Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Drop friction

Abstract

Wetting phenomena have been studied quantitatively for more than 200 years, but there remain many fundamental questions that are not understood. For example, the speed of a water drop sliding down an inclined plane cannot be predicted. A drop that slides down a surface experiences a resistance. We call this resistance drop friction. It is still debated how and where energy is dissipated in a sliding drop. Particularly for the most common liquid, water, there have been considerable advances in the understanding of wetting, driven by the development of new physical, preparative and theoretical methods. Water is a special liquid, owing to its polar nature, its tendency to form hydrogen bonds, the self-ionization into OH and H3O+, its low viscosity and its high surface tension. In recent years, water–surface interactions due to adaptation, spontaneous electrostatic charging and deformation on elastomers have been identified as important processes that increase drop friction. They may be responsible for drop friction even on seemingly smooth, homogeneous and rigid surfaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dynamic wetting of a model heterogeneous surface.
Fig. 2: Experimental methods for measuring contact angles and drop friction.
Fig. 3: Effect of velocity on drop friction.
Fig. 4: Viscous energy dissipation in sliding drops.
Fig. 5: Effect of velocity on drop friction.

Similar content being viewed by others

References

  1. McHale, G., Gao, N., Wells, G. G., Barrio-Zhang, H. & Ledesma-Aguilar, R. Friction coefficients for droplets on solids: the liquid–solid Amontons’ laws. Langmuir 38, 4425–4433 (2022).

    Article  Google Scholar 

  2. Hardt, S. & McHale, G. Flow and drop transport along liquid-infused surfaces. Ann. Rev. Fluid Mech. 54, 83–104 (2022).

    Article  ADS  Google Scholar 

  3. Chen, F. et al. Robust and durable liquid-repellent surfaces. Chem. Soc. Rev. 51, 8476–8583 (2022).

    Article  Google Scholar 

  4. Chen, L., Huang, S., Ras, R. H. A. & Tian, X. Omniphobic liquid-like surfaces. Nat. Rev. Chem. 7, 123–137 (2022).

    Article  Google Scholar 

  5. Young, T. An essay on the cohesion of fluids. Phil. Trans. R. Soc. Lond. 95, 65–87 (1805).

    ADS  Google Scholar 

  6. Laplace, P. S. Mécanique Céleste, Suppl. au Livre X Vol. 10 (1806).

  7. Drelich, J. W. et al. Contact angles: history of over 200 years of open questions. Surf. Innov. 8, 3–27 (2020).

    Article  Google Scholar 

  8. Gibbs, J. W. The Collected Works of J. Willard Gibbs, Thermodynamics Vol. I (Yale Univ. Press, 1928).

  9. de Gennes, P. G. Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827–863 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  10. Gibbs, J. W. The Scientific Papers of J. Willard Gibbs Vol. 1. Thermodynamics (Dover, 1961).

  11. McNutt, J. E. & Andes, G. M. Relationship of the contact angle to interfacial energies. J. Chem. Phys. 30, 1300–1303 (1959).

    Article  ADS  Google Scholar 

  12. Collins, R. E. & Cooke, C. E. Fundamental basis for the contact angle and capillary pressure. Trans. Faraday Soc. 55, 1602–1606 (1959).

    Article  Google Scholar 

  13. Roura, P. & Fort, J. Local thermodynamic derivation of Young’s equation. J. Colloid Interface Sci. 272, 420–429 (2004).

    Article  ADS  Google Scholar 

  14. Shardt, N. & Elliott, J. A. W. Gibbsian thermodynamics of Wenzel wetting (Was Wenzel wrong? revisited). Langmuir 36, 435–446 (2020).

    Article  Google Scholar 

  15. Hautman, J. & Klein, M. L. Microscopic wetting phenomena. Phys. Rev. Lett. 67, 1763–1766 (1991).

    Article  ADS  Google Scholar 

  16. Das, S. K. & Binder, K. Does Young’s equation hold on the nanoscale? A Monte Carlo test for the binary Lennard–Jones fluid. Europhys. Lett. 92, 26006 (2010).

    Article  ADS  Google Scholar 

  17. Seveno, D., Blake, T. D. & De Coninck, J. Young’s equation at the nanoscale. Phys. Rev. Lett. 111, 096101 (2013).

    Article  ADS  Google Scholar 

  18. Tretyakov, N., Mueller, M., Todorova, D. & Thiele, U. Parameter passing between molecular dynamics and continuum models for droplets on solid substrates: the static case. J. Chem. Phys. 138, 064905 (2013).

    Article  ADS  Google Scholar 

  19. White, L. R. On deviations from Young’s equation. J. Chem. Soc., Faraday Trans. I 73, 390–398 (1977).

    Article  Google Scholar 

  20. Rusanov, A. I. Thermodynamics of solid surfaces. Surf. Sci. Rep. 23, 173–247 (1996).

    Article  ADS  Google Scholar 

  21. Chibowski, E. & Perea-Carpio, R. Problems of contact angle and solid surface free energy determination. Adv. Colloid Interface Sci. 98, 245–264 (2002).

    Article  Google Scholar 

  22. Bikerman, J. J. in Contributions to the Thermodynamics of Surfaces (ed. Bikerman, J. J.) 65–76 (Massachusetts Institute of Technology, 1961).

  23. Dussan, E. B. On the ability of drops or bubbles to stick to non-horizontal surfaces of solids. 2. Small drops or bubbles having contact angles of arbitrary size. J. Fluid Mech. 151, 1–20 (1985).

    Article  ADS  Google Scholar 

  24. Dimitrakopoulos, P. & Higdon, J. J. L. On the gravitational displacement of three-dimensional fluid droplets from inclined solid surfaces. J. Fluid Mech. 395, 181–209 (1999).

    Article  ADS  Google Scholar 

  25. Berejnov, V. & Thorne, R. E. Effect of transient pinning on stability of drops sitting on an inclined plane. Phys. Rev. E 75, 066308 (2007).

    Article  ADS  Google Scholar 

  26. Musterd, M., van Steijn, V., Kleijn, C. R. & Kreutzer, M. T. Droplets on inclined plates: local and global hysteresis of pinned capillary surfaces. Phys. Rev. Lett. 113, 066104 (2014).

    Article  ADS  Google Scholar 

  27. Ravazzoli, P. D., Cuellar, I., Gonzalez, A. G. & Diez, J. A. Contact-angle-hysteresis effects on a drop sitting on an incline plane. Phys. Rev. E 99, 043105 (2019).

    Article  ADS  Google Scholar 

  28. Laroche, A. et al. Tuning static drop friction. Droplet 2, e42 (2023).

    Article  Google Scholar 

  29. Jena, A. K. et al. Stages that lead to drop depinning and onset of motion. Langmuir 38, 92–99 (2022).

    Article  Google Scholar 

  30. Frenkel, Y. I. On the behavior of liquid drops on a solid surface. 1. The sliding of drops on an inclined surface. J. Exptl. Theoret. Phys. 18, 659–669 (1948).

    Google Scholar 

  31. Buzagh, A. & Wolfram, E. Bestimmung der Haftfähigkeit von Flüssigkeiten an festen Körpern mit der Abreißwinkelmethode. Kolloid Z. 157, 50–53 (1958).

    Article  Google Scholar 

  32. Kawasaki, K. Study of wettability of polymers by sliding of a water drop. J. Colloid Sci. 15, 402–407 (1960).

    Article  Google Scholar 

  33. Furmidge, C. G. L. Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention. J. Colloid Sci. 17, 309–324 (1962).

    Article  Google Scholar 

  34. Extrand, C. W. & Kumagai, Y. Liquid drops on an inclined plane: the relation between contact angles, drop shape, and retention forces. J. Colloid Interface Sci. 170, 515–521 (1995).

    Article  ADS  Google Scholar 

  35. ElSherbini, A. & Jacobi, A. Retention forces and contact angles for critical liquid drops on non-horizontal surfaces. J. Colloid Interface Sci. 299, 841–849 (2006).

    Article  ADS  Google Scholar 

  36. Antonini, C., Carmona, F. J., Pierce, E., Marengo, M. & Amirfazli, A. General methodology for evaluating the adhesion force of drops and bubbles on solid surfaces. Langmuir 25, 6143–6154 (2009).

    Article  Google Scholar 

  37. Humayun, S., Maynes, R. D., Crockett, J. & Iverson, B. D. Retention forces for drops on microstructured superhydrophobic surfaces. Langmuir 38, 15960–15972 (2022).

    Article  Google Scholar 

  38. Hinduja, C., Butt, H. J. & Berger, R. Slide electrification of drops at low velocities. Soft Matter 20, 3349–3358 (2024).

    Article  ADS  Google Scholar 

  39. Neumann, A. W. & Good, R. J. Thermodynamics of contact angles. 1. Heterogeneous surfaces. J. Colloid Interface Sci. 38, 341–358 (1972).

    Article  ADS  Google Scholar 

  40. Schwartz, L. W. & Garoff, S. Contact angle hysteresis on heterogeneous surfaces. Langmuir 1, 219–230 (1985).

    Article  Google Scholar 

  41. Robbins, M. O. & Joanny, J. F. Contact angle hysteresis on random surfaces. Europhys. Lett. 3, 729–735 (1987).

    Article  ADS  Google Scholar 

  42. Nadkarni, G. D. & Garoff, S. Reproducibility of contact line motion on surfaces exhibiting contact angle hysteresis. Langmuir 10, 1618–1623 (1994).

    Article  Google Scholar 

  43. Kusumaatmaja, H. & Yeomans, J. M. Modeling contact angle hysteresis on chemically patterned and superhydrophobic surfaces. Langmuir 23, 6019–6032 (2007).

    Article  Google Scholar 

  44. Varagnolo, S. et al. Tuning drop motion by chemical patterning of surfaces. Langmuir 30, 2401–2409 (2014).

    Article  Google Scholar 

  45. Marmur, A. Solid-surface characterization by wetting. Annu. Rev. Mater. Res. 39, 473–489 (2009).

    Article  ADS  Google Scholar 

  46. Forsberg, P. S. H., Priest, C., Brinkmann, M., Sedev, R. & Ralston, J. Contact line pinning on microstructured surfaces for liquids in the Wenzel state. Langmuir 26, 860–865 (2010).

    Article  Google Scholar 

  47. Bormashenko, E. Y. Wetting of Real Surfaces Vol. 19 (De Gruyter, 2013).

  48. Promraksa, A. & Chen, L. J. Modeling contact angle hysteresis of a liquid droplet sitting on a cosine wave-like pattern surface. J. Colloid Interface Sci. 384, 172–181 (2012).

    Article  ADS  Google Scholar 

  49. Davitt, K., Pettersen, M. S. & Rolley, E. Thermally activated wetting dynamics in the presence of surface roughness. Langmuir 29, 6884–6894 (2013).

    Article  Google Scholar 

  50. Lhermerout, R., Perrin, H., Rolley, E., Andreotti, B. & Davitt, K. A moving contact line as a rheometer for nanometric interfacial layers. Nat. Commun. 7, 12545 (2016).

    Article  ADS  Google Scholar 

  51. Liu, Q., Yu, J. P. & Wang, H. The role of the substrate roughness in contact angle hysteresis and dynamic deviation. Int. J. Heat. Mass. Transf. 148, 118985 (2020).

    Article  Google Scholar 

  52. Dhyani, A. et al. Design and applications of surfaces that control the accretion of matter. Science 373, eaba5010 (2021).

    Article  Google Scholar 

  53. Kumar, P. & Harvie, D. J. E. Contact angle hysteresis on rough surfaces part II: energy dissipation via microscale interface dynamics. Preprint at https://arxiv.org/abs/2303.09149 (2024).

  54. Ren, J. H. & Duan, F. Recent progress in experiments for sessile droplet wetting on structured surfaces. Curr. Opin. Colloid Interface Sci. 53, 101425 (2021).

    Article  Google Scholar 

  55. Wang, F., Wu, Y. C. & Nestler, B. Wetting effect on patterned substrates. Adv. Mater. 35, 2210745 (2023).

    Article  Google Scholar 

  56. Wu, Y. C., Wang, F., Ma, S. P., Selzer, M. & Nestler, B. How do chemical patterns affect equilibrium droplet shapes? Soft Matter 16, 6115–6127 (2020).

    Article  ADS  Google Scholar 

  57. Johnson, R. E. & Dettre, R. H. in Surface and Colloid Science Vol. 2 (ed Matijevic, E.) 85–153 (Wiley Interscience, 1969).

  58. Joanny, J. F. & de Gennes, P. G. A model for contact angle hysteresis. J. Chem. Phys. 81, 552–562 (1984).

    Article  ADS  Google Scholar 

  59. Moulinet, S., Guthmann, C. & Rolley, E. Roughness and dynamics of a contact line of a viscous fluid on a disordered substrate. Eur. Phys. J. E 8, 437–443 (2002).

    Article  Google Scholar 

  60. Reyssat, M. & Quéré, D. Contact angle hysteresis generated by strong dilute defects. J. Phys. Chem. B 113, 3906–3909 (2009).

    Article  Google Scholar 

  61. Saal, A., Straub, B. B., Butt, H. J. & Berger, R. Pinning forces of sliding drops at defects. EPL 139, 47001 (2022).

    Article  ADS  Google Scholar 

  62. Chibowski, E. Surface free energy of a solid from contact angle hysteresis. Adv. Colloid Interface Sci. 103, 149–172 (2003).

    Article  Google Scholar 

  63. Brutin, D. & Starov, V. Recent advances in droplet wetting and evaporation. Chem. Soc. Rev. 47, 558–585 (2018).

    Article  Google Scholar 

  64. Wang, H. From contact line structures to wetting dynamics. Langmuir 35, 10233–10245 (2019).

    Article  Google Scholar 

  65. Zhang, H., Zhang, H., Wang, F. & Nestler, B. Exploration of contact angle hysteresis mechanisms: from microscopic to macroscopic. J. Chem. Phys. 161, 194705 (2024).

    Article  Google Scholar 

  66. Andrade, J. D., Smith, L. M. & Gregonis, D. E. in Surface and Interfacial Aspects of Biomedical Polymers Vol. 1 (ed. Andrade, J. D.) 249–292 (Plenum, 1985).

  67. Tretinnikov, O. N. & Ikada, Y. Dynamic wetting and contact angle hysteresis of polymer surfaces studied with the modified Wilhelmy balance method. Langmuir 10, 1606–1614 (1994).

    Article  Google Scholar 

  68. Wang, J. H., Claesson, P. M., Parker, J. L. & Yasuda, H. Dynamic contact angles and contact angle hysteresis of plasma polymers. Langmuir 10, 3887–3897 (1994).

    Article  Google Scholar 

  69. Erbil, H. Y., McHale, G., Rowan, S. M. & Newton, M. I. Determination of the receding contact angle of sessile drops on polymer surfaces by evaporation. Langmuir 15, 7378–7385 (1999).

    Article  Google Scholar 

  70. Cohen Stuart M.A. et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9, 101–113 (2010).

    Article  ADS  Google Scholar 

  71. N’Guessan, H. E. et al. Water tribology on graphene. Nat. Commun. 3, 1242 (2012).

    Article  ADS  Google Scholar 

  72. Duc, C., Vlandas, A., Malliaras, G. G. & Senez, V. Wettability of PEDOT:PSS films. Soft Matter 12, 5146–5153 (2016).

    Article  ADS  Google Scholar 

  73. Lequeux, F., Talini, L., Verneuil, E., Delannoy, G. & Valois, P. Wetting of polymers by their solvents. Eur. Phys. J. E 39, 12 (2016).

    Article  Google Scholar 

  74. Butt, H.-J., Berger, R., Steffen, W., Vollmer, D. & Weber, S. A. L. Adaptive wetting — adaptation in wetting. Langmuir 34, 11292–11304 (2018).

    Article  Google Scholar 

  75. Nakamura, S., Kakiuchida, H., Okada, M. & Hozumi, A. Statically very hydrophilic but dynamically hydrophobic surfaces showing surprising water sliding performance. Adv. Funct. Mater. 34, 2310265 (2024).

    Article  Google Scholar 

  76. Koochak, P. et al. Smoothening perfluoroalkylated surfaces: liquid-like despite molecular rigidity? Adv. Mater. Interfaces 12, 2400619 (2024).

    Article  Google Scholar 

  77. Chen, K. Y. et al. Soft wetting: substrate softness- and time-dependent droplet/ bubble adhesion. J. Colloid Interface Sci. 662, 87–98 (2024).

    Article  ADS  Google Scholar 

  78. Macdougall, G. & Ockrent, C. Surface energy relations in liquid/solid systems. I. The adhesion of liquids to solids and a new method of determining the surface tension of liquids. Proc. R. Soc. Lond. A 180, 151–173 (1942).

    Article  ADS  Google Scholar 

  79. Tadmor, R. & Yadav, P. S. As-placed contact angles for sessile drops. J. Colloid Interface Sci. 317, 241–246 (2008).

    Article  ADS  Google Scholar 

  80. Extrand, C. W. & Gent, A. N. Retention of liquid drops by solid surfaces. J. Colloid Interface Sci. 138, 431–442 (1990).

    Article  ADS  Google Scholar 

  81. Tadmor, R. et al. Measurement of lateral adhesion forces at the interface between a liquid drop and a substrate. Phys. Rev. Lett. 103, 266101 (2009).

    Article  ADS  Google Scholar 

  82. Evgenidis, S. P., Kalic, K., Kostoglou, M. & Karapantsios, T. D. Kerberos: a three camera headed centrifugal/tilting device for studying wetting/dewetting under the influence of controlled body forces. Colloids Surf. A 521, 38–48 (2017).

    Article  Google Scholar 

  83. Kim, H., Poelma, C., Ooms, G. & Westerweel, J. Experimental and theoretical study of dewetting corner flow. J. Fluid Mech. 762, 393–416 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  84. Tang, S. R. et al. Droplets sliding down a vertical surface under increasing horizontal forces. Langmuir 35, 8191–8198 (2019).

    Google Scholar 

  85. Sadullah, M. S., Xu, Y. F., Arunachalam, S. & Mishra, H. Predicting droplet detachment force: Young–Dupré model fails, Young–Laplace model prevails. Commun. Phys. 7, 89 (2024).

    Article  Google Scholar 

  86. Timmons, C. O. & Zisman, W. A. Effect of liquid structure on contact angle hysteresis. J. Colloid Interface Sci. 22, 165–171 (1966).

    Article  ADS  Google Scholar 

  87. Yasuda, T., Miyama, M. & Yasuda, H. Effect of water immersion on surface configuration of an ethylene–vinyl alcohol copolymer. Langmuir 10, 583–585 (1994).

    Article  Google Scholar 

  88. Lam, C. N. C., Wu, R., Li, D., Hair, M. L. & Neumann, A. W. Study of the advancing and receding contact angles: liquid sorption as a cause of contact angle hysteresis. Adv. Colloid Interface Sci. 96, 169–191 (2002).

    Article  Google Scholar 

  89. Wong, W. S. Y. et al. Adaptive wetting of polydimethylsiloxane. Langmuir 36, 7236–7245 (2020).

    Article  Google Scholar 

  90. Ahmed, A., Sanedrin, R., Willers, T. & Waghmare, P. R. The effect of dynamic wetting pressure on contact angle measurements. J. Colloid Interface Sci. 608, 1086–1093 (2022).

    Article  ADS  Google Scholar 

  91. Liu, K., Vuckovac, M., Latikka, M., Huhtamaki, T. & Ras, R. H. A. Improving surface-wetting characterization. Science 363, 1147 (2019).

    Article  ADS  Google Scholar 

  92. Hayes, R. A. & Ralston, J. Forced liquid movement on low energy surfaces. J. Colloid Interface Sci. 159, 429–438 (1993).

    Article  ADS  Google Scholar 

  93. Ranabothu, S. R., Karnezis, C. & Dai, L. L. Dynamic wetting: hydrodynamic or molecular-kinetic? J. Colloid Interface Sci. 288, 213–221 (2005).

    Article  ADS  Google Scholar 

  94. Priest, C., Sedev, R. & Ralston, J. A quantitative experimental study of wetting hysteresis on discrete and continuous chemical heterogeneities. Colloid Polym. Sci. 291, 271–277 (2013).

    Article  Google Scholar 

  95. Burley, R. & Kennedy, B. S. An experimental study of air entrainment at a solid–liquid–gas interface. Chem. Eng. Sci. 31, 901–911 (1976).

    Article  Google Scholar 

  96. Gutoff, E. B. & Kendrick, C. E. Dynamic contact angles. AIChE J. 28, 459–466 (1982).

    Article  ADS  Google Scholar 

  97. Petrov, P. G. & Petrov, J. G. A combined molecular-hydrodynamic approach to wetting kinetics. Langmuir 8, 1762–1767 (1992).

    Article  Google Scholar 

  98. Blake, T. D. & Shikhmurzaev, Y. D. Dynamic wetting by liquids of different viscosity. J. Colloid Interface Sci. 253, 196–202 (2002).

    Article  ADS  Google Scholar 

  99. Inverarity, G. Dynamic wetting of glass fibre and polymer fibre. Br. Polym. J. 1, 245–251 (1969).

    Article  Google Scholar 

  100. Ghannam, M. T. & Esmail, M. N. Experimental study on wetting of fibers with non-Newtonian liquids. AIChE J. 43, 1579–1588 (1997).

    Article  ADS  Google Scholar 

  101. Petrov, J. G., Ralston, J., Schneemilch, M. & Hayes, R. A. Dynamics of partial wetting and dewetting in well-defined systems. J. Phys. Chem. B 107, 1634–1645 (2003).

    Article  Google Scholar 

  102. Vega, M. J. et al. Experimental investigation of the link between static and dynamic wetting by forced wetting of nylon filament. Langmuir 23, 10628–10634 (2007).

    Article  Google Scholar 

  103. Bateni, A., Susnar, S. S., Amirfazli, A. & Neumann, A. W. A high-accuracy polynomial fitting approach to determine contact angles. Colloids Surf. A 219, 215–231 (2003).

    Article  Google Scholar 

  104. Puthenveettil, B. A., Senthilkumar, V. K. & Hopfinger, E. J. Motion of drops on inclined surfaces in the inertial regime. J. Fluid Mech. 726, 26–61 (2013).

    Article  ADS  Google Scholar 

  105. Shumaly, S. et al. Deep learning to analyze sliding drops. Langmuir 39, 1111–1122 (2023).

    Article  Google Scholar 

  106. Kabir, H. & Garg, N. Machine learning enabled orthogonal camera goniometry for accurate and robust contact angle measurements. Sci. Rep. 13, 1497 (2023).

    Article  ADS  Google Scholar 

  107. Li, X. et al. Spontaneous charging affects the motion of sliding drops. Nat. Phys. 18, 713–719 (2022).

    Article  Google Scholar 

  108. Olin, P., Lindstrom, S. B., Pettersson, T. & Wagberg, L. Water drop friction on superhydrophobic surfaces. Langmuir 29, 9079–9089 (2013).

    Article  Google Scholar 

  109. Yilbas, B. S., Al-Sharafi, A., Ali, H. & Al-Aqeeli, N. Dynamics of a water droplet on a hydrophobic inclined surface: influence of droplet size and surface inclination angle on droplet rolling. RSC Adv. 7, 48806–48818 (2017).

    Article  ADS  Google Scholar 

  110. Sakai, M. et al. Sliding of water droplets on the superhydrophobic surface with ZnO nanorods. Langmuir 25, 14182–14186 (2009).

    Article  Google Scholar 

  111. Hao, P. F., Lv, C. J., Yao, Z. H. & He, F. Sliding behavior of water droplet on superhydrophobic surface. EPL 90, 66003 (2010).

    Article  ADS  Google Scholar 

  112. Mouterde, T., Raux, P. S., Clanet, C. & Quere, D. Superhydrophobic frictions. Proc. Natl Acad. Sci. USA 116, 8220–8223 (2019).

    Article  ADS  Google Scholar 

  113. Li, X. et al. Kinetic drop friction. Nat. Commun. 14, 4571 (2023).

    Article  ADS  Google Scholar 

  114. Decker, E. L., Frank, B., Suo, Y. & Garoff, S. Physics of contact angle measurement. Colloids Surf. A 156, 177–189 (1999).

    Article  Google Scholar 

  115. Semprebon, C., Herminghaus, S. & Brinkmann, M. Advancing modes on regularly patterned substrates. Soft Matter 8, 6301–6309 (2012).

    Article  ADS  Google Scholar 

  116. Suda, H. & Yamada, S. Force measurements for the movement of a water drop on a surface with a surface tension gradient. Langmuir 19, 529–531 (2003).

    Article  Google Scholar 

  117. Lagubeau, G., Le Merrer, M., Clanet, C. & Quéré, D. Leidenfrost on a ratchet. Nat. Phys. 7, 395–398 (2011).

    Article  Google Scholar 

  118. Beitollahpoor, M., Farzam, M. & Pesika, N. S. Determination of the sliding angle of water drops on surfaces from friction force measurements. Langmuir 38, 2132–2136 (2022).

    Article  Google Scholar 

  119. Pilat, D. W. et al. Dynamic measurement of the force required to move a liquid drop on a solid surface. Langmuir 28, 16812–16820 (2012).

    Article  Google Scholar 

  120. Gao, N. et al. How drops start sliding over solid surfaces. Nat. Phys. 14, 191–196 (2018).

    Article  Google Scholar 

  121. Daniel, D. et al. Origins of extreme liquid repellency on structured, flat, and lubricated hydrophobic surfaces. Phys. Rev. Lett. 120, 244503 (2018).

    Article  ADS  Google Scholar 

  122. Backholm, M. et al. Water droplet friction and rolling dynamics on superhydrophobic surfaces. Nat. Commun. Mater. 1, 64 (2020).

    Article  ADS  Google Scholar 

  123. Barrio-Zhang, H. et al. Contact-angle hysteresis and contact-line friction on slippery liquid-like surfaces. Langmuir 36, 15094–15101 (2020).

    Article  Google Scholar 

  124. Khattak, H. K., Karpitschka, S., Snoeijer, J. H. & Dalnoki-Veress, K. Direct force measurement of microscopic droplets pulled along soft surfaces. Nat. Commun. 13, 4436 (2022).

    Article  ADS  Google Scholar 

  125. Xue, N., Wilen, L. A., Style, R. W. & Dufresne, E. R. Droplets sliding on soft solids shed elastocapillary rails. Soft Matter https://doi.org/10.1039/d4sm01041h (2024).

    Article  Google Scholar 

  126. Hinduja, C. et al. Scanning drop friction force microscopy. Langmuir 38, 14635–14643 (2022).

    Article  Google Scholar 

  127. Timonen, J. V. I., Latikka, M., Ras, R. H. A. & Ikkala, O. Free-decay and resonant methods for investigating the fundamental limit of superhydrophobicity. Nat. Commun. 4, 2398 (2013).

    Article  ADS  Google Scholar 

  128. Daniel, D. et al. Probing surface wetting across multiple force, length and time scales. Commun. Phys. 6, 152 (2023).

    Article  Google Scholar 

  129. Rio, E., Daerr, A., Andreotti, B. & Limat, L. Boundary conditions in the vicinity of a dynamic contact line: experimental investigation of viscous drops sliding down an inclined plane. Phys. Rev. Lett. 94, 024503 (2005).

    Article  ADS  Google Scholar 

  130. Huh, C. & Scriven, L. E. Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 35, 85–101 (1971).

    Article  ADS  Google Scholar 

  131. Voinov, O. V. Hydrodynamics of wetting. Fluid Dyn. 11, 714–721 (1976).

    Article  ADS  Google Scholar 

  132. Cox, R. G. The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J. Fluid Mech. 168, 169–194 (1986).

    Article  ADS  Google Scholar 

  133. Dussan, E. B., Ramé, E. & Garoff, S. On identifying the appropriate boundary conditions at a moving contact line: an experimental investigation. J. Fluid Mech. 230, 97–116 (1991).

    Article  ADS  Google Scholar 

  134. Kim, H. Y., Lee, H. J. & Kang, B. H. Sliding of liquid drops down an inclined solid surface. J. Colloid Interface Sci. 247, 372–380 (2002).

    Article  ADS  Google Scholar 

  135. Eggers, J. Existence of receding and advancing contact lines. Phys. Fluids 17, 082106 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  136. Maglio, M. & Legendre, D. in Computational and Experimental Fluid Mechanics with Applications to Physics, Engineering and the Environment (eds Sigalotti, L. D. et al.) 47–69 (Springer, 2014).

  137. Marsh, J. A., Garoff, S. & Dussan, E. B. Dynamic contact angles and hydrodynamics near a moving contact line. Phys. Rev. Lett. 70, 2778–2781 (1993).

    Article  ADS  Google Scholar 

  138. Bodziony, F. et al. Contribution of wedge and bulk viscous forces in droplets moving on inclined surfaces. Theor. Comput. Fluid Dyn. 38, 583–601 (2024).

    Article  MathSciNet  Google Scholar 

  139. Dussan, E. B. On the spreading of liquids on solid surfaces: static and dynamic contact lines. Annu. Rev. Fluid Mech. 11, 371–400 (1979).

    Article  ADS  Google Scholar 

  140. Huh, C. & Mason, S. G. The steady movement of a liquid meniscus in a capillary tube. J. Fluid Mech. 81, 401–419 (1977).

    Article  ADS  Google Scholar 

  141. Hocking, L. M. A moving fluid interface. Part 2. The removal of the force singularity by a slip flow. J. Fluid Mech. 79, 209–229 (1977).

    Article  ADS  Google Scholar 

  142. Ruckenstein, E. & Dunn, C. S. Slip velocity during wetting of solids. J. Colloid Interface Sci. 59, 135 (1977).

    Article  ADS  Google Scholar 

  143. Koplik, J., Banavar, J. R. & Willemsen, J. F. Molecular dynamics of fluid flow at solid surfaces. Phys. Fluids A 1, 781–794 (1989).

    Article  ADS  Google Scholar 

  144. Thompson, P. A. & Robbins, M. O. Simulations of contact-line motion: slip and the dynamic contact angle. Phys. Rev. Lett. 63, 766–769 (1989).

    Article  ADS  Google Scholar 

  145. Blake, T. D., Fernandez-Toledano, J. C., Doyen, G. & De Coninck, J. Forced wetting and hydrodynamic assist. Phys. Fluids 27, 112101 (2015).

    Article  ADS  Google Scholar 

  146. Snoeijer, J. H. Free-surface flows with large slopes: beyond lubrication theory. Phys. Fluids 18, 021701 (2006).

    Article  ADS  Google Scholar 

  147. Oléron, M., Limat, L., Dervaux, J. & Roché, M. Morphology and stability of droplets sliding on soft viscoelastic substrates. Soft Matter 20, 762–772 (2024).

    Article  ADS  Google Scholar 

  148. Roché, M., Talini, L. & Verneuil, E. Complexity in wetting dynamics. Langmuir 40, 2830–2848 (2024).

    Article  Google Scholar 

  149. Vergelati, C., Perwuelz, A., Vovelle, L., Romero, M. A. & Holl, Y. Poly(ethylene terephthalate) surface dynamics in air and water studied by tensiometry and molecular modelling. Polymer 35, 262–270 (1994).

    Article  Google Scholar 

  150. Golovin, K., Boban, M., Mabry, J. M. & Tuteja, A. Designing self-healing superhydrophobic surfaces with exceptional mechanical durability. ACS Appl. Mater. Interfaces 9, 11212–11223 (2017).

    Article  Google Scholar 

  151. Tadmor, R. Open problems in wetting phenomena: pinning retention forces. Langmuir 37, 6357–6372 (2021).

    Article  Google Scholar 

  152. Ruckenstein, E. & Gourisankar, S. V. Surface restructuring of polymeric solids and its effect on the stability of the polymer–water interface. J. Colloid Interface Sci. 109, 557–566 (1986).

    Article  ADS  Google Scholar 

  153. Wang, F. & Nestler, B. Wetting and contact-angle hysteresis: density asymmetry and van der Waals force. Phys. Rev. Lett. 132, 126202 (2024).

    Article  ADS  Google Scholar 

  154. Bayramli, E., Van de Ven, T. G. M. & Mason, S. G. Tensiometric studies on wetting. 3. Low and high energy surfaces. Colloids Surf. 3, 131–145 (1981).

    Article  Google Scholar 

  155. Schrader, M. E. Wettability of clean metal surfaces. J. Colloid Interface Sci. 100, 372–380 (1984).

    Article  ADS  Google Scholar 

  156. Stepien, M. et al. ToF-SIMS analysis of UV-switchable TiO2-nanoparticle-coated paper surface. Langmuir 29, 3780–3790 (2013).

    Article  Google Scholar 

  157. Wang, R. et al. Light-induced amphiphilic surfaces. Nature 388, 431–432 (1997).

    Article  ADS  Google Scholar 

  158. Ablett, R. An investigation of the angle of contact between paraffin wax and water. Phil. Mag. 46, 244–256 (1923).

    Article  Google Scholar 

  159. Ward, A. F. H. & Tordai, L. Time-dependence of boundary tensions of solutions. J. Chem. Phys. 14, 453–461 (1946).

    Article  ADS  Google Scholar 

  160. Kanokkarn, P., Shiina, T., Santikunaporn, M. & Chavadej, S. Equilibrium and dynamic surface tension in relation to diffusivity and foaming properties: effects of surfactant type and structure. Colloids Surf. A 524, 135–142 (2017).

    Article  Google Scholar 

  161. Yatsuzuka, K., Mizuno, Y. & Asano, K. Electrification phenomena of pure water droplets dripping and sliding on a polymer surface. J. Electrost. 32, 157–171 (1994).

    Article  Google Scholar 

  162. Helseth, L. E. & Wen, H. Z. Evaluation of the energy generation potential of rain cells. Energy 119, 472–482 (2017).

    Article  Google Scholar 

  163. Stetten, A. Z., Golovko, D. S., Weber, S. A. L. & Butt, H. J. Slide electrification: charging of surfaces by moving water drops. Soft Matter 15, 8667–8679 (2019).

    Article  ADS  Google Scholar 

  164. Sosa, M. D., D’Accorso, N. B., Ricci, M. L. M. & Negri, R. M. Liquid–polymer contact electrification: modeling the dependence of surface charges and zeta-potential on pH and added-salt concentration. Langmuir 38, 8817–8828 (2022).

    Article  Google Scholar 

  165. Xu, W. et al. Triboelectric wetting for continuous droplet transport. Sci. Adv. 8, eade2085 (2022).

    Article  Google Scholar 

  166. Bista, P., Ratschow, A. D., Butt, H.-J. & Weber, S. A. L. High voltages in sliding water drops. J. Phys. Chem. Lett. 14, 11110–11116 (2023).

    Article  Google Scholar 

  167. Ratschow, A. D., Butt, H.-J., Hardt, S. & Weber, S. A. L. Liquid slide electrification: advances and open questions. Soft Matter 21, 1251–1262 (2025).

    Article  Google Scholar 

  168. Wang, K. Q. & Li, J. J. Electricity generation from the interaction of liquid–solid interface: a review. J. Mater. Chem. A 9, 8870–8895 (2021).

    Article  Google Scholar 

  169. Sun, Q. et al. Surface charge printing for programmed droplet transport. Nat. Mater. 18, 936–941 (2019).

    Article  ADS  Google Scholar 

  170. Li, X., Ratschow, A. D., Hardt, S. & Butt, H.-J. Surface charge deposition by moving drops reduces contact angles. Phys. Rev. Lett. 131, 228201 (2023).

    Article  ADS  Google Scholar 

  171. Ratschow, A. D. et al. How charges separate when surfaces are dewetted. Phys. Rev. Lett. 132, 224002 (2024).

    Article  ADS  Google Scholar 

  172. Wu, H. et al. Electrically controlled localized charge trapping at amorphous fluoropolymer–electrolyte interfaces. Small 16, 1905726 (2020).

    Article  Google Scholar 

  173. Mugele, F. & Heikenfeld, J. Electrowetting: Fundamental Principles and Practical Applications (Wiley-VCH, 2019).

  174. Lippmann, G. Relation entre les phénomènes électriques et capillaires. Ann. Chim. Phys. 5, 494–549 (1875).

    Google Scholar 

  175. Yaminsky, V. V. & Johnston, M. B. Static electrification by nonwetting liquids. Contact charging and contact angles. Langmuir 11, 4153–4158 (1995).

    Article  Google Scholar 

  176. Wong, W. S. Y. et al. Tuning the charge of sliding water drops. Langmuir 38, 6224–6230 (2022).

    Article  Google Scholar 

  177. Lin, S. Q., Xu, L., Wang, A. C. & Wang, Z. L. Quantifying electron-transfer in liquid–solid contact electrification and the formation of electric double-layer. Nat. Commun. 11, 399 (2020).

    Article  ADS  Google Scholar 

  178. Nie, J. H. et al. Probing contact-electrification-induced electron and ion transfers at a liquid–solid interface. Adv. Mater. 32, 1905696 (2020).

    Article  Google Scholar 

  179. Lester, G. R. Contact angle of liquids at deformable solid surfaces. J. Colloid Sci. 16, 315–326 (1961).

    Article  Google Scholar 

  180. Rusanov, A. I. Theory of the wetting of elastically deformed bodies. 1. Deformation with a finite contact angle. Colloid J. USSR 37, 614–622 (1975).

    ADS  Google Scholar 

  181. Shanahan, M. E. R. The influence of solid micro-deformation on contact-angle equilibrium. J. Phys. D 20, 945–950 (1987).

    Article  ADS  Google Scholar 

  182. White, L. R. The contact angle on an elastic substrate. 1. The role of disjoining pressure in the surface mechanics. J. Colloid Interface Sci. 258, 82–96 (2003).

    Article  ADS  Google Scholar 

  183. Style, R. W. & Dufresne, E. R. Static wetting on deformable substrates, from liquids to soft solids. Soft Matter 8, 7177–7184 (2012).

    Article  ADS  Google Scholar 

  184. Carré, A., Gastel, J. C. & Shanahan, M. E. R. Viscoelastic effects in the spreading of liquids. Nature 379, 432–434 (1996).

    Article  ADS  Google Scholar 

  185. Pericet-Camara, R., Best, A., Butt, H.-J. & Bonaccurso, E. Effect of capillary pressure and surface tension on the deformation of elastic surfaces by sessile liquid microdrops: an experimental investigation. Langmuir 24, 10565–10568 (2008).

    Article  Google Scholar 

  186. Jerison, E. R., Xu, Y., Wilen, L. A. & Dufresne, E. R. Deformation of an elastic substrate by a three-phase contact line. Phys. Rev. Lett. 106, 186103 (2011).

    Article  ADS  Google Scholar 

  187. Style, R. W. et al. Universal deformation of soft substrates near a contact line and the direct measurement of solid surface stresses. Phys. Rev. Lett. 110, 066103 (2013).

    Article  ADS  Google Scholar 

  188. Park, S. J. et al. Visualization of asymmetric wetting ridges on soft solids with X-ray microscopy. Nat. Commun. 5, 4369–4369 (2014).

    Article  ADS  Google Scholar 

  189. Wang, Q. et al. Wetting-induced elastocapillary deformation of supported thin rubbery polymer films. Macromolecules 57, 10112–10119 (2024).

    Article  Google Scholar 

  190. Dervaux, J. & Limat, L. Contact lines on soft solids with uniform surface tension: analytical solutions and double transition for increasing deformability. Proc. R. Soc. A 471, 20140813 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  191. Andreotti, B. & Snoeijer, J. H. Statics and dynamics of soft wetting. Annu. Rev. Fluid Mech. 52, 285–308 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  192. Quincke, G. Ueber die Capillaritäts-Erscheinungen an der gemeinschaftlichen Oberfläche zweier Flüssigkeiten. Pogg. Ann. Phys. Chem. 139, 1–89 (1870).

    ADS  Google Scholar 

  193. Neumann, F. Vorlesungen über die Theorie der Capillarität (Teubner, 1894).

  194. Bico, J., Reyssat, E. & Roman, B. Elastocapillarity: when surface tension deforms elastic solids. Ann. Rev. Fluid Mech. 50, 629–659 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  195. Liang, H. Y., Cao, Z., Wang, Z. L. & Dobrynin, A. V. Surface stresses and a force balance at a contact line. Langmuir 34, 7497–7502 (2018).

    Article  Google Scholar 

  196. Zhao, M. H. et al. Geometrical control of dissipation during the spreading of liquids on soft solids. Proc. Natl Acad. Sci. USA 115, 1748–1753 (2018).

    Article  ADS  Google Scholar 

  197. Kap, Ö. et al. Nonequilibrium configurations of swelling polymer brush layers induced by spreading drops of weakly volatile oil. J. Chem. Phys. 158, 174903 (2023).

    Article  ADS  Google Scholar 

  198. Karpitschka, S. et al. Droplets move over viscoelastic substrates by surfing a ridge. Nat. Commun. 6, 7891 (2015).

    Article  ADS  Google Scholar 

  199. Carré, A. & Shanahan, M. E. R. Viscoelastic breaking of a running drop. Langmuir 17, 2982–2985 (2001).

    Article  Google Scholar 

  200. Long, D., Ajdari, A. & Leibler, L. Static and dynamic wetting properties of thin rubber films. Langmuir 12, 5221–5230 (1996).

    Article  Google Scholar 

  201. Pu, G. & Severtson, S. J. Characterization of dynamic stick-and-break wetting behavior for various liquids on the surface of a highly viscoelastic polymer. Langmuir 24, 4685–4692 (2008).

    Article  Google Scholar 

  202. Kajiya, T. et al. Advancing liquid contact line on visco-elastic gel substrates: stick-slip vs. continuous motions. Soft Matter 9, 454–461 (2013).

    Article  ADS  Google Scholar 

  203. Masurel, R., Roché, M., Limat, L., Ionescu, I. & Dervaux, J. Elastocapillary ridge as a noninteger disclination. Phys. Rev. Lett. 122, 248004 (2019).

    Article  ADS  Google Scholar 

  204. Tadmor, R. et al. Why drops bounce on smooth surfaces. Langmuir 34, 4695–4700 (2018).

    Article  Google Scholar 

  205. Deryaguin, B. V., Starov, V. M. & Churaev, N. V. Profile of the transition zone between a wetting film and the meniscus of the bulk liquid. Kolloidn. Zh. 38, 875–879 (1976).

    Google Scholar 

  206. Wayner, P. C. The interfacial profile in the contact line region and the Young–Dupré equation. J. Colloid Interface Sci. 88, 294–295 (1982).

    Article  ADS  Google Scholar 

  207. Churaev, N. V., Starov, V. M. & Derjaguin, B. V. The shape of the transition zone between a thin film and bulk liquid and the line tension. J. Colloid Interface Sci. 89, 16–24 (1982).

    Article  ADS  Google Scholar 

  208. Thiele, U., Snoeijer, J. H., Trinschek, S. & John, K. Equilibrium contact angle and adsorption layer properties with surfactants. Langmuir 34, 7210–7221 (2018).

    Article  Google Scholar 

  209. Hughes, A. P., Thiele, U. & Archer, A. J. Liquid drops on a surface: using density functional theory to calculate the binding potential and drop profiles and comparing with results from mesoscopic modelling. J. Chem. Phys. 142, 074702 (2015).

    Article  ADS  Google Scholar 

  210. Kubochkin, N. & Gambaryan-Roisman, T. Wetting at nanoscale: effect of surface forces and droplet size. Phys. Rev. Fluids 6, 093603 (2021).

    Article  ADS  Google Scholar 

  211. Koplik, J., Banavar, J. R. & Willemsen, J. F. Molecular-dynamics of Poiseuille flow and moving contact lines. Phys. Rev. Lett. 60, 1282–1285 (1988).

    Article  ADS  Google Scholar 

  212. Johansson, P. & Hess, B. Molecular origin of contact line friction in dynamic wetting. Phys. Rev. Fluids 3, 074201 (2018).

    Article  ADS  Google Scholar 

  213. Fernandez-Toledano, J. C., Blake, T. D., Lambert, P. & De Coninck, J. On the cohesion of fluids and their adhesion to solids: Young’s equation at the atomic scale. Adv. Colloid Interface Sci. 245, 102–107 (2017).

    Article  Google Scholar 

  214. Fernández-Toledano, J. C., Blake, T. D. & De Coninck, J. Moving contact lines and Langevin formalism. J. Colloid Interface Sci. 562, 287–292 (2020).

    Article  ADS  Google Scholar 

  215. Blake, T. D. & Haynes, J. M. Kinetics of liquid/liquid displacement. J. Colloid Interface Sci. 30, 421–423 (1969).

    Article  ADS  Google Scholar 

  216. Perrin, H., Lhermerout, R., Davitt, K., Rolley, E. & Andreotti, B. Defects at the nanoscale impact contact line motion at all scales. Phys. Rev. Lett. 116, 184502 (2016).

    Article  ADS  Google Scholar 

  217. Shikhmurzaev, Y. D. Moving contact lines in liquid/liquid/solid systems. J. Fluid Mech. 334, 211–249 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  218. Pellegrino, M. & Hess, B. Asymmetry of wetting and de-wetting on high-friction surfaces originates from the same molecular physics. Phys. Fluids 34, 102010 (2022).

    Article  ADS  Google Scholar 

  219. Fernández-Toledano, J. C., Blake, T. D. & De Coninck, J. Taking a closer look: a molecular-dynamics investigation of microscopic and apparent dynamic contact angles. J. Colloid Interface Sci. 587, 311–323 (2021).

    Article  ADS  Google Scholar 

  220. Saiz, E. & Tomsia, A. P. Atomic dynamics and Marangoni films during liquid-metal spreading. Nat. Mater. 3, 903–909 (2004).

    Article  ADS  Google Scholar 

  221. Lin, L., Xu, C. J., Wang, X. D. & Lee, D. J. High-temperature wetting and dewetting dynamics of silver droplets on molybdenum surfaces. Langmuir 39, 1135–1144 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the DFG Priority Program 2171 “Dynamic wetting of flexible, adaptive and switchable surfaces” (grant no. BU 1556/36 and BE 3286/6-1: H.-J.B., R.B.), the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 883631) (H.-J.B.) and the CRC 1194 project (J.D.C.) 265191195 T02 (R.B., H.J.B.). R.T. acknowledges the Israel Science Foundation (grant ISF 730/22) for supporting some of the work described here.

Author information

Authors and Affiliations

Authors

Contributions

H.-J.B. took the initiative in outlining and writing the manuscript. R.B., J.D.C. and R.T. contributed special parts. All authors read and discussed the manuscript.

Corresponding author

Correspondence to Hans-Jürgen Butt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Fei Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butt, HJ., Berger, R., De Coninck, J. et al. Drop friction. Nat Rev Phys 7, 425–438 (2025). https://doi.org/10.1038/s42254-025-00841-5

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s42254-025-00841-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing