Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nonlocal metamaterials and metasurfaces

Abstract

The aim of rationally designed composites called metamaterials or metasurfaces is to achieve effective properties that go beyond those of their constituent parts. For periodic architectures, the design can draw on concepts from solid-state physics, such as crystal symmetries, reciprocal space, band structures and Floquet–Bloch eigenfunctions. Recently, nonlocality has emerged as a design paradigm, enabling both static and dynamic properties that are unattainable with a local design. In principle, all material properties described by linear response functions can be nonlocal, but for ordinary solids, local descriptions are mostly good approximations, leaving nonlocal effects as corrections. However, metamaterials and metasurfaces can be designed to go far beyond local behaviour. This Review covers these anomalous behaviours in elasticity, acoustics, electromagnetism, optics and diffusion. In the dynamic regime, nonlocal interactions enable versatile band structure and refraction engineering. In the static regime, they result in large decay lengths of ‘frozen’ evanescent Bloch modes, leading to strong size effects. For zero modes, the decay length diverges.

Key points

  • Metamaterials are rationally designed composites with effective properties that go beyond their constituents. Following this definition, metamaterials include photonic and phononic crystals.

  • (Meta)material response functions can be phenomenological or result from a theoretical homogenization procedure. For nonlocal materials, the response function at a given location depends not only on the field at that location but also on the field at other locations.

  • We review nonlocal metamaterials for diverse physical fields according to three unified physical mechanisms to incorporate nonlocality, that is, beyond-nearest-neighbour interactions, chirality and delocalized zero modes.

  • The nonlocal mechanisms mentioned earlier can lead to interesting wave properties, such as roton-like dispersion, topological insulators with large winding number, chiral eigenmodes and frequency splitting and anomalous dispersion cones.

  • Nonlocality also induces static properties with anomalously large characteristic lengths, connected to frozen evanescent modes (evanescent Bloch modes at zero frequency) emerging from local minima on dispersion relations.

  • Time dependence is introduced as a separate and emerging method to achieve nonlocal responses in metamaterials, that is, the time-reflection coefficient and time-refraction coefficient become spatially dispersive or wavenumber-dependent.

  • Nonlocal metasurfaces often use leaky-wave modes or physical coupling to build nonlocal interactions in metasurfaces, enabling high frequency selectivity or performing spatial derivatives on incident wave fields.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of nonlocal interactions in a tight-binding model.
Fig. 2: Gallery of nonlocal metamaterials based on different mechanisms.
Fig. 3: Beyond-nearest-neighbouring interactions for tailoring dispersion bands and topological properties.
Fig. 4: Delocalized zero modes for nonlocality.
Fig. 5: Frequency splitting resulting from chirality.
Fig. 6: Nonlocal metasurfaces.

Similar content being viewed by others

References

  1. Kadic, M., Milton, G. W., van Hecke, M. & Wegener, M. 3D metamaterials. Nat. Rev. Phys. 1, 198 (2019).

    Article  Google Scholar 

  2. Bertoldi, K., Vitelli, V., Christensen, J. & van Hecke, M. Flexible mechanical metamaterials. Nat. Rev. Mater. 2, 1 (2017).

    Article  Google Scholar 

  3. Li, Y. et al. Transforming heat transfer with thermal metamaterials and devices. Nat. Rev. Mater. 6, 488 (2021).

    Article  ADS  Google Scholar 

  4. Zhang, Z. et al. Diffusion metamaterials. Nat. Rev. Phys. 5, 218 (2023).

    Article  Google Scholar 

  5. Landau, L. D. et al. Electrodynamics of Continuous Media (Elsevier, 2013).

  6. Milton, G. W. The Theory of Composites (Cambridge Univ. Press, 2002).

  7. Barron, L. D. Molecular Light Scattering and Optical Activity (Cambridge Univ. Press, 2004).

  8. Bliokh, K. Y., Leykam, D., Lein, M. & Nori, F. Topological non-Hermitian origin of surface Maxwell waves. Nat. Commun. 10, 580 (2019).

    Article  ADS  Google Scholar 

  9. Zhang, Z., Delplace, P. & Fleury, R. Superior robustness of anomalous non-reciprocal topological edge states. Nature 598, 293 (2021).

    Article  ADS  Google Scholar 

  10. Chen, Q. et al. Anomalous and Chern topological waves in hyperbolic networks. Nat. Commun. 15, 2293 (2024).

    Article  ADS  Google Scholar 

  11. Van Mechelen, T. & Jacob, Z. Universal spin-momentum locking of evanescent waves. Optica 3, 118 (2016).

    Article  ADS  Google Scholar 

  12. Chen, Y. et al. Anomalous frozen evanescent phonons. Nat. Commun. 15, 8882 (2024).

    Article  Google Scholar 

  13. Bossart, A. A. Nonlocally-Resonant Metamaterials (EPFL, 2023).

  14. Kittel, C. & McEuen P. Introduction to Solid State Physics (Wiley, 1996).

  15. Ciracì, C. et al. Probing the ultimate limits of plasmonic enhancement. Science 337, 1072 (2012).

    Article  ADS  Google Scholar 

  16. Monticone, F. et al. Roadmap on nonlocality in photonic materials and metamaterials. Opt. Mater. Express https://doi.org/10.1364/OME.559374 (2025).

  17. Alibert, J. & Seppecher, P. Closure of the set of diffusion functionals — the one dimensional case. Potential Anal. 28, 335 (2008).

    Article  MathSciNet  Google Scholar 

  18. Overvig, A. & Alù, A. Diffractive nonlocal metasurfaces. Laser Photon. Rev. 16, 2100633 (2022).

    Article  ADS  Google Scholar 

  19. Shastri, K. & Monticone, F. Nonlocal flat optics. Nat. Photon. 17, 36 (2023).

    Article  ADS  Google Scholar 

  20. Wang, X., Dong, R., Li, Y. & Jing Y. Non-local and non-Hermitian acoustic metasurfaces. Rep. Prog. Phys. https://doi.org/10.1088/1361-6633/acfbeb (2023).

  21. Chen, Y., Kadic, M. & Wegener, M. Roton-like acoustical dispersion relations in 3D metamaterials. Nat. Commun. 12, 3278 (2021).

    Article  ADS  Google Scholar 

  22. Fleury, R. Non-local oddities. Nat. Phys. 17, 766 (2021).

    Article  Google Scholar 

  23. Julio-Andrés, I. et al. Experimental observation of roton-like dispersion relations in metamaterials. Sci. Adv. 7, m2189 (2021).

    Article  Google Scholar 

  24. Cui, J., Yang, T., Niu, M. & Chen, L. Tunable roton-like dispersion relation with parametric excitations. J. Appl. Mech. 89, 111005 (2022).

    Article  ADS  Google Scholar 

  25. Chaplain, G. J., Hooper, I. R., Hibbins, A. P. & Starkey, T. A. Reconfigurable elastic metamaterials: engineering dispersion with beyond nearest neighbors. Phys. Rev. Appl. 19, 44061 (2023).

    Article  ADS  Google Scholar 

  26. Sepehri, S., Mashhadi, M. M. & Fakhrabadi, M. M. S. Nonlinear nonlocal phononic crystals with roton-like behavior. Nonlinear Dyn. 111, 8591 (2023).

    Article  Google Scholar 

  27. Zhao, C., Zhang, K., Zhao, P., Hong, F. & Deng, Z. Bandgap merging and backward wave propagation in inertial amplification metamaterials. Int. J. Mech. Sci. 250, 108319 (2023).

    Article  Google Scholar 

  28. Kazemi, A. et al. Drawing dispersion curves: band structure customization via nonlocal phononic crystals. Phys. Rev. Lett. 131, 176101 (2023).

    Article  ADS  Google Scholar 

  29. Guarracino, F., Fraldi, M. & Pugno, N. M. Local-to-non-local transition laws for stiffness-tuneable monoatomic chains preserving springs mass. Philos. Trans. A Math. Phys. Eng. Sci. 382, 20240037 (2024).

    Google Scholar 

  30. Jin, Y., Liu, L., Duan, Z. & Yang, T. Non-smooth nonlocal mechanical diode. Int. J. Non Linear Mech. 164, 104773 (2024).

    Article  ADS  Google Scholar 

  31. Deshmukh, K. J. Wave-freezing and other phenomena in temporal metasurfaces driven by nonlocal interactions. Preprint at https://arxiv.org/abs2404.09060 (2024).

  32. Wang, K., Chen, Y., Kadic, M., Wang, C. & Wegener, M. Nonlocal interaction engineering of 2D roton-like dispersion relations in acoustic and mechanical metamaterials. Commun. Mater. 3, 35 (2022).

    Article  Google Scholar 

  33. Zhu, Z. et al. Observation of multiple rotons and multidirectional roton-like dispersion relations in acoustic metamaterials. New J. Phys. 24, 123019 (2022).

    Article  ADS  Google Scholar 

  34. Moore, D. B., Sambles, J. R., Hibbins, A. P., Starkey, T. A. & Chaplain, G. J. Acoustic surface modes on metasurfaces with embedded next-nearest-neighbor coupling. Phys. Rev. B 107, 144110 (2023).

    Article  ADS  Google Scholar 

  35. Liu, H. et al. Acoustic topological metamaterials of large winding number. Phys. Rev. Appl. 19, 054028 (2023).

    Article  ADS  Google Scholar 

  36. Chen, Y., Abouelatta, M. A. A., Wang, K., Kadic, M. & Wegener, M. Nonlocal cable-network metamaterials. Adv. Mater. 35, 2209988 (2023).

    Article  Google Scholar 

  37. Sol, J., Röntgen, M. & Del Hougne, P. Covert scattering control in metamaterials with non-locally encoded hidden symmetry. Adv. Mater. 36, 2303891 (2024).

    Article  Google Scholar 

  38. Iglesias-Martínez, J. A., Chen, Y. & Wegener, M. Nonlocal conduction in a metawire. Adv. Mater. 37, 2415278 (2025).

    Article  Google Scholar 

  39. Bossart, A. & Fleury, R. Extreme spatial dispersion in nonlocally resonant elastic metamaterials. Phys. Rev. Lett. 130, 207201 (2023).

    Article  ADS  Google Scholar 

  40. Frenzel, T., Kadic, M. & Wegener, M. Three-dimensional mechanical metamaterials with a twist. Science 358, 1072 (2017).

    Article  ADS  Google Scholar 

  41. Qiu, M. et al. 3D metaphotonic nanostructures with intrinsic chirality. Adv. Funct. Mater. 28, 1803147 (2018).

    Article  Google Scholar 

  42. Fernandez-Corbaton, I. et al. New twists of 3D chiral metamaterials. Adv. Mater. 31, e1807742 (2019).

    Article  Google Scholar 

  43. Landau, L. Theory of the superfluidity of helium II. Phys. Rev. 60, 356 (1941).

    Article  ADS  Google Scholar 

  44. Feynman, R. F. & Cohen, M. Energy spectrum of the excitations in liquid helium. Phys. Rev. 102, 1189 (1956).

    Article  ADS  Google Scholar 

  45. Woods, A. D. B. Neutron inelastic scattering from liquid helium at small momentum transfers. Phys. Rev. Lett. 14, 355 (1965).

    Article  ADS  Google Scholar 

  46. Godfrin, H. et al. Dispersion relation of Landau elementary excitations and thermodynamic properties of superfluid He 4. Phys. Rev. B 103, 104516 (2021).

    Article  ADS  Google Scholar 

  47. Mottl, R. et al. Roton-type mode softening in a quantum gas with cavity-mediated long-range interactions. Science 336, 1570 (2012).

    Article  ADS  Google Scholar 

  48. Godfrin, H. et al. Observation of a roton collective mode in a two-dimensional Fermi liquid. Nature 483, 576 (2012).

    Article  ADS  Google Scholar 

  49. Chomaz, L. et al. Observation of roton mode population in a dipolar quantum gas. Nat. Phys. 14, 442 (2018).

    Article  Google Scholar 

  50. Forcella, D., Prada, C. & Carminati, R. Causality, nonlocality, and negative refraction. Phys. Rev. Lett. 118, 134301 (2017).

    Article  ADS  Google Scholar 

  51. Wang, K., Chen, Y., Kadic, M., Wang, C. & Wegener, M. Cubic-symmetry acoustic metamaterials with roton-like dispersion relations. Acta Mech. Sin. 39, 723020 (2023).

    Article  MathSciNet  Google Scholar 

  52. Chen, Y., Li, X., Scheibner, C., Vitelli, V. & Huang, G. Realization of active metamaterials with odd micropolar elasticity. Nat. Commun. 12, 5935 (2021).

    Article  ADS  Google Scholar 

  53. Farzbod, F. & Scott-Emuakpor, O. E. Interactions beyond nearest neighbors in a periodic structure: force analysis. Int. J. Solids Struct. 199, 203 (2020).

    Article  Google Scholar 

  54. Di Paola, M., Failla, G., Pirrotta, A., Sofi, A. & Zingales, M. The mechanically based non-local elasticity: an overview of main results and future challenges. Philos. Trans. A Math. Phys. Eng. Sci. 371, 20120433 (2013).

    MathSciNet  Google Scholar 

  55. Di Paola, M. & Zingales, M. Long-range cohesive interactions of non-local continuum faced by fractional calculus. Int. J. Solids Struct. 45, 5642 (2008).

    Article  Google Scholar 

  56. Yang, L. & Wang, L. Gradient continuum model of nonlocal metamaterials with long-range interactions. Phys. Scr. 98, 15019 (2022).

    Article  Google Scholar 

  57. Chen, Y. et al. Phonon transmission through a nonlocal metamaterial slab. Commun. Phys. 6, 1 (2023).

    Article  ADS  Google Scholar 

  58. Hsu, C. W., Zhen, B., Stone, A. D., Joannopoulos, J. D. & Soljačić, M. Bound states in the continuum. Nat. Rev. Mater. 1, 16048 (2016).

    Article  ADS  Google Scholar 

  59. Atala, M. et al. Direct measurement of the Zak phase in topological Bloch bands. Nat. Phys. 9, 795 (2013).

    Article  Google Scholar 

  60. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045 (2010).

    Article  ADS  Google Scholar 

  61. Rajabpoor Alisepahi, A., Sarkar, S., Sun, K. & Ma, J. Breakdown of conventional winding number calculation in one-dimensional lattices with interactions beyond nearest neighbors. Commun. Phys. 6, 334 (2023).

    Article  Google Scholar 

  62. Dal Poggetto, V. F., Pal, R. K., Pugno, N. M. & Miniaci, M. Topological bound modes in phononic lattices with nonlocal interactions. Int. J. Mech. Sci. 281, 109503 (2024).

    Article  Google Scholar 

  63. Schindler, F. et al. Higher-order topological insulators. Sci. Adv. 4, t346 (2018).

    Article  ADS  Google Scholar 

  64. Li, M. et al. Higher-order topological states in photonic kagome crystals with long-range interactions. Nat. Photon. 14, 89 (2020).

    Article  ADS  Google Scholar 

  65. Sun, Y., Wang, L., Duan, H. & Wang, J. A new class of higher-order topological insulators that localize energy at arbitrary multiple sites. Sci. Bull. 70, 667 (2025).

    Article  Google Scholar 

  66. Seppecher, P., Alibert, J. & Isola, F. D. Linear elastic trusses leading to continua with exotic mechanical interactions. J. Phys. 319, 12018 (2011).

    Google Scholar 

  67. Dell Isola, F. et al. Pantographic metamaterials: an example of mathematically driven design and of its technological challenges. Contin. Mech. Thermodyn. 31, 851 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  68. Durand, B., Lebée, A., Seppecher, P. & Sab, K. Predictive strain-gradient homogenization of a pantographic material with compliant junctions. J. Mech. Phys. Solids 160, 104773 (2022).

    Article  MathSciNet  Google Scholar 

  69. Guest, S. D. & Hutchinson, J. W. On the determinacy of repetitive structures. J. Mech. Phys. Solids 51, 383 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  70. Broedersz, C., Mao, X., Lubensky, T. & MacKintosh, F. Criticality and isostaticity in fibre networks. Nat. Phys. 12, 983 (2011).

    Article  Google Scholar 

  71. Mao, X. & Lubensky, T. C. Maxwell lattices and topological mechanics. Annu. Rev. Condens. Matter Phys. 9, 413 (2018).

    Article  ADS  Google Scholar 

  72. Kane, C. L. & Lubensky, T. C. Topological boundary modes in isostatic lattices. Nat. Phys. 10, 39 (2014).

    Article  Google Scholar 

  73. Rocklin, D. Z., Chen, B. G., Falk, M., Vitelli, V. & Lubensky, T. C. Mechanical Weyl modes in topological maxwell lattices. Phys. Rev. Lett. 116, 135503 (2016).

    Article  ADS  Google Scholar 

  74. Abdoul-Anziz, H. & Seppecher, P. Strain gradient and generalized continua obtained by homogenizing frame lattices. Math. Mech. Complex Syst. 6, 213 (2018).

    Article  MathSciNet  Google Scholar 

  75. Chen, W., Hou, B., Zhang, Z., Pendry, J. B. & Chan, C. T. Metamaterials with index ellipsoids at arbitrary k-points. Nat. Commun. 9, 2086 (2018).

    Article  ADS  Google Scholar 

  76. Milton, G. W. & Srivastava, A. Further comments on Mark Stockman’s article ‘Criterion for negative refraction with low optical losses from a fundamental principle of causality’. Preprint at https://arxiv.org/abs/2010.05986 (2020).

  77. Lemoult, F., Kaina, N., Fink, M. & Lerosey, G. Wave propagation control at the deep subwavelength scale in metamaterials. Nat. Phys. 9, 55 (2012).

    Article  Google Scholar 

  78. Kaina, N., Lemoult, F., Fink, M. & Lerosey, G. Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials. Nature 525, 77 (2015).

    Article  ADS  Google Scholar 

  79. Khatibi Moghaddam, M. & Fleury, R. Subwavelength metawaveguide filters and metaports. Phys. Rev. Appl. 16, 044010 (2021).

    Article  ADS  Google Scholar 

  80. Bossart, A., Dykstra, D. M. J., van der Laan, J. & Coulais, C. Oligomodal metamaterials with multifunctional mechanics. Proc. Natl Acad. Sci. USA 118, e2018610118 (2021).

    Article  Google Scholar 

  81. Milton, G. W. & Cherkaev, A. V. Which elasticity tensors are realizable? J. Eng. Mater. Technol. 117, 483 (1995).

    Article  Google Scholar 

  82. Kadic, M., Bückmann, T., Stenger, N., Thiel, M. & Wegener, M. On the practicability of pentamode mechanical metamaterials. Appl. Phys. Lett. 100, 191901 (2012).

    Article  ADS  Google Scholar 

  83. Chen, Y., Liu, X. N. & Hu, G. K. Latticed pentamode acoustic cloak. Sci. Rep. 5, 15745 (2015).

    Article  ADS  Google Scholar 

  84. Hu, Z. et al. Engineering zero modes in transformable mechanical metamaterials. Nat. Commun. 14, 1266 (2023).

    Article  ADS  Google Scholar 

  85. Layman, C. N., Naify, C. J., Martin, T. P., Calvo, D. C. & Orris, G. J. Highly anisotropic elements for acoustic pentamode applications. Phys. Rev. Lett. 111, 24302 (2013).

    Article  ADS  Google Scholar 

  86. Bückmann, T., Thiel, M., Kadic, M., Schittny, R. & Wegener, M. An elasto-mechanical unfeelability cloak made of pentamode metamaterials. Nat. Commun. 5, 4130 (2014).

    Article  Google Scholar 

  87. Chen, Y. et al. Broadband solid cloak for underwater acoustics. Phys. Rev. B 95, 180104 (2017).

    Article  ADS  Google Scholar 

  88. Su, X., Norris, A. N., Cushing, C. W., Haberman, M. R. & Wilson, P. S. Broadband focusing of underwater sound using a transparent pentamode lens. J. Acoust. Soc. Am. 141, 4408 (2017).

    Article  Google Scholar 

  89. Chen, Y. & Hu, G. Broadband and high-transmission metasurface for converting underwater cylindrical waves to plane waves. Phys. Rev. Appl. 12, 044046 (2019).

    Article  ADS  Google Scholar 

  90. Nassar, H., Chen, H. & Huang, G. Microtwist elasticity: a continuum approach to zero modes and topological polarization in kagome lattices. J. Mech. Phys. Solids 144, 104107 (2020).

    Article  MathSciNet  Google Scholar 

  91. Yu, W., Chen, Y., Liu, X. N. & Hu, G. K. Rayleigh surface waves of extremal elastic materials. J. Mech. Phys. Solids 193, 105842 (2024).

    Article  MathSciNet  Google Scholar 

  92. Wei, Y. & Hu, G. Wave characteristics of extremal elastic materials. Extreme Mech. Lett. 55, 101789 (2022).

    Article  Google Scholar 

  93. Groß, M. F., Schneider, J. L., Chen, Y., Kadic, M. & Wegener, M. Dispersion engineering by hybridizing the back‐folded soft mode of monomode elastic metamaterials with stiff acoustic modes. Adv. Mater. 36, 2307553 (2023).

    Article  Google Scholar 

  94. Belov, P. A. et al. Strong spatial dispersion in wire media in the very large wavelength limit. Phys. Rev. B 67, 113103 (2003).

    Article  ADS  Google Scholar 

  95. Shin, J., Shen, J. & Fan, S. Three-dimensional electromagnetic metamaterials that homogenize to uniform non-Maxwellian media. Phys. Rev. B 76, 113101 (2007).

    Article  ADS  Google Scholar 

  96. Yao, J. et al. Optical negative refraction in bulk metamaterials of nanowires. Science 321, 930 (2008).

    Article  ADS  Google Scholar 

  97. Simovski, C. R., Belov, P. A., Atrashchenko, A. V. & Kivshar, Y. S. Wire metamaterials: physics and applications. Adv. Mater. 24, 4229 (2012).

    Article  Google Scholar 

  98. Ahlfors, L. V. Complex Analysis (AMS, 2021).

  99. Kohn, W. Analytic properties of Bloch waves and Wannier functions. Phys. Rev. 115, 809 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  100. Romero-García, V., Sánchez-Pérez, J. V. & Garcia-Raffi, L. M. Evanescent modes in sonic crystals: complex dispersion relation and supercell approximation. J. Appl. Phys. 108, 044907 (2010).

    Article  ADS  Google Scholar 

  101. Chang, Y. & Schulman, J. N. Complex band structures of crystalline solids: an eigenvalue method. Phys. Rev. B 25, 3975 (1982).

    Article  ADS  Google Scholar 

  102. Laude, V., Achaoui, Y., Benchabane, S. & Khelif, A. Evanescent Bloch waves and the complex band structure of phononic crystals. Phys. Rev. B 80, 92301 (2009).

    Article  ADS  Google Scholar 

  103. Wang, Y., Wang, Y. & Laude, V. Wave propagation in two-dimensional viscoelastic metamaterials. Phys. Rev. B 92, 104110 (2015).

    Article  ADS  Google Scholar 

  104. Toupin, R. A. Saint-Venant’s principle. Arch. Ration. Mech. Anal. 18, 83 (1965).

    Article  MathSciNet  Google Scholar 

  105. Camar-Eddine, M. & Seppecher, P. Closure of the set of diffusion functionals with respect to the Mosco-convergence. Math. Model Methods Appl. Sci. 12, 1153 (2002).

    Article  MathSciNet  Google Scholar 

  106. Camar-Eddine, M. & Seppecher, P. Determination of the closure of the set of elasticity functionals. Arch. Ration. Mech. Anal. 170, 211 (2003).

    Article  MathSciNet  Google Scholar 

  107. Chen, Y. et al. Observation of floppy flexural modes in a 3D polarized maxwell beam. Phys. Rev. Lett. 134, 86101 (2025).

    Article  Google Scholar 

  108. Mindlin, R. D. Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51 (1964).

    Article  MathSciNet  Google Scholar 

  109. Lakes, R. S. & Benedict, R. L. Noncentrosymmetry in micropolar elasticity. Int. J. Eng. Sci. 20, 1161 (1982).

    Article  Google Scholar 

  110. Rueger, Z. & Lakes, R. S. Strong cosserat elasticity in a transversely isotropic polymer lattice. Phys. Rev. Lett. 120, 65501 (2018).

    Article  ADS  Google Scholar 

  111. Duan, S., Wen, W. & Fang, D. A predictive micropolar continuum model for a novel three-dimensional chiral lattice with size effect and tension-twist coupling behavior. J. Mech. Phys. Solids 121, 23 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  112. Frenzel, T. et al. Large characteristic lengths in 3D chiral elastic metamaterials. Commun. Mater. 2, 4 (2021).

    Article  Google Scholar 

  113. Liu, X. N., Huang, G. L. & Hu, G. K. Chiral effect in plane isotropic micropolar elasticity and its application to chiral lattices. J. Mech. Phys. Solids 60, 1907 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  114. Chen, Y., Liu, X. N., Hu, G. K., Sun, Q. P. & Zheng, Q. S. Micropolar continuum modelling of bi-dimensional tetrachiral lattices. Proc. R. Soc. A 470, 20130734 (2014).

    Article  ADS  Google Scholar 

  115. Coulais, C., Kettenis, C. & van Hecke, M. A characteristic lengthscale causes anomalous size effects and boundary programmability in mechanical metamaterials. Nat. Phys. 14, 40 (2017).

    Article  Google Scholar 

  116. Kadic, M., Frenzel, T. & Wegener, M. Mechanical metamaterials: when size matters. Nat. Phys. 14, 8 (2018).

    Article  Google Scholar 

  117. Pine, A. S. Direct observation of acoustical activity in n quartz. Phys. Rev. B 2, 2049 (1970).

    Article  ADS  Google Scholar 

  118. Kuwata-Gonokami, M. et al. Giant optical activity in quasi-two-dimensional planar nanostructures. Phys. Rev. Lett. 95, 227401 (2005).

    Article  ADS  Google Scholar 

  119. Gansel, J. K. et al. Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513 (2009).

    Article  ADS  Google Scholar 

  120. Frenzel, T., Köpfler, J., Jung, E., Kadic, M. & Wegener, M. Ultrasound experiments on acoustical activity in chiral mechanical metamaterials. Nat. Commun. 10, 3384 (2019).

    Article  ADS  Google Scholar 

  121. Chen, Y., Kadic, M., Guenneau, S. & Wegener, M. Isotropic chiral acoustic phonons in 3D quasicrystalline metamaterials. Phys. Rev. Lett. 124, 235502 (2020).

    Article  ADS  Google Scholar 

  122. Chen, Y., Kadic, M. & Wegener, M. Chiral triclinic metamaterial crystals supporting isotropic acoustical activity and isotropic chiral phonons. Proc. R. Soc. A 477, 20200764 (2021).

    Article  ADS  Google Scholar 

  123. Chen, Y., Frenzel, T., Zhang, Q., Kadic, M. & Wegener, M. Cubic metamaterial crystal supporting broadband isotropic chiral phonons. Phys. Rev. Mater. 5, 25201 (2021).

    Article  Google Scholar 

  124. Portigal, D. L. & Burstein, E. Acoustical activity and other first-order spatial dispersion effects in crystals. Phys. Rev. 170, 673 (1968).

    Article  ADS  Google Scholar 

  125. Agranovich, V. M. & Ginzburg, V. Crystal Optics with Spatial Dispersion and Excitons (Springer, 2013).

  126. Chen, Y., Frenzel, T., Guenneau, S., Kadic, M. & Wegener, M. Mapping acoustical activity in 3D chiral mechanical metamaterials onto micropolar continuum elasticity. J. Mech. Phys. Solids 137, 103877 (2020).

    Article  MathSciNet  Google Scholar 

  127. Muhlestein, M. B., Sieck, C. F., Wilson, P. S. & Haberman, M. R. Experimental evidence of Willis coupling in a one-dimensional effective material element. Nat. Commun. 8, 15625 (2017).

    Article  ADS  Google Scholar 

  128. Li, Z., Han, P. & Hu, G. Willis dynamic homogenization method for acoustic metamaterials based on multiple scattering theory. J. Mech. Phys. Solids 189, 105692 (2024).

    Article  MathSciNet  Google Scholar 

  129. Kadic, M., Diatta, A., Frenzel, T., Guenneau, S. & Wegener, M. Static chiral Willis continuum mechanics for three-dimensional chiral mechanical metamaterials. Phys. Rev. B 99, 214101 (2019).

    Article  ADS  Google Scholar 

  130. Pendry, J. B. A chiral route to negative refraction. Science 306, 1353 (2004).

    Article  ADS  Google Scholar 

  131. Zhang, S. et al. Negative refractive index in chiral metamaterials. Phys. Rev. Lett. 102, 239012 (2009).

    Google Scholar 

  132. Plum, E. et al. Metamaterial with negative index due to chirality. Phys. Rev. B 79, 35407 (2009).

    Article  ADS  Google Scholar 

  133. Kishine, J., Ovchinnikov, A. S. & Tereshchenko, A. A. Chirality-induced phonon dispersion in a noncentrosymmetric micropolar crystal. Phys. Rev. Lett. 125, 245302 (2020).

    Article  ADS  Google Scholar 

  134. Chen, Y. et al. Observation of chirality-induced roton-like dispersion in a 3D micropolar elastic metamaterial. Adv. Funct. Mater. 34, 2302699 (2023).

    Article  Google Scholar 

  135. Wang, S. et al. Spin–orbit interactions of transverse sound. Nat. Commun. 12, 6125 (2021).

    Article  ADS  Google Scholar 

  136. Soukoulis, C. M. & Wegener, M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photon. 5, 523 (2011).

    Article  ADS  Google Scholar 

  137. Zheludev, N. I. & Kivshar, Y. S. From metamaterials to metadevices. Nat. Mater. 11, 917 (2012).

    Article  ADS  Google Scholar 

  138. Zangeneh-Nejad, F. & Fleury, R. Active times for acoustic metamaterials. Rev. Phys. 4, 100031 (2019).

    Article  Google Scholar 

  139. Nassar, H. et al. Nonreciprocity in acoustic and elastic materials. Nat. Rev. Mater. 5, 667 (2020).

    Article  ADS  Google Scholar 

  140. Engheta, N. Four-dimensional optics using time-varying metamaterials. Science 379, 1190 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  141. Zhou, Y. et al. Broadband frequency translation through time refraction in an epsilon-near-zero material. Nat. Commun. 11, 2180 (2020).

    Article  ADS  Google Scholar 

  142. Rizza, C., Castaldi, G. & Galdi, V. Short-pulsed metamaterials. Phys. Rev. Lett. 128, 257402 (2022).

    Article  ADS  Google Scholar 

  143. Gerken, M. & Miller, D. A. Multilayer thin-film structures with high spatial dispersion. Appl. Opt. 42, 1330 (2003).

    Article  ADS  Google Scholar 

  144. Moussa, H. et al. Observation of temporal reflection and broadband frequency translation at photonic time interfaces. Nat. Phys. 19, 863 (2023).

    Article  Google Scholar 

  145. Jones, T. R., Kildishev, A. V., Segev, M. & Peroulis, D. Time-reflection of microwaves by a fast optically-controlled time-boundary. Nat. Commun. 15, 6786 (2024).

    Article  Google Scholar 

  146. Kim, B. L., Chong, C. & Daraio, C. Temporal refraction in an acoustic phononic lattice. Phys. Rev. Lett. 133, 77201 (2024).

    Article  Google Scholar 

  147. Liu, Z. et al. Inherent temporal metamaterials with unique time‐varying stiffness and damping. Adv. Sci. 11, 2404695 (2024).

    Article  Google Scholar 

  148. Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. & Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 354, g2472 (2016).

    Article  Google Scholar 

  149. Assouar, B. et al. Acoustic metasurfaces. Nat. Rev. Mater. 3, 460 (2018).

    Article  ADS  Google Scholar 

  150. Chen, W. T., Zhu, A. Y. & Capasso, F. Flat optics with dispersion-engineered metasurfaces. Nat. Rev. Mater. 5, 604 (2020).

    Article  ADS  Google Scholar 

  151. O’Shea, D. C. Diffractive Optics: Design, Fabrication, and Test (SPIE Press, 2004).

  152. Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333 (2011).

    Article  ADS  Google Scholar 

  153. Mohammadi Estakhri, N. & Alù, A. Wave-front transformation with gradient metasurfaces. Phys. Rev. X 6, 041008 (2016).

    Google Scholar 

  154. Díaz-Rubio, A., Asadchy, V. S., Elsakka, A. & Tretyakov, S. A. From the generalized reflection law to the realization of perfect anomalous reflectors. Sci. Adv. 3, e1602714 (2017).

    Article  ADS  Google Scholar 

  155. Li, J., Shen, C., Diaz-Rubio, A., Tretyakov, S. A. & Cummer, S. A. Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts. Nat. Commun. 9, 1342 (2018).

    Article  ADS  Google Scholar 

  156. Díaz-Rubio, A., Li, J., Shen, C., Cummer, S. A. & Tretyakov, S. A. Power flow-conformal metamirrors for engineering wave reflections. Sci. Adv. 5, u7288 (2019).

    Article  ADS  Google Scholar 

  157. Zangeneh-Nejad, F., Sounas, D. L., Alù, A. & Fleury, R. Analogue computing with metamaterials. Nat. Rev. Mater. 6, 207 (2021).

    Article  ADS  Google Scholar 

  158. Xu, G. et al. Arbitrary aperture synthesis with nonlocal leaky-wave metasurface antennas. Nat. Commun. 14, 4380 (2023).

    Article  ADS  Google Scholar 

  159. Yao, J. et al. Nonlocal metasurface for dark-field edge emission. Sci. Adv. 10, n2752 (2024).

    Article  Google Scholar 

  160. Liang, Y., Tsai, D. P. & Kivshar, Y. From local to nonlocal high-Q plasmonic metasurfaces. Phys. Rev. Lett. 133, 53801 (2024).

    Article  Google Scholar 

  161. Guo, C., Wang, H. & Fan, S. Squeeze free space with nonlocal flat optics. Optica 7, 1133 (2020).

    Article  ADS  Google Scholar 

  162. Reshef, O. et al. An optic to replace space and its application towards ultra-thin imaging systems. Nat. Commun. 12, 3512 (2021).

    Article  ADS  Google Scholar 

  163. Chen, A. & Monticone, F. Dielectric nonlocal metasurfaces for fully solid-state ultrathin optical systems. ACS Photonics 8, 1439 (2021).

    Article  Google Scholar 

  164. Momeni, A., Rouhi, K. & Fleury, R. Switchable and simultaneous spatiotemporal analog computing with computational graphene-based multilayers. Carbon 186, 599 (2022).

    Article  Google Scholar 

  165. Zhou, Y. et al. Electromagnetic spatiotemporal differentiation meta‐devices. Laser Photon. Rev. 17, 2300182 (2023).

    Article  ADS  Google Scholar 

  166. Esfahani, S., Cotrufo, M. & Alù, A. Tailoring space-time nonlocality for event-based image processing metasurfaces. Phys. Rev. Lett. 133, 63801 (2024).

    Article  Google Scholar 

  167. Overvig, A. C., Malek, S. C. & Yu, N. Multifunctional nonlocal metasurfaces. Phys. Rev. Lett. 125, 17402 (2020).

    Article  ADS  Google Scholar 

  168. Yao, J. et al. Nonlocal meta-lens with Huygens’ bound states in the continuum. Nat. Commun. 15, 6543 (2024).

    Article  Google Scholar 

  169. Liu, Z. et al. Metasurface-enabled augmented reality display: a review. Adv. Photonics 5, 34001 (2023).

    Article  Google Scholar 

  170. Zhu, H., Patnaik, S., Walsh, T. F., Jared, B. H. & Semperlotti, F. Nonlocal elastic metasurfaces: enabling broadband wave control via intentional nonlocality. Proc. Natl Acad. Sci. USA 117, 26099 (2020).

    Article  ADS  Google Scholar 

  171. Zhou, Z., Huang, S., Li, D., Zhu, J. & Li, Y. Broadband impedance modulation via non-local acoustic metamaterials. Natl Sci. Rev. 9, b171 (2022).

    Article  Google Scholar 

  172. Zhou, H. T. et al. Hybrid metasurfaces for perfect transmission and customized manipulation of sound across water–air interface. Adv. Sci. 10, e2207181 (2023).

    Article  Google Scholar 

  173. Xie, S. et al. Refined acoustic holography via nonlocal metasurfaces. Sci. China Phys. Mech. Astron. 67, 274311 (2024).

    Article  Google Scholar 

  174. Su, G., Du, Z. & Liu, Y. Elastic computational metasurfaces for subwavelength differentiations. Phys. Rev. B 109, L161108 (2024).

    Article  ADS  Google Scholar 

  175. Zeng, H. et al. Nonlocal acoustic–mechanical metasurface for simultaneous and enhanced sound absorption and vibration reduction. Mater. Des. 244, 113120 (2024).

    Article  Google Scholar 

  176. Li, X. et al. Ultrathin acoustic holography. Adv. Mater. Interfaces 10, 2300034 (2023).

    Article  Google Scholar 

  177. Han, C. et al. Nonlocal acoustic moire hyperbolic metasurfaces. Adv. Mater. 36, e2311350 (2024).

    Article  Google Scholar 

  178. Toll, J. S. Causality and the dispersion relation: logical foundations. Phys. Rev. 104, 1760 (1956).

    Article  ADS  MathSciNet  Google Scholar 

  179. Wang, Y., Jen, H. H. & You, J. Scaling laws for non-Hermitian skin effect with long-range couplings. Phys. Rev. B 108, 85418 (2023).

    Article  ADS  Google Scholar 

  180. Miller, D. A. Why optics needs thickness. Science 379, 41 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  181. Li, Y. & Monticone, F. Exploring the role of metamaterials in achieving advantage in optical computing. Nat. Comput. Sci. 4, 545 (2024).

    Article  Google Scholar 

  182. Li, Y. & Monticone, F. The spatial complexity of optical computing and how to reduce it. Preprint at https://arxiv.org/abs/2411.10435 (2024).

  183. Fu, T. et al. Optical neural networks: progress and challenges. Light Sci. Appl. 13, 263 (2024).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support by the Deutsche Forschungsgemeinschaft (German Research Foundation) under Germany’s Excellence Strategy via the Excellence Cluster ‘3D Matter Made to Order’, EXC-2082/1-390761711, by the Carl Zeiss Foundation through the ‘Carl-Zeiss-Foundation-Focus@HEiKA’, by the State of Baden-Württemberg and by the Helmholtz programme ‘Materials Systems Engineering’. R.F. acknowledges the support of the Swiss National Science Foundation under the Eccellenza award PCEGP2_181232 for the research project titled ‘Ultra-compact wave devices based on deep sub wavelength spatially dispersive effects’. G.H. thanks the support of National Natural Science Foundation of China (Grant No. 11991030).

Author information

Authors and Affiliations

Authors

Contributions

Y.C. and M.W. drafted the initial version. All authors contributed to the discussions and the revision of this paper.

Corresponding authors

Correspondence to Yi Chen or Martin Wegener.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Kshiteej Deshmukh, Francesco Monticone and Shuang Zhang for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Characteristic length scales

For sample sizes much larger than the characteristic length, size effects become negligible.

Chiral metamaterials

A metamaterial lacking inversion symmetry, mirror planes and rotation–reflection symmetries.

Interlaced wire media

An electromagnetic structure composed of interconnected metal wire meshes.

Non-Bloch solutions

Non-Bloch solutions do not obey Bloch’s theorem but are still solutions of the periodic problem.

Saint-Venant’s principle

The linear elastic response of a material in the far field becomes insensitive to the precise location and distribution of the loading.

Size effects

We refer to size effects as the dependence of material properties, for example, the Young’s modulus, on the size of the sample.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Fleury, R., Seppecher, P. et al. Nonlocal metamaterials and metasurfaces. Nat Rev Phys 7, 299–312 (2025). https://doi.org/10.1038/s42254-025-00829-1

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s42254-025-00829-1

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics