Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Accelerating fusion research via supercomputing

Abstract

The pursuit of fusion energy is gaining momentum, driven by factors including advances in high-performance computing. As the need for sustainable energy solutions grows ever more urgent, supercomputing emerges as a key enabler, accelerating fusion power toward practical realization. Supercomputers empower researchers to simulate complex plasma dynamics with remarkable precision, aiding in the prediction and optimization of plasma confinement and stability — both essential for sustaining burning plasmas. They also have a critical role in assessing the resilience of materials exposed to the extreme conditions of future fusion power plants. As the fusion community transitions from laboratory experiments to pilot plants, supercomputing bridges the gap between scientific discovery and engineering implementation, and it promises to reduce costs and shorten development timelines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A leading approach for achieving controlled fusion is magnetic confinement in toroidal configurations.
Fig. 2: Nonlinear magnetohydrodynamics simulation of a type-I edge localized mode (ELM) in the ASDEX Upgrade tokamak, using the JOREK code.
Fig. 3: Nonlinear gyrokinetic simulation of plasma turbulence in the W7-X stellarator, conducted with the GENE-3D code.
Fig. 4: Towards digital twins of fusion systems.

Similar content being viewed by others

References

  1. Sadik-Zada, E. R., Gatto, A. & Weissnicht, Y. Back to the future: revisiting the perspectives on nuclear fusion and juxtaposition to existing energy sources. Energy 290, 129150 (2024).

    Article  Google Scholar 

  2. Wurzel, S. E. & Hsu, S. C. Progress toward fusion energy breakeven and gain as measured against the Lawson criterion. Phys. Plasmas 29, 062103 (2022).

    Article  Google Scholar 

  3. Keilhacker, M., Gibson, A., Gormezano, C. & Rebut, P. H. The scientific success of JET. Nucl. Fusion 41, 1925 (2001).

    Article  Google Scholar 

  4. Maggi, C. F. et al. Overview of T and D-T results in JET with ITER-like wall. Nucl. Fusion 64, 112012 (2024).

    Article  Google Scholar 

  5. Kim, H.-S. et al. Development of high-performance long-pulse discharge in KSTAR. Nucl. Fusion 64, 016033 (2024).

    Article  Google Scholar 

  6. Van Houtte, D. et al. Recent fully non-inductive operation results in Tore Supra with 6 min, 1 GJ plasma discharges. Nucl. Fusion 44, L11–L15 (2004).

    Article  Google Scholar 

  7. Bucalossi, J. et al. Operating a full tungsten actively cooled tokamak: overview of WEST first phase of operation. Nucl. Fusion 62, 042007 (2022).

    Article  Google Scholar 

  8. Song, Y. et al. Realization of thousand-second improved confinement plasma with Super I-mode in tokamak EAST. Sci. Adv. 9, 5273 (2023).

    Article  Google Scholar 

  9. Sunn Pedersen, T. et al. First results from divertor operation in Wendelstein 7-X. Plasma Phys. Control. Fusion 61, 014035 (2019).

    Article  Google Scholar 

  10. Lawson, J. D. Some criteria for a power producing thermonuclear reactor. Proc. Phys. Soc. B 70, 6 (1957).

    Article  Google Scholar 

  11. Grulke, O. et al. Overview of the first Wendelstein 7-X long pulse campaign with fully water-cooled plasma facing components. Nucl. Fusion 64, 112002 (2024).

    Article  Google Scholar 

  12. Greenwald, M. Status of the SPARC physics basis. J. Plasma Phys. 86, 861860501 (2020).

    Article  Google Scholar 

  13. Hender, T. C. et al. Chapter 3: MHD stability, operational limits and disruptions. Nucl. Fusion 47, S128–S202 (2007).

    Article  Google Scholar 

  14. Leonard, A. W. Edge-localized-modes in tokamaks. Phys. Plasmas 21, 090501 (2014).

    Article  Google Scholar 

  15. Loarte, A. et al. Chapter 4: Power and particle control. Nucl. Fusion 47, S203–S263 (2007).

    Article  Google Scholar 

  16. Gilbert, M. R., Dudarev, S. L., Zheng, S., Packer, L. W. & Sublet, J.-C. An integrated model for materials in a fusion power plant: transmutation, gas production, and helium embrittlement under neutron irradiation. Nucl. Fusion 52, 083019 (2012).

    Article  Google Scholar 

  17. Donné, A. J. H. et al. Chapter 7: Diagnostics. Nucl. Fusion 47, S337–S384 (2007).

    Article  Google Scholar 

  18. Gribov, Y. et al. Chapter 8: Plasma operation and control. Nucl. Fusion 47, S385–S403 (2007).

    Article  Google Scholar 

  19. Mukhovatov, V. et al. Chapter 9: ITER contributions for DEMO plasma development. Nucl. Fusion 47, S404–S413 (2007).

    Article  Google Scholar 

  20. Brizard, A. J. & Hahm, T. S. Foundations of nonlinear gyrokinetic theory. Rev. Mod. Phys. 79, 421 (2007).

    Article  MathSciNet  Google Scholar 

  21. Garbet, X., Idomura, Y., Villard, L. & Watanabe, T. H. Gyrokinetic simulations of turbulent transport. Nucl. Fusion 50, 043002 (2010).

    Article  Google Scholar 

  22. Krommes, J. A. The gyrokinetic description of microturbulence in magnetized plasmas. Annu. Rev. Fluid Mech. 44, 175–201 (2012).

    Article  MathSciNet  Google Scholar 

  23. Germaschewski, K. et al. Toward exascale whole-device modeling of fusion devices: porting the GENE gyrokinetic microturbulence code to GPU. Phys. Plasmas 28, 062501 (2021).

    Article  Google Scholar 

  24. Zhang, C., Diamond, G., Smith, C. W. & Shephard, M. S. Development of an unstructured mesh gyrokinetic particle-in-cell code for exascale fusion plasma simulations on GPUs. Comput. Phys. Commun. 291, 108824 (2023).

    Article  Google Scholar 

  25. Doyle, E. J. et al. Chapter 2: Plasma confinement and transport. Nucl. Fusion 47, S18–S127 (2007).

    Article  Google Scholar 

  26. Staebler, G. M. et al. Advances in prediction of tokamak experiments with theory-based models. Nucl. Fusion 62, 042005 (2022).

    Article  Google Scholar 

  27. Jenko, F., Dorland, W., Kotschenreuther, M. & Rogers, B. N. Electron temperature gradient driven turbulence. Phys. Plasmas 7, 1904–1910 (2000).

    Article  Google Scholar 

  28. Dorland, W., Jenko, F., Kotschenreuther, M. & Rogers, B. N. Electron temperature gradient turbulence. Phys. Rev. Lett. 85, 5579 (2000).

    Article  Google Scholar 

  29. Candy, J. & Waltz, R. E. An Eulerian gyrokinetic-Maxwell solver. J. Comput. Phys. 186, 545–581 (2003).

    Article  MathSciNet  Google Scholar 

  30. Watanabe, T.-H. & Sugama, H. Velocity space structures of distribution function in toroidal ion temperature gradient turbulence. Nucl. Fusion 46, 24–32 (2006).

    Article  Google Scholar 

  31. Candy, J., Holland, C., Waltz, R. E., Fahey, M. R. & Belli, E. Tokamak profile prediction using direct gyrokinetic and neoclassical simulation. Phys. Plasmas 16, 060704 (2009).

    Article  Google Scholar 

  32. Barnes, M. et al. Direct multiscale coupling of a transport code to gyrokinetic turbulence codes. Phys. Plasmas 17, 056109 (2010).

    Article  Google Scholar 

  33. Jenko, F. et al. Global and local gyrokinetic simulations of high-performance discharges in view of ITER. Nucl. Fusion 53, 073003 (2013).

    Article  Google Scholar 

  34. Garcia, J. et al. First principles and integrated modelling achievements towards trustful fusion power predictions for JET and ITER. Nucl. Fusion 59, 086047 (2019).

    Article  Google Scholar 

  35. Rodriguez-Fernandez, P. et al. Overview of the SPARC physics basis towards the exploration of burning-plasma regimes in high-field, compact tokamaks. Nucl. Fusion 62, 076036 (2022).

    Article  Google Scholar 

  36. Di Siena, A. et al. Global gyrokinetic simulations of ASDEX Upgrade up to the transport timescale with GENE-Tango. Nucl. Fusion 62, 106025 (2022).

    Article  Google Scholar 

  37. Navarro, A. B. et al. First-principles based plasma profile predictions for optimized stellarators. Nucl. Fusion 63, 054003 (2023).

    Article  Google Scholar 

  38. Howard, N. T. et al. Simultaneous reproduction of experimental profiles, fluxes, transport coefficients, and turbulence characteristics via nonlinear gyrokinetic profile predictions in a DIII-D ITER similar shape plasma. Phys. Plasmas 31, 032501 (2024).

    Article  Google Scholar 

  39. Howard, N. T., Rodriguez-Fernandez, R., Holland, C. & Candy, J. Prediction of performance and turbulence in ITER burning plasmas via nonlinear gyrokinetic profile prediction. Nucl. Fusion 65, 016002 (2025).

    Article  Google Scholar 

  40. Abel, I. G. et al. Multiscale gyrokinetics for rotating tokamak plasmas: fluctuations, transport and energy flows. Rep. Prog. Phys. 76, 116201 (2013).

    Article  Google Scholar 

  41. Dannert, T. & Jenko, F. Gyrokinetic simulation of collisionless trapped-electron mode turbulence. Phys. Plasmas 12, 072309 (2005).

    Article  Google Scholar 

  42. Jenko, F., Dannert, T. & Angioni, C. Heat and particle transport in a tokamak: advances in nonlinear gyrokinetics. Plasma Phys. Control. Fusion 47, B195 (2005).

    Article  Google Scholar 

  43. Staebler, G., Kinsey, J. E. & Waltz, R. E. A theory-based transport model with comprehensive physics. Phys. Plasmas 14, 055909 (2007).

    Article  Google Scholar 

  44. Bourdelle, C. et al. A new gyrokinetic quasilinear transport model applied to particle transport in tokamak plasmas. Phys. Plasmas 14, 112501 (2007).

    Article  Google Scholar 

  45. Stephens, C. D. et al. Quasilinear gyrokinetic theory: a derivation of QuaLiKiz. J. Plasma Phys. 87, 905870409 (2021).

    Article  Google Scholar 

  46. Citrin, J. et al. Real-time capable first principle based modelling of tokamak turbulent transport. Nucl. Fusion 55, 092001 (2015).

    Article  Google Scholar 

  47. Meneghini, O. et al. Self-consistent core-pedestal transport simulations with neural network accelerated models. Nucl. Fusion 57, 086034 (2017).

    Article  Google Scholar 

  48. van de Plassche, K. L. et al. Fast modeling of turbulent transport in fusion plasmas using neural networks. Phys. Plasmas 27, 022310 (2020).

    Article  Google Scholar 

  49. Ho, A. et al. Neural network surrogate of QuaLiKiz using JET experimental data to populate training space. Phys. Plasmas 28, 032305 (2021).

    Article  Google Scholar 

  50. Meneghini, O. et al. Neural-network accelerated coupled core-pedestal simulations with self-consistent transport of impurities and compatible with ITER IMAS. Nucl. Fusion 61, 026006 (2021).

    Article  Google Scholar 

  51. Höfler, K. et al. Milestone in predicting core plasma turbulence: successful multi-channel validation of the gyrokinetic code GENE. Nat. Commun. 16, 2558 (2025).

    Article  Google Scholar 

  52. Jenko, F. & Dorland, W. Prediction of significant tokamak turbulence at electron gyroradius scales. Phys. Rev. Lett. 89, 225001 (2002).

    Article  Google Scholar 

  53. Candy, J., Waltz, R. E., Fahey, M. R. & Holland, C. The effect of ion-scale dynamics on electron-temperature-gradient turbulence. Plasma Phys. Control. Fusion 49, 1209–1220 (2007).

    Article  Google Scholar 

  54. Görler, T. & Jenko, F. Scale separation between electron and ion thermal transport. Phys. Rev. Lett. 100, 185002 (2008).

    Article  Google Scholar 

  55. Maeyama, S. et al. Cross-scale interactions between electron and ion scale turbulence in a tokamak plasma. Phys. Rev. Lett. 114, 255002 (2015).

    Article  Google Scholar 

  56. Maeyama, S. et al. Multi-scale turbulence simulation suggesting improvement of electron heated plasma confinement. Nat. Commun. 13, 3166 (2022).

    Article  Google Scholar 

  57. Doerk, H., Jenko, F., Pueschel, M. J. & Hatch, D. R. Gyrokinetic microtearing turbulence. Phys. Rev. Lett. 106, 155003 (2011).

    Article  Google Scholar 

  58. Guttenfelder, W. et al. Electromagnetic transport from microtearing mode turbulence. Phys. Rev. Lett. 106, 155004 (2011).

    Article  Google Scholar 

  59. Hatch, D. R. et al. Microtearing turbulence limiting the JET-ILW pedestal. Nucl. Fusion 56, 104003 (2016).

    Article  Google Scholar 

  60. Maeyama, S. & Watanabe, T. H. Suppression of ion-scale microtearing modes by electron-scale turbulence via cross-scale nonlinear interactions in tokamak plasmas. Phys. Rev. Lett. 119, 195002 (2017).

    Article  Google Scholar 

  61. Pueschel, M. J., Hatch, D. R., Kotschenreuther, M., Ishizawa, A. & Merlo, G. Multi-scale interactions of microtearing turbulence in the tokamak pedestal. Nucl. Fusion 60, 124005 (2020).

    Article  Google Scholar 

  62. Giacomin, M., Dickinson, D., Kennedy, D., Patel, B. & Roach, C. Nonlinear microtearing modes in MAST and their stochastic layer formation. Plasma Phys. Control. Fusion 65, 095019 (2023).

    Article  Google Scholar 

  63. Diamond, P. H., Itoh, S.-I., Itoh, K. & Hahm, T. S. Zonal flows in plasma — a review. Plasma Phys. Control. Fusion 47, R35–R161 (2005).

    Article  Google Scholar 

  64. Fujisawa, A. A review of zonal flow experiments. Nucl. Fusion 49, 013001 (2009).

    Article  Google Scholar 

  65. Wagner, F. et al. Regime of improved confinement and high β in neutral-beam-heated divertor discharges of the ASDEX tokamak. Phys. Rev. Lett. 49, 1408 (1982).

    Article  Google Scholar 

  66. Connor, J. W. & Wilson, H. R. A review of theories of the L-H transition. Plasma Phys. Control. Fusion 42, R1 (2000).

    Article  Google Scholar 

  67. Told, D. et al. Gyrokinetic microinstabilities in ASDEX Upgrade edge plasmas. Phys. Plasmas 15, 102306 (2008).

    Article  Google Scholar 

  68. Jenko, F., Told, D., Xanthopoulos, P., Merz, F. & Horton, L. Gyrokinetic turbulence under near-separatrix or nonaxisymmetric conditions. Phys. Plasmas 16, 055901 (2009).

    Article  Google Scholar 

  69. Hatch, D. R. et al. Gyrokinetic study of ASDEX Upgrade inter-ELM pedestal profile evolution. Nucl. Fusion 55, 063028 (2015).

    Article  Google Scholar 

  70. Chang, C. S. et al. Fast low-to-high confinement mode bifurcation dynamics in a tokamak edge plasma gyrokinetic simulation. Phys. Rev. Lett. 118, 175001 (2017).

    Article  Google Scholar 

  71. Ku, S. et al. A fast low-to-high confinement mode bifurcation dynamics in the boundary-plasma gyrokinetic code XGC1. Phys. Plasmas 25, 056107 (2018).

    Article  Google Scholar 

  72. Kotschenreuther, M. et al. Gyrokinetic analysis and simulation of pedestals to identify the culprits for energy losses using ‘fingerprints’. Nucl. Fusion 59, 096001 (2019).

    Article  Google Scholar 

  73. Belli, E. A., Candy, J. & Sfiligoi, I. Spectral transition of multiscale turbulence in the tokamak pedestal. Plasma Phys. Control. Fusion 65, 024001 (2023).

    Article  Google Scholar 

  74. Braginskii, J. J. Transport Processes in a Plasma (Consultants Bureau, 1965).

  75. Ottaviani, M. An alternative approach to field-aligned coordinates for plasma turbulence simulations. Phys. Lett. A 375, 1677–1685 (2011).

    Article  Google Scholar 

  76. Hariri, F. & Ottaviani, M. A flux-coordinate independent field-aligned approach to plasma turbulence simulations. Comput. Phys. Commun. 184, 2419–2429 (2013).

    Article  MathSciNet  Google Scholar 

  77. Stegmeir, A., Coster, D., Maj, O., Hallatschek, K. & Lackner, K. The field line map approach for simulations of magnetically confined plasmas. Comput. Phys. Commun. 198, 139 (2016).

    Article  MathSciNet  Google Scholar 

  78. Shanahan, B., Dudson, B. & Hill, P. Fluid simulations of plasma filaments in stellarator geometries with BSTING. Plasma Phys. Control. Fusion 61, 025007 (2019).

    Article  Google Scholar 

  79. Michels, D., Stegmeir, A., Ulbl, P., Jarema, D. & Jenko, F. GENE-X: a full-f gyrokinetic turbulence code based on the flux-coordinate independent approach. Comput. Phys. Commun. 264, 107986 (2021).

    Article  MathSciNet  Google Scholar 

  80. Wiesenberger, M. & Held, M. A finite volume flux coordinate independent approach. Comput. Phys. Commun. 291, 108838 (2023).

    Article  Google Scholar 

  81. Frei, B. J., Hoffmann, A. C. D. & Ricci, P. Local gyrokinetic collisional theory of the ion-temperature gradient mode. J. Plasma Phys. 88, 905880304 (2022).

    Article  Google Scholar 

  82. Dudson, B., Umansky, M. V., Xu, X. Q., Snyder, P. B. & Wilson, H. R. BOUT++: a framework for parallel plasma fluid simulations. Comput. Phys. Commun. 180, 1467–1480 (2009).

    Article  Google Scholar 

  83. Wiesenberger, M. et al. Reproducibility, accuracy and performance of the FELTOR code and library on parallel computer architectures. Comput. Phys. Commun. 238, 145–156 (2019).

    Article  Google Scholar 

  84. Giacomin, M. et al. The GBS code for the self-consistent simulation of plasma turbulence and kinetic neutral dynamics in the tokamak boundary. J. Comput. Phys. 463, 111294 (2022).

    Article  MathSciNet  Google Scholar 

  85. Stegmeir, A. et al. Global turbulence simulations of the tokamak edge region with GRILLIX. Phys. Plasmas 26, 052517 (2019).

    Article  Google Scholar 

  86. Bufferand, H. et al. Progress in edge plasma turbulence modelling — hierarchy of models from 2D transport application to 3D fluid simulations in realistic tokamak geometry. Nucl. Fusion 61, 116052 (2021).

    Article  Google Scholar 

  87. Schwander, F., Serre, E., Bufferand, H., Ciraolo, G. & Ghendrih, P. Global fluid simulations of edge plasma turbulence in tokamaks: a review. Comput. Fluids 270, 106141 (2024).

    Article  MathSciNet  Google Scholar 

  88. Oliveira, D. S. et al. Validation of edge turbulence codes against the TCV-X21 diverted L-mode reference case. Nucl. Fusion 62, 096001 (2022).

    Article  Google Scholar 

  89. Li, Z. et al. Numerical modeling of pedestal stability and broadband turbulence of wide-pedestal QH-mode plasmas on DIII-D. Nucl. Fusion 62, 076033 (2022).

    Article  Google Scholar 

  90. Zholobenko, W. et al. Electric field and turbulence in global Braginskii simulations across the ASDEX Upgrade edge and scrape-off layer. Plasma Phys. Control. Fusion 63, 034001 (2021).

    Article  Google Scholar 

  91. Giacomin, M. et al. First-principles density limit scaling in tokamaks based on edge turbulent transport and implications for ITER. Phys. Rev. Lett. 128, 185003 (2022).

    Article  Google Scholar 

  92. Mancini, D., Ricci, P., Vianello, N., Van Parys, G. & Oliveira, D. S. Self-consistent multi-component simulation of plasma turbulence and neutrals in detached conditions. Nucl. Fusion 64, 016012 (2024).

    Article  Google Scholar 

  93. Zholobenko, W. et al. Filamentary transport in global edge-SOL simulations of ASDEX Upgrade. Nucl. Mater. Energy 34, 101351 (2023).

    Article  Google Scholar 

  94. Dorf, M. & Dorr, M. Progress with the 5D full-F continuum gyrokinetic code COGENT. Contrib. Plasma Phys. 60, e201900113 (2020).

    Article  Google Scholar 

  95. Hakim, A. H. et al. Continuum electromagnetic gyrokinetic simulations of turbulence in the tokamak scrape-off layer and laboratory device. Phys. Plasmas 27, 042304 (2020).

    Article  Google Scholar 

  96. Dif-Pradalier, G. et al. Transport barrier onset and edge turbulence shortfall in fusion plasmas. Commun. Phys. 5, 229 (2022).

    Article  Google Scholar 

  97. Chang, C. S. et al. Gyrokinetic projection of the divertor heat-flux width from present tokamaks to ITER. Nucl. Fusion 57, 116023 (2017).

    Article  Google Scholar 

  98. Li, Z. Y., Xu, X.-Q., Li, N.-M., Chan, V. S. & Wang, X. G. Prediction of divertor heat flux width for ITER using BOUT++ transport and turbulence module. Nucl. Fusion 59, 046014 (2019).

    Article  Google Scholar 

  99. Xu, X. Q. et al. Simulations of tokamak boundary plasma turbulence transport in setting the divertor heat flux width. Nucl. Fusion 59, 126039 (2019).

    Article  Google Scholar 

  100. Li, Z. et al. How turbulence spreading improves power handling in quiescent high confinement fusion plasmas. Commun. Phys. 7, 96 (2024).

    Article  Google Scholar 

  101. Ulbl, P. et al. Influence of collisions on the validation of global gyrokinetic simulations in the edge and scrape-off layer of TCV. Phys. Plasmas 30, 052507 (2023).

    Article  Google Scholar 

  102. Huysmans, G. T. A. & Czarny, O. MHD stability in X-point geometry: simulation of ELMs. Nucl. Fusion 47, 659–666 (2007).

    Article  Google Scholar 

  103. Hoelzl, M. et al. The JOREK non-linear extended MHD code and applications to large-scale instabilities and their control in magnetically confined fusion plasmas. Nucl. Fusion 61, 065001 (2021).

    Article  Google Scholar 

  104. Jardin, S. C. A triangular finite element with first-derivative continuity applied to fusion MHD applications. J. Comput. Phys. 200, 133–152 (2004).

    Article  Google Scholar 

  105. Sovinec, C. R. et al. Nonlinear magnetohydrodynamics simulation using high-order finite elements. J. Comput. Phys. 195, 355–386 (2004).

    Article  Google Scholar 

  106. Yu, Q. & Günter, S. Plasma response to externally applied resonant magnetic perturbations. Nucl. Fusion 51, 073030 (2011).

    Article  Google Scholar 

  107. Lütjens, H. & Luciani, J.-F. The XTOR code for nonlinear 3D simulations of MHD instabilities in tokamak plasma. J. Comput. Phys. 227, 6944–6966 (2008).

    Article  MathSciNet  Google Scholar 

  108. Pankin, A. Y. et al. Modelling of ELM dynamics for DIII-D and ITER. Plasma Phys. Control. Fusion 49, S63–S75 (2007).

    Article  Google Scholar 

  109. Xu, X. Q. et al. Nonlinear ELM simulations based on a nonideal peeling-ballooning model using the BOUT++ code. Nucl. Fusion 51, 103040 (2011).

    Article  Google Scholar 

  110. Ebrahimi, F. & Bhattacharjee, A. Plasmoid-mediated reconnection during nonlinear peeling-ballooning edge-localized modes. Nucl. Fusion 63, 126042 (2023).

    Article  Google Scholar 

  111. Pamela, S. J. P. et al. Recent progress in the quantitative validation of JOREK simulations of ELMs in JET. Nucl. Fusion 57, 076006 (2017).

    Article  Google Scholar 

  112. Cathey, A. et al. Non-linear extended MHD simulations of type-I edge localised mode cycles in ASDEX Upgrade and their underlying triggering mechanism. Nucl. Fusion 60, 124007 (2020).

    Article  Google Scholar 

  113. Futatani, S. et al. Transition from no-ELM response to pellet ELM triggering during pedestal build-up — insights from extended MHD simulations. Nucl. Fusion 61, 046043 (2021).

    Article  Google Scholar 

  114. Bécoulet, M. et al. Mechanism of edge localized mode mitigation by resonant magnetic perturbations. Phys. Rev. Lett. 113, 115001 (2014).

    Article  Google Scholar 

  115. Hu, Q. M. et al. The role of edge resonant magnetic perturbations in edge-localized-mode suppression and density pump-out in low-collisionality DIII-D plasmas. Nucl. Fusion 60, 076001 (2020).

    Article  Google Scholar 

  116. Kim, S. K. et al. Transition in particle transport under resonant magnetic perturbations in a tokamak. Nucl. Fusion 63, 106013 (2023).

    Article  Google Scholar 

  117. Liu, F. et al. Nonlinear MHD simulations of quiescent H-mode plasmas in DIII-D. Nucl. Fusion 55, 113002 (2015).

    Article  Google Scholar 

  118. Liu, F. et al. Nonlinear MHD simulations of QH-mode DIII-D plasmas and implications for ITER high Q scenarios. Plasma Phys. Control. Fusion 60, 014039 (2018).

    Article  Google Scholar 

  119. Meier, L. et al. MHD simulations of formation, sustainment and loss of quiescent H-mode in the all-tungsten ASDEX Upgrade. Nucl. Fusion 63, 086026 (2023).

    Article  Google Scholar 

  120. Kruger, S. E., Schnack, D. D. & Sovinec, C. R. Dynamics of the major disruption of a DIII-D plasma. Phys. Plasmas 12, 056113 (2005).

    Article  Google Scholar 

  121. Boozer, A. H. Theory of tokamak disruptions. Phys. Plasmas 19, 058101 (2012).

    Article  Google Scholar 

  122. Artola, F. J. et al. Non-axisymmetric MHD simulations of the current quench phase of ITER mitigated disruptions. Nucl. Fusion 62, 056023 (2022).

    Article  Google Scholar 

  123. Schwarz, N. et al. The mechanism of the global vertical force reduction in disruptions mitigated by massive material injection. Nucl. Fusion 63, 126016 (2023).

    Article  Google Scholar 

  124. Hu, D. et al. Collisional-radiative simulation of impurity assimilation, radiative collapse and MHD dynamics after ITER shattered pellet injection. Nucl. Fusion 63, 066008 (2023).

    Article  Google Scholar 

  125. Paz-Soldan, C. et al. A novel path to runaway electron mitigation via deuterium injection and current-driven MHD instability. Nucl. Fusion 61, 116058 (2021).

    Article  Google Scholar 

  126. Suzuki, Y., Watanabe, K. Y. & Sakakibara, S. Theoretical studies of equilibrium β limit in LHD plasmas. Phys. Plasmas 27, 102502 (2020).

    Article  Google Scholar 

  127. Sato, M. & Todo, Y. Kinetic thermal ion effects on maintaining high-β plasmas above the Mercier criterion in the Large Helical Device. Nucl. Fusion 61, 116012 (2021).

    Article  Google Scholar 

  128. Yu, Q. et al. Numerical modeling of the electron temperature crashes observed in Wendelstein 7-X stellarator experiments. Nucl. Fusion 60, 076024 (2020).

    Article  Google Scholar 

  129. Strumberger, E., Günter, S. & the Wendelstein 7-X Team. Linear, resistive stability studies for Wendelstein 7-X-type equilibria with external current drive. Nucl. Fusion 60, 106013 (2020).

    Article  Google Scholar 

  130. Aleynikova, K. et al. Model for current drive induced crash cycles in W7-X. Nucl. Fusion 61, 126040 (2021).

    Article  Google Scholar 

  131. Zhou, Y., Aleynikova, K. & Ferraro, N. M. Nonlinear magnetohydrodynamic modeling of current-drive-induced sawtooth-like crashes in the W7-X stellarator. Phys. Plasmas 30, 032503 (2023).

    Article  Google Scholar 

  132. Helander, P. et al. Stellarator and tokamak plasmas: a comparison. Plasma Phys. Control. Fusion 54, 124009 (2012).

    Article  Google Scholar 

  133. Gates, D. A. et al. Stellarator research opportunities: a report of the National Stellarator Coordinating Committee. J. Fusion Energy 37, 51–94 (2018).

    Article  Google Scholar 

  134. Hegna, C. C. et al. Improving the stellarator through advances in plasma theory. Nucl. Fusion 62, 042012 (2022).

    Article  Google Scholar 

  135. Velasco, J. L. et al. Piecewise omnigenous stellarators. Phys. Rev. Lett. 133, 185101 (2024).

    Article  Google Scholar 

  136. Landreman, M. & Paul, E. Magnetic fields with precise quasisymmetry for plasma confinement. Phys. Rev. Lett. 128, 035001 (2022).

    Article  Google Scholar 

  137. Goodman, A. G. et al. Constructing precisely quasi-isodynamic magnetic fields. J. Plasma Phys. 89, 905890504 (2023).

    Article  Google Scholar 

  138. Henneberg, S. A. & Plunk, G. G. Compact stellarator-tokamak hybrid. Phys. Rev. Res. 6, L022052 (2024).

    Article  Google Scholar 

  139. Goodman, A. G. et al. Quasi-isodynamic stellarators with low turbulence as fusion reactor candidates. PRX Energy 3, 023010 (2024).

    Article  Google Scholar 

  140. Bindel, D., Landreman, M. & Padidar, M. Understanding trade-offs in stellarator design with multi-objective optimization. J. Plasma Phys. 89, 905890503 (2023).

    Article  Google Scholar 

  141. Klinger, T. et al. Overview of first Wendelstein 7-X high-performance operation. Nucl. Fusion 59, 112004 (2019).

    Article  Google Scholar 

  142. Jenko, F. & Kendl, A. Stellarator turbulence at electron gyroradius scales. New J. Phys. 4, 35 (2002).

    Article  Google Scholar 

  143. Jenko, F. & Kendl, A. Radial and zonal modes in hyperfine-scale stellarator turbulence. Phys. Plasmas 9, 4103–4106 (2002).

    Article  Google Scholar 

  144. Xanthopoulos, P., Merz, F., Görler, T. & Jenko, F. Nonlinear gyrokinetic simulations of ion-temperature-gradient turbulence for the optimized Wendelstein 7-X stellarator. Phys. Rev. Lett. 99, 035002 (2007).

    Article  Google Scholar 

  145. Nunami, M., Watanabe, T.-H. & Sugama, H. Relation among ITG turbulence, zonal flows, and transport in helical plasmas. Plasma Fusion Res. 8, 1203019 (2013).

    Article  Google Scholar 

  146. Xanthopoulos, P. et al. Controlling turbulence in present and future stellarators. Phys. Rev. Lett. 113, 155001 (2014).

    Article  Google Scholar 

  147. Faber, B. J. et al. Gyrokinetic studies of trapped electron mode turbulence in the helically symmetric experiment stellarator. Phys. Plasmas 22, 072305 (2015).

    Article  Google Scholar 

  148. García-Regaña, J. M. et al. Turbulent transport of impurities in 3D devices. Nucl. Fusion 61, 116019 (2021).

    Article  Google Scholar 

  149. García-Regaña, J. M. et al. Turbulent impurity transport simulations in Wendelstein 7-X plasmas. J. Plasma Phys. 87, 855870103 (2021).

    Article  Google Scholar 

  150. Thienpondt, H. et al. Prevention of core particle depletion in stellarators by turbulence. Phys. Rev. Res. 5, L022053 (2023).

    Article  Google Scholar 

  151. Mulholland, P. et al. Enhanced transport at high plasma pressure and subthreshold kinetic ballooning modes in Wendelstein 7-X. Phys. Rev. Lett. 131, 185101 (2023).

    Article  Google Scholar 

  152. Gerard, M. J. et al. On the effect of flux-surface shaping on trapped-electron modes in quasi-helically symmetric stellarators. Phys. Plasmas 31, 052501 (2024).

    Article  Google Scholar 

  153. Kim, P. et al. Optimization of nonlinear turbulence in stellarators. J. Plasma Phys. 90, 905900210 (2024).

    Article  Google Scholar 

  154. Zocco, A., Podavini, L., Wilms, F., Navarro, A. B. & Jenko, F. Electron-temperature-gradient-driven ion-scale turbulence in high-performance scenarios in Wendelstein 7-X. Phys. Rev. Res. 6, 033099 (2024).

    Article  Google Scholar 

  155. Pueschel, M. J. et al. Stellarator turbulence: subdominant eigenmodes and quasilinear modeling. Phys. Rev. Lett. 116, 085001 (2016).

    Article  Google Scholar 

  156. Toda, S. et al. A reduced transport model for ion heat diffusivity by gyro-kinetic analysis with kinetic electrons in helical plasmas. Plasma Fusion Res. 12, 1303035 (2017).

    Article  Google Scholar 

  157. Hegna, C. C., Terry, P. W. & Faber, B. J. Theory of ITG turbulent saturation in stellarators: identifying mechanisms to reduce turbulent transport. Phys. Plasmas 25, 022511 (2018).

    Article  Google Scholar 

  158. Nakayama, T. et al. A simplified model to estimate nonlinear turbulent transport by linear dynamics in plasma turbulence. Sci. Rep. 13, 2319 (2023).

    Article  Google Scholar 

  159. Maurer, M. et al. GENE-3D: a global gyrokinetic turbulence code for stellarators. J. Comput. Phys. 420, 109694 (2020).

    Article  MathSciNet  Google Scholar 

  160. Navarro, A. B. et al. Global gyrokinetic simulations of ITG turbulence in the magnetic configuration space of the Wendelstein 7-X stellarator. Plasma Phys. Control. Fusion 62, 105005 (2020).

    Article  Google Scholar 

  161. Wilms, F. et al. Global electromagnetic turbulence simulations of W7-X-like plasmas with GENE-3D. J. Plasma Phys. 87, 905870604 (2021).

    Article  Google Scholar 

  162. Wilms, F., Bañón Navarro, A. & Jenko, F. Full-flux-surface effects on electrostatic turbulence in Wendelstein 7-X-like plasmas. Nucl. Fusion 63, 086004 (2023).

    Article  Google Scholar 

  163. Wilms, F. et al. Global gyrokinetic analysis of Wendelstein 7-X discharge: unveiling the importance of trapped-electron-mode and electron-temperature-gradient turbulence. Nucl. Fusion 64, 096040 (2024).

    Article  Google Scholar 

  164. Sánchez, E. et al. Nonlinear gyrokinetic PIC simulations in stellarators with the code EUTERPE. J. Plasma Phys. 86, 855860501 (2020).

    Article  Google Scholar 

  165. Mishchenko, A. et al. Gyrokinetic particle-in-cell simulations of electromagnetic turbulence in the presence of fast particles and global modes. Plasma Phys. Control. Fusion 64, 104009 (2022).

    Article  Google Scholar 

  166. Mishchenko, A. et al. Global gyrokinetic simulations of electromagnetic turbulence in stellarator plasmas. J. Plasma Phys. 89, 955890304 (2023).

    Article  Google Scholar 

  167. Kleiber, R. et al. EUTERPE: a global gyrokinetic code for stellarator geometry. Comput. Phys. Commun. 295, 109013 (2024).

    Article  Google Scholar 

  168. Mynick, H. E., Pomphrey, N. & Xanthopoulos, P. Optimizing stellarators for turbulent transport. Phys. Rev. Lett. 105, 095004 (2010).

    Article  Google Scholar 

  169. Mynick, H. E., Pomphrey, N. & Xanthopoulos, P. Reducing turbulent transport in toroidal configurations via shaping. Phys. Plasmas 18, 056101 (2011).

    Article  Google Scholar 

  170. Mynick, H. E. et al. Turbulent optimization of toroidal configurations. Plasma Phys. Control. Fusion 56, 094001 (2014).

    Article  Google Scholar 

  171. Roberg-Clark, G. T., Plunk, G. G. & Xanthopoulos, P. Coarse-grained gyrokinetics for the critical ion temperature gradient in stellarators. Phys. Rev. Res. 4, L032028 (2022).

    Article  Google Scholar 

  172. Roberg-Clark, G. T. et al. Critical gradient turbulence optimization toward a compact stellarator reactor concept. Phys. Rev. Res. 5, L032030 (2023).

    Article  Google Scholar 

  173. Roberg-Clark, G. T., Xanthopoulos, P. & Plunk, G. G. Reduction of electrostatic turbulence in a quasi-helically symmetric stellarator via critical gradient optimization. J. Plasma Phys. 90, 175900301 (2024).

    Article  Google Scholar 

  174. Proll, J. H. E., Mynick, H. E., Xanthopoulos, P., Lazerson, S. A. & Faber, B. J. TEM turbulence optimisation in stellarators. Plasma Phys. Control. Fusion 58, 014006 (2016).

    Article  Google Scholar 

  175. Proll, J. H. E., Helander, P., Connor, J. W. & Plunk, G. G. Resilience of quasi-isodynamic stellarators against trapped-particle instabilities. Phys. Rev. Lett. 108, 245002 (2012).

    Article  Google Scholar 

  176. Sanchez, E., Velasco, J. L., Calvo, I. & Mulas, S. A quasi-isodynamic configuration with good confinement of fast ions at low plasma β. Nucl. Fusion 63, 066037 (2023).

    Article  Google Scholar 

  177. Proll, J. H. E. et al. Turbulence mitigation in maximum-J stellarators with electron-density gradient. J. Plasma Phys. 88, 905880112 (2022).

    Article  Google Scholar 

  178. Fasoli, A. et al. Chapter 5: Physics of energetic ions. Nucl. Fusion 47, S264–S284 (2007).

    Article  Google Scholar 

  179. Heidbrink, W. W. Basic physics of Alfvén instabilities driven by energetic particles in toroidally confined plasmas. Phys. Plasmas 15, 055501 (2008).

    Article  Google Scholar 

  180. Gorelenkov, N. N., Pinches, S. D. & Toi, K. Energetic particle physics in fusion research in preparation for burning plasma experiments. Nucl. Fusion 54, 125001 (2014).

    Article  Google Scholar 

  181. Chen, L. & Zonca, F. Physics of Alfvén waves and energetic particles in burning plasmas. Rev. Mod. Phys. 88, 15008 (2016).

    Article  Google Scholar 

  182. Todo, Y. Introduction to the interaction between energetic particles and Alfvén eigenmodes in toroidal plasmas. Rev. Mod. Plasma Phys. 3, 1 (2019).

    Article  Google Scholar 

  183. Heidbrink, W. W. & White, R. B. Mechanisms of energetic-particle transport in magnetically confined plasmas. Phys. Plasmas 27, 030901 (2020).

    Article  Google Scholar 

  184. Herrmann, M. C. & Fisch, N. J. Cooling energetic α particles in a tokamak with waves. Phys. Rev. Lett. 79, 1495 (1997).

    Article  Google Scholar 

  185. Ochs, I. E. & Fisch, N. J. Nonresonant diffusion in α channeling. Phys. Rev. Lett. 127, 025003 (2021).

    Article  MathSciNet  Google Scholar 

  186. Hayward-Schneider, T., Lauber, P., Bottino, A. & Lu, Z. X. Global linear and nonlinear gyrokinetic modelling of Alfvén eigenmodes in ITER. Nucl. Fusion 61, 036045 (2021).

    Article  Google Scholar 

  187. Hayward-Schneider, T., Lauber, P., Bottino, A. & Mishchenko, A. Multi-scale analysis of global electromagnetic instabilities in ITER pre-fusion-power operation plasmas. Nucl. Fusion 62, 112007 (2022).

    Article  Google Scholar 

  188. Görler, T. et al. The global version of the gyrokinetic turbulence code GENE. J. Comput. Phys. 230, 7053–7071 (2011).

    Article  MathSciNet  Google Scholar 

  189. Obrejan, K., Imadera, K., Li, J. & Kishimoto, Y. Development of a new zonal flow equation solver by diagonalisation and its application in non-circular cross-section tokamak plasmas. Comput. Phys. Commun. 216, 8–17 (2017).

    Article  MathSciNet  Google Scholar 

  190. Lin, Z., Hahm, T. S., Lee, W. W., Tang, W. M. & White, R. B. Turbulent transport reduction by zonal flows: massively parallel simulations. Science 281, 1835–1837 (1998).

    Article  Google Scholar 

  191. Lanti, E. et al. ORB5: a global electromagnetic gyrokinetic code using the PIC approach in toroidal geometry. Comput. Phys. Commun. 251, 107072 (2020).

    Article  MathSciNet  Google Scholar 

  192. Di Siena, A. et al. New high-confinement regime with fast ions in the core of fusion plasmas. Phys. Rev. Lett. 127, 025002 (2021).

    Article  Google Scholar 

  193. Biancalani, A. et al. Gyrokinetic investigation of Alfvén instabilities in the presence of turbulence. Plasma Phys. Control. Fusion 63, 065009 (2021).

    Article  Google Scholar 

  194. Ishizawa, A., Imadera, K., Nakamura, Y. & Kishimoto, Y. Multi-scale interactions between turbulence and magnetohydrodynamic instability driven by energetic particles. Nucl. Fusion 61, 114002 (2021).

    Article  Google Scholar 

  195. Di Siena, A. et al. Nonlinear electromagnetic interplay between fast ions and ion-temperature-gradient plasma turbulence. J. Plasma Phys. 87, 555870201 (2021).

    Article  Google Scholar 

  196. Liu, P. et al. Regulation of Alfvén eigenmodes by microturbulence in fusion plasmas. Phys. Rev. Lett. 128, 185001 (2022).

    Article  Google Scholar 

  197. Di Siena, A. et al. Impact of supra-thermal particles on plasma performance at ASDEX Upgrade with GENE-Tango simulation. Nucl. Fusion 64, 066020 (2024).

    Article  Google Scholar 

  198. Citrin, J. et al. Nonlinear stabilization of tokamak microturbulence by fast ions. Phys. Rev. Lett. 111, 155001 (2013).

    Article  Google Scholar 

  199. Citrin, J. et al. Electromagnetic stabilization of tokamak microturbulence in a high-β regime. Plasma Phys. Control. Fusion 57, 014032 (2014).

    Article  Google Scholar 

  200. Garcia, J. et al. Key impact of finite-β and fast ions in core and edge tokamak regions for the transition to advanced scenarios. Nucl. Fusion 55, 053007 (2015).

    Article  Google Scholar 

  201. Doerk, H. et al. Turbulence in high-β ASDEX Upgrade advanced scenarios. Nucl. Fusion 58, 016044 (2018).

    Article  Google Scholar 

  202. Garcia, J., Görler, T. & Jenko, F. Isotope and fast ions turbulence suppression effects: consequences for high-β ITER plasmas. Phys. Plasmas 25, 055902 (2018).

    Article  Google Scholar 

  203. Di Siena, A., Görler, T., Doerk, H., Poli, E. & Bilato, R. Fast-ion stabilization of tokamak plasma turbulence. Nucl. Fusion 58, 054002 (2018).

    Article  Google Scholar 

  204. Di Siena, A. et al. Electromagnetic turbulence suppression by energetic particle driven modes. Nucl. Fusion 59, 124001 (2019).

    Article  Google Scholar 

  205. Di Siena, A., Bañón Navarro, A. & Jenko, F. Turbulence suppression by energetic particle effects in modern optimized stellarators. Phys. Rev. Lett. 125, 105002 (2020).

    Article  Google Scholar 

  206. Garcia, J. & Contributors, J. Electromagnetic and fast ions effects as a key mechanism for turbulent transport suppression at JET. Plasma Phys. Control. Fusion 64, 104002 (2022).

    Article  Google Scholar 

  207. Citrin, J. & Mantica, P. Overview of tokamak turbulence stabilization by fast ions. Plasma Phys. Control. Fusion 65, 033001 (2023).

    Article  Google Scholar 

  208. Odette, G. R., Alinger, M. J. & Wirth, B. D. Recent developments in irradiation-resistant steels. Annu. Rev. Mater. Res. 38, 471–503 (2008).

    Article  Google Scholar 

  209. Marian, J. et al. Recent advances in modeling and simulation of the exposure and response of tungsten to fusion energy conditions. Nucl. Fusion 57, 092008 (2017).

    Article  Google Scholar 

  210. Nordlund, K. et al. Improving atomic displacement and replacement calculations with physically realistic damage models. Nat. Commun. 9, 1084 (2018).

    Article  Google Scholar 

  211. Nordlund, K. Historical review of computer simulation of radiation effects in materials. J. Nucl. Mater. 520, 273–295 (2019).

    Article  Google Scholar 

  212. Gilbert, M. R. et al. Perspectives on multiscale modelling and experiments to accelerate materials development for fusion. J. Nucl. Mater. 554, 153113 (2021).

    Article  Google Scholar 

  213. Wood, M. A., Susentino, M. A., Wirth, B. D. & Thompson, A. P. Data-driven material models for atomistic simulation. Phys. Rev. B 99, 184305 (2019).

    Article  Google Scholar 

  214. Byggmästar, J., Hamedani, A., Nordlund, K. & Djurabekova, F. Machine-learning interatomic potential for radiation damage and defects in tungsten. Phys. Rev. B 100, 144105 (2019).

    Article  Google Scholar 

  215. Wang, X.-Y. et al. Deep neural network potential for simulating hydrogen blistering in tungsten. Phys. Rev. Mater. 7, 093601 (2023).

    Article  Google Scholar 

  216. Ding, C.-J. et al. A deep learning interatomic potential suitable for simulating radiation damage in bulk tungsten. Tungsten 6, 304–322 (2024).

    Article  Google Scholar 

  217. Merchant, A. et al. Scaling deep learning for materials discovery. Nature 624, 80–85 (2023).

    Article  Google Scholar 

  218. Szymanski, N. J. et al. An autonomous laboratory for the accelerated synthesis of novel materials. Nature 624, 86–91 (2023).

    Article  Google Scholar 

  219. National Academies of Sciences, Engineering and Medicine. Foundational Research Gaps and Future Directions for Digital Twins (The National Academies Press, 2024).

  220. Grieves, M. Product Lifecycle Management: Driving the Next Generation of Lean Thinking (McGraw Hill, 2005).

  221. Piascik, B. et al. Materials, Structures, Mechanical Systems, and Manufacturing Roadmap: Technology Area 12 (NASA, 2012).

  222. Maeyama, S., Howard, N. T., Citrin, J., Watanabe, T.-H. & Tokuzawa, T. Overview of multiscale turbulence studies covering ion-to-electron scales in magnetically confined fusion plasma. Nucl. Fusion 64, 112007 (2024).

    Article  Google Scholar 

  223. Holland, C. et al. Implementation and application of two synthetic diagnostics for validating simulations of core tokamak turbulence. Phys. Plasmas 16, 052301 (2009).

    Article  Google Scholar 

  224. Casati, A. et al. Turbulence in the Tore Supra tokamak: measurements and validation of nonlinear simulations. Phys. Rev. Lett. 102, 165005 (2009).

    Article  Google Scholar 

  225. White, A. E. et al. Simultaneous measurement of core electron temperature and density fluctuations during electron cyclotron heating on DIII-D. Phys. Plasmas 17, 020701 (2010).

    Article  Google Scholar 

  226. Rhodes, T. L. et al. L-Mode validation studies of gyrokinetic turbulence simulations via multiscale and multifield turbulence measurements on the DIII-D tokamak. Nucl. Fusion 51, 063022 (2011).

    Article  Google Scholar 

  227. Howard, N. T. et al. Investigation of the transport shortfall in Alcator C-Mod L-mode plasmas. Phys. Plasmas 20, 032510 (2013).

    Article  Google Scholar 

  228. Ren, Y. et al. Electron-scale turbulence spectra and plasma thermal transport responding to continuous E × B shear ramp-up in a spherical tokamak. Nucl. Fusion 53, 083007 (2013).

    Article  Google Scholar 

  229. Told, D., Jenko, F., Görler, T., Casson, F. J. & Fable, E. Characterizing turbulent transport in ASDEX Upgrade L-mode plasmas via nonlinear gyrokinetic simulations. Phys. Plasmas 20, 122312 (2013).

    Article  Google Scholar 

  230. Görler, T. et al. A flux-matched gyrokinetic analysis of DIII-D L-mode turbulence. Phys. Plasmas 21, 122307 (2014).

    Article  Google Scholar 

  231. Happel, T. et al. Comparison of detailed experimental wavenumber spectra with gyrokinetic simulation aided by two-dimensional full-wave simulations. Plasma Phys. Control. Fusion 59, 054009 (2017).

    Article  Google Scholar 

  232. Freethy, J. et al. Validation of gyrokinetic simulations with measurements of electron temperature fluctuations and density-temperature phase angles on ASDEX Upgrade. Phys. Plasmas 25, 055903 (2018).

    Article  Google Scholar 

  233. Ruiz Ruiz, J. et al. Validation of gyrokinetic simulations of a National Spherical Torus Experiment H-mode plasma and comparisons with a high-k scattering synthetic diagnostic. Plasma Phys. Control. Fusion 61, 115015 (2019).

    Article  Google Scholar 

  234. Molina Cabrera, P. A. et al. Isotope effects on energy transport in the core of ASDEX Upgrade tokamak plasmas: turbulence measurements and model validation. Phys. Plasmas 30, 082304 (2023).

    Article  Google Scholar 

  235. Cheng, J. et al. Spatial core-edge coupling of the particle-in-cell gyrokinetic codes GEM and XGC. Phys. Plasmas 27, 122510 (2020).

    Article  Google Scholar 

  236. Merlo, G. et al. First coupled GENE-XGC microturbulence simulations. Phys. Plasmas 28, 012303 (2021).

    Article  Google Scholar 

  237. Dominski, J. et al. Spatial coupling of gyrokinetic simulations, a generalized scheme based on first-principles. Phys. Plasmas 28, 022301 (2021).

    Article  Google Scholar 

  238. Janky, F. et al. ASDEX Upgrade flight simulator development. Fusion Eng. Des. 146, 1926–1929 (2019).

    Article  Google Scholar 

  239. Janky, F., Fable, E., Englberger, M., Treutterer, W. & the ASDEX Upgrade Team. Validation of the FENIX ASDEX Upgrade flight simulator. Fusion Eng. Des. 163, 112126 (2021).

    Article  Google Scholar 

  240. Fable, E. et al. The modeling of a tokamak plasma discharge, from first principles to a flight simulator. Plasma Phys. Control. Fusion 64, 044002 (2022).

    Google Scholar 

  241. Muraca, M. et al. Reduced transport models for a tokamak flight simulator. Plasma Phys. Control. Fusion 65, 035007 (2023).

    Article  Google Scholar 

  242. Felici, F. et al. Real-time-capable prediction of temperature and density profiles in a tokamak using RAPTOR and a first-principle-based transport model. Nucl. Fusion 58, 096006 (2018).

    Article  Google Scholar 

  243. Citrin, J. et al. TORAX: a fast and differentiable tokamak transport simulator in JAX. Preprint at https://doi.org/10.48550/arXiv.2406.06718 (2024).

  244. Di Grazia, L. E. et al. Development of magnetic control for the EU-DEMO flight simulator and application to transient phenomena. Fusion Eng. Des. 191, 113579 (2023).

    Article  Google Scholar 

  245. Patterson, E. A., Purdie, S., Taylor, R. J. & Waldon, C. An integrated digital framework for the design, build and operation of fusion power plants. R. Soc. Open Sci. 6, 181847 (2019).

    Article  Google Scholar 

  246. Smolentsev, S. et al. On the role of integrated computer modelling in fusion technology. Fusion Eng. Des. 157, 111671 (2020).

    Article  Google Scholar 

  247. Qin, S., Wang, Q. & Chen, X. Application of virtual reality technology in nuclear device design and research. Fusion Eng. Des. 161, 11906 (2020).

    Article  Google Scholar 

  248. Rauscher, F. et al. A digital twin concept for the development of a DEMO maintenance logistics modelling tool. Fusion Eng. Des. 168, 112399 (2021).

    Article  Google Scholar 

  249. Kwon, J.-M. et al. Development of a virtual tokamak platform. Fusion Eng. Des. 184, 113281 (2022).

    Article  Google Scholar 

  250. Farcaş, I. G., Görler, T., Bungartz, H.-J., Jenko, F. & Neckel, T. Sensitivity-driven adaptive sparse stochastic approximations in plasma microinstability analysis. J. Comput. Phys. 410, 109394 (2020).

    Article  MathSciNet  Google Scholar 

  251. Farcaş, I. G., Di Siena, A. & Jenko, F. Turbulence suppression by energetic particles: a sensitivity-driven dimension-adaptive sparse grid framework for discharge optimization. Nucl. Fusion 61, 056004 (2021).

    Article  Google Scholar 

  252. Coster, D. P. et al. Building a turbulence-transport workflow incorporating uncertainty quantification for predicting core profiles in a tokamak plasma. Nucl. Fusion 61, 126068 (2021).

    Article  Google Scholar 

  253. Farcaş, I. G., Merlo, G. & Jenko, F. A general framework for quantifying uncertainty at scale. Commun. Eng. 1, 43 (2022).

    Article  Google Scholar 

  254. Coster, D. P. Quantification of the uncertainty arising from atomic physics in edge plasmas. Nucl. Mater. Energy 33, 101282 (2022).

    Article  Google Scholar 

  255. Morris, A. W. et al. Towards a fusion power plant: integration of physics and technology. Plasma Phys. Control. Fusion 64, 064002 (2022).

    Article  Google Scholar 

  256. Köberl, R. et al. Uncertainty quantification in three-dimensional magnetohydrodynamic equilibrium reconstruction via surrogate-assisted Bayesian inference. Contrib. Plasma Phys. 63, e202200173 (2023).

    Article  Google Scholar 

  257. Farcaș, I. G., Peherstorfer, B., Neckel, T., Jenko, F. & Bungartz, H.-J. Context-aware learning of hierarchies of low-fidelity models for multi-fidelity uncertainty quantification. Comput. Methods Appl. Mech. Eng. 406, 115908 (2023).

    Article  MathSciNet  Google Scholar 

  258. Fischer, R., Dinklage, A. & Pasch, E. Bayesian modelling of fusion diagnostics. Plasma Phys. Control. Fusion 45, 1095–1111 (2003).

    Article  Google Scholar 

  259. Fischer, R. et al. Integrated data analysis of profile diagnostics at ASDEX Upgrade. Fusion Sci. Technol. 58, 675–684 (2010).

    Article  MathSciNet  Google Scholar 

  260. Bergmann, M., Fischer, R., Angioni, C. & Höfler, P. Plasma profile reconstruction supported by kinetic modeling. Nucl. Fusion 64, 056024 (2024).

    Article  Google Scholar 

  261. Litaudon, X. et al. EUROfusion-Theory and Advanced Simulation Coordination (E-TASC): programme and the role of high performance computing. Plasma Phys. Control. Fusion 64, 034005 (2022).

    Article  Google Scholar 

  262. Degrave, J. et al. Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602, 414–419 (2022).

    Article  Google Scholar 

  263. Citrin, J. et al. Fast transport simulations with higher-fidelity surrogate models for ITER. Phys. Plasmas 30, 062501 (2023).

    Article  Google Scholar 

  264. Peherstorfer, B., Willcox, K. & Gunzburger, M. Survey of multifidelity methods in uncertainty propagation, inference, and optimization. SIAM Rev. 60, 550–591 (2018).

    Article  MathSciNet  Google Scholar 

  265. Konrad, J. et al. Data-driven low-fidelity models for multi-fidelity Monte Carlo sampling in plasma micro-turbulence analysis. J. Comput. Phys. 451, 110898 (2022).

    Article  MathSciNet  Google Scholar 

  266. Law, F., Cerfon, A. & Peherstorfer, B. Accelerating the estimation of collisionless energetic particle confinement statistics in stellarators using multifidelity Monte Carlo. Nucl. Fusion 62, 076019 (2022).

    Article  Google Scholar 

  267. Law, F., Cerfon, A., Peherstorfer, B. & Wechsung, F. Meta variance reduction for Monte Carlo estimation of energetic particle confinement during stellarator optimization. J. Comput. Phys. 495, 112524 (2023).

    Article  MathSciNet  Google Scholar 

  268. Fernandez-Godino, M. G. Review of multi-fidelity models. Adv. Comput. Sci. Eng. 1, 351–400 (2023).

    Google Scholar 

  269. Cathey, A. et al. Comparing spontaneous and pellet-triggered ELMs via non-linear extended MHD simulations. Plasma Phys. Control. Fusion 63, 075016 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks R. Akers, C. Angioni, A. B. Navarro, A. Di Siena, E. Fable, I.-G. Farcaş, F. Fleschner, T. Görler, T. Hayward-Schneider, M. Hoelzl, A. Stegmeir, P. Ulbl, V. Vodopivec, K. Willcox, F. Wilms and W. Zholobenko for the helpful discussions and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Jenko.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Jae-Min Kwon, Ben Dudson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jenko, F. Accelerating fusion research via supercomputing. Nat Rev Phys 7, 365–377 (2025). https://doi.org/10.1038/s42254-025-00837-1

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s42254-025-00837-1

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics