. Lett. 130, 207201 (2023).
Frenzel, T., Kadic, M. & Wegener, M. Three-dimensional mechanical metamaterials with a twist. Science 358, 1072 (2017).
Qiu, M. et al. 3D metaphotonic nanostructures with intrinsic chirality. Adv. Funct. Mater. 28, 1803147 (2018).
Fernandez-Corbaton, I. et al. New twists of 3D chiral metamaterials. Adv. Mater. 31, e1807742 (2019).
Landau, L. Theory of the superfluidity of helium II. Phys. Rev. 60, 356 (1941).
Feynman, R. F. & Cohen, M. Energy spectrum of the excitations in liquid helium. Phys. Rev. 102, 1189 (1956).
Woods, A. D. B. Neutron inelastic scattering from liquid helium at small momentum transfers. Phys. Rev. Lett. 14, 355 (1965).
Godfrin, H. et al. Dispersion relation of Landau elementary excitations and thermodynamic properties of superfluid He 4. Phys. Rev. B 103, 104516 (2021).
Mottl, R. et al. Roton-type mode softening in a quantum gas with cavity-mediated long-range interactions. Science 336, 1570 (2012).
Godfrin, H. et al. Observation of a roton collective mode in a two-dimensional Fermi liquid. Nature 483, 576 (2012).
Chomaz, L. et al. Observation of roton mode population in a dipolar quantum gas. Nat. Phys. 14, 442 (2018).
Forcella, D., Prada, C. & Carminati, R. Causality, nonlocality, and negative refraction. Phys. Rev. Lett. 118, 134301 (2017).
Wang, K., Chen, Y., Kadic, M., Wang, C. & Wegener, M. Cubic-symmetry acoustic metamaterials with roton-like dispersion relations. Acta Mech. Sin. 39, 723020 (2023).
Chen, Y., Li, X., Scheibner, C., Vitelli, V. & Huang, G. Realization of active metamaterials with odd micropolar elasticity. Nat. Commun. 12, 5935 (2021).
Farzbod, F. & Scott-Emuakpor, O. E. Interactions beyond nearest neighbors in a periodic structure: force analysis. Int. J. Solids Struct. 199, 203 (2020).
Di Paola, M., Failla, G., Pirrotta, A., Sofi, A. & Zingales, M. The mechanically based non-local elasticity: an overview of main results and future challenges. Philos. Trans. A Math. Phys. Eng. Sci. 371, 20120433 (2013).
Di Paola, M. & Zingales, M. Long-range cohesive interactions of non-local continuum faced by fractional calculus. Int. J. Solids Struct. 45, 5642 (2008).
Yang, L. & Wang, L. Gradient continuum model of nonlocal metamaterials with long-range interactions. Phys. Scr. 98, 15019 (2022).
Chen, Y. et al. Phonon transmission through a nonlocal metamaterial slab. Commun. Phys. 6, 1 (2023).
Hsu, C. W., Zhen, B., Stone, A. D., Joannopoulos, J. D. & Soljačić, M. Bound states in the continuum. Nat. Rev. Mater. 1, 16048 (2016).
Atala, M. et al. Direct measurement of the Zak phase in topological Bloch bands. Nat. Phys. 9, 795 (2013).
Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045 (2010).
Rajabpoor Alisepahi, A., Sarkar, S., Sun, K. & Ma, J. Breakdown of conventional winding number calculation in one-dimensional lattices with interactions beyond nearest neighbors. Commun. Phys. 6, 334 (2023).
Dal Poggetto, V. F., Pal, R. K., Pugno, N. M. & Miniaci, M. Topological bound modes in phononic lattices with nonlocal interactions. Int. J. Mech. Sci. 281, 109503 (2024).
Schindler, F. et al. Higher-order topological insulators. Sci. Adv. 4, t346 (2018).
Li, M. et al. Higher-order topological states in photonic kagome crystals with long-range interactions. Nat. Photon. 14, 89 (2020).
Sun, Y., Wang, L., Duan, H. & Wang, J. A new class of higher-order topological insulators that localize energy at arbitrary multiple sites. Sci. Bull. 70, 667 (2025).
Seppecher, P., Alibert, J. & Isola, F. D. Linear elastic trusses leading to continua with exotic mechanical interactions. J. Phys. 319, 12018 (2011).
Dell Isola, F. et al. Pantographic metamaterials: an example of mathematically driven design and of its technological challenges. Contin. Mech. Thermodyn. 31, 851 (2019).
Durand, B., Lebée, A., Seppecher, P. & Sab, K. Predictive strain-gradient homogenization of a pantographic material with compliant junctions. J. Mech. Phys. Solids 160, 104773 (2022).
Guest, S. D. & Hutchinson, J. W. On the determinacy of repetitive structures. J. Mech. Phys. Solids 51, 383 (2003).
Broedersz, C., Mao, X., Lubensky, T. & MacKintosh, F. Criticality and isostaticity in fibre networks. Nat. Phys. 12, 983 (2011).
Mao, X. & Lubensky, T. C. Maxwell lattices and topological mechanics. Annu. Rev. Condens. Matter Phys. 9, 413 (2018).
Kane, C. L. & Lubensky, T. C. Topological boundary modes in isostatic lattices. Nat. Phys. 10, 39 (2014).
Rocklin, D. Z., Chen, B. G., Falk, M., Vitelli, V. & Lubensky, T. C. Mechanical Weyl modes in topological maxwell lattices. Phys. Rev. Lett. 116, 135503 (2016).
Abdoul-Anziz, H. & Seppecher, P. Strain gradient and generalized continua obtained by homogenizing frame lattices. Math. Mech. Complex Syst. 6, 213 (2018).
Chen, W., Hou, B., Zhang, Z., Pendry, J. B. & Chan, C. T. Metamaterials with index ellipsoids at arbitrary k-points. Nat. Commun. 9, 2086 (2018).
Milton, G. W. & Srivastava, A. Further comments on Mark Stockman’s article ‘Criterion for negative refraction with low optical losses from a fundamental principle of causality’. Preprint at https://arxiv.org/abs/2010.05986 (2020).
Lemoult, F., Kaina, N., Fink, M. & Lerosey, G. Wave propagation control at the deep subwavelength scale in metamaterials. Nat. Phys. 9, 55 (2012).
Kaina, N., Lemoult, F., Fink, M. & Lerosey, G. Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials. Nature 525, 77 (2015).
Khatibi Moghaddam, M. & Fleury, R. Subwavelength metawaveguide filters and metaports. Phys. Rev. Appl. 16, 044010 (2021).
Bossart, A., Dykstra, D. M. J., van der Laan, J. & Coulais, C. Oligomodal metamaterials with multifunctional mechanics. Proc. Natl Acad. Sci. USA 118, e2018610118 (2021).
Milton, G. W. & Cherkaev, A. V. Which elasticity tensors are realizable? J. Eng. Mater. Technol. 117, 483 (1995).
Kadic, M., Bückmann, T., Stenger, N., Thiel, M. & Wegener, M. On the practicability of pentamode mechanical metamaterials. Appl. Phys. Lett. 100, 191901 (2012).
Chen, Y., Liu, X. N. & Hu, G. K. Latticed pentamode acoustic cloak. Sci. Rep. 5, 15745 (2015).
Hu, Z. et al. Engineering zero modes in transformable mechanical metamaterials. Nat. Commun. 14, 1266 (2023).
Layman, C. N., Naify, C. J., Martin, T. P., Calvo, D. C. & Orris, G. J. Highly anisotropic elements for acoustic pentamode applications. Phys. Rev. Lett. 111, 24302 (2013).
Bückmann, T., Thiel, M., Kadic, M., Schittny, R. & Wegener, M. An elasto-mechanical unfeelability cloak made of pentamode metamaterials. Nat. Commun. 5, 4130 (2014).
Chen, Y. et al. Broadband solid cloak for underwater acoustics. Phys. Rev. B 95, 180104 (2017).
Su, X., Norris, A. N., Cushing, C. W., Haberman, M. R. & Wilson, P. S. Broadband focusing of underwater sound using a transparent pentamode lens. J. Acoust. Soc. Am. 141, 4408 (2017).
Chen, Y. & Hu, G. Broadband and high-transmission metasurface for converting underwater cylindrical waves to plane waves. Phys. Rev. Appl. 12, 044046 (2019).
Nassar, H., Chen, H. & Huang, G. Microtwist elasticity: a continuum approach to zero modes and topological polarization in kagome lattices. J. Mech. Phys. Solids 144, 104107 (2020).
Yu, W., Chen, Y., Liu, X. N. & Hu, G. K. Rayleigh surface waves of extremal elastic materials. J. Mech. Phys. Solids 193, 105842 (2024).
Wei, Y. & Hu, G. Wave characteristics of extremal elastic materials. Extreme Mech. Lett. 55, 101789 (2022).
Groß, M. F., Schneider, J. L., Chen, Y., Kadic, M. & Wegener, M. Dispersion engineering by hybridizing the back‐folded soft mode of monomode elastic metamaterials with stiff acoustic modes. Adv. Mater. 36, 2307553 (2023).
Belov, P. A. et al. Strong spatial dispersion in wire media in the very large wavelength limit. Phys. Rev. B 67, 113103 (2003).
Shin, J., Shen, J. & Fan, S. Three-dimensional electromagnetic metamaterials that homogenize to uniform non-Maxwellian media. Phys. Rev. B 76, 113101 (2007).
Yao, J. et al. Optical negative refraction in bulk metamaterials of nanowires. Science 321, 930 (2008).
Simovski, C. R., Belov, P. A., Atrashchenko, A. V. & Kivshar, Y. S. Wire metamaterials: physics and applications. Adv. Mater. 24, 4229 (2012).
Ahlfors, L. V. Complex Analysis (AMS, 2021).
Kohn, W. Analytic properties of Bloch waves and Wannier functions. Phys. Rev. 115, 809 (1959).
Romero-García, V., Sánchez-Pérez, J. V. & Garcia-Raffi, L. M. Evanescent modes in sonic crystals: complex dispersion relation and supercell approximation. J. Appl. Phys. 108, 044907 (2010).
Chang, Y. & Schulman, J. N. Complex band structures of crystalline solids: an eigenvalue method. Phys. Rev. B 25, 3975 (1982).
Laude, V., Achaoui, Y., Benchabane, S. & Khelif, A. Evanescent Bloch waves and the complex band structure of phononic crystals. Phys. Rev. B 80, 92301 (2009).
Wang, Y., Wang, Y. & Laude, V. Wave propagation in two-dimensional viscoelastic metamaterials. Phys. Rev. B 92, 104110 (2015).
Toupin, R. A. Saint-Venant’s principle. Arch. Ration. Mech. Anal. 18, 83 (1965).
Camar-Eddine, M. & Seppecher, P. Closure of the set of diffusion functionals with respect to the Mosco-convergence. Math. Model Methods Appl. Sci. 12, 1153 (2002).
Camar-Eddine, M. & Seppecher, P. Determination of the closure of the set of elasticity functionals. Arch. Ration. Mech. Anal. 170, 211 (2003).
Chen, Y. et al. Observation of floppy flexural modes in a 3D polarized maxwell beam. Phys. Rev. Lett. 134, 86101 (2025).
Mindlin, R. D. Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51 (1964).
Lakes, R. S. & Benedict, R. L. Noncentrosymmetry in micropolar elasticity. Int. J. Eng. Sci. 20, 1161 (1982).
Rueger, Z. & Lakes, R. S. Strong cosserat elasticity in a transversely isotropic polymer lattice. Phys. Rev. Lett. 120, 65501 (2018).
Duan, S., Wen, W. & Fang, D. A predictive micropolar continuum model for a novel three-dimensional chiral lattice with size effect and tension-twist coupling behavior. J. Mech. Phys. Solids 121, 23 (2018).
Frenzel, T. et al. Large characteristic lengths in 3D chiral elastic metamaterials. Commun. Mater. 2, 4 (2021).
Liu, X. N., Huang, G. L. & Hu, G. K. Chiral effect in plane isotropic micropolar elasticity and its application to chiral lattices. J. Mech. Phys. Solids 60, 1907 (2012).
Chen, Y., Liu, X. N., Hu, G. K., Sun, Q. P. & Zheng, Q. S. Micropolar continuum modelling of bi-dimensional tetrachiral lattices. Proc. R. Soc. A 470, 20130734 (2014).
Coulais, C., Kettenis, C. & van Hecke, M. A characteristic lengthscale causes anomalous size effects and boundary programmability in mechanical metamaterials. Nat. Phys. 14, 40 (2017).
Kadic, M., Frenzel, T. & Wegener, M. Mechanical metamaterials: when size matters. Nat. Phys. 14, 8 (2018).
Pine, A. S. Direct observation of acoustical activity in n quartz. Phys. Rev. B 2, 2049 (1970).
Kuwata-Gonokami, M. et al. Giant optical activity in quasi-two-dimensional planar nanostructures. Phys. Rev. Lett. 95, 227401 (2005).
Gansel, J. K. et al. Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513 (2009).
Frenzel, T., Köpfler, J., Jung, E., Kadic, M. & Wegener, M. Ultrasound experiments on acoustical activity in chiral mechanical metamaterials. Nat. Commun. 10, 3384 (2019).
Chen, Y., Kadic, M., Guenneau, S. & Wegener, M. Isotropic chiral acoustic phonons in 3D quasicrystalline metamaterials. Phys. Rev. Lett. 124, 235502 (2020).
Chen, Y., Kadic, M. & Wegener, M. Chiral triclinic metamaterial crystals supporting isotropic acoustical activity and isotropic chiral phonons. Proc. R. Soc. A 477, 20200764 (2021).
Chen, Y., Frenzel, T., Zhang, Q., Kadic, M. & Wegener, M. Cubic metamaterial crystal supporting broadband isotropic chiral phonons. Phys. Rev. Mater. 5, 25201 (2021).
Portigal, D. L. & Burstein, E. Acoustical activity and other first-order spatial dispersion effects in crystals. Phys. Rev. 170, 673 (1968).
Agranovich, V. M. & Ginzburg, V. Crystal Optics with Spatial Dispersion and Excitons (Springer, 2013).
Chen, Y., Frenzel, T., Guenneau, S., Kadic, M. & Wegener, M. Mapping acoustical activity in 3D chiral mechanical metamaterials onto micropolar continuum elasticity. J. Mech. Phys. Solids 137, 103877 (2020).
Muhlestein, M. B., Sieck, C. F., Wilson, P. S. & Haberman, M. R. Experimental evidence of Willis coupling in a one-dimensional effective material element. Nat. Commun. 8, 15625 (2017).
Li, Z., Han, P. & Hu, G. Willis dynamic homogenization method for acoustic metamaterials based on multiple scattering theory. J. Mech. Phys. Solids 189, 105692 (2024).
Kadic, M., Diatta, A., Frenzel, T., Guenneau, S. & Wegener, M. Static chiral Willis continuum mechanics for three-dimensional chiral mechanical metamaterials. Phys. Rev. B 99, 214101 (2019).
Pendry, J. B. A chiral route to negative refraction. Science 306, 1353 (2004).
Zhang, S. et al. Negative refractive index in chiral metamaterials. Phys. Rev. Lett. 102, 239012 (2009).
Plum, E. et al. Metamaterial with negative index due to chirality. Phys. Rev. B 79, 35407 (2009).
Kishine, J., Ovchinnikov, A. S. & Tereshchenko, A. A. Chirality-induced phonon dispersion in a noncentrosymmetric micropolar crystal. Phys. Rev. Lett. 125, 245302 (2020).
Chen, Y. et al. Observation of chirality-induced roton-like dispersion in a 3D micropolar elastic metamaterial. Adv. Funct. Mater. 34, 2302699 (2023).
Wang, S. et al. Spin–orbit interactions of transverse sound. Nat. Commun. 12, 6125 (2021).
Soukoulis, C. M. & Wegener, M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photon. 5, 523 (2011).
Zheludev, N. I. & Kivshar, Y. S. From metamaterials to metadevices. Nat. Mater. 11, 917 (2012).
Zangeneh-Nejad, F. & Fleury, R. Active times for acoustic metamaterials. Rev. Phys. 4, 100031 (2019).
Nassar, H. et al. Nonreciprocity in acoustic and elastic materials. Nat. Rev. Mater. 5, 667 (2020).
Engheta, N. Four-dimensional optics using time-varying metamaterials. Science 379, 1190 (2023).
Zhou, Y. et al. Broadband frequency translation through time refraction in an epsilon-near-zero material. Nat. Commun. 11, 2180 (2020).
Rizza, C., Castaldi, G. & Galdi, V. Short-pulsed metamaterials. Phys. Rev. Lett. 128, 257402 (2022).
Gerken, M. & Miller, D. A. Multilayer thin-film structures with high spatial dispersion. Appl. Opt. 42, 1330 (2003).
Moussa, H. et al. Observation of temporal reflection and broadband frequency translation at photonic time interfaces. Nat. Phys. 19, 863 (2023).
Jones, T. R., Kildishev, A. V., Segev, M. & Peroulis, D. Time-reflection of microwaves by a fast optically-controlled time-boundary. Nat. Commun. 15, 6786 (2024).
Kim, B. L., Chong, C. & Daraio, C. Temporal refraction in an acoustic phononic lattice. Phys. Rev. Lett. 133, 77201 (2024).
Liu, Z. et al. Inherent temporal metamaterials with unique time‐varying stiffness and damping. Adv. Sci. 11, 2404695 (2024).
Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. & Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 354, g2472 (2016).
Assouar, B. et al. Acoustic metasurfaces. Nat. Rev. Mater. 3, 460 (2018).
Chen, W. T., Zhu, A. Y. & Capasso, F. Flat optics with dispersion-engineered metasurfaces. Nat. Rev. Mater. 5, 604 (2020).
O’Shea, D. C. Diffractive Optics: Design, Fabrication, and Test (SPIE Press, 2004).
Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333 (2011).
Mohammadi Estakhri, N. & Alù, A. Wave-front transformation with gradient metasurfaces. Phys. Rev. X 6, 041008 (2016).
Díaz-Rubio, A., Asadchy, V. S., Elsakka, A. & Tretyakov, S. A. From the generalized reflection law to the realization of perfect anomalous reflectors. Sci. Adv. 3, e1602714 (2017).
Li, J., Shen, C., Diaz-Rubio, A., Tretyakov, S. A. & Cummer, S. A. Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts. Nat. Commun. 9, 1342 (2018).
Díaz-Rubio, A., Li, J., Shen, C., Cummer, S. A. & Tretyakov, S. A. Power flow-conformal metamirrors for engineering wave reflections. Sci. Adv. 5, u7288 (2019).
Zangeneh-Nejad, F., Sounas, D. L., Alù, A. & Fleury, R. Analogue computing with metamaterials. Nat. Rev. Mater. 6, 207 (2021).
Xu, G. et al. Arbitrary aperture synthesis with nonlocal leaky-wave metasurface antennas. Nat. Commun. 14, 4380 (2023).
Yao, J. et al. Nonlocal metasurface for dark-field edge emission. Sci. Adv. 10, n2752 (2024).
Liang, Y., Tsai, D. P. & Kivshar, Y. From local to nonlocal high-Q plasmonic metasurfaces. Phys. Rev. Lett. 133, 53801 (2024).
Guo, C., Wang, H. & Fan, S. Squeeze free space with nonlocal flat optics. Optica 7, 1133 (2020).
Reshef, O. et al. An optic to replace space and its application towards ultra-thin imaging systems. Nat. Commun. 12, 3512 (2021).
Chen, A. & Monticone, F. Dielectric nonlocal metasurfaces for fully solid-state ultrathin optical systems. ACS Photonics 8, 1439 (2021).
Momeni, A., Rouhi, K. & Fleury, R. Switchable and simultaneous spatiotemporal analog computing with computational graphene-based multilayers. Carbon 186, 599 (2022).
Zhou, Y. et al. Electromagnetic spatiotemporal differentiation meta‐devices. Laser Photon. Rev. 17, 2300182 (2023).
Esfahani, S., Cotrufo, M. & Alù, A. Tailoring space-time nonlocality for event-based image processing metasurfaces. Phys. Rev. Lett. 133, 63801 (2024).
Overvig, A. C., Malek, S. C. & Yu, N. Multifunctional nonlocal metasurfaces. Phys. Rev. Lett. 125, 17402 (2020).
Yao, J. et al. Nonlocal meta-lens with Huygens’ bound states in the continuum. Nat. Commun. 15, 6543 (2024).
Liu, Z. et al. Metasurface-enabled augmented reality display: a review. Adv. Photonics 5, 34001 (2023).
Zhu, H., Patnaik, S., Walsh, T. F., Jared, B. H. & Semperlotti, F. Nonlocal elastic metasurfaces: enabling broadband wave control via intentional nonlocality. Proc. Natl Acad. Sci. USA 117, 26099 (2020).
Zhou, Z., Huang, S., Li, D., Zhu, J. & Li, Y. Broadband impedance modulation via non-local acoustic metamaterials. Natl Sci. Rev. 9, b171 (2022).
Zhou, H. T. et al. Hybrid metasurfaces for perfect transmission and customized manipulation of sound across water–air interface. Adv. Sci. 10, e2207181 (2023).
Xie, S. et al. Refined acoustic holography via nonlocal metasurfaces. Sci. China Phys. Mech. Astron. 67, 274311 (2024).
Su, G., Du, Z. & Liu, Y. Elastic computational metasurfaces for subwavelength differentiations. Phys. Rev. B 109, L161108 (2024).
Zeng, H. et al. Nonlocal acoustic–mechanical metasurface for simultaneous and enhanced sound absorption and vibration reduction. Mater. Des. 244, 113120 (2024).
Li, X. et al. Ultrathin acoustic holography. Adv. Mater. Interfaces 10, 2300034 (2023).
Han, C. et al. Nonlocal acoustic moire hyperbolic metasurfaces. Adv. Mater. 36, e2311350 (2024).
Toll, J. S. Causality and the dispersion relation: logical foundations. Phys. Rev. 104, 1760 (1956).
Wang, Y., Jen, H. H. & You, J. Scaling laws for non-Hermitian skin effect with long-range couplings. Phys. Rev. B 108, 85418 (2023).
Miller, D. A. Why optics needs thickness. Science 379, 41 (2023).
Li, Y. & Monticone, F. Exploring the role of metamaterials in achieving advantage in optical computing. Nat. Comput. Sci. 4, 545 (2024).
Li, Y. & Monticone, F. The spatial complexity of optical computing and how to reduce it. Preprint at https://arxiv.org/abs/2411.10435 (2024).
Fu, T. et al. Optical neural networks: progress and challenges. Light Sci. Appl. 13, 263 (2024).
Acknowledgements
The authors acknowledge financial support by the Deutsche Forschungsgemeinschaft (German Research Foundation) under Germany’s Excellence Strategy via the Excellence Cluster ‘3D Matter Made to Order’, EXC-2082/1-390761711, by the Carl Zeiss Foundation through the ‘Carl-Zeiss-Foundation-Focus@HEiKA’, by the State of Baden-Württemberg and by the Helmholtz programme ‘Materials Systems Engineering’. R.F. acknowledges the support of the Swiss National Science Foundation under the Eccellenza award PCEGP2_181232 for the research project titled ‘Ultra-compact wave devices based on deep sub wavelength spatially dispersive effects’. G.H. thanks the support of National Natural Science Foundation of China (Grant No. 11991030).
Author information
Authors and Affiliations
Contributions
Y.C. and M.W. drafted the initial version. All authors contributed to the discussions and the revision of this paper.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Physics thanks Kshiteej Deshmukh, Francesco Monticone and Shuang Zhang for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Characteristic length scales
-
For sample sizes much larger than the characteristic length, size effects become negligible.
- Chiral metamaterials
-
A metamaterial lacking inversion symmetry, mirror planes and rotation–reflection symmetries.
- Interlaced wire media
-
An electromagnetic structure composed of interconnected metal wire meshes.
- Non-Bloch solutions
-
Non-Bloch solutions do not obey Bloch’s theorem but are still solutions of the periodic problem.
- Saint-Venant’s principle
-
The linear elastic response of a material in the far field becomes insensitive to the precise location and distribution of the loading.
- Size effects
-
We refer to size effects as the dependence of material properties, for example, the Young’s modulus, on the size of the sample.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Chen, Y., Fleury, R., Seppecher, P. et al. Nonlocal metamaterials and metasurfaces. Nat Rev Phys 7, 299–312 (2025). https://doi.org/10.1038/s42254-025-00829-1
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s42254-025-00829-1