Abstract
Disordered media include metallic glasses, colloidal suspensions, granular matter and biological tissues, among others. Their physics offers difficult challenges because it often occurs far from equilibrium, in materials that lack symmetries and that evolve through complex energy landscapes. We review theoretical efforts from recent years to provide microscopic insights into the mechanical properties of amorphous media using approaches from statistical mechanics as unifying frameworks. Our focus is on how amorphous solids become unstable and yield under applied deformations. We cover both the initial regime, corresponding to small deformations of the solid, and the transition between elastic response and plastic flow when the solid yields. We discuss the specific features arising for systems evolving near a jamming transition and extend our discussion to recent studies of the rheology of dense biological and active materials. We emphasize the importance of a unified approach to studying the response to deformation and the yielding instability of a broad range of disordered media.
Key points
-
The mechanical response of amorphous solids under deformation exhibits universal features across a range of materials from glasses to biological tissues.
-
Yielding behaviour strongly depends on the preparation history and stability of the amorphous solid, influencing whether the material fails in a ductile or brittle manner.
-
Plasticity involves intermittent avalanches whose statistics reflect underlying criticality and are sensitive to the density and nature of localized defects.
-
A critical point separates brittle and ductile yielding regimes, analogous to a spinodal transition in the presence of quenched disorder, revealing deep connections with non-equilibrium phase transitions.
-
The understanding of yielding has been extended to active and biological matter, where topological interactions and internal activity may lead to novel rheological behaviours.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout







Similar content being viewed by others
References
Rodney, D., Tanguy, A. & Vandembroucq, D. Modeling the mechanics of amorphous solids at different length scale and time scale. Model. Simul. Mat. Sci. Eng. 19, 083001 (2011).
Berthier, L. & Biroli, G. Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 83, 587 (2011).
Bonn, D., Denn, M. M., Berthier, L., Divoux, T. & Manneville, S. Yield stress materials in soft condensed matter. Rev. Mod. Phys. 89, 035005 (2017).
Nicolas, A., Ferrero, E. E., Martens, K. & Barrat, J.-L. Deformation and flow of amorphous solids: insights from elastoplastic models. Rev. Mod. Phys. 90, 045006 (2018).
Keim, N. C., Paulsen, J. D., Zeravcic, Z., Sastry, S. & Nagel, S. R. Memory formation in matter. Rev. Mod. Phys. 91, 035002 (2019).
Ediger, M. D., Angell, C. A. & Nagel, S. R. Supercooled liquids and glasses. J. Phys. Chem. 100, 13200–13212 (1996).
Hunter, G. L. & Weeks, E. R. The physics of the colloidal glass transition. Rep. Prog. Phys. 75, 066501 (2012).
Jaeger, H. M., Nagel, S. R. & Behringer, R. P. Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 1259–1273 (1996).
Marchetti, M. C. et al. Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143 (2013).
Mongera, A. et al. A fluid-to-solid jamming transition underlies vertebrate body axis elongation. Nature 561, 401–405 (2018).
Prakash, V. N., Bull, M. S. & Prakash, M. Motility-induced fracture reveals a ductile-to-brittle crossover in a simple animal's epithelia. Nat. Phys. 17, 504–511 (2021).
Petridou, N. I., Corominas-Murtra, B., Heisenberg, C.-P. & Hannezo, E. Rigidity percolation uncovers a structural basis for embryonic tissue phase transitions. Cell 184, 1914–1928 (2021).
Grosser, S. et al. Cell and nucleus shape as an indicator of tissue fluidity in carcinoma. Phys. Rev. X 11, 011033 (2021).
Ilina, O. et al. Cell–cell adhesion and 3D matrix confinement determine jamming transitions in breast cancer invasion. Nat. Cell Biol. 22, 1103–1115 (2020).
Schuh, C. A., Hufnagel, T. C. & Ramamurty, U. Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067–4109 (2007).
Voigtmann, T. Nonlinear glassy rheology. Curr. Opin. Colloid Interface Sci. 19, 549–560 (2014).
Divoux, T., Fardin, M. A., Manneville, S. & Lerouge, S. Shear banding of complex fluids. Annu. Rev. Fluid Mech. 48, 81–103 (2016).
Liu, A. J. & Nagel, S. R. The jamming transition and the marginally jammed solid. Annu. Rev. Condens. Matter Phys. 1, 347–369 (2010).
Mari, R., Krzakala, F. & Kurchan, J. Jamming versus glass transitions. Phys. Rev. Lett. 103, 025701 (2009).
Ikeda, A., Berthier, L. & Sollich, P. Unified study of glass and jamming rheology in soft particle systems. Phys. Rev. Lett. 109, 018301 (2012).
Berthier, L., Flenner, E. & Szamel, G. Glassy dynamics in dense systems of active particles. J. Chem. Phys. 150, 200901 (2019).
Bi, D., Yang, X., Marchetti, M. C. & Manning, M. L. Motility-driven glass and jamming transitions in biological tissues. Phys. Rev. X 6, 021011 (2016).
Ediger, M. D. Perspective: Highly stable vapor-deposited glasses. J. Chem. Phys. 147, 210901 (2017).
Nishikawa, Y., Ozawa, M., Ikeda, A., Chaudhuri, P. & Berthier, L. Relaxation dynamics in the energy landscape of glass-forming liquids. Phys. Rev. X 12, 021001 (2022).
Berthier, L. & Reichman, D. R. Modern computational studies of the glass transition. Nat. Rev. Phys. 5, 102–116 (2023).
Grigera, T. S. & Parisi, G. Fast Monte Carlo algorithm for supercooled soft spheres. Phys. Rev. E 63, 045102 (2001).
Ninarello, A., Berthier, L. & Coslovich, D. Models and algorithms for the next generation of glass transition studies. Phys. Rev. X 7, 021039 (2017).
Ozawa, M., Berthier, L., Biroli, G., Rosso, A. & Tarjus, G. Random critical point separates brittle and ductile yielding transitions in amorphous materials. Proc. Natl Acad. Sci. USA 115, 6656–6661 (2018).
Jin, Y., Urbani, P., Zamponi, F. & Yoshino, H. A stability-reversibility map unifies elasticity, plasticity, yielding, and jamming in hard sphere glasses. Sci. Adv. 4, eaat6387 (2018).
Pine, D. J., Gollub, J. P., Brady, J. F. & Leshansky, A. M. Chaos and threshold for irreversibility in sheared suspensions. Nature 438, 997–1000 (2005).
Corte, L., Chaikin, P. M., Gollub, J. P. & Pine, D. J. Random organization in periodically driven systems. Nat. Phys. 4, 420–424 (2008).
Fiocco, D., Foffi, G. & Sastry, S. Oscillatory athermal quasistatic deformation of a model glass. Phys. Rev. E 88, 020301 (2013).
Regev, I., Lookman, T. & Reichhardt, C. Onset of irreversibility and chaos in amorphous solids under periodic shear. Phys. Rev. E 88, 062401 (2013).
Regev, I., Weber, J., Reichhardt, C., Dahmen, K. A. & Lookman, T. Reversibility and criticality in amorphous solids. Nat. Commun. 6, 1–8 (2015).
Kawasaki, T. & Berthier, L. Macroscopic yielding in jammed solids is accompanied by a nonequilibrium first-order transition in particle trajectories. Phys. Rev. E 94, 022615 (2016).
Bhaumik, H., Foffi, G. & Sastry, S. The role of annealing in determining the yielding behavior of glasses under cyclic shear deformation. Proc. Natl Acad. Sci. USA 118, e2100227118 (2021).
Yeh, W.-T., Ozawa, M., Miyazaki, K., Kawasaki, T. & Berthier, L. Glass stability changes the nature of yielding under oscillatory shear. Phys. Rev. Lett. 124, 225502 (2020).
Hentschel, H., Karmakar, S., Lerner, E. & Procaccia, I. Do athermal amorphous solids exist? Phys. Rev. E 83, 061101 (2011).
Lerner, E., Procaccia, I., Rainone, C. & Singh, M. Protocol dependence of plasticity in ultrastable amorphous solids. Phys. Rev. E 98, 063001 (2018).
Maloney, C. & Lemaitre, A. Subextensive scaling in the athermal, quasistatic limit of amorphous matter in plastic shear flow. Phys. Rev. Lett. 93, 016001 (2004).
Karmakar, S., Lerner, E. & Procaccia, I. Statistical physics of the yielding transition in amorphous solids. Phys. Rev. E 82, 055103 (2010).
Talamali, M., Petäjä, V., Vandembroucq, D. & Roux, S. Avalanches, precursors, and finite-size fluctuations in a mesoscopic model of amorphous plasticity. Phys. Rev. E 84, 016115 (2011).
Budrikis, Z. & Zapperi, S. Avalanche localization and crossover scaling in amorphous plasticity. Phys. Rev. E 88, 062403 (2013).
Antonaglia, J. et al. Bulk metallic glasses deform via slip avalanches. Phys. Rev. Lett. 112, 155501 (2014).
Lin, J., Lerner, E., Rosso, A. & Wyart, M. Scaling description of the yielding transition in soft amorphous solids at zero temperature. Proc. Natl Acad. Sci USA 111, 14382–14387 (2014).
Lin, J., Saade, A., Lerner, E., Rosso, A. & Wyart, M. On the density of shear transformations in amorphous solids. Europhys. Lett. 105, 26003 (2014).
Sandfeld, S., Budrikis, Z., Zapperi, S. & Castellanos, D. F. Avalanches, loading and finite size effects in 2D amorphous plasticity: results from a finite element model. J. Stat. Mech. Theory Exp. 2015, P02011 (2015).
Biroli, G. & Urbani, P. Breakdown of elasticity in amorphous solids. Nat. Phys. 12, 1130–1133 (2016).
Franz, S. & Spigler, S. Mean-field avalanches in jammed spheres. Phys. Rev. E 95, 022139 (2017).
Budrikis, Z., Castellanos, D. F., Sandfeld, S., Zaiser, M. & Zapperi, S. Universal features of amorphous plasticity. Nat. Commun. 8, 15928 (2017).
Lagogianni, A. E., Liu, C., Martens, K. & Samwer, K. Plastic avalanches in the so-called elastic regime of metallic glasses. Eur. Phys. J. B 91, 1–5 (2018).
Ruscher, C. & Rottler, J. Residual stress distributions in amorphous solids from atomistic simulations. Soft Matter 16, 8940–8949 (2020).
Shang, B., Guan, P. & Barrat, J.-L. Elastic avalanches reveal marginal behavior in amorphous solids. Proc. Natl Acad. Sci. USA 117, 86–92 (2020).
Franz, S., Sclocchi, A. & Urbani, P. Surfing on minima of isostatic landscapes: avalanches and unjamming transition. J. Stat. Mech. Theory Exp. 2021, 023208 (2021).
Ferrero, E. E. & Jagla, E. A. Criticality in elastoplastic models of amorphous solids with stress-dependent yielding rates. Soft Matter 15, 9041–9055 (2019).
Oyama, N., Mizuno, H. & Ikeda, A. Unified view of avalanche criticality in sheared glasses. Phys. Rev. E 104, 015002 (2021).
Tyukodi, B., Vandembroucq, D. & Maloney, C. E. Avalanches, thresholds, and diffusion in mesoscale amorphous plasticity. Phys. Rev. E 100, 043003 (2019).
Ferrero, E. E. & Jagla, E. A. Properties of the density of shear transformations in driven amorphous solids. J. Phys. Condens. Matter 33, 124001 (2021).
Hentschel, H., Jaiswal, P. K., Procaccia, I. & Sastry, S. Stochastic approach to plasticity and yield in amorphous solids. Phys. Rev. E 92, 062302 (2015).
Lin, J. & Wyart, M. Mean-field description of plastic flow in amorphous solids. Phys. Rev. X 6, 011005 (2016).
Wang, L. et al. Low-frequency vibrational modes of stable glasses. Nat. Commun. 10, 26 (2019).
Rainone, C., Bouchbinder, E. & Lerner, E. Pinching a glass reveals key properties of its soft spots. Proc. Natl Acad. Sci. USA 117, 5228–5234 (2020).
Le Doussal, P., Müller, M. & Wiese, K. J. Equilibrium avalanches in spin glasses. Phys. Rev. B 85, 214402 (2012).
Müller, M. & Wyart, M. Marginal stability in structural, spin, and electron glasses. Annu. Rev. Condens. Matter Phys. 6, 177–200 (2015).
Parisi, G., Urbani, P. & Zamponi, F. Theory of Simple Glasses: Exact Solutions in Infinite Dimensions (Cambridge Univ. Press, 2020).
Jagla, E. A. Avalanche-size distributions in mean-field plastic yielding models. Phys. Rev. E 92, 042135 (2015).
Kühn, R. & Horstmann, U. Random matrix approach to glassy physics: low temperatures and beyond. Phys. Rev. Lett. 78, 4067–4070 (1997).
Das, P., Hentschel, H. G. E., Lerner, E. & Procaccia, I. Robustness of density of low-frequency states in amorphous solids. Phys. Rev. B 102, 014202 (2020).
Rainone, C., Urbani, P., Zamponi, F., Lerner, E. & Bouchbinder, E. Mean-field model of interacting quasilocalized excitations in glasses. SciPost Phys. Core 4, 008 (2021).
Folena, G. & Urbani, P. Marginal stability of soft anharmonic mean field spin glasses. J. Stat. Mech. Theory Exp. 2022, 053301 (2022).
Keim, N. C. & Nagel, S. R. Generic transient memory formation in disordered systems with noise. Phys. Rev. Lett. 107, 010603 (2011).
Keim, N. C., Paulsen, J. D. & Nagel, S. R. Multiple transient memories in sheared suspensions: robustness, structure, and routes to plasticity. Phys. Rev. E 88, 032306 (2013).
Paulsen, J. D., Keim, N. C. & Nagel, S. R. Multiple transient memories in experiments on sheared non-Brownian suspensions. Phys. Rev. Lett. 113, 068301 (2014).
Fiocco, D., Foffi, G. & Sastry, S. Encoding of memory in sheared amorphous solids. Phys. Rev. Lett. 112, 025702 (2014).
Fiocco, D., Foffi, G. & Sastry, S. Memory effects in schematic models of glasses subjected to oscillatory deformation. J. Phys. Condens. Matter 27, 194130 (2015).
Mungan, M., Sastry, S., Dahmen, K. & Regev, I. Networks and hierarchies: how amorphous materials learn to remember. Phys. Rev. Lett. 123, 178002 (2019).
Pashine, N., Hexner, D., Liu, A. J. & Nagel, S. R. Directed aging, memory, and nature’s greed. Sci. Adv. 5, eaax4215 (2019).
Hexner, D., Pashine, N., Liu, A. J. & Nagel, S. R. Effect of directed aging on nonlinear elasticity and memory formation in a material. Phys. Rev. Res. 2, 043231 (2020).
Lindeman, C. W. & Nagel, S. R. Multiple memory formation in glassy landscapes. Sci. Adv. 7, eabg7133 (2021).
Lindeman, C. W., Hagh, V. F., Ip, C. I. & Nagel, S. R. Competition between energy and dynamics in memory formation. Phys. Rev. Lett. 130, 197201 (2023).
Sastry, S. Models for the yielding behavior of amorphous solids. Phys. Rev. Lett. 126, 255501 (2021).
Parley, J. T., Sastry, S. & Sollich, P. Mean-field theory of yielding under oscillatory shear. Phys. Rev. Lett. 128, 198001 (2022).
Popović, M., de Geus, T. W. & Wyart, M. Elastoplastic description of sudden failure in athermal amorphous materials during quasistatic loading. Phys. Rev. E 98, 040901 (2018).
Barlow, H. J., Cochran, J. O. & Fielding, S. M. Ductile and brittle yielding in thermal and athermal amorphous materials. Phys. Rev. Lett. 125, 168003 (2020).
Pollard, J. & Fielding, S. M. Yielding, shear banding, and brittle failure of amorphous materials. Phys. Rev. Res. 4, 043037 (2022).
Rossi, S., Biroli, G., Ozawa, M., Tarjus, G. & Zamponi, F. Finite-disorder critical point in the yielding transition of elastoplastic models. Phys. Rev. Lett. 129, 228002 (2022).
Ozawa, M., Berthier, L., Biroli, G. & Tarjus, G. Role of fluctuations in the yielding transition of two-dimensional glasses. Phys. Rev. Res. 2, 023203 (2020).
Richard, D., Lerner, E. & Bouchbinder, E. Brittle-to-ductile transitions in glasses: roles of soft defects and loading geometry. MRS Bull. 46, 902–914 (2021).
Wisitsorasak, A. & Wolynes, P. G. On the strength of glasses. Proc. Natl Acad. Sci. USA 109, 16068–16072 (2012).
Rainone, C., Urbani, P., Yoshino, H. & Zamponi, F. Following the evolution of hard sphere glasses in infinite dimensions under external perturbations: compression and shear strain. Phys. Rev. Lett. 114, 015701 (2015).
Parisi, G., Procaccia, I., Rainone, C. & Singh, M. Shear bands as manifestation of a criticality in yielding amorphous solids. Proc. Natl Acad. Sci. USA 114, 5577–5582 (2017).
Urbani, P. & Zamponi, F. Shear yielding and shear jamming of dense hard sphere glasses. Phys. Rev. Lett. 118, 038001 (2017).
Biroli, G. & Urbani, P. Liu–Nagel phase diagrams in infinite dimension. SciPost Phys. 4, 020 (2018).
Franz, S., Parisi, G., Ricci-Tersenghi, F. & Rizzo, T. Field theory of fluctuations in glasses. Eur. Phys. J. E 34, 1–17 (2011).
Nattermann, T. in Spin Glasses and Random Fields 277–298 (World Scientific, 1998).
Nandi, S. K., Biroli, G. & Tarjus, G. Spinodals with disorder: from avalanches in random magnets to glassy dynamics. Phys. Rev. Lett. 116, 145701 (2016).
Perković, O., Dahmen, K. & Sethna, J. P. Avalanches, Barkhausen noise, and plain old criticality. Phys. Rev. Lett. 75, 4528 (1995).
Rossi, S., Biroli, G., Ozawa, M. & Tarjus, G. Far-from-equilibrium criticality in the random-field Ising model with Eshelby interactions. Phys. Rev. B 108, L220202 (2023).
Richard, D., Rainone, C. & Lerner, E. Finite-size study of the athermal quasistatic yielding transition in structural glasses. J. Chem. Phys. 155, 056101 (2021).
Baret, J.-C., Vandembroucq, D. & Roux, S. Extremal model for amorphous media plasticity. Phys. Rev. Lett. 89, 195506 (2002).
Ozawa, M., Berthier, L., Biroli, G. & Tarjus, G. Rare events and disorder control the brittle yielding of well-annealed amorphous solids. Phys. Rev. Res. 4, 023227 (2022).
Parley, J. T. & Sollich, P. Ductile and brittle yielding of athermal amorphous solids: a mean-field paradigm beyond the random-field Ising model. Phys. Rev. E 110, 045002 (2024).
Rossi, S. & Tarjus, G. Emergence of a random field at the yielding transition of a mean-field elasto-plastic model. J. Stat. Mech. Theory Exp. 2022, 093301 (2022).
Divoux, T., Tamarii, D., Barentin, C. & Manneville, S. Transient shear banding in a simple yield stress fluid. Phys. Rev. Lett. 104, 208301 (2010).
Liu, C., Ferrero, E. E., Puosi, F., Barrat, J.-L. & Martens, K. Driving rate dependence of avalanche statistics and shapes at the yielding transition. Phys. Rev. Lett. 116, 065501 (2016).
Singh, M., Ozawa, M. & Berthier, L. Brittle yielding of amorphous solids at finite shear rates. Phys. Rev. Mater. 4, 025603 (2020).
Clemmer, J. T., Salerno, K. M. & Robbins, M. O. Criticality in sheared, disordered solids. I. Rate effects in stress and diffusion. Phys. Rev. E 103, 042605 (2021).
Bouttes, D. & Vandembroucq, D. Creep of amorphous materials: a mesoscopic model. AIP Conf. Proc. 1518, 481–486 (2013).
Ferrero, E. E., Martens, K. & Barrat, J.-L. Relaxation in yield stress systems through elastically interacting activated events. Phys. Rev. Lett. 113, 248301 (2014).
Ferrero, E. E., Kolton, A. B. & Jagla, E. A. Yielding of amorphous solids at finite temperatures. Phys. Rev. Mater. 5, 115602 (2021).
Popović, M., de Geus, T. W. J., Ji, W. & Wyart, M. Thermally activated flow in models of amorphous solids. Phys. Rev. E 104, 025010 (2021).
Popović, M., de Geus, T. W. J., Ji, W., Rosso, A. & Wyart, M. Scaling description of creep flow in amorphous solids. Phys. Rev. Lett. 129, 208001 (2022).
Sollich, P., Olivier, J. & Bresch, D. Aging and linear response in the Hébraud–Lequeux model for amorphous rheology. J. Phys. A 50, 165002 (2017).
Parley, J. T., Fielding, S. M. & Sollich, P. Aging in a mean field elastoplastic model of amorphous solids. Phys. Fluids 32, 127104 (2020).
Ozawa, M., Kuroiwa, T., Ikeda, A. & Miyazaki, K. Jamming transition and inherent structures of hard spheres and disks. Phys. Rev. Lett. 109, 205701 (2012).
Ozawa, M., Berthier, L. & Coslovich, D. Exploring the jamming transition over a wide range of critical densities. SciPost Phys. 3, 027 (2017).
Charbonneau, P. & Morse, P. K. Memory formation in jammed hard spheres. Phys. Rev. Lett. 126, 088001 (2021).
Peyneau, P.-E. & Roux, J.-N. Frictionless bead packs have macroscopic friction, but no dilatancy. Phys. Rev. E 78, 011307 (2008).
Bi, D., Zhang, J., Chakraborty, B. & Behringer, R. P. Jamming by shear. Nature 480, 355–358 (2011).
Seto, R., Singh, A., Chakraborty, B., Denn, M. M. & Morris, J. F. Shear jamming and fragility in dense suspensions. Granul. Matter 21, 82 (2019).
Vinutha, H. & Sastry, S. Disentangling the role of structure and friction in shear jamming. Nat. Phys. 12, 578–583 (2016).
Rainone, C. & Urbani, P. Following the evolution of glassy states under external perturbations: the full replica symmetry breaking solution. J. Stat. Mech. Theory Exp. 2016, 053302 (2016).
Altieri, A. & Zamponi, F. Mean-field stability map of hard-sphere glasses. Phys. Rev. E 100, 032140 (2019).
Jin, Y. & Yoshino, H. A jamming plane of sphere packings. Proc. Natl Acad. Sci. USA 118, e2021794118 (2021).
Babu, V., Pan, D., Jin, Y., Chakraborty, B. & Sastry, S. Dilatancy, shear jamming, and a generalized jamming phase diagram of frictionless sphere packings. Soft Matter 17, 3121–3127 (2021).
Pan, D., Wang, Y., Yoshino, H., Zhang, J. & Jin, Y. A review on shear jamming. Phys. Rep. 1038, 1–18 (2023).
Wiese, R., Kroy, K. & Levis, D. Fluid-glass-jamming rheology of soft active Brownian particles. Phys. Rev. Lett. 131, 178302 (2023).
Sastry, S., Truskett, T. M., Debenedetti, P. G., Torquato, S. & Stillinger, F. H. Free in the hard sphere liquid. Mol. Phys. 95, 289–297 (1998).
Schober, H. & Oligschleger, C. Low-frequency vibrations in a model glass. Phys. Rev. B 53, 11469 (1996).
Widmer-Cooper, A. & Harrowell, P. Predicting the long-time dynamic heterogeneity in a supercooled liquid on the basis of short-time heterogeneities. Phys. Rev. Lett. 96, 185701 (2006).
Tanguy, A., Mantisi, B. & Tsamados, M. Vibrational modes as a predictor for plasticity in a model glass. Europhys. Lett. 90, 16004 (2010).
Manning, M. L. & Liu, A. J. Vibrational modes identify soft spots in a sheared disordered packing. Phys. Rev. Lett. 107, 108302 (2011).
Lerner, E., Düring, G. & Bouchbinder, E. Statistics and properties of low-frequency vibrational modes in structural glasses. Phys. Rev. Lett. 117, 035501 (2016).
Richard, D. et al. Universality of the nonphononic vibrational spectrum across different classes of computer glasses. Phys. Rev. Lett. 125, 085502 (2020).
Wang, L., Szamel, G. & Flenner, E. Scaling of the non-phononic spectrum of two-dimensional glasses. J. Chem. Phys. 158, 126101 (2023).
Lerner, E. & Bouchbinder, E. Low-energy quasilocalized excitations in structural glasses. J. Chem. Phys. 155, 200901 (2021).
Schirmacher, W. et al. The nature of non-phononic excitations in disordered systems. Nat. Commun. 15, 3107 (2024).
Eshelby, J. D. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A 241, 376–396 (1957).
Kapteijns, G., Bouchbinder, E. & Lerner, E. Universal nonphononic density of states in 2D, 3D, and 4D glasses. Phys. Rev. Lett. 121, 055501 (2018).
DeGiuli, E., Laversanne-Finot, A., Düring, G., Lerner, E. & Wyart, M. Effects of coordination and pressure on sound attenuation, boson peak and elasticity in amorphous solids. Soft Matter 10, 5628–5644 (2014).
Manning, M. L. & Liu, A. J. A random matrix definition of the boson peak. Europhys. Lett. 109, 36002 (2015).
Benetti, F. P., Parisi, G., Pietracaprina, F. & Sicuro, G. Mean-field model for the density of states of jammed soft spheres. Phys. Rev. E 97, 062157 (2018).
Anderson, P. W., Halperin, B. I. & Varma, C. M. Anomalous low-temperature thermal properties of glasses and spin glasses. Philos. Mag. 25, 1–9 (1972).
Phillips, W. A. Two-level states in glasses. Rep. Prog. Phys. 50, 1657 (1987).
Reinisch, J. & Heuer, A. What is moving in silica at 1 K? A computer study of the low-temperature anomalies. Phys. Rev. Lett. 95, 155502 (2005).
Damart, T. & Rodney, D. Atomistic study of two-level systems in amorphous silica. Phys. Rev. B 97, 014201 (2018).
Khomenko, D., Scalliet, C., Berthier, L., Reichman, D. R. & Zamponi, F. Depletion of two-level systems in ultrastable computer-generated glasses. Phys. Rev. Lett. 124, 225901 (2020).
Ji, W., Popović, M., de Geus, T. W., Lerner, E. & Wyart, M. Theory for the density of interacting quasilocalized modes in amorphous solids. Phys. Rev. E 99, 023003 (2019).
Kumar, A., Procaccia, I. & Singh, M. Density of quasi-localized modes in athermal glasses. Europhys. Lett. 135, 66001 (2021).
Barbot, A. et al. Local yield stress statistics in model amorphous solids. Phys. Rev. E 97, 033001 (2018).
Ruan, D., Patinet, S. & Falk, M. L. Predicting plastic events and quantifying the local yield surface in 3D model glasses. J. Mech. Phys. Solids 158, 104671 (2022).
Tong, H. & Tanaka, H. Revealing hidden structural order controlling both fast and slow glassy dynamics in supercooled liquids. Phys. Rev. X 8, 011041 (2018).
Schoenholz, S. S., Cubuk, E. D., Sussman, D. M., Kaxiras, E. & Liu, A. J. A structural approach to relaxation in glassy liquids. Nat. Phys. 12, 469–471 (2016).
Bapst, V. et al. Unveiling the predictive power of static structure in glassy systems. Nat. Phys. 16, 448–454 (2020).
Gartner, L. & Lerner, E. et al. Nonlinear modes disentangle glassy and goldstone modes in structural glasses. SciPost Phys. 1, 016 (2016).
Richard, D., Kapteijns, G., Giannini, J. A., Manning, M. L. & Lerner, E. Simple and broadly applicable definition of shear transformation zones. Phys. Rev. Lett. 126, 015501 (2021).
Baggioli, M., Kriuchevskyi, I., Sirk, T. W. & Zaccone, A. Plasticity in amorphous solids is mediated by topological defects in the displacement field. Phys. Rev. Lett. 127, 015501 (2021).
Wu, Z. W., Chen, Y., Wang, W.-H., Kob, W. & Xu, L. Topology of vibrational modes predicts plastic events in glasses. Nat. Commun. 14, 2955 (2023).
Richard, D. et al. Predicting plasticity in disordered solids from structural indicators. Phys. Rev. Mater. 4, 113609 (2020).
Shimada, M., Mizuno, H., Wyart, M. & Ikeda, A. Spatial structure of quasilocalized vibrations in nearly jammed amorphous solids. Phys. Rev. E 98, 060901 (2018).
Lerner, E., DeGiuli, E., Düring, G. & Wyart, M. Breakdown of continuum elasticity in amorphous solids. Soft Matter 10, 5085–5092 (2014).
Lerner, E. & Bouchbinder, E. Boson-peak vibrational modes in glasses feature hybridized phononic and quasilocalized excitations. J. Chem. Phys. 158, 194503 (2023).
Giannini, J. A., Lerner, E., Zamponi, F. & Manning, M. L. Scaling regimes and fluctuations of observables in computer glasses approaching the unjamming transition. J. Chem. Phys. 160, 034502 (2024).
Honda, H., Tanemura, M. & Nagai, T. A three-dimensional vertex dynamics cell model of space-filling polyhedra simulating cell behavior in a cell aggregate. J. Theor. Biol. 226, 439–453 (2004).
Noll, N., Mani, M., Heemskerk, I., Streichan, S. J. & Shraiman, B. I. Active tension network model suggests an exotic mechanical state realized in epithelial tissues. Nat. Phys. 13, 1221–1226 (2017).
Li, C., Merkel, M. & Sussman, D. M. Connecting anomalous elasticity and sub-Arrhenius structural dynamics in a cell-based model. Phys. Rev. Lett. 134, 048203 (2025).
Basan, M., Prost, J., Joanny, J.-F. & Elgeti, J. Dissipative particle dynamics simulations for biological tissues: rheology and competition. Phys. Biol. 8, 026014 (2011).
Pinheiro, D., Kardos, R., Hannezo, É. & Heisenberg, C.-P. Morphogen gradient orchestrates pattern-preserving tissue morphogenesis via motility-driven unjamming. Nat. Phys. 18, 1482–1493 (2022).
Kim, S., Pochitaloff, M., Stooke-Vaughan, G. A. & Campàs, O. Embryonic tissues as active foams. Nat. Phys. 17, 859–866 (2021).
Boromand, A., Signoriello, A., Ye, F., O'Hern, C. S. & Shattuck, M. D. Jamming of deformable polygons. Phys. Rev. Lett. 121, 248003 (2018).
Sharma, A. et al. Strain-controlled criticality governs the nonlinear mechanics of fibre networks. Nat. Phys. 12, 584–587 (2016).
Bi, D., Lopez, J., Schwarz, J. M. & Manning, M. L. A density-independent rigidity transition in biological tissues. Nat. Phys. 11, 1074–1079 (2015).
Merkel, M., Baumgarten, K., Tighe, B. P. & Manning, M. L. A minimal-length approach unifies rigidity in underconstrained materials. Proc. Natl Acad. Sci. USA 116, 6560–6568 (2019).
Manning, M. L. Rigidity in mechanical biological networks. Curr. Biol. 34, R1024–R1030 (2024).
Damavandi, O. K., Hagh, V. F., Santangelo, C. D. & Manning, M. L. Energetic rigidity. I. A unifying theory of mechanical stability. Phys. Rev. E 105, 025003 (2022).
Hain, T., Santangelo, C. & Manning, M. L. Optimizing properties on the critical rigidity manifold of underconstrained central-force networks. Phys. Rev. E 111, 015418 (2025).
Huang, J., Cochran, J. O., Fielding, S. M., Marchetti, M. C. & Bi, D. Shear-driven solidification and nonlinear elasticity in epithelial tissues. Phys. Rev. Lett. 128, 178001 (2022).
Arzash, S., Shivers, J. L. & MacKintosh, F. C. Shear-induced phase transition and critical exponents in three-dimensional fiber networks. Phys. Rev. E 104, L022402 (2021).
Van Oosten, A. S. et al. Uncoupling shear and uniaxial elastic moduli of semiflexible biopolymer networks: compression-softening and stretch-stiffening. Sci. Rep. 6, 19270 (2016).
Vahabi, M. et al. Elasticity of fibrous networks under uniaxial prestress. Soft Matter 12, 5050–5060 (2016).
Sussman, D. M., Paoluzzi, M., Marchetti, M. C. & Manning, M. L. Anomalous glassy dynamics in simple models of dense biological tissue. Europhys. Lett. 121, 36001 (2018).
Tah, I., Sharp, T. A., Liu, A. J. & Sussman, D. M. Quantifying the link between local structure and cellular rearrangements using information in models of biological tissues. Soft Matter 17, 10242–10253 (2021).
Popović, M., Druelle, V., Dye, N. A., Jülicher, F. & Wyart, M. Inferring the flow properties of epithelial tissues from their geometry. New J. Phys. 23, 033004 (2021).
Duclut, C., Paijmans, J., Inamdar, M. M., Modes, C. D. & Jülicher, F. Nonlinear rheology of cellular networks. Cells Dev. 168, 203746 (2021).
Sanematsu, P. C. et al. 3D viscoelastic drag forces contribute to cell shape changes during organogenesis in the zebrafish embryo. Cells Dev. 168, 203718 (2021).
Tong, S., Singh, N. K., Sknepnek, R. & Košmrlj, A. Linear viscoelastic properties of the vertex model for epithelial tissues. PLoS Comput. Biol. 18, e1010135 (2022).
Fielding, S. M., Cochran, J. O., Huang, J., Bi, D. & Marchetti, M. C. Constitutive model for the rheology of biological tissue. Phys. Rev. E 108, L042602 (2023).
Cates, M. E. & Tailleur, J. Motility-induced phase separation. Annu. Rev. Condens. Matter Phys. 6, 219–244 (2015).
Lama, H., Yamamoto, M. J., Furuta, Y., Shimaya, T. & Takeuchi, K. A. Emergence of bacterial glass. PNAS Nexus 3, pgae238 (2024).
Henkes, S., Fily, Y. & Marchetti, M. C. Active jamming: self-propelled soft particles at high density. Phys. Rev. E 84, 040301 (2011).
Berthier, L. Nonequilibrium glassy dynamics of self-propelled hard disks. Phys. Rev. Lett. 112, 220602 (2014).
Nandi, S. K. et al. A random first-order transition theory for an active glass. Proc. Natl Acad. Sci. USA 115, 7688–7693 (2018).
Matoz-Fernandez, D. A., Agoritsas, E., Barrat, J.-L., Bertin, E. & Martens, K. Nonlinear rheology in a model biological tissue. Phys. Rev. Lett. 118, 158105 (2017).
Reichhardt, C. & Reichhardt, C. O. Active microrheology in active matter systems: mobility, intermittency, and avalanches. Phys. Rev. E 91, 032313 (2015).
Mandal, R. & Sollich, P. Shear-induced orientational ordering in an active glass former. Proc. Natl Acad. Sci. USA 118, e2101964118 (2021).
Briand, G., Schindler, M. & Dauchot, O. Spontaneously flowing crystal of self-propelled particles. Phys. Rev. Lett. 120, 208001 (2018).
Liao, Q. & Xu, N. Criticality of the zero-temperature jamming transition probed by self-propelled particles. Soft Matter 14, 853–860 (2018).
Olsson, P. & Teitel, S. Critical scaling of shear viscosity at the jamming transition. Phys. Rev. Lett. 99, 178001 (2007).
Mandal, R., Bhuyan, P. J., Chaudhuri, P., Dasgupta, C. & Rao, M. Extreme active matter at high densities. Nat. Commun. 11, 2581 (2020).
Villarroel, C. & Düring, G. Critical yielding rheology: from externally deformed glasses to active systems. Soft Matter 17, 9944–9949 (2021).
Morse, P. K. et al. A direct link between active matter and sheared granular systems. Proc. Natl Acad. Sci. USA 118, e2019909118 (2021).
Agoritsas, E., Maimbourg, T. & Zamponi, F. Out-of-equilibrium dynamical equations of infinite-dimensional particle systems I. The isotropic case. J. Phys. A 52, 144002 (2019).
Agoritsas, E. Mean-field dynamics of infinite-dimensional particle systems: global shear versus random local forcing. J. Stat. Mech. Theory Exp. 2021, 033501 (2021).
Keta, Y.-E., Mandal, R., Sollich, P., Jack, R. L. & Berthier, L. Intermittent relaxation and avalanches in extremely persistent active matter. Soft Matter 19, 3871–3883 (2023).
Villarroel, C. & Düring, G. Avalanche properties at the yielding transition: from externally deformed glasses to active systems. Soft Matter 20, 3520–3528 (2024).
Gu, X. et al. Corrosion of, and cellular responses to Mg–Zn–Ca bulk metallic glasses. Biomaterials 31, 1093–1103 (2010).
Zhang, Q., Zhang, W., Xie, G., Louzguine-Luzgin, D. & Inoue, A. Stable flowing of localized shear bands in soft bulk metallic glasses. Acta Mater. 58, 904–909 (2010).
Amann, C. P. et al. Overshoots in stress–strain curves: colloid experiments and schematic mode coupling theory. J. Rheol. 57, 149–175 (2013).
Lauridsen, J., Twardos, M. & Dennin, M. Shear-induced stress relaxation in a two-dimensional wet foam. Phys. Rev. Lett. 89, 098303 (2002).
Oxford Advanced Learner's Dictionary 10th edn (Oxford Univ. Press, 2020).
Acknowledgements
The authors thank all members and affiliates of the Simons collaboration, and the whole community, for discussions. This work was supported by a grant from the Simons Foundation (#454933 L.B., #454935 G.B., #454947 L.M., #454955 F.Z.).
Author information
Authors and Affiliations
Contributions
All authors contributed equally to the writing of all sections.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Physics thanks Ezequiel Ferrero and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Berthier, L., Biroli, G., Manning, L. et al. Yielding and plasticity in amorphous solids. Nat Rev Phys 7, 313–330 (2025). https://doi.org/10.1038/s42254-025-00833-5
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s42254-025-00833-5