Abstract
Wetting phenomena have been studied quantitatively for more than 200 years, but there remain many fundamental questions that are not understood. For example, the speed of a water drop sliding down an inclined plane cannot be predicted. A drop that slides down a surface experiences a resistance. We call this resistance drop friction. It is still debated how and where energy is dissipated in a sliding drop. Particularly for the most common liquid, water, there have been considerable advances in the understanding of wetting, driven by the development of new physical, preparative and theoretical methods. Water is a special liquid, owing to its polar nature, its tendency to form hydrogen bonds, the self-ionization into OH− and H3O+, its low viscosity and its high surface tension. In recent years, water–surface interactions due to adaptation, spontaneous electrostatic charging and deformation on elastomers have been identified as important processes that increase drop friction. They may be responsible for drop friction even on seemingly smooth, homogeneous and rigid surfaces.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
McHale, G., Gao, N., Wells, G. G., Barrio-Zhang, H. & Ledesma-Aguilar, R. Friction coefficients for droplets on solids: the liquid–solid Amontons’ laws. Langmuir 38, 4425–4433 (2022).
Hardt, S. & McHale, G. Flow and drop transport along liquid-infused surfaces. Ann. Rev. Fluid Mech. 54, 83–104 (2022).
Chen, F. et al. Robust and durable liquid-repellent surfaces. Chem. Soc. Rev. 51, 8476–8583 (2022).
Chen, L., Huang, S., Ras, R. H. A. & Tian, X. Omniphobic liquid-like surfaces. Nat. Rev. Chem. 7, 123–137 (2022).
Young, T. An essay on the cohesion of fluids. Phil. Trans. R. Soc. Lond. 95, 65–87 (1805).
Laplace, P. S. Mécanique Céleste, Suppl. au Livre X Vol. 10 (1806).
Drelich, J. W. et al. Contact angles: history of over 200 years of open questions. Surf. Innov. 8, 3–27 (2020).
Gibbs, J. W. The Collected Works of J. Willard Gibbs, Thermodynamics Vol. I (Yale Univ. Press, 1928).
de Gennes, P. G. Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827–863 (1985).
Gibbs, J. W. The Scientific Papers of J. Willard Gibbs Vol. 1. Thermodynamics (Dover, 1961).
McNutt, J. E. & Andes, G. M. Relationship of the contact angle to interfacial energies. J. Chem. Phys. 30, 1300–1303 (1959).
Collins, R. E. & Cooke, C. E. Fundamental basis for the contact angle and capillary pressure. Trans. Faraday Soc. 55, 1602–1606 (1959).
Roura, P. & Fort, J. Local thermodynamic derivation of Young’s equation. J. Colloid Interface Sci. 272, 420–429 (2004).
Shardt, N. & Elliott, J. A. W. Gibbsian thermodynamics of Wenzel wetting (Was Wenzel wrong? revisited). Langmuir 36, 435–446 (2020).
Hautman, J. & Klein, M. L. Microscopic wetting phenomena. Phys. Rev. Lett. 67, 1763–1766 (1991).
Das, S. K. & Binder, K. Does Young’s equation hold on the nanoscale? A Monte Carlo test for the binary Lennard–Jones fluid. Europhys. Lett. 92, 26006 (2010).
Seveno, D., Blake, T. D. & De Coninck, J. Young’s equation at the nanoscale. Phys. Rev. Lett. 111, 096101 (2013).
Tretyakov, N., Mueller, M., Todorova, D. & Thiele, U. Parameter passing between molecular dynamics and continuum models for droplets on solid substrates: the static case. J. Chem. Phys. 138, 064905 (2013).
White, L. R. On deviations from Young’s equation. J. Chem. Soc., Faraday Trans. I 73, 390–398 (1977).
Rusanov, A. I. Thermodynamics of solid surfaces. Surf. Sci. Rep. 23, 173–247 (1996).
Chibowski, E. & Perea-Carpio, R. Problems of contact angle and solid surface free energy determination. Adv. Colloid Interface Sci. 98, 245–264 (2002).
Bikerman, J. J. in Contributions to the Thermodynamics of Surfaces (ed. Bikerman, J. J.) 65–76 (Massachusetts Institute of Technology, 1961).
Dussan, E. B. On the ability of drops or bubbles to stick to non-horizontal surfaces of solids. 2. Small drops or bubbles having contact angles of arbitrary size. J. Fluid Mech. 151, 1–20 (1985).
Dimitrakopoulos, P. & Higdon, J. J. L. On the gravitational displacement of three-dimensional fluid droplets from inclined solid surfaces. J. Fluid Mech. 395, 181–209 (1999).
Berejnov, V. & Thorne, R. E. Effect of transient pinning on stability of drops sitting on an inclined plane. Phys. Rev. E 75, 066308 (2007).
Musterd, M., van Steijn, V., Kleijn, C. R. & Kreutzer, M. T. Droplets on inclined plates: local and global hysteresis of pinned capillary surfaces. Phys. Rev. Lett. 113, 066104 (2014).
Ravazzoli, P. D., Cuellar, I., Gonzalez, A. G. & Diez, J. A. Contact-angle-hysteresis effects on a drop sitting on an incline plane. Phys. Rev. E 99, 043105 (2019).
Laroche, A. et al. Tuning static drop friction. Droplet 2, e42 (2023).
Jena, A. K. et al. Stages that lead to drop depinning and onset of motion. Langmuir 38, 92–99 (2022).
Frenkel, Y. I. On the behavior of liquid drops on a solid surface. 1. The sliding of drops on an inclined surface. J. Exptl. Theoret. Phys. 18, 659–669 (1948).
Buzagh, A. & Wolfram, E. Bestimmung der Haftfähigkeit von Flüssigkeiten an festen Körpern mit der Abreißwinkelmethode. Kolloid Z. 157, 50–53 (1958).
Kawasaki, K. Study of wettability of polymers by sliding of a water drop. J. Colloid Sci. 15, 402–407 (1960).
Furmidge, C. G. L. Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention. J. Colloid Sci. 17, 309–324 (1962).
Extrand, C. W. & Kumagai, Y. Liquid drops on an inclined plane: the relation between contact angles, drop shape, and retention forces. J. Colloid Interface Sci. 170, 515–521 (1995).
ElSherbini, A. & Jacobi, A. Retention forces and contact angles for critical liquid drops on non-horizontal surfaces. J. Colloid Interface Sci. 299, 841–849 (2006).
Antonini, C., Carmona, F. J., Pierce, E., Marengo, M. & Amirfazli, A. General methodology for evaluating the adhesion force of drops and bubbles on solid surfaces. Langmuir 25, 6143–6154 (2009).
Humayun, S., Maynes, R. D., Crockett, J. & Iverson, B. D. Retention forces for drops on microstructured superhydrophobic surfaces. Langmuir 38, 15960–15972 (2022).
Hinduja, C., Butt, H. J. & Berger, R. Slide electrification of drops at low velocities. Soft Matter 20, 3349–3358 (2024).
Neumann, A. W. & Good, R. J. Thermodynamics of contact angles. 1. Heterogeneous surfaces. J. Colloid Interface Sci. 38, 341–358 (1972).
Schwartz, L. W. & Garoff, S. Contact angle hysteresis on heterogeneous surfaces. Langmuir 1, 219–230 (1985).
Robbins, M. O. & Joanny, J. F. Contact angle hysteresis on random surfaces. Europhys. Lett. 3, 729–735 (1987).
Nadkarni, G. D. & Garoff, S. Reproducibility of contact line motion on surfaces exhibiting contact angle hysteresis. Langmuir 10, 1618–1623 (1994).
Kusumaatmaja, H. & Yeomans, J. M. Modeling contact angle hysteresis on chemically patterned and superhydrophobic surfaces. Langmuir 23, 6019–6032 (2007).
Varagnolo, S. et al. Tuning drop motion by chemical patterning of surfaces. Langmuir 30, 2401–2409 (2014).
Marmur, A. Solid-surface characterization by wetting. Annu. Rev. Mater. Res. 39, 473–489 (2009).
Forsberg, P. S. H., Priest, C., Brinkmann, M., Sedev, R. & Ralston, J. Contact line pinning on microstructured surfaces for liquids in the Wenzel state. Langmuir 26, 860–865 (2010).
Bormashenko, E. Y. Wetting of Real Surfaces Vol. 19 (De Gruyter, 2013).
Promraksa, A. & Chen, L. J. Modeling contact angle hysteresis of a liquid droplet sitting on a cosine wave-like pattern surface. J. Colloid Interface Sci. 384, 172–181 (2012).
Davitt, K., Pettersen, M. S. & Rolley, E. Thermally activated wetting dynamics in the presence of surface roughness. Langmuir 29, 6884–6894 (2013).
Lhermerout, R., Perrin, H., Rolley, E., Andreotti, B. & Davitt, K. A moving contact line as a rheometer for nanometric interfacial layers. Nat. Commun. 7, 12545 (2016).
Liu, Q., Yu, J. P. & Wang, H. The role of the substrate roughness in contact angle hysteresis and dynamic deviation. Int. J. Heat. Mass. Transf. 148, 118985 (2020).
Dhyani, A. et al. Design and applications of surfaces that control the accretion of matter. Science 373, eaba5010 (2021).
Kumar, P. & Harvie, D. J. E. Contact angle hysteresis on rough surfaces part II: energy dissipation via microscale interface dynamics. Preprint at https://arxiv.org/abs/2303.09149 (2024).
Ren, J. H. & Duan, F. Recent progress in experiments for sessile droplet wetting on structured surfaces. Curr. Opin. Colloid Interface Sci. 53, 101425 (2021).
Wang, F., Wu, Y. C. & Nestler, B. Wetting effect on patterned substrates. Adv. Mater. 35, 2210745 (2023).
Wu, Y. C., Wang, F., Ma, S. P., Selzer, M. & Nestler, B. How do chemical patterns affect equilibrium droplet shapes? Soft Matter 16, 6115–6127 (2020).
Johnson, R. E. & Dettre, R. H. in Surface and Colloid Science Vol. 2 (ed Matijevic, E.) 85–153 (Wiley Interscience, 1969).
Joanny, J. F. & de Gennes, P. G. A model for contact angle hysteresis. J. Chem. Phys. 81, 552–562 (1984).
Moulinet, S., Guthmann, C. & Rolley, E. Roughness and dynamics of a contact line of a viscous fluid on a disordered substrate. Eur. Phys. J. E 8, 437–443 (2002).
Reyssat, M. & Quéré, D. Contact angle hysteresis generated by strong dilute defects. J. Phys. Chem. B 113, 3906–3909 (2009).
Saal, A., Straub, B. B., Butt, H. J. & Berger, R. Pinning forces of sliding drops at defects. EPL 139, 47001 (2022).
Chibowski, E. Surface free energy of a solid from contact angle hysteresis. Adv. Colloid Interface Sci. 103, 149–172 (2003).
Brutin, D. & Starov, V. Recent advances in droplet wetting and evaporation. Chem. Soc. Rev. 47, 558–585 (2018).
Wang, H. From contact line structures to wetting dynamics. Langmuir 35, 10233–10245 (2019).
Zhang, H., Zhang, H., Wang, F. & Nestler, B. Exploration of contact angle hysteresis mechanisms: from microscopic to macroscopic. J. Chem. Phys. 161, 194705 (2024).
Andrade, J. D., Smith, L. M. & Gregonis, D. E. in Surface and Interfacial Aspects of Biomedical Polymers Vol. 1 (ed. Andrade, J. D.) 249–292 (Plenum, 1985).
Tretinnikov, O. N. & Ikada, Y. Dynamic wetting and contact angle hysteresis of polymer surfaces studied with the modified Wilhelmy balance method. Langmuir 10, 1606–1614 (1994).
Wang, J. H., Claesson, P. M., Parker, J. L. & Yasuda, H. Dynamic contact angles and contact angle hysteresis of plasma polymers. Langmuir 10, 3887–3897 (1994).
Erbil, H. Y., McHale, G., Rowan, S. M. & Newton, M. I. Determination of the receding contact angle of sessile drops on polymer surfaces by evaporation. Langmuir 15, 7378–7385 (1999).
Cohen Stuart M.A. et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9, 101–113 (2010).
N’Guessan, H. E. et al. Water tribology on graphene. Nat. Commun. 3, 1242 (2012).
Duc, C., Vlandas, A., Malliaras, G. G. & Senez, V. Wettability of PEDOT:PSS films. Soft Matter 12, 5146–5153 (2016).
Lequeux, F., Talini, L., Verneuil, E., Delannoy, G. & Valois, P. Wetting of polymers by their solvents. Eur. Phys. J. E 39, 12 (2016).
Butt, H.-J., Berger, R., Steffen, W., Vollmer, D. & Weber, S. A. L. Adaptive wetting — adaptation in wetting. Langmuir 34, 11292–11304 (2018).
Nakamura, S., Kakiuchida, H., Okada, M. & Hozumi, A. Statically very hydrophilic but dynamically hydrophobic surfaces showing surprising water sliding performance. Adv. Funct. Mater. 34, 2310265 (2024).
Koochak, P. et al. Smoothening perfluoroalkylated surfaces: liquid-like despite molecular rigidity? Adv. Mater. Interfaces 12, 2400619 (2024).
Chen, K. Y. et al. Soft wetting: substrate softness- and time-dependent droplet/ bubble adhesion. J. Colloid Interface Sci. 662, 87–98 (2024).
Macdougall, G. & Ockrent, C. Surface energy relations in liquid/solid systems. I. The adhesion of liquids to solids and a new method of determining the surface tension of liquids. Proc. R. Soc. Lond. A 180, 151–173 (1942).
Tadmor, R. & Yadav, P. S. As-placed contact angles for sessile drops. J. Colloid Interface Sci. 317, 241–246 (2008).
Extrand, C. W. & Gent, A. N. Retention of liquid drops by solid surfaces. J. Colloid Interface Sci. 138, 431–442 (1990).
Tadmor, R. et al. Measurement of lateral adhesion forces at the interface between a liquid drop and a substrate. Phys. Rev. Lett. 103, 266101 (2009).
Evgenidis, S. P., Kalic, K., Kostoglou, M. & Karapantsios, T. D. Kerberos: a three camera headed centrifugal/tilting device for studying wetting/dewetting under the influence of controlled body forces. Colloids Surf. A 521, 38–48 (2017).
Kim, H., Poelma, C., Ooms, G. & Westerweel, J. Experimental and theoretical study of dewetting corner flow. J. Fluid Mech. 762, 393–416 (2015).
Tang, S. R. et al. Droplets sliding down a vertical surface under increasing horizontal forces. Langmuir 35, 8191–8198 (2019).
Sadullah, M. S., Xu, Y. F., Arunachalam, S. & Mishra, H. Predicting droplet detachment force: Young–Dupré model fails, Young–Laplace model prevails. Commun. Phys. 7, 89 (2024).
Timmons, C. O. & Zisman, W. A. Effect of liquid structure on contact angle hysteresis. J. Colloid Interface Sci. 22, 165–171 (1966).
Yasuda, T., Miyama, M. & Yasuda, H. Effect of water immersion on surface configuration of an ethylene–vinyl alcohol copolymer. Langmuir 10, 583–585 (1994).
Lam, C. N. C., Wu, R., Li, D., Hair, M. L. & Neumann, A. W. Study of the advancing and receding contact angles: liquid sorption as a cause of contact angle hysteresis. Adv. Colloid Interface Sci. 96, 169–191 (2002).
Wong, W. S. Y. et al. Adaptive wetting of polydimethylsiloxane. Langmuir 36, 7236–7245 (2020).
Ahmed, A., Sanedrin, R., Willers, T. & Waghmare, P. R. The effect of dynamic wetting pressure on contact angle measurements. J. Colloid Interface Sci. 608, 1086–1093 (2022).
Liu, K., Vuckovac, M., Latikka, M., Huhtamaki, T. & Ras, R. H. A. Improving surface-wetting characterization. Science 363, 1147 (2019).
Hayes, R. A. & Ralston, J. Forced liquid movement on low energy surfaces. J. Colloid Interface Sci. 159, 429–438 (1993).
Ranabothu, S. R., Karnezis, C. & Dai, L. L. Dynamic wetting: hydrodynamic or molecular-kinetic? J. Colloid Interface Sci. 288, 213–221 (2005).
Priest, C., Sedev, R. & Ralston, J. A quantitative experimental study of wetting hysteresis on discrete and continuous chemical heterogeneities. Colloid Polym. Sci. 291, 271–277 (2013).
Burley, R. & Kennedy, B. S. An experimental study of air entrainment at a solid–liquid–gas interface. Chem. Eng. Sci. 31, 901–911 (1976).
Gutoff, E. B. & Kendrick, C. E. Dynamic contact angles. AIChE J. 28, 459–466 (1982).
Petrov, P. G. & Petrov, J. G. A combined molecular-hydrodynamic approach to wetting kinetics. Langmuir 8, 1762–1767 (1992).
Blake, T. D. & Shikhmurzaev, Y. D. Dynamic wetting by liquids of different viscosity. J. Colloid Interface Sci. 253, 196–202 (2002).
Inverarity, G. Dynamic wetting of glass fibre and polymer fibre. Br. Polym. J. 1, 245–251 (1969).
Ghannam, M. T. & Esmail, M. N. Experimental study on wetting of fibers with non-Newtonian liquids. AIChE J. 43, 1579–1588 (1997).
Petrov, J. G., Ralston, J., Schneemilch, M. & Hayes, R. A. Dynamics of partial wetting and dewetting in well-defined systems. J. Phys. Chem. B 107, 1634–1645 (2003).
Vega, M. J. et al. Experimental investigation of the link between static and dynamic wetting by forced wetting of nylon filament. Langmuir 23, 10628–10634 (2007).
Bateni, A., Susnar, S. S., Amirfazli, A. & Neumann, A. W. A high-accuracy polynomial fitting approach to determine contact angles. Colloids Surf. A 219, 215–231 (2003).
Puthenveettil, B. A., Senthilkumar, V. K. & Hopfinger, E. J. Motion of drops on inclined surfaces in the inertial regime. J. Fluid Mech. 726, 26–61 (2013).
Shumaly, S. et al. Deep learning to analyze sliding drops. Langmuir 39, 1111–1122 (2023).
Kabir, H. & Garg, N. Machine learning enabled orthogonal camera goniometry for accurate and robust contact angle measurements. Sci. Rep. 13, 1497 (2023).
Li, X. et al. Spontaneous charging affects the motion of sliding drops. Nat. Phys. 18, 713–719 (2022).
Olin, P., Lindstrom, S. B., Pettersson, T. & Wagberg, L. Water drop friction on superhydrophobic surfaces. Langmuir 29, 9079–9089 (2013).
Yilbas, B. S., Al-Sharafi, A., Ali, H. & Al-Aqeeli, N. Dynamics of a water droplet on a hydrophobic inclined surface: influence of droplet size and surface inclination angle on droplet rolling. RSC Adv. 7, 48806–48818 (2017).
Sakai, M. et al. Sliding of water droplets on the superhydrophobic surface with ZnO nanorods. Langmuir 25, 14182–14186 (2009).
Hao, P. F., Lv, C. J., Yao, Z. H. & He, F. Sliding behavior of water droplet on superhydrophobic surface. EPL 90, 66003 (2010).
Mouterde, T., Raux, P. S., Clanet, C. & Quere, D. Superhydrophobic frictions. Proc. Natl Acad. Sci. USA 116, 8220–8223 (2019).
Li, X. et al. Kinetic drop friction. Nat. Commun. 14, 4571 (2023).
Decker, E. L., Frank, B., Suo, Y. & Garoff, S. Physics of contact angle measurement. Colloids Surf. A 156, 177–189 (1999).
Semprebon, C., Herminghaus, S. & Brinkmann, M. Advancing modes on regularly patterned substrates. Soft Matter 8, 6301–6309 (2012).
Suda, H. & Yamada, S. Force measurements for the movement of a water drop on a surface with a surface tension gradient. Langmuir 19, 529–531 (2003).
Lagubeau, G., Le Merrer, M., Clanet, C. & Quéré, D. Leidenfrost on a ratchet. Nat. Phys. 7, 395–398 (2011).
Beitollahpoor, M., Farzam, M. & Pesika, N. S. Determination of the sliding angle of water drops on surfaces from friction force measurements. Langmuir 38, 2132–2136 (2022).
Pilat, D. W. et al. Dynamic measurement of the force required to move a liquid drop on a solid surface. Langmuir 28, 16812–16820 (2012).
Gao, N. et al. How drops start sliding over solid surfaces. Nat. Phys. 14, 191–196 (2018).
Daniel, D. et al. Origins of extreme liquid repellency on structured, flat, and lubricated hydrophobic surfaces. Phys. Rev. Lett. 120, 244503 (2018).
Backholm, M. et al. Water droplet friction and rolling dynamics on superhydrophobic surfaces. Nat. Commun. Mater. 1, 64 (2020).
Barrio-Zhang, H. et al. Contact-angle hysteresis and contact-line friction on slippery liquid-like surfaces. Langmuir 36, 15094–15101 (2020).
Khattak, H. K., Karpitschka, S., Snoeijer, J. H. & Dalnoki-Veress, K. Direct force measurement of microscopic droplets pulled along soft surfaces. Nat. Commun. 13, 4436 (2022).
Xue, N., Wilen, L. A., Style, R. W. & Dufresne, E. R. Droplets sliding on soft solids shed elastocapillary rails. Soft Matter https://doi.org/10.1039/d4sm01041h (2024).
Hinduja, C. et al. Scanning drop friction force microscopy. Langmuir 38, 14635–14643 (2022).
Timonen, J. V. I., Latikka, M., Ras, R. H. A. & Ikkala, O. Free-decay and resonant methods for investigating the fundamental limit of superhydrophobicity. Nat. Commun. 4, 2398 (2013).
Daniel, D. et al. Probing surface wetting across multiple force, length and time scales. Commun. Phys. 6, 152 (2023).
Rio, E., Daerr, A., Andreotti, B. & Limat, L. Boundary conditions in the vicinity of a dynamic contact line: experimental investigation of viscous drops sliding down an inclined plane. Phys. Rev. Lett. 94, 024503 (2005).
Huh, C. & Scriven, L. E. Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 35, 85–101 (1971).
Voinov, O. V. Hydrodynamics of wetting. Fluid Dyn. 11, 714–721 (1976).
Cox, R. G. The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J. Fluid Mech. 168, 169–194 (1986).
Dussan, E. B., Ramé, E. & Garoff, S. On identifying the appropriate boundary conditions at a moving contact line: an experimental investigation. J. Fluid Mech. 230, 97–116 (1991).
Kim, H. Y., Lee, H. J. & Kang, B. H. Sliding of liquid drops down an inclined solid surface. J. Colloid Interface Sci. 247, 372–380 (2002).
Eggers, J. Existence of receding and advancing contact lines. Phys. Fluids 17, 082106 (2005).
Maglio, M. & Legendre, D. in Computational and Experimental Fluid Mechanics with Applications to Physics, Engineering and the Environment (eds Sigalotti, L. D. et al.) 47–69 (Springer, 2014).
Marsh, J. A., Garoff, S. & Dussan, E. B. Dynamic contact angles and hydrodynamics near a moving contact line. Phys. Rev. Lett. 70, 2778–2781 (1993).
Bodziony, F. et al. Contribution of wedge and bulk viscous forces in droplets moving on inclined surfaces. Theor. Comput. Fluid Dyn. 38, 583–601 (2024).
Dussan, E. B. On the spreading of liquids on solid surfaces: static and dynamic contact lines. Annu. Rev. Fluid Mech. 11, 371–400 (1979).
Huh, C. & Mason, S. G. The steady movement of a liquid meniscus in a capillary tube. J. Fluid Mech. 81, 401–419 (1977).
Hocking, L. M. A moving fluid interface. Part 2. The removal of the force singularity by a slip flow. J. Fluid Mech. 79, 209–229 (1977).
Ruckenstein, E. & Dunn, C. S. Slip velocity during wetting of solids. J. Colloid Interface Sci. 59, 135 (1977).
Koplik, J., Banavar, J. R. & Willemsen, J. F. Molecular dynamics of fluid flow at solid surfaces. Phys. Fluids A 1, 781–794 (1989).
Thompson, P. A. & Robbins, M. O. Simulations of contact-line motion: slip and the dynamic contact angle. Phys. Rev. Lett. 63, 766–769 (1989).
Blake, T. D., Fernandez-Toledano, J. C., Doyen, G. & De Coninck, J. Forced wetting and hydrodynamic assist. Phys. Fluids 27, 112101 (2015).
Snoeijer, J. H. Free-surface flows with large slopes: beyond lubrication theory. Phys. Fluids 18, 021701 (2006).
Oléron, M., Limat, L., Dervaux, J. & Roché, M. Morphology and stability of droplets sliding on soft viscoelastic substrates. Soft Matter 20, 762–772 (2024).
Roché, M., Talini, L. & Verneuil, E. Complexity in wetting dynamics. Langmuir 40, 2830–2848 (2024).
Vergelati, C., Perwuelz, A., Vovelle, L., Romero, M. A. & Holl, Y. Poly(ethylene terephthalate) surface dynamics in air and water studied by tensiometry and molecular modelling. Polymer 35, 262–270 (1994).
Golovin, K., Boban, M., Mabry, J. M. & Tuteja, A. Designing self-healing superhydrophobic surfaces with exceptional mechanical durability. ACS Appl. Mater. Interfaces 9, 11212–11223 (2017).
Tadmor, R. Open problems in wetting phenomena: pinning retention forces. Langmuir 37, 6357–6372 (2021).
Ruckenstein, E. & Gourisankar, S. V. Surface restructuring of polymeric solids and its effect on the stability of the polymer–water interface. J. Colloid Interface Sci. 109, 557–566 (1986).
Wang, F. & Nestler, B. Wetting and contact-angle hysteresis: density asymmetry and van der Waals force. Phys. Rev. Lett. 132, 126202 (2024).
Bayramli, E., Van de Ven, T. G. M. & Mason, S. G. Tensiometric studies on wetting. 3. Low and high energy surfaces. Colloids Surf. 3, 131–145 (1981).
Schrader, M. E. Wettability of clean metal surfaces. J. Colloid Interface Sci. 100, 372–380 (1984).
Stepien, M. et al. ToF-SIMS analysis of UV-switchable TiO2-nanoparticle-coated paper surface. Langmuir 29, 3780–3790 (2013).
Wang, R. et al. Light-induced amphiphilic surfaces. Nature 388, 431–432 (1997).
Ablett, R. An investigation of the angle of contact between paraffin wax and water. Phil. Mag. 46, 244–256 (1923).
Ward, A. F. H. & Tordai, L. Time-dependence of boundary tensions of solutions. J. Chem. Phys. 14, 453–461 (1946).
Kanokkarn, P., Shiina, T., Santikunaporn, M. & Chavadej, S. Equilibrium and dynamic surface tension in relation to diffusivity and foaming properties: effects of surfactant type and structure. Colloids Surf. A 524, 135–142 (2017).
Yatsuzuka, K., Mizuno, Y. & Asano, K. Electrification phenomena of pure water droplets dripping and sliding on a polymer surface. J. Electrost. 32, 157–171 (1994).
Helseth, L. E. & Wen, H. Z. Evaluation of the energy generation potential of rain cells. Energy 119, 472–482 (2017).
Stetten, A. Z., Golovko, D. S., Weber, S. A. L. & Butt, H. J. Slide electrification: charging of surfaces by moving water drops. Soft Matter 15, 8667–8679 (2019).
Sosa, M. D., D’Accorso, N. B., Ricci, M. L. M. & Negri, R. M. Liquid–polymer contact electrification: modeling the dependence of surface charges and zeta-potential on pH and added-salt concentration. Langmuir 38, 8817–8828 (2022).
Xu, W. et al. Triboelectric wetting for continuous droplet transport. Sci. Adv. 8, eade2085 (2022).
Bista, P., Ratschow, A. D., Butt, H.-J. & Weber, S. A. L. High voltages in sliding water drops. J. Phys. Chem. Lett. 14, 11110–11116 (2023).
Ratschow, A. D., Butt, H.-J., Hardt, S. & Weber, S. A. L. Liquid slide electrification: advances and open questions. Soft Matter 21, 1251–1262 (2025).
Wang, K. Q. & Li, J. J. Electricity generation from the interaction of liquid–solid interface: a review. J. Mater. Chem. A 9, 8870–8895 (2021).
Sun, Q. et al. Surface charge printing for programmed droplet transport. Nat. Mater. 18, 936–941 (2019).
Li, X., Ratschow, A. D., Hardt, S. & Butt, H.-J. Surface charge deposition by moving drops reduces contact angles. Phys. Rev. Lett. 131, 228201 (2023).
Ratschow, A. D. et al. How charges separate when surfaces are dewetted. Phys. Rev. Lett. 132, 224002 (2024).
Wu, H. et al. Electrically controlled localized charge trapping at amorphous fluoropolymer–electrolyte interfaces. Small 16, 1905726 (2020).
Mugele, F. & Heikenfeld, J. Electrowetting: Fundamental Principles and Practical Applications (Wiley-VCH, 2019).
Lippmann, G. Relation entre les phénomènes électriques et capillaires. Ann. Chim. Phys. 5, 494–549 (1875).
Yaminsky, V. V. & Johnston, M. B. Static electrification by nonwetting liquids. Contact charging and contact angles. Langmuir 11, 4153–4158 (1995).
Wong, W. S. Y. et al. Tuning the charge of sliding water drops. Langmuir 38, 6224–6230 (2022).
Lin, S. Q., Xu, L., Wang, A. C. & Wang, Z. L. Quantifying electron-transfer in liquid–solid contact electrification and the formation of electric double-layer. Nat. Commun. 11, 399 (2020).
Nie, J. H. et al. Probing contact-electrification-induced electron and ion transfers at a liquid–solid interface. Adv. Mater. 32, 1905696 (2020).
Lester, G. R. Contact angle of liquids at deformable solid surfaces. J. Colloid Sci. 16, 315–326 (1961).
Rusanov, A. I. Theory of the wetting of elastically deformed bodies. 1. Deformation with a finite contact angle. Colloid J. USSR 37, 614–622 (1975).
Shanahan, M. E. R. The influence of solid micro-deformation on contact-angle equilibrium. J. Phys. D 20, 945–950 (1987).
White, L. R. The contact angle on an elastic substrate. 1. The role of disjoining pressure in the surface mechanics. J. Colloid Interface Sci. 258, 82–96 (2003).
Style, R. W. & Dufresne, E. R. Static wetting on deformable substrates, from liquids to soft solids. Soft Matter 8, 7177–7184 (2012).
Carré, A., Gastel, J. C. & Shanahan, M. E. R. Viscoelastic effects in the spreading of liquids. Nature 379, 432–434 (1996).
Pericet-Camara, R., Best, A., Butt, H.-J. & Bonaccurso, E. Effect of capillary pressure and surface tension on the deformation of elastic surfaces by sessile liquid microdrops: an experimental investigation. Langmuir 24, 10565–10568 (2008).
Jerison, E. R., Xu, Y., Wilen, L. A. & Dufresne, E. R. Deformation of an elastic substrate by a three-phase contact line. Phys. Rev. Lett. 106, 186103 (2011).
Style, R. W. et al. Universal deformation of soft substrates near a contact line and the direct measurement of solid surface stresses. Phys. Rev. Lett. 110, 066103 (2013).
Park, S. J. et al. Visualization of asymmetric wetting ridges on soft solids with X-ray microscopy. Nat. Commun. 5, 4369–4369 (2014).
Wang, Q. et al. Wetting-induced elastocapillary deformation of supported thin rubbery polymer films. Macromolecules 57, 10112–10119 (2024).
Dervaux, J. & Limat, L. Contact lines on soft solids with uniform surface tension: analytical solutions and double transition for increasing deformability. Proc. R. Soc. A 471, 20140813 (2015).
Andreotti, B. & Snoeijer, J. H. Statics and dynamics of soft wetting. Annu. Rev. Fluid Mech. 52, 285–308 (2020).
Quincke, G. Ueber die Capillaritäts-Erscheinungen an der gemeinschaftlichen Oberfläche zweier Flüssigkeiten. Pogg. Ann. Phys. Chem. 139, 1–89 (1870).
Neumann, F. Vorlesungen über die Theorie der Capillarität (Teubner, 1894).
Bico, J., Reyssat, E. & Roman, B. Elastocapillarity: when surface tension deforms elastic solids. Ann. Rev. Fluid Mech. 50, 629–659 (2018).
Liang, H. Y., Cao, Z., Wang, Z. L. & Dobrynin, A. V. Surface stresses and a force balance at a contact line. Langmuir 34, 7497–7502 (2018).
Zhao, M. H. et al. Geometrical control of dissipation during the spreading of liquids on soft solids. Proc. Natl Acad. Sci. USA 115, 1748–1753 (2018).
Kap, Ö. et al. Nonequilibrium configurations of swelling polymer brush layers induced by spreading drops of weakly volatile oil. J. Chem. Phys. 158, 174903 (2023).
Karpitschka, S. et al. Droplets move over viscoelastic substrates by surfing a ridge. Nat. Commun. 6, 7891 (2015).
Carré, A. & Shanahan, M. E. R. Viscoelastic breaking of a running drop. Langmuir 17, 2982–2985 (2001).
Long, D., Ajdari, A. & Leibler, L. Static and dynamic wetting properties of thin rubber films. Langmuir 12, 5221–5230 (1996).
Pu, G. & Severtson, S. J. Characterization of dynamic stick-and-break wetting behavior for various liquids on the surface of a highly viscoelastic polymer. Langmuir 24, 4685–4692 (2008).
Kajiya, T. et al. Advancing liquid contact line on visco-elastic gel substrates: stick-slip vs. continuous motions. Soft Matter 9, 454–461 (2013).
Masurel, R., Roché, M., Limat, L., Ionescu, I. & Dervaux, J. Elastocapillary ridge as a noninteger disclination. Phys. Rev. Lett. 122, 248004 (2019).
Tadmor, R. et al. Why drops bounce on smooth surfaces. Langmuir 34, 4695–4700 (2018).
Deryaguin, B. V., Starov, V. M. & Churaev, N. V. Profile of the transition zone between a wetting film and the meniscus of the bulk liquid. Kolloidn. Zh. 38, 875–879 (1976).
Wayner, P. C. The interfacial profile in the contact line region and the Young–Dupré equation. J. Colloid Interface Sci. 88, 294–295 (1982).
Churaev, N. V., Starov, V. M. & Derjaguin, B. V. The shape of the transition zone between a thin film and bulk liquid and the line tension. J. Colloid Interface Sci. 89, 16–24 (1982).
Thiele, U., Snoeijer, J. H., Trinschek, S. & John, K. Equilibrium contact angle and adsorption layer properties with surfactants. Langmuir 34, 7210–7221 (2018).
Hughes, A. P., Thiele, U. & Archer, A. J. Liquid drops on a surface: using density functional theory to calculate the binding potential and drop profiles and comparing with results from mesoscopic modelling. J. Chem. Phys. 142, 074702 (2015).
Kubochkin, N. & Gambaryan-Roisman, T. Wetting at nanoscale: effect of surface forces and droplet size. Phys. Rev. Fluids 6, 093603 (2021).
Koplik, J., Banavar, J. R. & Willemsen, J. F. Molecular-dynamics of Poiseuille flow and moving contact lines. Phys. Rev. Lett. 60, 1282–1285 (1988).
Johansson, P. & Hess, B. Molecular origin of contact line friction in dynamic wetting. Phys. Rev. Fluids 3, 074201 (2018).
Fernandez-Toledano, J. C., Blake, T. D., Lambert, P. & De Coninck, J. On the cohesion of fluids and their adhesion to solids: Young’s equation at the atomic scale. Adv. Colloid Interface Sci. 245, 102–107 (2017).
Fernández-Toledano, J. C., Blake, T. D. & De Coninck, J. Moving contact lines and Langevin formalism. J. Colloid Interface Sci. 562, 287–292 (2020).
Blake, T. D. & Haynes, J. M. Kinetics of liquid/liquid displacement. J. Colloid Interface Sci. 30, 421–423 (1969).
Perrin, H., Lhermerout, R., Davitt, K., Rolley, E. & Andreotti, B. Defects at the nanoscale impact contact line motion at all scales. Phys. Rev. Lett. 116, 184502 (2016).
Shikhmurzaev, Y. D. Moving contact lines in liquid/liquid/solid systems. J. Fluid Mech. 334, 211–249 (1997).
Pellegrino, M. & Hess, B. Asymmetry of wetting and de-wetting on high-friction surfaces originates from the same molecular physics. Phys. Fluids 34, 102010 (2022).
Fernández-Toledano, J. C., Blake, T. D. & De Coninck, J. Taking a closer look: a molecular-dynamics investigation of microscopic and apparent dynamic contact angles. J. Colloid Interface Sci. 587, 311–323 (2021).
Saiz, E. & Tomsia, A. P. Atomic dynamics and Marangoni films during liquid-metal spreading. Nat. Mater. 3, 903–909 (2004).
Lin, L., Xu, C. J., Wang, X. D. & Lee, D. J. High-temperature wetting and dewetting dynamics of silver droplets on molybdenum surfaces. Langmuir 39, 1135–1144 (2023).
Acknowledgements
We acknowledge funding from the DFG Priority Program 2171 “Dynamic wetting of flexible, adaptive and switchable surfaces” (grant no. BU 1556/36 and BE 3286/6-1: H.-J.B., R.B.), the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 883631) (H.-J.B.) and the CRC 1194 project (J.D.C.) 265191195 T02 (R.B., H.J.B.). R.T. acknowledges the Israel Science Foundation (grant ISF 730/22) for supporting some of the work described here.
Author information
Authors and Affiliations
Contributions
H.-J.B. took the initiative in outlining and writing the manuscript. R.B., J.D.C. and R.T. contributed special parts. All authors read and discussed the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Physics thanks Fei Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Butt, HJ., Berger, R., De Coninck, J. et al. Drop friction. Nat Rev Phys 7, 425–438 (2025). https://doi.org/10.1038/s42254-025-00841-5
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s42254-025-00841-5