Abstract
The pursuit of fusion energy is gaining momentum, driven by factors including advances in high-performance computing. As the need for sustainable energy solutions grows ever more urgent, supercomputing emerges as a key enabler, accelerating fusion power toward practical realization. Supercomputers empower researchers to simulate complex plasma dynamics with remarkable precision, aiding in the prediction and optimization of plasma confinement and stability — both essential for sustaining burning plasmas. They also have a critical role in assessing the resilience of materials exposed to the extreme conditions of future fusion power plants. As the fusion community transitions from laboratory experiments to pilot plants, supercomputing bridges the gap between scientific discovery and engineering implementation, and it promises to reduce costs and shorten development timelines.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Sadik-Zada, E. R., Gatto, A. & Weissnicht, Y. Back to the future: revisiting the perspectives on nuclear fusion and juxtaposition to existing energy sources. Energy 290, 129150 (2024).
Wurzel, S. E. & Hsu, S. C. Progress toward fusion energy breakeven and gain as measured against the Lawson criterion. Phys. Plasmas 29, 062103 (2022).
Keilhacker, M., Gibson, A., Gormezano, C. & Rebut, P. H. The scientific success of JET. Nucl. Fusion 41, 1925 (2001).
Maggi, C. F. et al. Overview of T and D-T results in JET with ITER-like wall. Nucl. Fusion 64, 112012 (2024).
Kim, H.-S. et al. Development of high-performance long-pulse discharge in KSTAR. Nucl. Fusion 64, 016033 (2024).
Van Houtte, D. et al. Recent fully non-inductive operation results in Tore Supra with 6 min, 1 GJ plasma discharges. Nucl. Fusion 44, L11–L15 (2004).
Bucalossi, J. et al. Operating a full tungsten actively cooled tokamak: overview of WEST first phase of operation. Nucl. Fusion 62, 042007 (2022).
Song, Y. et al. Realization of thousand-second improved confinement plasma with Super I-mode in tokamak EAST. Sci. Adv. 9, 5273 (2023).
Sunn Pedersen, T. et al. First results from divertor operation in Wendelstein 7-X. Plasma Phys. Control. Fusion 61, 014035 (2019).
Lawson, J. D. Some criteria for a power producing thermonuclear reactor. Proc. Phys. Soc. B 70, 6 (1957).
Grulke, O. et al. Overview of the first Wendelstein 7-X long pulse campaign with fully water-cooled plasma facing components. Nucl. Fusion 64, 112002 (2024).
Greenwald, M. Status of the SPARC physics basis. J. Plasma Phys. 86, 861860501 (2020).
Hender, T. C. et al. Chapter 3: MHD stability, operational limits and disruptions. Nucl. Fusion 47, S128–S202 (2007).
Leonard, A. W. Edge-localized-modes in tokamaks. Phys. Plasmas 21, 090501 (2014).
Loarte, A. et al. Chapter 4: Power and particle control. Nucl. Fusion 47, S203–S263 (2007).
Gilbert, M. R., Dudarev, S. L., Zheng, S., Packer, L. W. & Sublet, J.-C. An integrated model for materials in a fusion power plant: transmutation, gas production, and helium embrittlement under neutron irradiation. Nucl. Fusion 52, 083019 (2012).
Donné, A. J. H. et al. Chapter 7: Diagnostics. Nucl. Fusion 47, S337–S384 (2007).
Gribov, Y. et al. Chapter 8: Plasma operation and control. Nucl. Fusion 47, S385–S403 (2007).
Mukhovatov, V. et al. Chapter 9: ITER contributions for DEMO plasma development. Nucl. Fusion 47, S404–S413 (2007).
Brizard, A. J. & Hahm, T. S. Foundations of nonlinear gyrokinetic theory. Rev. Mod. Phys. 79, 421 (2007).
Garbet, X., Idomura, Y., Villard, L. & Watanabe, T. H. Gyrokinetic simulations of turbulent transport. Nucl. Fusion 50, 043002 (2010).
Krommes, J. A. The gyrokinetic description of microturbulence in magnetized plasmas. Annu. Rev. Fluid Mech. 44, 175–201 (2012).
Germaschewski, K. et al. Toward exascale whole-device modeling of fusion devices: porting the GENE gyrokinetic microturbulence code to GPU. Phys. Plasmas 28, 062501 (2021).
Zhang, C., Diamond, G., Smith, C. W. & Shephard, M. S. Development of an unstructured mesh gyrokinetic particle-in-cell code for exascale fusion plasma simulations on GPUs. Comput. Phys. Commun. 291, 108824 (2023).
Doyle, E. J. et al. Chapter 2: Plasma confinement and transport. Nucl. Fusion 47, S18–S127 (2007).
Staebler, G. M. et al. Advances in prediction of tokamak experiments with theory-based models. Nucl. Fusion 62, 042005 (2022).
Jenko, F., Dorland, W., Kotschenreuther, M. & Rogers, B. N. Electron temperature gradient driven turbulence. Phys. Plasmas 7, 1904–1910 (2000).
Dorland, W., Jenko, F., Kotschenreuther, M. & Rogers, B. N. Electron temperature gradient turbulence. Phys. Rev. Lett. 85, 5579 (2000).
Candy, J. & Waltz, R. E. An Eulerian gyrokinetic-Maxwell solver. J. Comput. Phys. 186, 545–581 (2003).
Watanabe, T.-H. & Sugama, H. Velocity space structures of distribution function in toroidal ion temperature gradient turbulence. Nucl. Fusion 46, 24–32 (2006).
Candy, J., Holland, C., Waltz, R. E., Fahey, M. R. & Belli, E. Tokamak profile prediction using direct gyrokinetic and neoclassical simulation. Phys. Plasmas 16, 060704 (2009).
Barnes, M. et al. Direct multiscale coupling of a transport code to gyrokinetic turbulence codes. Phys. Plasmas 17, 056109 (2010).
Jenko, F. et al. Global and local gyrokinetic simulations of high-performance discharges in view of ITER. Nucl. Fusion 53, 073003 (2013).
Garcia, J. et al. First principles and integrated modelling achievements towards trustful fusion power predictions for JET and ITER. Nucl. Fusion 59, 086047 (2019).
Rodriguez-Fernandez, P. et al. Overview of the SPARC physics basis towards the exploration of burning-plasma regimes in high-field, compact tokamaks. Nucl. Fusion 62, 076036 (2022).
Di Siena, A. et al. Global gyrokinetic simulations of ASDEX Upgrade up to the transport timescale with GENE-Tango. Nucl. Fusion 62, 106025 (2022).
Navarro, A. B. et al. First-principles based plasma profile predictions for optimized stellarators. Nucl. Fusion 63, 054003 (2023).
Howard, N. T. et al. Simultaneous reproduction of experimental profiles, fluxes, transport coefficients, and turbulence characteristics via nonlinear gyrokinetic profile predictions in a DIII-D ITER similar shape plasma. Phys. Plasmas 31, 032501 (2024).
Howard, N. T., Rodriguez-Fernandez, R., Holland, C. & Candy, J. Prediction of performance and turbulence in ITER burning plasmas via nonlinear gyrokinetic profile prediction. Nucl. Fusion 65, 016002 (2025).
Abel, I. G. et al. Multiscale gyrokinetics for rotating tokamak plasmas: fluctuations, transport and energy flows. Rep. Prog. Phys. 76, 116201 (2013).
Dannert, T. & Jenko, F. Gyrokinetic simulation of collisionless trapped-electron mode turbulence. Phys. Plasmas 12, 072309 (2005).
Jenko, F., Dannert, T. & Angioni, C. Heat and particle transport in a tokamak: advances in nonlinear gyrokinetics. Plasma Phys. Control. Fusion 47, B195 (2005).
Staebler, G., Kinsey, J. E. & Waltz, R. E. A theory-based transport model with comprehensive physics. Phys. Plasmas 14, 055909 (2007).
Bourdelle, C. et al. A new gyrokinetic quasilinear transport model applied to particle transport in tokamak plasmas. Phys. Plasmas 14, 112501 (2007).
Stephens, C. D. et al. Quasilinear gyrokinetic theory: a derivation of QuaLiKiz. J. Plasma Phys. 87, 905870409 (2021).
Citrin, J. et al. Real-time capable first principle based modelling of tokamak turbulent transport. Nucl. Fusion 55, 092001 (2015).
Meneghini, O. et al. Self-consistent core-pedestal transport simulations with neural network accelerated models. Nucl. Fusion 57, 086034 (2017).
van de Plassche, K. L. et al. Fast modeling of turbulent transport in fusion plasmas using neural networks. Phys. Plasmas 27, 022310 (2020).
Ho, A. et al. Neural network surrogate of QuaLiKiz using JET experimental data to populate training space. Phys. Plasmas 28, 032305 (2021).
Meneghini, O. et al. Neural-network accelerated coupled core-pedestal simulations with self-consistent transport of impurities and compatible with ITER IMAS. Nucl. Fusion 61, 026006 (2021).
Höfler, K. et al. Milestone in predicting core plasma turbulence: successful multi-channel validation of the gyrokinetic code GENE. Nat. Commun. 16, 2558 (2025).
Jenko, F. & Dorland, W. Prediction of significant tokamak turbulence at electron gyroradius scales. Phys. Rev. Lett. 89, 225001 (2002).
Candy, J., Waltz, R. E., Fahey, M. R. & Holland, C. The effect of ion-scale dynamics on electron-temperature-gradient turbulence. Plasma Phys. Control. Fusion 49, 1209–1220 (2007).
Görler, T. & Jenko, F. Scale separation between electron and ion thermal transport. Phys. Rev. Lett. 100, 185002 (2008).
Maeyama, S. et al. Cross-scale interactions between electron and ion scale turbulence in a tokamak plasma. Phys. Rev. Lett. 114, 255002 (2015).
Maeyama, S. et al. Multi-scale turbulence simulation suggesting improvement of electron heated plasma confinement. Nat. Commun. 13, 3166 (2022).
Doerk, H., Jenko, F., Pueschel, M. J. & Hatch, D. R. Gyrokinetic microtearing turbulence. Phys. Rev. Lett. 106, 155003 (2011).
Guttenfelder, W. et al. Electromagnetic transport from microtearing mode turbulence. Phys. Rev. Lett. 106, 155004 (2011).
Hatch, D. R. et al. Microtearing turbulence limiting the JET-ILW pedestal. Nucl. Fusion 56, 104003 (2016).
Maeyama, S. & Watanabe, T. H. Suppression of ion-scale microtearing modes by electron-scale turbulence via cross-scale nonlinear interactions in tokamak plasmas. Phys. Rev. Lett. 119, 195002 (2017).
Pueschel, M. J., Hatch, D. R., Kotschenreuther, M., Ishizawa, A. & Merlo, G. Multi-scale interactions of microtearing turbulence in the tokamak pedestal. Nucl. Fusion 60, 124005 (2020).
Giacomin, M., Dickinson, D., Kennedy, D., Patel, B. & Roach, C. Nonlinear microtearing modes in MAST and their stochastic layer formation. Plasma Phys. Control. Fusion 65, 095019 (2023).
Diamond, P. H., Itoh, S.-I., Itoh, K. & Hahm, T. S. Zonal flows in plasma — a review. Plasma Phys. Control. Fusion 47, R35–R161 (2005).
Fujisawa, A. A review of zonal flow experiments. Nucl. Fusion 49, 013001 (2009).
Wagner, F. et al. Regime of improved confinement and high β in neutral-beam-heated divertor discharges of the ASDEX tokamak. Phys. Rev. Lett. 49, 1408 (1982).
Connor, J. W. & Wilson, H. R. A review of theories of the L-H transition. Plasma Phys. Control. Fusion 42, R1 (2000).
Told, D. et al. Gyrokinetic microinstabilities in ASDEX Upgrade edge plasmas. Phys. Plasmas 15, 102306 (2008).
Jenko, F., Told, D., Xanthopoulos, P., Merz, F. & Horton, L. Gyrokinetic turbulence under near-separatrix or nonaxisymmetric conditions. Phys. Plasmas 16, 055901 (2009).
Hatch, D. R. et al. Gyrokinetic study of ASDEX Upgrade inter-ELM pedestal profile evolution. Nucl. Fusion 55, 063028 (2015).
Chang, C. S. et al. Fast low-to-high confinement mode bifurcation dynamics in a tokamak edge plasma gyrokinetic simulation. Phys. Rev. Lett. 118, 175001 (2017).
Ku, S. et al. A fast low-to-high confinement mode bifurcation dynamics in the boundary-plasma gyrokinetic code XGC1. Phys. Plasmas 25, 056107 (2018).
Kotschenreuther, M. et al. Gyrokinetic analysis and simulation of pedestals to identify the culprits for energy losses using ‘fingerprints’. Nucl. Fusion 59, 096001 (2019).
Belli, E. A., Candy, J. & Sfiligoi, I. Spectral transition of multiscale turbulence in the tokamak pedestal. Plasma Phys. Control. Fusion 65, 024001 (2023).
Braginskii, J. J. Transport Processes in a Plasma (Consultants Bureau, 1965).
Ottaviani, M. An alternative approach to field-aligned coordinates for plasma turbulence simulations. Phys. Lett. A 375, 1677–1685 (2011).
Hariri, F. & Ottaviani, M. A flux-coordinate independent field-aligned approach to plasma turbulence simulations. Comput. Phys. Commun. 184, 2419–2429 (2013).
Stegmeir, A., Coster, D., Maj, O., Hallatschek, K. & Lackner, K. The field line map approach for simulations of magnetically confined plasmas. Comput. Phys. Commun. 198, 139 (2016).
Shanahan, B., Dudson, B. & Hill, P. Fluid simulations of plasma filaments in stellarator geometries with BSTING. Plasma Phys. Control. Fusion 61, 025007 (2019).
Michels, D., Stegmeir, A., Ulbl, P., Jarema, D. & Jenko, F. GENE-X: a full-f gyrokinetic turbulence code based on the flux-coordinate independent approach. Comput. Phys. Commun. 264, 107986 (2021).
Wiesenberger, M. & Held, M. A finite volume flux coordinate independent approach. Comput. Phys. Commun. 291, 108838 (2023).
Frei, B. J., Hoffmann, A. C. D. & Ricci, P. Local gyrokinetic collisional theory of the ion-temperature gradient mode. J. Plasma Phys. 88, 905880304 (2022).
Dudson, B., Umansky, M. V., Xu, X. Q., Snyder, P. B. & Wilson, H. R. BOUT++: a framework for parallel plasma fluid simulations. Comput. Phys. Commun. 180, 1467–1480 (2009).
Wiesenberger, M. et al. Reproducibility, accuracy and performance of the FELTOR code and library on parallel computer architectures. Comput. Phys. Commun. 238, 145–156 (2019).
Giacomin, M. et al. The GBS code for the self-consistent simulation of plasma turbulence and kinetic neutral dynamics in the tokamak boundary. J. Comput. Phys. 463, 111294 (2022).
Stegmeir, A. et al. Global turbulence simulations of the tokamak edge region with GRILLIX. Phys. Plasmas 26, 052517 (2019).
Bufferand, H. et al. Progress in edge plasma turbulence modelling — hierarchy of models from 2D transport application to 3D fluid simulations in realistic tokamak geometry. Nucl. Fusion 61, 116052 (2021).
Schwander, F., Serre, E., Bufferand, H., Ciraolo, G. & Ghendrih, P. Global fluid simulations of edge plasma turbulence in tokamaks: a review. Comput. Fluids 270, 106141 (2024).
Oliveira, D. S. et al. Validation of edge turbulence codes against the TCV-X21 diverted L-mode reference case. Nucl. Fusion 62, 096001 (2022).
Li, Z. et al. Numerical modeling of pedestal stability and broadband turbulence of wide-pedestal QH-mode plasmas on DIII-D. Nucl. Fusion 62, 076033 (2022).
Zholobenko, W. et al. Electric field and turbulence in global Braginskii simulations across the ASDEX Upgrade edge and scrape-off layer. Plasma Phys. Control. Fusion 63, 034001 (2021).
Giacomin, M. et al. First-principles density limit scaling in tokamaks based on edge turbulent transport and implications for ITER. Phys. Rev. Lett. 128, 185003 (2022).
Mancini, D., Ricci, P., Vianello, N., Van Parys, G. & Oliveira, D. S. Self-consistent multi-component simulation of plasma turbulence and neutrals in detached conditions. Nucl. Fusion 64, 016012 (2024).
Zholobenko, W. et al. Filamentary transport in global edge-SOL simulations of ASDEX Upgrade. Nucl. Mater. Energy 34, 101351 (2023).
Dorf, M. & Dorr, M. Progress with the 5D full-F continuum gyrokinetic code COGENT. Contrib. Plasma Phys. 60, e201900113 (2020).
Hakim, A. H. et al. Continuum electromagnetic gyrokinetic simulations of turbulence in the tokamak scrape-off layer and laboratory device. Phys. Plasmas 27, 042304 (2020).
Dif-Pradalier, G. et al. Transport barrier onset and edge turbulence shortfall in fusion plasmas. Commun. Phys. 5, 229 (2022).
Chang, C. S. et al. Gyrokinetic projection of the divertor heat-flux width from present tokamaks to ITER. Nucl. Fusion 57, 116023 (2017).
Li, Z. Y., Xu, X.-Q., Li, N.-M., Chan, V. S. & Wang, X. G. Prediction of divertor heat flux width for ITER using BOUT++ transport and turbulence module. Nucl. Fusion 59, 046014 (2019).
Xu, X. Q. et al. Simulations of tokamak boundary plasma turbulence transport in setting the divertor heat flux width. Nucl. Fusion 59, 126039 (2019).
Li, Z. et al. How turbulence spreading improves power handling in quiescent high confinement fusion plasmas. Commun. Phys. 7, 96 (2024).
Ulbl, P. et al. Influence of collisions on the validation of global gyrokinetic simulations in the edge and scrape-off layer of TCV. Phys. Plasmas 30, 052507 (2023).
Huysmans, G. T. A. & Czarny, O. MHD stability in X-point geometry: simulation of ELMs. Nucl. Fusion 47, 659–666 (2007).
Hoelzl, M. et al. The JOREK non-linear extended MHD code and applications to large-scale instabilities and their control in magnetically confined fusion plasmas. Nucl. Fusion 61, 065001 (2021).
Jardin, S. C. A triangular finite element with first-derivative continuity applied to fusion MHD applications. J. Comput. Phys. 200, 133–152 (2004).
Sovinec, C. R. et al. Nonlinear magnetohydrodynamics simulation using high-order finite elements. J. Comput. Phys. 195, 355–386 (2004).
Yu, Q. & Günter, S. Plasma response to externally applied resonant magnetic perturbations. Nucl. Fusion 51, 073030 (2011).
Lütjens, H. & Luciani, J.-F. The XTOR code for nonlinear 3D simulations of MHD instabilities in tokamak plasma. J. Comput. Phys. 227, 6944–6966 (2008).
Pankin, A. Y. et al. Modelling of ELM dynamics for DIII-D and ITER. Plasma Phys. Control. Fusion 49, S63–S75 (2007).
Xu, X. Q. et al. Nonlinear ELM simulations based on a nonideal peeling-ballooning model using the BOUT++ code. Nucl. Fusion 51, 103040 (2011).
Ebrahimi, F. & Bhattacharjee, A. Plasmoid-mediated reconnection during nonlinear peeling-ballooning edge-localized modes. Nucl. Fusion 63, 126042 (2023).
Pamela, S. J. P. et al. Recent progress in the quantitative validation of JOREK simulations of ELMs in JET. Nucl. Fusion 57, 076006 (2017).
Cathey, A. et al. Non-linear extended MHD simulations of type-I edge localised mode cycles in ASDEX Upgrade and their underlying triggering mechanism. Nucl. Fusion 60, 124007 (2020).
Futatani, S. et al. Transition from no-ELM response to pellet ELM triggering during pedestal build-up — insights from extended MHD simulations. Nucl. Fusion 61, 046043 (2021).
Bécoulet, M. et al. Mechanism of edge localized mode mitigation by resonant magnetic perturbations. Phys. Rev. Lett. 113, 115001 (2014).
Hu, Q. M. et al. The role of edge resonant magnetic perturbations in edge-localized-mode suppression and density pump-out in low-collisionality DIII-D plasmas. Nucl. Fusion 60, 076001 (2020).
Kim, S. K. et al. Transition in particle transport under resonant magnetic perturbations in a tokamak. Nucl. Fusion 63, 106013 (2023).
Liu, F. et al. Nonlinear MHD simulations of quiescent H-mode plasmas in DIII-D. Nucl. Fusion 55, 113002 (2015).
Liu, F. et al. Nonlinear MHD simulations of QH-mode DIII-D plasmas and implications for ITER high Q scenarios. Plasma Phys. Control. Fusion 60, 014039 (2018).
Meier, L. et al. MHD simulations of formation, sustainment and loss of quiescent H-mode in the all-tungsten ASDEX Upgrade. Nucl. Fusion 63, 086026 (2023).
Kruger, S. E., Schnack, D. D. & Sovinec, C. R. Dynamics of the major disruption of a DIII-D plasma. Phys. Plasmas 12, 056113 (2005).
Boozer, A. H. Theory of tokamak disruptions. Phys. Plasmas 19, 058101 (2012).
Artola, F. J. et al. Non-axisymmetric MHD simulations of the current quench phase of ITER mitigated disruptions. Nucl. Fusion 62, 056023 (2022).
Schwarz, N. et al. The mechanism of the global vertical force reduction in disruptions mitigated by massive material injection. Nucl. Fusion 63, 126016 (2023).
Hu, D. et al. Collisional-radiative simulation of impurity assimilation, radiative collapse and MHD dynamics after ITER shattered pellet injection. Nucl. Fusion 63, 066008 (2023).
Paz-Soldan, C. et al. A novel path to runaway electron mitigation via deuterium injection and current-driven MHD instability. Nucl. Fusion 61, 116058 (2021).
Suzuki, Y., Watanabe, K. Y. & Sakakibara, S. Theoretical studies of equilibrium β limit in LHD plasmas. Phys. Plasmas 27, 102502 (2020).
Sato, M. & Todo, Y. Kinetic thermal ion effects on maintaining high-β plasmas above the Mercier criterion in the Large Helical Device. Nucl. Fusion 61, 116012 (2021).
Yu, Q. et al. Numerical modeling of the electron temperature crashes observed in Wendelstein 7-X stellarator experiments. Nucl. Fusion 60, 076024 (2020).
Strumberger, E., Günter, S. & the Wendelstein 7-X Team. Linear, resistive stability studies for Wendelstein 7-X-type equilibria with external current drive. Nucl. Fusion 60, 106013 (2020).
Aleynikova, K. et al. Model for current drive induced crash cycles in W7-X. Nucl. Fusion 61, 126040 (2021).
Zhou, Y., Aleynikova, K. & Ferraro, N. M. Nonlinear magnetohydrodynamic modeling of current-drive-induced sawtooth-like crashes in the W7-X stellarator. Phys. Plasmas 30, 032503 (2023).
Helander, P. et al. Stellarator and tokamak plasmas: a comparison. Plasma Phys. Control. Fusion 54, 124009 (2012).
Gates, D. A. et al. Stellarator research opportunities: a report of the National Stellarator Coordinating Committee. J. Fusion Energy 37, 51–94 (2018).
Hegna, C. C. et al. Improving the stellarator through advances in plasma theory. Nucl. Fusion 62, 042012 (2022).
Velasco, J. L. et al. Piecewise omnigenous stellarators. Phys. Rev. Lett. 133, 185101 (2024).
Landreman, M. & Paul, E. Magnetic fields with precise quasisymmetry for plasma confinement. Phys. Rev. Lett. 128, 035001 (2022).
Goodman, A. G. et al. Constructing precisely quasi-isodynamic magnetic fields. J. Plasma Phys. 89, 905890504 (2023).
Henneberg, S. A. & Plunk, G. G. Compact stellarator-tokamak hybrid. Phys. Rev. Res. 6, L022052 (2024).
Goodman, A. G. et al. Quasi-isodynamic stellarators with low turbulence as fusion reactor candidates. PRX Energy 3, 023010 (2024).
Bindel, D., Landreman, M. & Padidar, M. Understanding trade-offs in stellarator design with multi-objective optimization. J. Plasma Phys. 89, 905890503 (2023).
Klinger, T. et al. Overview of first Wendelstein 7-X high-performance operation. Nucl. Fusion 59, 112004 (2019).
Jenko, F. & Kendl, A. Stellarator turbulence at electron gyroradius scales. New J. Phys. 4, 35 (2002).
Jenko, F. & Kendl, A. Radial and zonal modes in hyperfine-scale stellarator turbulence. Phys. Plasmas 9, 4103–4106 (2002).
Xanthopoulos, P., Merz, F., Görler, T. & Jenko, F. Nonlinear gyrokinetic simulations of ion-temperature-gradient turbulence for the optimized Wendelstein 7-X stellarator. Phys. Rev. Lett. 99, 035002 (2007).
Nunami, M., Watanabe, T.-H. & Sugama, H. Relation among ITG turbulence, zonal flows, and transport in helical plasmas. Plasma Fusion Res. 8, 1203019 (2013).
Xanthopoulos, P. et al. Controlling turbulence in present and future stellarators. Phys. Rev. Lett. 113, 155001 (2014).
Faber, B. J. et al. Gyrokinetic studies of trapped electron mode turbulence in the helically symmetric experiment stellarator. Phys. Plasmas 22, 072305 (2015).
García-Regaña, J. M. et al. Turbulent transport of impurities in 3D devices. Nucl. Fusion 61, 116019 (2021).
García-Regaña, J. M. et al. Turbulent impurity transport simulations in Wendelstein 7-X plasmas. J. Plasma Phys. 87, 855870103 (2021).
Thienpondt, H. et al. Prevention of core particle depletion in stellarators by turbulence. Phys. Rev. Res. 5, L022053 (2023).
Mulholland, P. et al. Enhanced transport at high plasma pressure and subthreshold kinetic ballooning modes in Wendelstein 7-X. Phys. Rev. Lett. 131, 185101 (2023).
Gerard, M. J. et al. On the effect of flux-surface shaping on trapped-electron modes in quasi-helically symmetric stellarators. Phys. Plasmas 31, 052501 (2024).
Kim, P. et al. Optimization of nonlinear turbulence in stellarators. J. Plasma Phys. 90, 905900210 (2024).
Zocco, A., Podavini, L., Wilms, F., Navarro, A. B. & Jenko, F. Electron-temperature-gradient-driven ion-scale turbulence in high-performance scenarios in Wendelstein 7-X. Phys. Rev. Res. 6, 033099 (2024).
Pueschel, M. J. et al. Stellarator turbulence: subdominant eigenmodes and quasilinear modeling. Phys. Rev. Lett. 116, 085001 (2016).
Toda, S. et al. A reduced transport model for ion heat diffusivity by gyro-kinetic analysis with kinetic electrons in helical plasmas. Plasma Fusion Res. 12, 1303035 (2017).
Hegna, C. C., Terry, P. W. & Faber, B. J. Theory of ITG turbulent saturation in stellarators: identifying mechanisms to reduce turbulent transport. Phys. Plasmas 25, 022511 (2018).
Nakayama, T. et al. A simplified model to estimate nonlinear turbulent transport by linear dynamics in plasma turbulence. Sci. Rep. 13, 2319 (2023).
Maurer, M. et al. GENE-3D: a global gyrokinetic turbulence code for stellarators. J. Comput. Phys. 420, 109694 (2020).
Navarro, A. B. et al. Global gyrokinetic simulations of ITG turbulence in the magnetic configuration space of the Wendelstein 7-X stellarator. Plasma Phys. Control. Fusion 62, 105005 (2020).
Wilms, F. et al. Global electromagnetic turbulence simulations of W7-X-like plasmas with GENE-3D. J. Plasma Phys. 87, 905870604 (2021).
Wilms, F., Bañón Navarro, A. & Jenko, F. Full-flux-surface effects on electrostatic turbulence in Wendelstein 7-X-like plasmas. Nucl. Fusion 63, 086004 (2023).
Wilms, F. et al. Global gyrokinetic analysis of Wendelstein 7-X discharge: unveiling the importance of trapped-electron-mode and electron-temperature-gradient turbulence. Nucl. Fusion 64, 096040 (2024).
Sánchez, E. et al. Nonlinear gyrokinetic PIC simulations in stellarators with the code EUTERPE. J. Plasma Phys. 86, 855860501 (2020).
Mishchenko, A. et al. Gyrokinetic particle-in-cell simulations of electromagnetic turbulence in the presence of fast particles and global modes. Plasma Phys. Control. Fusion 64, 104009 (2022).
Mishchenko, A. et al. Global gyrokinetic simulations of electromagnetic turbulence in stellarator plasmas. J. Plasma Phys. 89, 955890304 (2023).
Kleiber, R. et al. EUTERPE: a global gyrokinetic code for stellarator geometry. Comput. Phys. Commun. 295, 109013 (2024).
Mynick, H. E., Pomphrey, N. & Xanthopoulos, P. Optimizing stellarators for turbulent transport. Phys. Rev. Lett. 105, 095004 (2010).
Mynick, H. E., Pomphrey, N. & Xanthopoulos, P. Reducing turbulent transport in toroidal configurations via shaping. Phys. Plasmas 18, 056101 (2011).
Mynick, H. E. et al. Turbulent optimization of toroidal configurations. Plasma Phys. Control. Fusion 56, 094001 (2014).
Roberg-Clark, G. T., Plunk, G. G. & Xanthopoulos, P. Coarse-grained gyrokinetics for the critical ion temperature gradient in stellarators. Phys. Rev. Res. 4, L032028 (2022).
Roberg-Clark, G. T. et al. Critical gradient turbulence optimization toward a compact stellarator reactor concept. Phys. Rev. Res. 5, L032030 (2023).
Roberg-Clark, G. T., Xanthopoulos, P. & Plunk, G. G. Reduction of electrostatic turbulence in a quasi-helically symmetric stellarator via critical gradient optimization. J. Plasma Phys. 90, 175900301 (2024).
Proll, J. H. E., Mynick, H. E., Xanthopoulos, P., Lazerson, S. A. & Faber, B. J. TEM turbulence optimisation in stellarators. Plasma Phys. Control. Fusion 58, 014006 (2016).
Proll, J. H. E., Helander, P., Connor, J. W. & Plunk, G. G. Resilience of quasi-isodynamic stellarators against trapped-particle instabilities. Phys. Rev. Lett. 108, 245002 (2012).
Sanchez, E., Velasco, J. L., Calvo, I. & Mulas, S. A quasi-isodynamic configuration with good confinement of fast ions at low plasma β. Nucl. Fusion 63, 066037 (2023).
Proll, J. H. E. et al. Turbulence mitigation in maximum-J stellarators with electron-density gradient. J. Plasma Phys. 88, 905880112 (2022).
Fasoli, A. et al. Chapter 5: Physics of energetic ions. Nucl. Fusion 47, S264–S284 (2007).
Heidbrink, W. W. Basic physics of Alfvén instabilities driven by energetic particles in toroidally confined plasmas. Phys. Plasmas 15, 055501 (2008).
Gorelenkov, N. N., Pinches, S. D. & Toi, K. Energetic particle physics in fusion research in preparation for burning plasma experiments. Nucl. Fusion 54, 125001 (2014).
Chen, L. & Zonca, F. Physics of Alfvén waves and energetic particles in burning plasmas. Rev. Mod. Phys. 88, 15008 (2016).
Todo, Y. Introduction to the interaction between energetic particles and Alfvén eigenmodes in toroidal plasmas. Rev. Mod. Plasma Phys. 3, 1 (2019).
Heidbrink, W. W. & White, R. B. Mechanisms of energetic-particle transport in magnetically confined plasmas. Phys. Plasmas 27, 030901 (2020).
Herrmann, M. C. & Fisch, N. J. Cooling energetic α particles in a tokamak with waves. Phys. Rev. Lett. 79, 1495 (1997).
Ochs, I. E. & Fisch, N. J. Nonresonant diffusion in α channeling. Phys. Rev. Lett. 127, 025003 (2021).
Hayward-Schneider, T., Lauber, P., Bottino, A. & Lu, Z. X. Global linear and nonlinear gyrokinetic modelling of Alfvén eigenmodes in ITER. Nucl. Fusion 61, 036045 (2021).
Hayward-Schneider, T., Lauber, P., Bottino, A. & Mishchenko, A. Multi-scale analysis of global electromagnetic instabilities in ITER pre-fusion-power operation plasmas. Nucl. Fusion 62, 112007 (2022).
Görler, T. et al. The global version of the gyrokinetic turbulence code GENE. J. Comput. Phys. 230, 7053–7071 (2011).
Obrejan, K., Imadera, K., Li, J. & Kishimoto, Y. Development of a new zonal flow equation solver by diagonalisation and its application in non-circular cross-section tokamak plasmas. Comput. Phys. Commun. 216, 8–17 (2017).
Lin, Z., Hahm, T. S., Lee, W. W., Tang, W. M. & White, R. B. Turbulent transport reduction by zonal flows: massively parallel simulations. Science 281, 1835–1837 (1998).
Lanti, E. et al. ORB5: a global electromagnetic gyrokinetic code using the PIC approach in toroidal geometry. Comput. Phys. Commun. 251, 107072 (2020).
Di Siena, A. et al. New high-confinement regime with fast ions in the core of fusion plasmas. Phys. Rev. Lett. 127, 025002 (2021).
Biancalani, A. et al. Gyrokinetic investigation of Alfvén instabilities in the presence of turbulence. Plasma Phys. Control. Fusion 63, 065009 (2021).
Ishizawa, A., Imadera, K., Nakamura, Y. & Kishimoto, Y. Multi-scale interactions between turbulence and magnetohydrodynamic instability driven by energetic particles. Nucl. Fusion 61, 114002 (2021).
Di Siena, A. et al. Nonlinear electromagnetic interplay between fast ions and ion-temperature-gradient plasma turbulence. J. Plasma Phys. 87, 555870201 (2021).
Liu, P. et al. Regulation of Alfvén eigenmodes by microturbulence in fusion plasmas. Phys. Rev. Lett. 128, 185001 (2022).
Di Siena, A. et al. Impact of supra-thermal particles on plasma performance at ASDEX Upgrade with GENE-Tango simulation. Nucl. Fusion 64, 066020 (2024).
Citrin, J. et al. Nonlinear stabilization of tokamak microturbulence by fast ions. Phys. Rev. Lett. 111, 155001 (2013).
Citrin, J. et al. Electromagnetic stabilization of tokamak microturbulence in a high-β regime. Plasma Phys. Control. Fusion 57, 014032 (2014).
Garcia, J. et al. Key impact of finite-β and fast ions in core and edge tokamak regions for the transition to advanced scenarios. Nucl. Fusion 55, 053007 (2015).
Doerk, H. et al. Turbulence in high-β ASDEX Upgrade advanced scenarios. Nucl. Fusion 58, 016044 (2018).
Garcia, J., Görler, T. & Jenko, F. Isotope and fast ions turbulence suppression effects: consequences for high-β ITER plasmas. Phys. Plasmas 25, 055902 (2018).
Di Siena, A., Görler, T., Doerk, H., Poli, E. & Bilato, R. Fast-ion stabilization of tokamak plasma turbulence. Nucl. Fusion 58, 054002 (2018).
Di Siena, A. et al. Electromagnetic turbulence suppression by energetic particle driven modes. Nucl. Fusion 59, 124001 (2019).
Di Siena, A., Bañón Navarro, A. & Jenko, F. Turbulence suppression by energetic particle effects in modern optimized stellarators. Phys. Rev. Lett. 125, 105002 (2020).
Garcia, J. & Contributors, J. Electromagnetic and fast ions effects as a key mechanism for turbulent transport suppression at JET. Plasma Phys. Control. Fusion 64, 104002 (2022).
Citrin, J. & Mantica, P. Overview of tokamak turbulence stabilization by fast ions. Plasma Phys. Control. Fusion 65, 033001 (2023).
Odette, G. R., Alinger, M. J. & Wirth, B. D. Recent developments in irradiation-resistant steels. Annu. Rev. Mater. Res. 38, 471–503 (2008).
Marian, J. et al. Recent advances in modeling and simulation of the exposure and response of tungsten to fusion energy conditions. Nucl. Fusion 57, 092008 (2017).
Nordlund, K. et al. Improving atomic displacement and replacement calculations with physically realistic damage models. Nat. Commun. 9, 1084 (2018).
Nordlund, K. Historical review of computer simulation of radiation effects in materials. J. Nucl. Mater. 520, 273–295 (2019).
Gilbert, M. R. et al. Perspectives on multiscale modelling and experiments to accelerate materials development for fusion. J. Nucl. Mater. 554, 153113 (2021).
Wood, M. A., Susentino, M. A., Wirth, B. D. & Thompson, A. P. Data-driven material models for atomistic simulation. Phys. Rev. B 99, 184305 (2019).
Byggmästar, J., Hamedani, A., Nordlund, K. & Djurabekova, F. Machine-learning interatomic potential for radiation damage and defects in tungsten. Phys. Rev. B 100, 144105 (2019).
Wang, X.-Y. et al. Deep neural network potential for simulating hydrogen blistering in tungsten. Phys. Rev. Mater. 7, 093601 (2023).
Ding, C.-J. et al. A deep learning interatomic potential suitable for simulating radiation damage in bulk tungsten. Tungsten 6, 304–322 (2024).
Merchant, A. et al. Scaling deep learning for materials discovery. Nature 624, 80–85 (2023).
Szymanski, N. J. et al. An autonomous laboratory for the accelerated synthesis of novel materials. Nature 624, 86–91 (2023).
National Academies of Sciences, Engineering and Medicine. Foundational Research Gaps and Future Directions for Digital Twins (The National Academies Press, 2024).
Grieves, M. Product Lifecycle Management: Driving the Next Generation of Lean Thinking (McGraw Hill, 2005).
Piascik, B. et al. Materials, Structures, Mechanical Systems, and Manufacturing Roadmap: Technology Area 12 (NASA, 2012).
Maeyama, S., Howard, N. T., Citrin, J., Watanabe, T.-H. & Tokuzawa, T. Overview of multiscale turbulence studies covering ion-to-electron scales in magnetically confined fusion plasma. Nucl. Fusion 64, 112007 (2024).
Holland, C. et al. Implementation and application of two synthetic diagnostics for validating simulations of core tokamak turbulence. Phys. Plasmas 16, 052301 (2009).
Casati, A. et al. Turbulence in the Tore Supra tokamak: measurements and validation of nonlinear simulations. Phys. Rev. Lett. 102, 165005 (2009).
White, A. E. et al. Simultaneous measurement of core electron temperature and density fluctuations during electron cyclotron heating on DIII-D. Phys. Plasmas 17, 020701 (2010).
Rhodes, T. L. et al. L-Mode validation studies of gyrokinetic turbulence simulations via multiscale and multifield turbulence measurements on the DIII-D tokamak. Nucl. Fusion 51, 063022 (2011).
Howard, N. T. et al. Investigation of the transport shortfall in Alcator C-Mod L-mode plasmas. Phys. Plasmas 20, 032510 (2013).
Ren, Y. et al. Electron-scale turbulence spectra and plasma thermal transport responding to continuous E × B shear ramp-up in a spherical tokamak. Nucl. Fusion 53, 083007 (2013).
Told, D., Jenko, F., Görler, T., Casson, F. J. & Fable, E. Characterizing turbulent transport in ASDEX Upgrade L-mode plasmas via nonlinear gyrokinetic simulations. Phys. Plasmas 20, 122312 (2013).
Görler, T. et al. A flux-matched gyrokinetic analysis of DIII-D L-mode turbulence. Phys. Plasmas 21, 122307 (2014).
Happel, T. et al. Comparison of detailed experimental wavenumber spectra with gyrokinetic simulation aided by two-dimensional full-wave simulations. Plasma Phys. Control. Fusion 59, 054009 (2017).
Freethy, J. et al. Validation of gyrokinetic simulations with measurements of electron temperature fluctuations and density-temperature phase angles on ASDEX Upgrade. Phys. Plasmas 25, 055903 (2018).
Ruiz Ruiz, J. et al. Validation of gyrokinetic simulations of a National Spherical Torus Experiment H-mode plasma and comparisons with a high-k scattering synthetic diagnostic. Plasma Phys. Control. Fusion 61, 115015 (2019).
Molina Cabrera, P. A. et al. Isotope effects on energy transport in the core of ASDEX Upgrade tokamak plasmas: turbulence measurements and model validation. Phys. Plasmas 30, 082304 (2023).
Cheng, J. et al. Spatial core-edge coupling of the particle-in-cell gyrokinetic codes GEM and XGC. Phys. Plasmas 27, 122510 (2020).
Merlo, G. et al. First coupled GENE-XGC microturbulence simulations. Phys. Plasmas 28, 012303 (2021).
Dominski, J. et al. Spatial coupling of gyrokinetic simulations, a generalized scheme based on first-principles. Phys. Plasmas 28, 022301 (2021).
Janky, F. et al. ASDEX Upgrade flight simulator development. Fusion Eng. Des. 146, 1926–1929 (2019).
Janky, F., Fable, E., Englberger, M., Treutterer, W. & the ASDEX Upgrade Team. Validation of the FENIX ASDEX Upgrade flight simulator. Fusion Eng. Des. 163, 112126 (2021).
Fable, E. et al. The modeling of a tokamak plasma discharge, from first principles to a flight simulator. Plasma Phys. Control. Fusion 64, 044002 (2022).
Muraca, M. et al. Reduced transport models for a tokamak flight simulator. Plasma Phys. Control. Fusion 65, 035007 (2023).
Felici, F. et al. Real-time-capable prediction of temperature and density profiles in a tokamak using RAPTOR and a first-principle-based transport model. Nucl. Fusion 58, 096006 (2018).
Citrin, J. et al. TORAX: a fast and differentiable tokamak transport simulator in JAX. Preprint at https://doi.org/10.48550/arXiv.2406.06718 (2024).
Di Grazia, L. E. et al. Development of magnetic control for the EU-DEMO flight simulator and application to transient phenomena. Fusion Eng. Des. 191, 113579 (2023).
Patterson, E. A., Purdie, S., Taylor, R. J. & Waldon, C. An integrated digital framework for the design, build and operation of fusion power plants. R. Soc. Open Sci. 6, 181847 (2019).
Smolentsev, S. et al. On the role of integrated computer modelling in fusion technology. Fusion Eng. Des. 157, 111671 (2020).
Qin, S., Wang, Q. & Chen, X. Application of virtual reality technology in nuclear device design and research. Fusion Eng. Des. 161, 11906 (2020).
Rauscher, F. et al. A digital twin concept for the development of a DEMO maintenance logistics modelling tool. Fusion Eng. Des. 168, 112399 (2021).
Kwon, J.-M. et al. Development of a virtual tokamak platform. Fusion Eng. Des. 184, 113281 (2022).
Farcaş, I. G., Görler, T., Bungartz, H.-J., Jenko, F. & Neckel, T. Sensitivity-driven adaptive sparse stochastic approximations in plasma microinstability analysis. J. Comput. Phys. 410, 109394 (2020).
Farcaş, I. G., Di Siena, A. & Jenko, F. Turbulence suppression by energetic particles: a sensitivity-driven dimension-adaptive sparse grid framework for discharge optimization. Nucl. Fusion 61, 056004 (2021).
Coster, D. P. et al. Building a turbulence-transport workflow incorporating uncertainty quantification for predicting core profiles in a tokamak plasma. Nucl. Fusion 61, 126068 (2021).
Farcaş, I. G., Merlo, G. & Jenko, F. A general framework for quantifying uncertainty at scale. Commun. Eng. 1, 43 (2022).
Coster, D. P. Quantification of the uncertainty arising from atomic physics in edge plasmas. Nucl. Mater. Energy 33, 101282 (2022).
Morris, A. W. et al. Towards a fusion power plant: integration of physics and technology. Plasma Phys. Control. Fusion 64, 064002 (2022).
Köberl, R. et al. Uncertainty quantification in three-dimensional magnetohydrodynamic equilibrium reconstruction via surrogate-assisted Bayesian inference. Contrib. Plasma Phys. 63, e202200173 (2023).
Farcaș, I. G., Peherstorfer, B., Neckel, T., Jenko, F. & Bungartz, H.-J. Context-aware learning of hierarchies of low-fidelity models for multi-fidelity uncertainty quantification. Comput. Methods Appl. Mech. Eng. 406, 115908 (2023).
Fischer, R., Dinklage, A. & Pasch, E. Bayesian modelling of fusion diagnostics. Plasma Phys. Control. Fusion 45, 1095–1111 (2003).
Fischer, R. et al. Integrated data analysis of profile diagnostics at ASDEX Upgrade. Fusion Sci. Technol. 58, 675–684 (2010).
Bergmann, M., Fischer, R., Angioni, C. & Höfler, P. Plasma profile reconstruction supported by kinetic modeling. Nucl. Fusion 64, 056024 (2024).
Litaudon, X. et al. EUROfusion-Theory and Advanced Simulation Coordination (E-TASC): programme and the role of high performance computing. Plasma Phys. Control. Fusion 64, 034005 (2022).
Degrave, J. et al. Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602, 414–419 (2022).
Citrin, J. et al. Fast transport simulations with higher-fidelity surrogate models for ITER. Phys. Plasmas 30, 062501 (2023).
Peherstorfer, B., Willcox, K. & Gunzburger, M. Survey of multifidelity methods in uncertainty propagation, inference, and optimization. SIAM Rev. 60, 550–591 (2018).
Konrad, J. et al. Data-driven low-fidelity models for multi-fidelity Monte Carlo sampling in plasma micro-turbulence analysis. J. Comput. Phys. 451, 110898 (2022).
Law, F., Cerfon, A. & Peherstorfer, B. Accelerating the estimation of collisionless energetic particle confinement statistics in stellarators using multifidelity Monte Carlo. Nucl. Fusion 62, 076019 (2022).
Law, F., Cerfon, A., Peherstorfer, B. & Wechsung, F. Meta variance reduction for Monte Carlo estimation of energetic particle confinement during stellarator optimization. J. Comput. Phys. 495, 112524 (2023).
Fernandez-Godino, M. G. Review of multi-fidelity models. Adv. Comput. Sci. Eng. 1, 351–400 (2023).
Cathey, A. et al. Comparing spontaneous and pellet-triggered ELMs via non-linear extended MHD simulations. Plasma Phys. Control. Fusion 63, 075016 (2021).
Acknowledgements
The author thanks R. Akers, C. Angioni, A. B. Navarro, A. Di Siena, E. Fable, I.-G. Farcaş, F. Fleschner, T. Görler, T. Hayward-Schneider, M. Hoelzl, A. Stegmeir, P. Ulbl, V. Vodopivec, K. Willcox, F. Wilms and W. Zholobenko for the helpful discussions and technical support.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Physics thanks Jae-Min Kwon, Ben Dudson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Jenko, F. Accelerating fusion research via supercomputing. Nat Rev Phys 7, 365–377 (2025). https://doi.org/10.1038/s42254-025-00837-1
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s42254-025-00837-1