Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Challenges and opportunities in exascale fusion simulations

Abstract

The challenging computational requirements of nuclear fusion research arise from the multiple timescales and space scales involved in the physics and engineering processes of a fusion device. Owing to the intrinsic and complex interconnections of these processes, the complex multiphysics and multiscale nature of fusion simulations require the capabilities of cutting-edge supercomputers. Advances in supercomputing enable a move towards larger-scale, higher-fidelity full fusion reactor digital models that capture not only the plasma core and edge physics but also interactions with materials and engineering aspects, such as fusion reactor walls and cooling systems. This Perspective discusses the main opportunities that fusion codes face in the transition to the emerging exascale systems and beyond, and the challenges that remain to be overcome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fusion reactor modelling.
Fig. 2: Software tools to exploit parallelism, computing capabilities and data storage.

Similar content being viewed by others

References

  1. IAEA World Fusion Outlook 2024 (International Atomic Energy Agency, 2024).

  2. Meschini, S. et al. Review of commercial nuclear fusion projects. Front. Energy Res. https://doi.org/10.3389/fenrg.2023.1157394 (2023).

  3. World Survey of Fusion Devices 2022 (International Atomic Energy Agency, 2023).

  4. Knaster, J., Moeslang, A. & Muroga, T. Materials research for fusion. Nat. Phys. 12, 424–434 (2016).

    Article  Google Scholar 

  5. Nordlund, K. et al. Primary radiation damage: a review of current understanding and models. J. Nucl. Mater. 512, 450–479 (2018).

    Article  Google Scholar 

  6. Federici, G. et al. An overview of the EU breeding blanket design strategy as an integral part of the DEMO design effort. Fusion Eng. Des. 141, 30–42 (2019).

    Article  Google Scholar 

  7. Boullon, R., Jaboulay, J.-C. & Aubert, J. Molten salt breeding blanket: investigations and proposals of pre-conceptual design options for testing in DEMO. Fusion Eng. Des. 171, 112707 (2021).

    Article  Google Scholar 

  8. Wolf, M. J. et al. High temperature superconductors for fusion applications and new developments for the HTS CroCo conductor design. Fusion Eng. Des. 172, 112739 (2021).

    Article  Google Scholar 

  9. Maggi, C. et al. Overview of T and D–T results in JET with ITER-like wall. Nucl. Fusion 64, 112012 (2024).

    Article  Google Scholar 

  10. Zylstra, A. et al. Burning plasma achieved in inertial fusion. Nature https://doi.org/10.1038/s41586-021-04281-w (2022).

    Article  Google Scholar 

  11. The Global Fusion Industry in 2024 (Fusion Industry Association, 2024).

  12. Litaudon, X. et al. EUROfusion-theory and advanced simulation coordination (E-TASC): programme and the role of high performance computing. Plasma Phys. Control. Fusion 64, 034005 (2022).

    Article  Google Scholar 

  13. Garcia, J. et al. Modelling performed for predictions of fusion power in JET DTE2: overview and lessons learnt. Nucl. Fusion 63, 112003 (2023).

    Article  Google Scholar 

  14. Marinak, M. M. et al. How numerical simulations helped to achieve breakeven on the NIF. Phys. Plasmas 31, 070501 (2024).

    Article  Google Scholar 

  15. Loarte, A. Modelling needs to support the ITER Research Plan and role of HPC. 1st Spanish Fusion HPC Workshop https://hpcfusion.bsc.es/2020/media/ (2020).

  16. Imbeaux, F. et al. Design and first applications of the ITER integrated modelling and analysis suite. Nucl. Fusion 55, 123006 (2015).

    Article  Google Scholar 

  17. Pinches, S. D. et al. Integrated modelling & analysis suite: developments to address ITER needs. In Proc. 28th IAEA Fusion Energy Conference https://conferences.iaea.org/event/214/contributions/17232/ (IAEA, 2021).

  18. A survey of artificial intelligence and high performance computing applications to fusion commercialization. Clean Air Task Force https://www.catf.us/resource/a-survey-of-artificial-intelligence-and-high-performance-computing-applications-to-fusion-commercialization/ (2024).

  19. Litaudon, X. et al. Long plasma duration operation analyses with an international multi-machine (tokamaks and stellarators) database. Nucl. Fusion 64, 015001 (2023).

    Article  Google Scholar 

  20. Jenko, F. Accelerating fusion energy research through HPC. 2nd Fusion HPC Workshop 2021 https://hpcfusion.bsc.es/2021/wp-content/uploads/sites/3/2021/12/Frank-Jenko_presentation.pdf (2021).

  21. Wehinger, G. D. et al. Quo vadis multiscale modeling in reaction engineering? — A perspective. Chem. Eng. Res. Des. 184, 39–58 (2022).

    Article  Google Scholar 

  22. Thornton, J. E. The CDC 6600 Project. Ann. Hist. Comput. 2, 338–348 (1980).

    Article  Google Scholar 

  23. Moore, G. E. Cramming more components onto integrated circuits. Electronics 38, 114–117 (1965).

    Google Scholar 

  24. Atchley, S. et al. Frontier: exploring exascale. In Proc. International Conference for High Performance Computing, Networking, Storage and Analysis https://doi.org/10.1145/3581784.3607089 (ACM, 2023).

  25. Grieves, M. & Vickers, J. in Transdisciplinary Perspectives on Complex Systems: New Findings and Approaches (eds Kahlen, F.-J. et al.) 85–113 (Springer, 2016).

  26. Das, R. S. & Gupta, V. A systematic literature review on graphics processing unit accelerated realm of high-performance computing. Int. J. Comput. Eng. 5, 10–21 (2024).

    Article  Google Scholar 

  27. TOP500 list - November 2024. TOP500 https://www.top500.org/lists/top500/list/2024/11/ (2024).

  28. MPI: A Message-Passing Interface Standard Version 4.0. www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf (Message Passing Interface Forum, 2021).

  29. Flynn, M. Very high-speed computing systems. Proc. IEEE 54, 1901–1909 (1966).

    Article  Google Scholar 

  30. Apollonatos, A. Helios supercomputer ready to bite the bytes. ITER Newsline https://www.iter.org/node/20687/helios-supercomputer-ready-bite-bytes (2012).

  31. Iannone, F. et al. MARCONI-FUSION: the new high performance computing facility for European nuclear fusion modelling. Fusion Eng. Des. 129, 354–358 (2018).

    Article  Google Scholar 

  32. CUDA zone - library of resources. NVIDIA https://developer.nvidia.com/cuda-zone (2023).

  33. Herdman, J. et al. Achieving portability and performance through OpenACC. In Proc. 2014 First Workshop on Accelerator Programming using Directives 19–26 (IEEE, 2014).

  34. Messina, P. The exascale computing project. Comput. Sci. Eng. 19, 63–67 (2017).

    Article  Google Scholar 

  35. Sáez, X. et al. The Advanced Computing Hub at BSC: improving fusion codes following modern software engineering standards. Plasma Phys. Control. Fusion 66, 075014 (2024).

    Article  Google Scholar 

  36. Suchyta, E. et al. The Exascale Framework for High Fidelity coupled Simulations (EFFIS): enabling whole device modeling in fusion science. Int. J. High Perform. Comput. Appl. 36, 106–128 (2022).

    Article  Google Scholar 

  37. George, T. & Sarin, V. in Encyclopedia of Parallel Computing (ed. Padua, D.) 578–587 (Springer, 2011).

  38. Kleiber, R. et al. EUTERPE: a global gyrokinetic code for stellarator geometry. Comput. Phys. Commun. 295, 109013 (2024).

    Article  Google Scholar 

  39. Giacomin, M. et al. The GBS code for the self-consistent simulation of plasma turbulence and kinetic neutral dynamics in the tokamak boundary. J. Comput. Phys. 463, 111294 (2022).

    Article  MathSciNet  Google Scholar 

  40. Garcia-Gasulla, M., Vinyals-Ylla-Catala, J., Romazanov, J., Baumann, C. & Matveev, D. Performance analysis and optimizations of ERO2.0 fusion code. In Proc. Platform for Advanced Scientific Computing Conference https://doi.org/10.1145/3659914.3659932 (ACM, 2024).

  41. Tskhakaya, D. & Schneider, R. Optimization of PIC codes by improved memory management. J. Comput. Phys. 225, 829–839 (2007).

    Article  Google Scholar 

  42. Plimpton, S. J. et al. Direct simulation Monte Carlo on petaflop supercomputers and beyond. Phys. Fluids 31, 086101 (2019).

    Article  Google Scholar 

  43. Novak, A., Brooks, H., Shriwise, P. & Davis, A. Monte Carlo multiphysics simulation on adaptive unstructured mesh geometry. Nucl. Eng. Des. 429, 113589 (2024).

    Article  Google Scholar 

  44. Gutierrez-Milla, A. et al. New high performance computing software for multiphysics simulations of fusion reactors. Fusion Eng. Des. 136, 639–644 (2018).

    Article  Google Scholar 

  45. Vázquez, M. et al. Alya: multiphysics engineering simulation toward exascale. J. Comput. Sci. 14, 15–27 (2016).

    Article  MathSciNet  Google Scholar 

  46. Soba, A. et al. Validations of the radiation transport module NEUTRO: a deterministic solver for the neutron transport equation. Fusion Eng. Des. 169, 112497 (2021).

    Article  Google Scholar 

  47. Goldberg, E., i Duxans, M. C., Gelabert, O. O., Mantsinen, M. J. & Soba, A. Validating NEUTRO, a deterministic finite element neutron transport solver for fusion applications, with literature tests, experimental benchmarks and other neutronic codes. Plasma Phys. Control. Fusion 64, 104006 (2022).

    Article  Google Scholar 

  48. Soba, A. et al. A high-performance electromagnetic code to simulate high-temperature superconductors. Fusion Eng. Des. 201, 114282 (2024).

    Article  Google Scholar 

  49. Brooks, H. & Davis, A. Scalable multi-physics for fusion reactors with AURORA. Plasma Phys. Control. Fusion 65, 024002 (2022).

    Article  Google Scholar 

  50. Badalassi, V. et al. FERMI: fusion energy reactor models integrator. Fusion Sci. Technol. 79, 345–379 (2023).

    Article  Google Scholar 

  51. Permann, C. J. et al. MOOSE: enabling massively parallel multiphysics simulation. SoftwareX 11, 100430 (2020).

    Article  Google Scholar 

  52. Alexander, F. et al. Exascale applications: skin in the game. Phil. Trans. R. Soc. A 378, 20190056 (2020).

    Article  MathSciNet  Google Scholar 

  53. Tang, W. M. Scientific and computational challenges of the fusion simulation project (FSP). J. Phys. Conf. Ser. 125, 012047 (2008).

    Article  Google Scholar 

  54. Davis, A. High performance multiphysics driven design for fusion systems. 4th Spanish Fusion HPC Workshop https://hpcfusion.bsc.es/2023/media/ (2023).

  55. Emoto, M., Ohdachi, S., Watanabe, K., Sudo, S. & Nagayama, Y. Server for experimental data from LHD. Fusion Eng. Des. 81, 2019–2023 (2006).

    Article  Google Scholar 

  56. Kovač, M. et al. in HPC, Big Data, and AI Convergence Towards Exascale (eds Terzo, O. & Martinovič, J.) 273–290 (CRC Press, 2022).

  57. Mantovani, F. et al. Software development vehicles to enable extended and early co-design: a RISC-V and HPC case of study. In Proc. International Conference on High Performance Computing 526–537 (Springer, 2023).

  58. Blancafort, M., Ferrer, R., Houzeaux, G., Garcia-Gasulla, M. & Mantovani, F. Exploiting long vectors with a CFD code: a co-design show case. In Proc. 2024 IEEE International Parallel and Distributed Processing Symposium (IPDPS) 453–464 (IEEE, 2024).

  59. Zidar, J., Matic, T., Aleksi, I. & Hocenski, Z. Dynamic voltage and frequency scaling as a method for reducing energy consumption in ultra-low-power embedded systems. Electronics 13, 826 (2024).

    Article  Google Scholar 

  60. Belli, E. & Candy, J. Implications of advanced collision operators for gyrokinetic simulation. Plasma Phys. Control. Fusion 59, 045005 (2017).

    Article  Google Scholar 

  61. Frerichs, H. et al. Detachment in fusion plasmas with symmetry breaking magnetic perturbation fields. Phys. Rev. Lett. 125, 155001 (2020).

    Article  Google Scholar 

  62. Kornilov, V., Kleiber, R., Hatzky, R., Villard, L. & Jost, G. Gyrokinetic global three-dimensional simulations of linear ion-temperature-gradient modes in Wendelstein 7-X. Phys. Plasmas 11, 3196–3202 (2004).

    Article  Google Scholar 

  63. Ricci, P. et al. Simulation of plasma turbulence in scrape-off layer conditions: the GBS code, simulation results and code validation. Plasma Phys. Control. Fusion 54, 124047 (2012).

    Article  Google Scholar 

  64. Jenko, F., Dorland, W., Kotschenreuther, M. & Rogers, B. Electron temperature gradient driven turbulence. Phys. Plasmas 7, 1904–1910 (2000).

    Article  Google Scholar 

  65. Maurer, M. et al. GENE-3D: a global gyrokinetic turbulence code for stellarators. J. Comput. Phys. 420, 109694 (2020).

    Article  MathSciNet  Google Scholar 

  66. Michels, D., Stegmeir, A., Ulbl, P., Jarema, D. & Jenko, F. GENE-X: a full-f gyrokinetic turbulence code based on the flux-coordinate independent approach. Comput. Phys. Commun. 264, 107986 (2021).

    Article  MathSciNet  Google Scholar 

  67. Mandell, N., Hakim, A., Hammett, G. & Francisquez, M. Electromagnetic full-gyrokinetics in the tokamak edge with discontinuous Galerkin methods. J. Plasma Phys. 86, 905860109 (2020).

    Article  Google Scholar 

  68. Watanabe, T.-H. & Sugama, H. Velocity–space structures of distribution function in toroidal ion temperature gradient turbulence. Nucl. Fusion 46, 24 (2005).

    Article  Google Scholar 

  69. Stegmeir, A. et al. GRILLIX: a 3D turbulence code based on the flux-coordinate independent approach. Plasma Phys. Control. Fusion 60, 035005 (2018).

    Article  Google Scholar 

  70. Idomura, Y., Urano, H., Aiba, N. & Tokuda, S. Study of ion turbulent transport and profile formations using global gyrokinetic full-f Vlasov simulation. Nucl. Fusion 49, 065029 (2009).

    Article  Google Scholar 

  71. Grandgirard, V. et al. A 5D gyrokinetic full-f global semi-Lagrangian code for flux-driven ion turbulence simulations. Comput. Phys. Commun. 207, 35–68 (2016).

    Article  MathSciNet  Google Scholar 

  72. Mandell, N. R. et al. GX: a GPU-native gyrokinetic turbulence code for tokamak and stellarator design. J. Plasma Phys. 90, 905900402 (2024).

    Article  Google Scholar 

  73. Lanti, E. et al. ORB5: a global electromagnetic gyrokinetic code using the PIC approach in toroidal geometry. Comput. Phys. Commun. 251, 107072 (2020).

    Article  MathSciNet  Google Scholar 

  74. Sentoku, Y. & Kemp, A. Numerical methods for particle simulations at extreme densities and temperatures: weighted particles, relativistic collisions and reduced currents. J. Comput. Phys. 227, 6846–6861 (2008).

    Article  Google Scholar 

  75. Barnes, M., Parra, F. I. & Landreman, M. stella: an operator-split, implicit–explicit δf-gyrokinetic code for general magnetic field configurations. J. Comput. Phys. 391, 365–380 (2019).

    Article  MathSciNet  Google Scholar 

  76. Tskhakaya, D., Matyash, K., Schneider, R. & Taccogna, F. The particle-in-cell method. Contrib. Plasma Phys. 47, 563–594 (2007).

    Article  Google Scholar 

  77. Taccogna, F. et al. Plasma-neutral interaction in kinetic models for the divertor region. Contrib. Plasma Phys. 48, 147–152 (2008).

    Article  Google Scholar 

  78. Romazanov, J. et al. First Monte-Carlo modelling of global beryllium migration in ITER using ERO2.0. Contrib. Plasma Phys. 60, e201900149 (2020).

    Article  Google Scholar 

  79. Wiesenberger, M., Gerrú, R. & Held, M. Numerical evaluation of line, surface and toroidal integrals on level sets of toroidally symmetric functions. J. Comput. Phys. 491, 112407 (2023).

    Article  MathSciNet  Google Scholar 

  80. Wiesen, S. et al. The new SOLPS-ITER code package. J. Nucl. Mater. 463, 480–484 (2015).

    Article  Google Scholar 

  81. Bufferand, H. et al. Three-dimensional modelling of edge multi-component plasma taking into account realistic wall geometry. Nucl. Mater. Energy 18, 82–86 (2019).

    Article  Google Scholar 

  82. Komm, M. et al. Particle-in-cell simulations of the plasma interaction with poloidal gaps in the ITER divertor outer vertical target. Nucl. Fusion 57, 126047 (2017).

    Article  Google Scholar 

  83. Ku, S., Chang, C.-S. & Diamond, P. H. Full-f gyrokinetic particle simulation of centrally heated global ITG turbulence from magnetic axis to edge pedestal top in a realistic tokamak geometry. Nucl. Fusion 49, 115021 (2009).

    Article  Google Scholar 

  84. Dudt, D. & Kolemen, E. DESC: a stellarator equilibrium solver. Phys. Plasmas 27, 102513 (2020).

    Article  Google Scholar 

  85. Hindenlang, F., Plunk, G. G. & Maj, O. Computing MHD equilibria of stellarators with a flexible coordinate frame. Plasma Phys. Control. Fusion 67, 045002 (2025).

    Article  Google Scholar 

  86. Lazerson, S. et al. STELLOPT. GitHub https://github.com/princetonuniversity/STELLOPT (2021).

  87. Hudson, S. et al. Computation of multi-region relaxed magnetohydrodynamic equilibria. Phys. Plasmas 19, 112502 (2012).

    Article  Google Scholar 

  88. Hirvijoki, E. et al. ASCOT: solving the kinetic equation of minority particle species in tokamak plasmas. Comput. Phys. Commun. 185, 1310–1321 (2014).

    Article  MathSciNet  Google Scholar 

  89. Stotler, D. & Karney, C. Neutral gas transport modeling with DEGAS2. Contrib. Plasma Phys. 34, 392–397 (1994).

    Article  Google Scholar 

  90. Ward, S. et al. Verification and validation of the high-performance Lorentz-orbit code for use in stellarators and tokamaks (LOCUST). Nucl. Fusion 61, 086029 (2021).

    Article  Google Scholar 

  91. Dudson, B., Umansky, M., Xu, X., Snyder, P. & Wilson, H. BOUT++: a framework for parallel plasma fluid simulations. Comput. Phys. Commun. 180, 1467–1480 (2009).

    Article  Google Scholar 

  92. Vlad, G., Briguglio, S., Fogaccia, G. & Zonca, F. Hybrid MHD-gyrokinetic codes: extended models, new implementations and forthcoming applications. In Proc. 12th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems 7–10 (IAEA, 2011).

  93. Huysmans, G. & Czarny, O. MHD stability in X-point geometry: simulation of ELMs. Nucl. Fusion 47, 659 (2007).

    Article  Google Scholar 

  94. Todo, Y. & Sato, T. Linear and nonlinear particle-magnetohydrodynamic simulations of the toroidal Alfvén eigenmode. Phys. Plasmas 5, 1321–1327 (1998).

    Article  Google Scholar 

  95. Lütjens, H. & Luciani, J.-F. The XTOR code for nonlinear 3D simulations of MHD instabilities in tokamak plasmas. J. Comput. Phys. 227, 6944–6966 (2008).

    Article  MathSciNet  Google Scholar 

  96. Brochard, G., Dumont, R., Lütjens, H. & Garbet, X. Linear stability of the ITER 15 MA scenario against the alpha fishbone. Nucl. Fusion 60, 086002 (2020).

    Article  Google Scholar 

  97. Jaeger, E., Berry, L., D’Azevedo, E., Batchelor, D. & Carter, M. All-orders spectral calculation of radio-frequency heating in two-dimensional toroidal plasmas. Phys. Plasmas 8, 1573–1583 (2001).

    Article  Google Scholar 

  98. Bertelli, N., Shiraiwa, S., Helou, W., Milanesio, D. & Tierens, W. Benchmark between antenna code TOPICA, RAPLICASOL and Petra-M for the ICRH ITER antenna. AIP Conf. Proc. 2984, 060006 (2023).

    Article  Google Scholar 

  99. Jucker, M. Self-Consistent ICRH Distribution Functions and Equilibria in Magnetically Confined Plasmas. PhD thesis, EPFL (2010).

  100. Milanesio, D., Meneghini, O., Lancellotti, V., Maggiora, R. & Vecchi, G. A multi-cavity approach for enhanced efficiency in TOPICA RF antenna code. Nucl. Fusion 49, 115019 (2009).

    Article  Google Scholar 

  101. Mosher, S. W. et al. ADVANTG — An Automated Variance Reduction Parameter Generator (Rev. 1). Report No. ORNL/TM-2013/416 (Oak Ridge National Laboratory, 2015).

  102. Wareing, T., McGhee, J. & Morel, J. ATTILA. A 3D unstructured tetrahedral-mesh Sn code. (OECD, 2025).

  103. Wagner, J., Mosher, S., Evans, T., Peplow, D. & Turner, J. Hybrid and parallel domain-decomposition methods development to enable Monte Carlo for reactor analyses. Prog. Nucl. Sci. Techol. 2, 815 (2011).

    Article  Google Scholar 

  104. Agostinelli, S. et al. Geant4 — a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A 506, 250–303 (2003).

    Article  Google Scholar 

  105. Werner, C. J. et al. MCNP Version 6.2 Release Notes. Report No. LA-UR-18-20808 (US Department of Energy, 2018).

  106. Romano, P. K. et al. OpenMC: A state-of-the-art Monte Carlo code for research and development. Ann. Nucl. Energy 82, 90–97 (2015).

    Article  Google Scholar 

  107. Zheng, Y. et al. An improved on-the-fly global variance reduction technique by automatically updating weight window values for Monte Carlo shielding calculation. Fusion Eng. Des. 147, 111238 (2019).

    Article  Google Scholar 

  108. Leppänen, J., Pusa, M., Viitanen, T., Valtavirta, V. & Kaltiaisenaho, T. The Serpent Monte Carlo code: status, development and applications in 2013. Ann. Nucl. Energy 82, 142–150 (2015).

    Article  Google Scholar 

  109. Diop, C. et al. TRIPOLI-4: a 3D continuous-energy Monte Carlo transport code. Trans. Am. Nucl. Soc. 95, 661 (2006).

    Google Scholar 

  110. Ansys Mechanical https://www.ansys.com/products/structures/ansys-mechanical (ANSYS Inc., 2024).

  111. Mohr, S., Eixarch, M., Amsler, M., Mantsinen, M. J. & Genovese, L. Linear scaling DFT calculations for large tungsten systems using an optimized local basis. Nucl. Mater. Energy 15, 64–70 (2018).

    Article  Google Scholar 

  112. Dovesi, R. et al. Quantum-mechanical condensed matter simulations with CRYSTAL. Wiley Interdiscip. Rev. Comput. Mol. Sci. 8, e1360 (2018).

    Article  Google Scholar 

  113. Thompson, A. P. et al. LAMMPS — a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).

    Article  Google Scholar 

  114. Santos-Güemes, R., Ortiz, C. J. & Segurado, J. An FFT based approach to account for elastic interactions in OkMC: application to dislocation loops in iron. J. Nucl. Mater. 594, 155020 (2024).

    Article  Google Scholar 

  115. Ghaly, M., Nordlund, K. & Averback, R. Molecular dynamics investigations of surface damage produced by kiloelectronvolt self-bombardment of solids. Phil. Mag. A 79, 795–820 (1999).

    Article  Google Scholar 

  116. Schleife, A., Draeger, E. W., Anisimov, V. M., Correa, A. A. & Kanai, Y. Quantum dynamics simulation of electrons in materials on high-performance computers. Comput. Sci. Eng. 16, 54–60 (2014).

    Article  Google Scholar 

  117. Giannozzi, P. et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).

    Article  Google Scholar 

  118. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  Google Scholar 

  119. Sanz, J. ACAB Activation Code for Fusion Applications: User’s Manual V5.0. UCRLMA-143238 (Lawrence Livermore National Laboratory, 2000).

  120. García, M., Catalán, J., García, R. & Sanz, J. in Challenges for Coolants in Fast Neutron Spectrum Systems 132–139 (IAEA, 2020).

  121. Ansys Fluent https://www.ansys.com/products/fluids/ansys-fluent (ANSYS Inc., 2024).

  122. Sauvan, P. et al. D1SUNED system for the determination of decay photon related quantities. Fusion Eng. Des. 151, 111399 (2020).

    Article  Google Scholar 

  123. Varoutis, S. et al. Numerical simulation of neutral gas dynamics in the W7-X sub-divertor. Nucl. Fusion 64, 076011 (2024).

    Article  Google Scholar 

  124. Delaporte-Mathurin, R. et al. FESTIM: an open-source code for hydrogen transport simulations. Int. J. Hydrogen Energy 63, 786–802 (2024).

    Article  Google Scholar 

  125. Weller, H. G., Tabor, G., Jasak, H. & Fureby, C. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12, 620–631 (1998).

    Article  Google Scholar 

  126. Luo, X. & Day, C. 3D Monte Carlo vacuum modeling of the neutral beam injection system of ITER. Fusion Eng. Des. 85, 1446–1450 (2010).

    Article  Google Scholar 

  127. STAR-CCM+ https://www.plm.automation.siemens.com/global/en/products/simcenter/STAR-CCM.html (Siemens, 2025).

  128. Comsol Multiphysics version 6.0 (COMSOL AB, 2022).

  129. Hecht, F. New development in freefem++. J. Numer. Math. 20, 251–266 (2012).

    Article  MathSciNet  Google Scholar 

  130. Caravello, M., Aimetta, A., Abrate, N., Dulla, S. & Froio, A. An OpenFOAM solver for multiphysics modeling of fusion reactor design: the nemoFoam code. Nucl. Mater. Energy 40, 101693 (2024).

    Article  Google Scholar 

Download references

Acknowledgements

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No. 101052200 — EUROfusion). Views and opinions expressed are, however, those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them. In addition, the work has been partly co-financed by grant PID2023-148038OB-I00 funded by MICIU/AEI/10.13039/501100011033/ and by the Departament de Recerca i Universitats de la Generalitat de Catalunya with code 2021 SGR 00908. The authors thank F. Cipolletta, D. Gallart, J. J. Gutierrez Moreno, J. J. Labarta Mancho and A. Soba for discussions.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Marta Garcia-Gasulla or Mervi J. Mantsinen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Ben Dudson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia-Gasulla, M., Mantsinen, M.J. Challenges and opportunities in exascale fusion simulations. Nat Rev Phys 7, 355–364 (2025). https://doi.org/10.1038/s42254-025-00830-8

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s42254-025-00830-8

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics