Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Yielding and plasticity in amorphous solids

Abstract

Disordered media include metallic glasses, colloidal suspensions, granular matter and biological tissues, among others. Their physics offers difficult challenges because it often occurs far from equilibrium, in materials that lack symmetries and that evolve through complex energy landscapes. We review theoretical efforts from recent years to provide microscopic insights into the mechanical properties of amorphous media using approaches from statistical mechanics as unifying frameworks. Our focus is on how amorphous solids become unstable and yield under applied deformations. We cover both the initial regime, corresponding to small deformations of the solid, and the transition between elastic response and plastic flow when the solid yields. We discuss the specific features arising for systems evolving near a jamming transition and extend our discussion to recent studies of the rheology of dense biological and active materials. We emphasize the importance of a unified approach to studying the response to deformation and the yielding instability of a broad range of disordered media.

Key points

  • The mechanical response of amorphous solids under deformation exhibits universal features across a range of materials from glasses to biological tissues.

  • Yielding behaviour strongly depends on the preparation history and stability of the amorphous solid, influencing whether the material fails in a ductile or brittle manner.

  • Plasticity involves intermittent avalanches whose statistics reflect underlying criticality and are sensitive to the density and nature of localized defects.

  • A critical point separates brittle and ductile yielding regimes, analogous to a spinodal transition in the presence of quenched disorder, revealing deep connections with non-equilibrium phase transitions.

  • The understanding of yielding has been extended to active and biological matter, where topological interactions and internal activity may lead to novel rheological behaviours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Deformation and yielding of amorphous solids spanning a broad range of timescales, length scales and physical behaviours.
Fig. 2: Oscillatory strain, reversibility and memory.
Fig. 3: The yielding instability.
Fig. 4: Shear-yielding and shear-jamming.
Fig. 5: Plasticity defects in amorphous solids.
Fig. 6: The vertex model for biological tissues.
Fig. 7: Yielding instability due to persistent active forces.

Similar content being viewed by others

References

  1. Rodney, D., Tanguy, A. & Vandembroucq, D. Modeling the mechanics of amorphous solids at different length scale and time scale. Model. Simul. Mat. Sci. Eng. 19, 083001 (2011).

    Article  ADS  Google Scholar 

  2. Berthier, L. & Biroli, G. Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 83, 587 (2011).

    Article  ADS  Google Scholar 

  3. Bonn, D., Denn, M. M., Berthier, L., Divoux, T. & Manneville, S. Yield stress materials in soft condensed matter. Rev. Mod. Phys. 89, 035005 (2017).

    Article  ADS  Google Scholar 

  4. Nicolas, A., Ferrero, E. E., Martens, K. & Barrat, J.-L. Deformation and flow of amorphous solids: insights from elastoplastic models. Rev. Mod. Phys. 90, 045006 (2018).

    Article  ADS  Google Scholar 

  5. Keim, N. C., Paulsen, J. D., Zeravcic, Z., Sastry, S. & Nagel, S. R. Memory formation in matter. Rev. Mod. Phys. 91, 035002 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  6. Ediger, M. D., Angell, C. A. & Nagel, S. R. Supercooled liquids and glasses. J. Phys. Chem. 100, 13200–13212 (1996).

    Article  Google Scholar 

  7. Hunter, G. L. & Weeks, E. R. The physics of the colloidal glass transition. Rep. Prog. Phys. 75, 066501 (2012).

    Article  ADS  Google Scholar 

  8. Jaeger, H. M., Nagel, S. R. & Behringer, R. P. Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 1259–1273 (1996).

    Article  ADS  Google Scholar 

  9. Marchetti, M. C. et al. Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143 (2013).

    Article  ADS  Google Scholar 

  10. Mongera, A. et al. A fluid-to-solid jamming transition underlies vertebrate body axis elongation. Nature 561, 401–405 (2018).

    Article  ADS  Google Scholar 

  11. Prakash, V. N., Bull, M. S. & Prakash, M. Motility-induced fracture reveals a ductile-to-brittle crossover in a simple animal's epithelia. Nat. Phys. 17, 504–511 (2021).

    Article  Google Scholar 

  12. Petridou, N. I., Corominas-Murtra, B., Heisenberg, C.-P. & Hannezo, E. Rigidity percolation uncovers a structural basis for embryonic tissue phase transitions. Cell 184, 1914–1928 (2021).

    Article  Google Scholar 

  13. Grosser, S. et al. Cell and nucleus shape as an indicator of tissue fluidity in carcinoma. Phys. Rev. X 11, 011033 (2021).

    Google Scholar 

  14. Ilina, O. et al. Cell–cell adhesion and 3D matrix confinement determine jamming transitions in breast cancer invasion. Nat. Cell Biol. 22, 1103–1115 (2020).

    Article  Google Scholar 

  15. Schuh, C. A., Hufnagel, T. C. & Ramamurty, U. Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067–4109 (2007).

    Article  ADS  Google Scholar 

  16. Voigtmann, T. Nonlinear glassy rheology. Curr. Opin. Colloid Interface Sci. 19, 549–560 (2014).

    Article  Google Scholar 

  17. Divoux, T., Fardin, M. A., Manneville, S. & Lerouge, S. Shear banding of complex fluids. Annu. Rev. Fluid Mech. 48, 81–103 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  18. Liu, A. J. & Nagel, S. R. The jamming transition and the marginally jammed solid. Annu. Rev. Condens. Matter Phys. 1, 347–369 (2010).

    Article  ADS  Google Scholar 

  19. Mari, R., Krzakala, F. & Kurchan, J. Jamming versus glass transitions. Phys. Rev. Lett. 103, 025701 (2009).

    Article  ADS  Google Scholar 

  20. Ikeda, A., Berthier, L. & Sollich, P. Unified study of glass and jamming rheology in soft particle systems. Phys. Rev. Lett. 109, 018301 (2012).

    Article  ADS  Google Scholar 

  21. Berthier, L., Flenner, E. & Szamel, G. Glassy dynamics in dense systems of active particles. J. Chem. Phys. 150, 200901 (2019).

    Article  ADS  Google Scholar 

  22. Bi, D., Yang, X., Marchetti, M. C. & Manning, M. L. Motility-driven glass and jamming transitions in biological tissues. Phys. Rev. X 6, 021011 (2016).

    Google Scholar 

  23. Ediger, M. D. Perspective: Highly stable vapor-deposited glasses. J. Chem. Phys. 147, 210901 (2017).

    Article  ADS  Google Scholar 

  24. Nishikawa, Y., Ozawa, M., Ikeda, A., Chaudhuri, P. & Berthier, L. Relaxation dynamics in the energy landscape of glass-forming liquids. Phys. Rev. X 12, 021001 (2022).

    Google Scholar 

  25. Berthier, L. & Reichman, D. R. Modern computational studies of the glass transition. Nat. Rev. Phys. 5, 102–116 (2023).

    Article  Google Scholar 

  26. Grigera, T. S. & Parisi, G. Fast Monte Carlo algorithm for supercooled soft spheres. Phys. Rev. E 63, 045102 (2001).

    Article  ADS  Google Scholar 

  27. Ninarello, A., Berthier, L. & Coslovich, D. Models and algorithms for the next generation of glass transition studies. Phys. Rev. X 7, 021039 (2017).

    Google Scholar 

  28. Ozawa, M., Berthier, L., Biroli, G., Rosso, A. & Tarjus, G. Random critical point separates brittle and ductile yielding transitions in amorphous materials. Proc. Natl Acad. Sci. USA 115, 6656–6661 (2018).

    Article  ADS  Google Scholar 

  29. Jin, Y., Urbani, P., Zamponi, F. & Yoshino, H. A stability-reversibility map unifies elasticity, plasticity, yielding, and jamming in hard sphere glasses. Sci. Adv. 4, eaat6387 (2018).

    Article  ADS  Google Scholar 

  30. Pine, D. J., Gollub, J. P., Brady, J. F. & Leshansky, A. M. Chaos and threshold for irreversibility in sheared suspensions. Nature 438, 997–1000 (2005).

    Article  ADS  Google Scholar 

  31. Corte, L., Chaikin, P. M., Gollub, J. P. & Pine, D. J. Random organization in periodically driven systems. Nat. Phys. 4, 420–424 (2008).

    Article  Google Scholar 

  32. Fiocco, D., Foffi, G. & Sastry, S. Oscillatory athermal quasistatic deformation of a model glass. Phys. Rev. E 88, 020301 (2013).

    Article  ADS  Google Scholar 

  33. Regev, I., Lookman, T. & Reichhardt, C. Onset of irreversibility and chaos in amorphous solids under periodic shear. Phys. Rev. E 88, 062401 (2013).

    Article  ADS  Google Scholar 

  34. Regev, I., Weber, J., Reichhardt, C., Dahmen, K. A. & Lookman, T. Reversibility and criticality in amorphous solids. Nat. Commun. 6, 1–8 (2015).

    Article  Google Scholar 

  35. Kawasaki, T. & Berthier, L. Macroscopic yielding in jammed solids is accompanied by a nonequilibrium first-order transition in particle trajectories. Phys. Rev. E 94, 022615 (2016).

    Article  ADS  Google Scholar 

  36. Bhaumik, H., Foffi, G. & Sastry, S. The role of annealing in determining the yielding behavior of glasses under cyclic shear deformation. Proc. Natl Acad. Sci. USA 118, e2100227118 (2021).

    Article  Google Scholar 

  37. Yeh, W.-T., Ozawa, M., Miyazaki, K., Kawasaki, T. & Berthier, L. Glass stability changes the nature of yielding under oscillatory shear. Phys. Rev. Lett. 124, 225502 (2020).

    Article  ADS  Google Scholar 

  38. Hentschel, H., Karmakar, S., Lerner, E. & Procaccia, I. Do athermal amorphous solids exist? Phys. Rev. E 83, 061101 (2011).

    Article  ADS  Google Scholar 

  39. Lerner, E., Procaccia, I., Rainone, C. & Singh, M. Protocol dependence of plasticity in ultrastable amorphous solids. Phys. Rev. E 98, 063001 (2018).

    Article  ADS  Google Scholar 

  40. Maloney, C. & Lemaitre, A. Subextensive scaling in the athermal, quasistatic limit of amorphous matter in plastic shear flow. Phys. Rev. Lett. 93, 016001 (2004).

    Article  ADS  Google Scholar 

  41. Karmakar, S., Lerner, E. & Procaccia, I. Statistical physics of the yielding transition in amorphous solids. Phys. Rev. E 82, 055103 (2010).

    Article  ADS  Google Scholar 

  42. Talamali, M., Petäjä, V., Vandembroucq, D. & Roux, S. Avalanches, precursors, and finite-size fluctuations in a mesoscopic model of amorphous plasticity. Phys. Rev. E 84, 016115 (2011).

    Article  ADS  Google Scholar 

  43. Budrikis, Z. & Zapperi, S. Avalanche localization and crossover scaling in amorphous plasticity. Phys. Rev. E 88, 062403 (2013).

    Article  ADS  Google Scholar 

  44. Antonaglia, J. et al. Bulk metallic glasses deform via slip avalanches. Phys. Rev. Lett. 112, 155501 (2014).

    Article  ADS  Google Scholar 

  45. Lin, J., Lerner, E., Rosso, A. & Wyart, M. Scaling description of the yielding transition in soft amorphous solids at zero temperature. Proc. Natl Acad. Sci USA 111, 14382–14387 (2014).

    Article  ADS  Google Scholar 

  46. Lin, J., Saade, A., Lerner, E., Rosso, A. & Wyart, M. On the density of shear transformations in amorphous solids. Europhys. Lett. 105, 26003 (2014).

    Article  ADS  Google Scholar 

  47. Sandfeld, S., Budrikis, Z., Zapperi, S. & Castellanos, D. F. Avalanches, loading and finite size effects in 2D amorphous plasticity: results from a finite element model. J. Stat. Mech. Theory Exp. 2015, P02011 (2015).

    Article  Google Scholar 

  48. Biroli, G. & Urbani, P. Breakdown of elasticity in amorphous solids. Nat. Phys. 12, 1130–1133 (2016).

    Article  Google Scholar 

  49. Franz, S. & Spigler, S. Mean-field avalanches in jammed spheres. Phys. Rev. E 95, 022139 (2017).

    Article  ADS  Google Scholar 

  50. Budrikis, Z., Castellanos, D. F., Sandfeld, S., Zaiser, M. & Zapperi, S. Universal features of amorphous plasticity. Nat. Commun. 8, 15928 (2017).

    Article  ADS  Google Scholar 

  51. Lagogianni, A. E., Liu, C., Martens, K. & Samwer, K. Plastic avalanches in the so-called elastic regime of metallic glasses. Eur. Phys. J. B 91, 1–5 (2018).

    Article  Google Scholar 

  52. Ruscher, C. & Rottler, J. Residual stress distributions in amorphous solids from atomistic simulations. Soft Matter 16, 8940–8949 (2020).

    Article  ADS  Google Scholar 

  53. Shang, B., Guan, P. & Barrat, J.-L. Elastic avalanches reveal marginal behavior in amorphous solids. Proc. Natl Acad. Sci. USA 117, 86–92 (2020).

    Article  ADS  Google Scholar 

  54. Franz, S., Sclocchi, A. & Urbani, P. Surfing on minima of isostatic landscapes: avalanches and unjamming transition. J. Stat. Mech. Theory Exp. 2021, 023208 (2021).

    Article  MathSciNet  Google Scholar 

  55. Ferrero, E. E. & Jagla, E. A. Criticality in elastoplastic models of amorphous solids with stress-dependent yielding rates. Soft Matter 15, 9041–9055 (2019).

    Article  ADS  Google Scholar 

  56. Oyama, N., Mizuno, H. & Ikeda, A. Unified view of avalanche criticality in sheared glasses. Phys. Rev. E 104, 015002 (2021).

    Article  ADS  Google Scholar 

  57. Tyukodi, B., Vandembroucq, D. & Maloney, C. E. Avalanches, thresholds, and diffusion in mesoscale amorphous plasticity. Phys. Rev. E 100, 043003 (2019).

    Article  ADS  Google Scholar 

  58. Ferrero, E. E. & Jagla, E. A. Properties of the density of shear transformations in driven amorphous solids. J. Phys. Condens. Matter 33, 124001 (2021).

    Article  ADS  Google Scholar 

  59. Hentschel, H., Jaiswal, P. K., Procaccia, I. & Sastry, S. Stochastic approach to plasticity and yield in amorphous solids. Phys. Rev. E 92, 062302 (2015).

    Article  ADS  Google Scholar 

  60. Lin, J. & Wyart, M. Mean-field description of plastic flow in amorphous solids. Phys. Rev. X 6, 011005 (2016).

    Google Scholar 

  61. Wang, L. et al. Low-frequency vibrational modes of stable glasses. Nat. Commun. 10, 26 (2019).

    Article  ADS  Google Scholar 

  62. Rainone, C., Bouchbinder, E. & Lerner, E. Pinching a glass reveals key properties of its soft spots. Proc. Natl Acad. Sci. USA 117, 5228–5234 (2020).

    Article  ADS  Google Scholar 

  63. Le Doussal, P., Müller, M. & Wiese, K. J. Equilibrium avalanches in spin glasses. Phys. Rev. B 85, 214402 (2012).

    Article  ADS  Google Scholar 

  64. Müller, M. & Wyart, M. Marginal stability in structural, spin, and electron glasses. Annu. Rev. Condens. Matter Phys. 6, 177–200 (2015).

    Article  ADS  Google Scholar 

  65. Parisi, G., Urbani, P. & Zamponi, F. Theory of Simple Glasses: Exact Solutions in Infinite Dimensions (Cambridge Univ. Press, 2020).

  66. Jagla, E. A. Avalanche-size distributions in mean-field plastic yielding models. Phys. Rev. E 92, 042135 (2015).

    Article  ADS  Google Scholar 

  67. Kühn, R. & Horstmann, U. Random matrix approach to glassy physics: low temperatures and beyond. Phys. Rev. Lett. 78, 4067–4070 (1997).

    Article  ADS  Google Scholar 

  68. Das, P., Hentschel, H. G. E., Lerner, E. & Procaccia, I. Robustness of density of low-frequency states in amorphous solids. Phys. Rev. B 102, 014202 (2020).

    Article  ADS  Google Scholar 

  69. Rainone, C., Urbani, P., Zamponi, F., Lerner, E. & Bouchbinder, E. Mean-field model of interacting quasilocalized excitations in glasses. SciPost Phys. Core 4, 008 (2021).

    Article  Google Scholar 

  70. Folena, G. & Urbani, P. Marginal stability of soft anharmonic mean field spin glasses. J. Stat. Mech. Theory Exp. 2022, 053301 (2022).

    Article  MathSciNet  Google Scholar 

  71. Keim, N. C. & Nagel, S. R. Generic transient memory formation in disordered systems with noise. Phys. Rev. Lett. 107, 010603 (2011).

    Article  ADS  Google Scholar 

  72. Keim, N. C., Paulsen, J. D. & Nagel, S. R. Multiple transient memories in sheared suspensions: robustness, structure, and routes to plasticity. Phys. Rev. E 88, 032306 (2013).

    Article  ADS  Google Scholar 

  73. Paulsen, J. D., Keim, N. C. & Nagel, S. R. Multiple transient memories in experiments on sheared non-Brownian suspensions. Phys. Rev. Lett. 113, 068301 (2014).

    Article  ADS  Google Scholar 

  74. Fiocco, D., Foffi, G. & Sastry, S. Encoding of memory in sheared amorphous solids. Phys. Rev. Lett. 112, 025702 (2014).

    Article  ADS  Google Scholar 

  75. Fiocco, D., Foffi, G. & Sastry, S. Memory effects in schematic models of glasses subjected to oscillatory deformation. J. Phys. Condens. Matter 27, 194130 (2015).

    Article  ADS  Google Scholar 

  76. Mungan, M., Sastry, S., Dahmen, K. & Regev, I. Networks and hierarchies: how amorphous materials learn to remember. Phys. Rev. Lett. 123, 178002 (2019).

    Article  ADS  Google Scholar 

  77. Pashine, N., Hexner, D., Liu, A. J. & Nagel, S. R. Directed aging, memory, and nature’s greed. Sci. Adv. 5, eaax4215 (2019).

    Article  ADS  Google Scholar 

  78. Hexner, D., Pashine, N., Liu, A. J. & Nagel, S. R. Effect of directed aging on nonlinear elasticity and memory formation in a material. Phys. Rev. Res. 2, 043231 (2020).

    Article  Google Scholar 

  79. Lindeman, C. W. & Nagel, S. R. Multiple memory formation in glassy landscapes. Sci. Adv. 7, eabg7133 (2021).

    Article  ADS  Google Scholar 

  80. Lindeman, C. W., Hagh, V. F., Ip, C. I. & Nagel, S. R. Competition between energy and dynamics in memory formation. Phys. Rev. Lett. 130, 197201 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  81. Sastry, S. Models for the yielding behavior of amorphous solids. Phys. Rev. Lett. 126, 255501 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  82. Parley, J. T., Sastry, S. & Sollich, P. Mean-field theory of yielding under oscillatory shear. Phys. Rev. Lett. 128, 198001 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  83. Popović, M., de Geus, T. W. & Wyart, M. Elastoplastic description of sudden failure in athermal amorphous materials during quasistatic loading. Phys. Rev. E 98, 040901 (2018).

    Article  ADS  Google Scholar 

  84. Barlow, H. J., Cochran, J. O. & Fielding, S. M. Ductile and brittle yielding in thermal and athermal amorphous materials. Phys. Rev. Lett. 125, 168003 (2020).

    Article  ADS  Google Scholar 

  85. Pollard, J. & Fielding, S. M. Yielding, shear banding, and brittle failure of amorphous materials. Phys. Rev. Res. 4, 043037 (2022).

    Article  Google Scholar 

  86. Rossi, S., Biroli, G., Ozawa, M., Tarjus, G. & Zamponi, F. Finite-disorder critical point in the yielding transition of elastoplastic models. Phys. Rev. Lett. 129, 228002 (2022).

    Article  ADS  Google Scholar 

  87. Ozawa, M., Berthier, L., Biroli, G. & Tarjus, G. Role of fluctuations in the yielding transition of two-dimensional glasses. Phys. Rev. Res. 2, 023203 (2020).

    Article  Google Scholar 

  88. Richard, D., Lerner, E. & Bouchbinder, E. Brittle-to-ductile transitions in glasses: roles of soft defects and loading geometry. MRS Bull. 46, 902–914 (2021).

    Article  ADS  Google Scholar 

  89. Wisitsorasak, A. & Wolynes, P. G. On the strength of glasses. Proc. Natl Acad. Sci. USA 109, 16068–16072 (2012).

    Article  ADS  Google Scholar 

  90. Rainone, C., Urbani, P., Yoshino, H. & Zamponi, F. Following the evolution of hard sphere glasses in infinite dimensions under external perturbations: compression and shear strain. Phys. Rev. Lett. 114, 015701 (2015).

    Article  ADS  Google Scholar 

  91. Parisi, G., Procaccia, I., Rainone, C. & Singh, M. Shear bands as manifestation of a criticality in yielding amorphous solids. Proc. Natl Acad. Sci. USA 114, 5577–5582 (2017).

    Article  ADS  Google Scholar 

  92. Urbani, P. & Zamponi, F. Shear yielding and shear jamming of dense hard sphere glasses. Phys. Rev. Lett. 118, 038001 (2017).

    Article  ADS  Google Scholar 

  93. Biroli, G. & Urbani, P. Liu–Nagel phase diagrams in infinite dimension. SciPost Phys. 4, 020 (2018).

    Article  ADS  Google Scholar 

  94. Franz, S., Parisi, G., Ricci-Tersenghi, F. & Rizzo, T. Field theory of fluctuations in glasses. Eur. Phys. J. E 34, 1–17 (2011).

    Article  Google Scholar 

  95. Nattermann, T. in Spin Glasses and Random Fields 277–298 (World Scientific, 1998).

  96. Nandi, S. K., Biroli, G. & Tarjus, G. Spinodals with disorder: from avalanches in random magnets to glassy dynamics. Phys. Rev. Lett. 116, 145701 (2016).

    Article  ADS  Google Scholar 

  97. Perković, O., Dahmen, K. & Sethna, J. P. Avalanches, Barkhausen noise, and plain old criticality. Phys. Rev. Lett. 75, 4528 (1995).

    Article  ADS  Google Scholar 

  98. Rossi, S., Biroli, G., Ozawa, M. & Tarjus, G. Far-from-equilibrium criticality in the random-field Ising model with Eshelby interactions. Phys. Rev. B 108, L220202 (2023).

    Article  ADS  Google Scholar 

  99. Richard, D., Rainone, C. & Lerner, E. Finite-size study of the athermal quasistatic yielding transition in structural glasses. J. Chem. Phys. 155, 056101 (2021).

    Article  ADS  Google Scholar 

  100. Baret, J.-C., Vandembroucq, D. & Roux, S. Extremal model for amorphous media plasticity. Phys. Rev. Lett. 89, 195506 (2002).

    Article  ADS  Google Scholar 

  101. Ozawa, M., Berthier, L., Biroli, G. & Tarjus, G. Rare events and disorder control the brittle yielding of well-annealed amorphous solids. Phys. Rev. Res. 4, 023227 (2022).

    Article  Google Scholar 

  102. Parley, J. T. & Sollich, P. Ductile and brittle yielding of athermal amorphous solids: a mean-field paradigm beyond the random-field Ising model. Phys. Rev. E 110, 045002 (2024).

    Article  MathSciNet  Google Scholar 

  103. Rossi, S. & Tarjus, G. Emergence of a random field at the yielding transition of a mean-field elasto-plastic model. J. Stat. Mech. Theory Exp. 2022, 093301 (2022).

    Article  MathSciNet  Google Scholar 

  104. Divoux, T., Tamarii, D., Barentin, C. & Manneville, S. Transient shear banding in a simple yield stress fluid. Phys. Rev. Lett. 104, 208301 (2010).

    Article  ADS  Google Scholar 

  105. Liu, C., Ferrero, E. E., Puosi, F., Barrat, J.-L. & Martens, K. Driving rate dependence of avalanche statistics and shapes at the yielding transition. Phys. Rev. Lett. 116, 065501 (2016).

    Article  ADS  Google Scholar 

  106. Singh, M., Ozawa, M. & Berthier, L. Brittle yielding of amorphous solids at finite shear rates. Phys. Rev. Mater. 4, 025603 (2020).

    Article  Google Scholar 

  107. Clemmer, J. T., Salerno, K. M. & Robbins, M. O. Criticality in sheared, disordered solids. I. Rate effects in stress and diffusion. Phys. Rev. E 103, 042605 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  108. Bouttes, D. & Vandembroucq, D. Creep of amorphous materials: a mesoscopic model. AIP Conf. Proc. 1518, 481–486 (2013).

    Article  ADS  Google Scholar 

  109. Ferrero, E. E., Martens, K. & Barrat, J.-L. Relaxation in yield stress systems through elastically interacting activated events. Phys. Rev. Lett. 113, 248301 (2014).

    Article  ADS  Google Scholar 

  110. Ferrero, E. E., Kolton, A. B. & Jagla, E. A. Yielding of amorphous solids at finite temperatures. Phys. Rev. Mater. 5, 115602 (2021).

    Article  Google Scholar 

  111. Popović, M., de Geus, T. W. J., Ji, W. & Wyart, M. Thermally activated flow in models of amorphous solids. Phys. Rev. E 104, 025010 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  112. Popović, M., de Geus, T. W. J., Ji, W., Rosso, A. & Wyart, M. Scaling description of creep flow in amorphous solids. Phys. Rev. Lett. 129, 208001 (2022).

    Article  ADS  Google Scholar 

  113. Sollich, P., Olivier, J. & Bresch, D. Aging and linear response in the Hébraud–Lequeux model for amorphous rheology. J. Phys. A 50, 165002 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  114. Parley, J. T., Fielding, S. M. & Sollich, P. Aging in a mean field elastoplastic model of amorphous solids. Phys. Fluids 32, 127104 (2020).

    Article  ADS  Google Scholar 

  115. Ozawa, M., Kuroiwa, T., Ikeda, A. & Miyazaki, K. Jamming transition and inherent structures of hard spheres and disks. Phys. Rev. Lett. 109, 205701 (2012).

    Article  ADS  Google Scholar 

  116. Ozawa, M., Berthier, L. & Coslovich, D. Exploring the jamming transition over a wide range of critical densities. SciPost Phys. 3, 027 (2017).

    Article  ADS  Google Scholar 

  117. Charbonneau, P. & Morse, P. K. Memory formation in jammed hard spheres. Phys. Rev. Lett. 126, 088001 (2021).

    Article  ADS  Google Scholar 

  118. Peyneau, P.-E. & Roux, J.-N. Frictionless bead packs have macroscopic friction, but no dilatancy. Phys. Rev. E 78, 011307 (2008).

    Article  ADS  Google Scholar 

  119. Bi, D., Zhang, J., Chakraborty, B. & Behringer, R. P. Jamming by shear. Nature 480, 355–358 (2011).

    Article  ADS  Google Scholar 

  120. Seto, R., Singh, A., Chakraborty, B., Denn, M. M. & Morris, J. F. Shear jamming and fragility in dense suspensions. Granul. Matter 21, 82 (2019).

    Article  Google Scholar 

  121. Vinutha, H. & Sastry, S. Disentangling the role of structure and friction in shear jamming. Nat. Phys. 12, 578–583 (2016).

    Article  Google Scholar 

  122. Rainone, C. & Urbani, P. Following the evolution of glassy states under external perturbations: the full replica symmetry breaking solution. J. Stat. Mech. Theory Exp. 2016, 053302 (2016).

    Article  MathSciNet  Google Scholar 

  123. Altieri, A. & Zamponi, F. Mean-field stability map of hard-sphere glasses. Phys. Rev. E 100, 032140 (2019).

    Article  ADS  Google Scholar 

  124. Jin, Y. & Yoshino, H. A jamming plane of sphere packings. Proc. Natl Acad. Sci. USA 118, e2021794118 (2021).

    Article  MathSciNet  Google Scholar 

  125. Babu, V., Pan, D., Jin, Y., Chakraborty, B. & Sastry, S. Dilatancy, shear jamming, and a generalized jamming phase diagram of frictionless sphere packings. Soft Matter 17, 3121–3127 (2021).

    Article  ADS  Google Scholar 

  126. Pan, D., Wang, Y., Yoshino, H., Zhang, J. & Jin, Y. A review on shear jamming. Phys. Rep. 1038, 1–18 (2023).

    Article  ADS  Google Scholar 

  127. Wiese, R., Kroy, K. & Levis, D. Fluid-glass-jamming rheology of soft active Brownian particles. Phys. Rev. Lett. 131, 178302 (2023).

    Article  ADS  Google Scholar 

  128. Sastry, S., Truskett, T. M., Debenedetti, P. G., Torquato, S. & Stillinger, F. H. Free in the hard sphere liquid. Mol. Phys. 95, 289–297 (1998).

    Article  ADS  Google Scholar 

  129. Schober, H. & Oligschleger, C. Low-frequency vibrations in a model glass. Phys. Rev. B 53, 11469 (1996).

    Article  ADS  Google Scholar 

  130. Widmer-Cooper, A. & Harrowell, P. Predicting the long-time dynamic heterogeneity in a supercooled liquid on the basis of short-time heterogeneities. Phys. Rev. Lett. 96, 185701 (2006).

    Article  ADS  Google Scholar 

  131. Tanguy, A., Mantisi, B. & Tsamados, M. Vibrational modes as a predictor for plasticity in a model glass. Europhys. Lett. 90, 16004 (2010).

    Article  ADS  Google Scholar 

  132. Manning, M. L. & Liu, A. J. Vibrational modes identify soft spots in a sheared disordered packing. Phys. Rev. Lett. 107, 108302 (2011).

    Article  ADS  Google Scholar 

  133. Lerner, E., Düring, G. & Bouchbinder, E. Statistics and properties of low-frequency vibrational modes in structural glasses. Phys. Rev. Lett. 117, 035501 (2016).

    Article  ADS  Google Scholar 

  134. Richard, D. et al. Universality of the nonphononic vibrational spectrum across different classes of computer glasses. Phys. Rev. Lett. 125, 085502 (2020).

    Article  ADS  Google Scholar 

  135. Wang, L., Szamel, G. & Flenner, E. Scaling of the non-phononic spectrum of two-dimensional glasses. J. Chem. Phys. 158, 126101 (2023).

    Article  ADS  Google Scholar 

  136. Lerner, E. & Bouchbinder, E. Low-energy quasilocalized excitations in structural glasses. J. Chem. Phys. 155, 200901 (2021).

    Article  ADS  Google Scholar 

  137. Schirmacher, W. et al. The nature of non-phononic excitations in disordered systems. Nat. Commun. 15, 3107 (2024).

    Article  ADS  Google Scholar 

  138. Eshelby, J. D. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A 241, 376–396 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  139. Kapteijns, G., Bouchbinder, E. & Lerner, E. Universal nonphononic density of states in 2D, 3D, and 4D glasses. Phys. Rev. Lett. 121, 055501 (2018).

    Article  ADS  Google Scholar 

  140. DeGiuli, E., Laversanne-Finot, A., Düring, G., Lerner, E. & Wyart, M. Effects of coordination and pressure on sound attenuation, boson peak and elasticity in amorphous solids. Soft Matter 10, 5628–5644 (2014).

    Article  ADS  Google Scholar 

  141. Manning, M. L. & Liu, A. J. A random matrix definition of the boson peak. Europhys. Lett. 109, 36002 (2015).

    Article  ADS  Google Scholar 

  142. Benetti, F. P., Parisi, G., Pietracaprina, F. & Sicuro, G. Mean-field model for the density of states of jammed soft spheres. Phys. Rev. E 97, 062157 (2018).

    Article  ADS  Google Scholar 

  143. Anderson, P. W., Halperin, B. I. & Varma, C. M. Anomalous low-temperature thermal properties of glasses and spin glasses. Philos. Mag. 25, 1–9 (1972).

    Article  ADS  Google Scholar 

  144. Phillips, W. A. Two-level states in glasses. Rep. Prog. Phys. 50, 1657 (1987).

    Article  ADS  Google Scholar 

  145. Reinisch, J. & Heuer, A. What is moving in silica at 1 K? A computer study of the low-temperature anomalies. Phys. Rev. Lett. 95, 155502 (2005).

    Article  ADS  Google Scholar 

  146. Damart, T. & Rodney, D. Atomistic study of two-level systems in amorphous silica. Phys. Rev. B 97, 014201 (2018).

    Article  ADS  Google Scholar 

  147. Khomenko, D., Scalliet, C., Berthier, L., Reichman, D. R. & Zamponi, F. Depletion of two-level systems in ultrastable computer-generated glasses. Phys. Rev. Lett. 124, 225901 (2020).

    Article  ADS  Google Scholar 

  148. Ji, W., Popović, M., de Geus, T. W., Lerner, E. & Wyart, M. Theory for the density of interacting quasilocalized modes in amorphous solids. Phys. Rev. E 99, 023003 (2019).

    Article  ADS  Google Scholar 

  149. Kumar, A., Procaccia, I. & Singh, M. Density of quasi-localized modes in athermal glasses. Europhys. Lett. 135, 66001 (2021).

    Article  ADS  Google Scholar 

  150. Barbot, A. et al. Local yield stress statistics in model amorphous solids. Phys. Rev. E 97, 033001 (2018).

    Article  ADS  Google Scholar 

  151. Ruan, D., Patinet, S. & Falk, M. L. Predicting plastic events and quantifying the local yield surface in 3D model glasses. J. Mech. Phys. Solids 158, 104671 (2022).

    Article  MathSciNet  Google Scholar 

  152. Tong, H. & Tanaka, H. Revealing hidden structural order controlling both fast and slow glassy dynamics in supercooled liquids. Phys. Rev. X 8, 011041 (2018).

    Google Scholar 

  153. Schoenholz, S. S., Cubuk, E. D., Sussman, D. M., Kaxiras, E. & Liu, A. J. A structural approach to relaxation in glassy liquids. Nat. Phys. 12, 469–471 (2016).

    Article  Google Scholar 

  154. Bapst, V. et al. Unveiling the predictive power of static structure in glassy systems. Nat. Phys. 16, 448–454 (2020).

    Article  Google Scholar 

  155. Gartner, L. & Lerner, E. et al. Nonlinear modes disentangle glassy and goldstone modes in structural glasses. SciPost Phys. 1, 016 (2016).

    Article  ADS  Google Scholar 

  156. Richard, D., Kapteijns, G., Giannini, J. A., Manning, M. L. & Lerner, E. Simple and broadly applicable definition of shear transformation zones. Phys. Rev. Lett. 126, 015501 (2021).

    Article  ADS  Google Scholar 

  157. Baggioli, M., Kriuchevskyi, I., Sirk, T. W. & Zaccone, A. Plasticity in amorphous solids is mediated by topological defects in the displacement field. Phys. Rev. Lett. 127, 015501 (2021).

    Article  ADS  Google Scholar 

  158. Wu, Z. W., Chen, Y., Wang, W.-H., Kob, W. & Xu, L. Topology of vibrational modes predicts plastic events in glasses. Nat. Commun. 14, 2955 (2023).

    Article  ADS  Google Scholar 

  159. Richard, D. et al. Predicting plasticity in disordered solids from structural indicators. Phys. Rev. Mater. 4, 113609 (2020).

    Article  Google Scholar 

  160. Shimada, M., Mizuno, H., Wyart, M. & Ikeda, A. Spatial structure of quasilocalized vibrations in nearly jammed amorphous solids. Phys. Rev. E 98, 060901 (2018).

    Article  ADS  Google Scholar 

  161. Lerner, E., DeGiuli, E., Düring, G. & Wyart, M. Breakdown of continuum elasticity in amorphous solids. Soft Matter 10, 5085–5092 (2014).

    Article  ADS  Google Scholar 

  162. Lerner, E. & Bouchbinder, E. Boson-peak vibrational modes in glasses feature hybridized phononic and quasilocalized excitations. J. Chem. Phys. 158, 194503 (2023).

    Article  ADS  Google Scholar 

  163. Giannini, J. A., Lerner, E., Zamponi, F. & Manning, M. L. Scaling regimes and fluctuations of observables in computer glasses approaching the unjamming transition. J. Chem. Phys. 160, 034502 (2024).

    Article  ADS  Google Scholar 

  164. Honda, H., Tanemura, M. & Nagai, T. A three-dimensional vertex dynamics cell model of space-filling polyhedra simulating cell behavior in a cell aggregate. J. Theor. Biol. 226, 439–453 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  165. Noll, N., Mani, M., Heemskerk, I., Streichan, S. J. & Shraiman, B. I. Active tension network model suggests an exotic mechanical state realized in epithelial tissues. Nat. Phys. 13, 1221–1226 (2017).

    Article  Google Scholar 

  166. Li, C., Merkel, M. & Sussman, D. M. Connecting anomalous elasticity and sub-Arrhenius structural dynamics in a cell-based model. Phys. Rev. Lett. 134, 048203 (2025).

    Article  Google Scholar 

  167. Basan, M., Prost, J., Joanny, J.-F. & Elgeti, J. Dissipative particle dynamics simulations for biological tissues: rheology and competition. Phys. Biol. 8, 026014 (2011).

    Article  ADS  Google Scholar 

  168. Pinheiro, D., Kardos, R., Hannezo, É. & Heisenberg, C.-P. Morphogen gradient orchestrates pattern-preserving tissue morphogenesis via motility-driven unjamming. Nat. Phys. 18, 1482–1493 (2022).

    Article  Google Scholar 

  169. Kim, S., Pochitaloff, M., Stooke-Vaughan, G. A. & Campàs, O. Embryonic tissues as active foams. Nat. Phys. 17, 859–866 (2021).

    Article  Google Scholar 

  170. Boromand, A., Signoriello, A., Ye, F., O'Hern, C. S. & Shattuck, M. D. Jamming of deformable polygons. Phys. Rev. Lett. 121, 248003 (2018).

    Article  ADS  Google Scholar 

  171. Sharma, A. et al. Strain-controlled criticality governs the nonlinear mechanics of fibre networks. Nat. Phys. 12, 584–587 (2016).

    Article  Google Scholar 

  172. Bi, D., Lopez, J., Schwarz, J. M. & Manning, M. L. A density-independent rigidity transition in biological tissues. Nat. Phys. 11, 1074–1079 (2015).

    Article  Google Scholar 

  173. Merkel, M., Baumgarten, K., Tighe, B. P. & Manning, M. L. A minimal-length approach unifies rigidity in underconstrained materials. Proc. Natl Acad. Sci. USA 116, 6560–6568 (2019).

    Article  ADS  Google Scholar 

  174. Manning, M. L. Rigidity in mechanical biological networks. Curr. Biol. 34, R1024–R1030 (2024).

    Article  Google Scholar 

  175. Damavandi, O. K., Hagh, V. F., Santangelo, C. D. & Manning, M. L. Energetic rigidity. I. A unifying theory of mechanical stability. Phys. Rev. E 105, 025003 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  176. Hain, T., Santangelo, C. & Manning, M. L. Optimizing properties on the critical rigidity manifold of underconstrained central-force networks. Phys. Rev. E 111, 015418 (2025).

    Article  MathSciNet  Google Scholar 

  177. Huang, J., Cochran, J. O., Fielding, S. M., Marchetti, M. C. & Bi, D. Shear-driven solidification and nonlinear elasticity in epithelial tissues. Phys. Rev. Lett. 128, 178001 (2022).

    Article  ADS  Google Scholar 

  178. Arzash, S., Shivers, J. L. & MacKintosh, F. C. Shear-induced phase transition and critical exponents in three-dimensional fiber networks. Phys. Rev. E 104, L022402 (2021).

    Article  ADS  Google Scholar 

  179. Van Oosten, A. S. et al. Uncoupling shear and uniaxial elastic moduli of semiflexible biopolymer networks: compression-softening and stretch-stiffening. Sci. Rep. 6, 19270 (2016).

    Article  ADS  Google Scholar 

  180. Vahabi, M. et al. Elasticity of fibrous networks under uniaxial prestress. Soft Matter 12, 5050–5060 (2016).

    Article  ADS  Google Scholar 

  181. Sussman, D. M., Paoluzzi, M., Marchetti, M. C. & Manning, M. L. Anomalous glassy dynamics in simple models of dense biological tissue. Europhys. Lett. 121, 36001 (2018).

    Article  ADS  Google Scholar 

  182. Tah, I., Sharp, T. A., Liu, A. J. & Sussman, D. M. Quantifying the link between local structure and cellular rearrangements using information in models of biological tissues. Soft Matter 17, 10242–10253 (2021).

    Article  ADS  Google Scholar 

  183. Popović, M., Druelle, V., Dye, N. A., Jülicher, F. & Wyart, M. Inferring the flow properties of epithelial tissues from their geometry. New J. Phys. 23, 033004 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  184. Duclut, C., Paijmans, J., Inamdar, M. M., Modes, C. D. & Jülicher, F. Nonlinear rheology of cellular networks. Cells Dev. 168, 203746 (2021).

    Article  Google Scholar 

  185. Sanematsu, P. C. et al. 3D viscoelastic drag forces contribute to cell shape changes during organogenesis in the zebrafish embryo. Cells Dev. 168, 203718 (2021).

    Article  Google Scholar 

  186. Tong, S., Singh, N. K., Sknepnek, R. & Košmrlj, A. Linear viscoelastic properties of the vertex model for epithelial tissues. PLoS Comput. Biol. 18, e1010135 (2022).

    Article  ADS  Google Scholar 

  187. Fielding, S. M., Cochran, J. O., Huang, J., Bi, D. & Marchetti, M. C. Constitutive model for the rheology of biological tissue. Phys. Rev. E 108, L042602 (2023).

    Article  ADS  Google Scholar 

  188. Cates, M. E. & Tailleur, J. Motility-induced phase separation. Annu. Rev. Condens. Matter Phys. 6, 219–244 (2015).

    Article  ADS  Google Scholar 

  189. Lama, H., Yamamoto, M. J., Furuta, Y., Shimaya, T. & Takeuchi, K. A. Emergence of bacterial glass. PNAS Nexus 3, pgae238 (2024).

    Article  Google Scholar 

  190. Henkes, S., Fily, Y. & Marchetti, M. C. Active jamming: self-propelled soft particles at high density. Phys. Rev. E 84, 040301 (2011).

    Article  ADS  Google Scholar 

  191. Berthier, L. Nonequilibrium glassy dynamics of self-propelled hard disks. Phys. Rev. Lett. 112, 220602 (2014).

    Article  ADS  Google Scholar 

  192. Nandi, S. K. et al. A random first-order transition theory for an active glass. Proc. Natl Acad. Sci. USA 115, 7688–7693 (2018).

    Article  ADS  Google Scholar 

  193. Matoz-Fernandez, D. A., Agoritsas, E., Barrat, J.-L., Bertin, E. & Martens, K. Nonlinear rheology in a model biological tissue. Phys. Rev. Lett. 118, 158105 (2017).

    Article  ADS  Google Scholar 

  194. Reichhardt, C. & Reichhardt, C. O. Active microrheology in active matter systems: mobility, intermittency, and avalanches. Phys. Rev. E 91, 032313 (2015).

    Article  ADS  Google Scholar 

  195. Mandal, R. & Sollich, P. Shear-induced orientational ordering in an active glass former. Proc. Natl Acad. Sci. USA 118, e2101964118 (2021).

    Article  Google Scholar 

  196. Briand, G., Schindler, M. & Dauchot, O. Spontaneously flowing crystal of self-propelled particles. Phys. Rev. Lett. 120, 208001 (2018).

    Article  ADS  Google Scholar 

  197. Liao, Q. & Xu, N. Criticality of the zero-temperature jamming transition probed by self-propelled particles. Soft Matter 14, 853–860 (2018).

    Article  ADS  Google Scholar 

  198. Olsson, P. & Teitel, S. Critical scaling of shear viscosity at the jamming transition. Phys. Rev. Lett. 99, 178001 (2007).

    Article  ADS  Google Scholar 

  199. Mandal, R., Bhuyan, P. J., Chaudhuri, P., Dasgupta, C. & Rao, M. Extreme active matter at high densities. Nat. Commun. 11, 2581 (2020).

    Article  ADS  Google Scholar 

  200. Villarroel, C. & Düring, G. Critical yielding rheology: from externally deformed glasses to active systems. Soft Matter 17, 9944–9949 (2021).

    Article  ADS  Google Scholar 

  201. Morse, P. K. et al. A direct link between active matter and sheared granular systems. Proc. Natl Acad. Sci. USA 118, e2019909118 (2021).

    Article  MathSciNet  Google Scholar 

  202. Agoritsas, E., Maimbourg, T. & Zamponi, F. Out-of-equilibrium dynamical equations of infinite-dimensional particle systems I. The isotropic case. J. Phys. A 52, 144002 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  203. Agoritsas, E. Mean-field dynamics of infinite-dimensional particle systems: global shear versus random local forcing. J. Stat. Mech. Theory Exp. 2021, 033501 (2021).

    Article  MathSciNet  Google Scholar 

  204. Keta, Y.-E., Mandal, R., Sollich, P., Jack, R. L. & Berthier, L. Intermittent relaxation and avalanches in extremely persistent active matter. Soft Matter 19, 3871–3883 (2023).

    Article  ADS  Google Scholar 

  205. Villarroel, C. & Düring, G. Avalanche properties at the yielding transition: from externally deformed glasses to active systems. Soft Matter 20, 3520–3528 (2024).

    Article  ADS  Google Scholar 

  206. Gu, X. et al. Corrosion of, and cellular responses to Mg–Zn–Ca bulk metallic glasses. Biomaterials 31, 1093–1103 (2010).

    Article  Google Scholar 

  207. Zhang, Q., Zhang, W., Xie, G., Louzguine-Luzgin, D. & Inoue, A. Stable flowing of localized shear bands in soft bulk metallic glasses. Acta Mater. 58, 904–909 (2010).

    Article  ADS  Google Scholar 

  208. Amann, C. P. et al. Overshoots in stress–strain curves: colloid experiments and schematic mode coupling theory. J. Rheol. 57, 149–175 (2013).

    Article  ADS  Google Scholar 

  209. Lauridsen, J., Twardos, M. & Dennin, M. Shear-induced stress relaxation in a two-dimensional wet foam. Phys. Rev. Lett. 89, 098303 (2002).

    Article  ADS  Google Scholar 

  210. Oxford Advanced Learner's Dictionary 10th edn (Oxford Univ. Press, 2020).

Download references

Acknowledgements

The authors thank all members and affiliates of the Simons collaboration, and the whole community, for discussions. This work was supported by a grant from the Simons Foundation (#454933 L.B., #454935 G.B., #454947 L.M., #454955 F.Z.).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the writing of all sections.

Corresponding author

Correspondence to Ludovic Berthier.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Ezequiel Ferrero and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berthier, L., Biroli, G., Manning, L. et al. Yielding and plasticity in amorphous solids. Nat Rev Phys 7, 313–330 (2025). https://doi.org/10.1038/s42254-025-00833-5

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s42254-025-00833-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing