Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The potential of multidimensional photonic computing

Abstract

The rapidly increasing demands on computational throughput, bandwidth and memory capacity fuelled by breakthroughs in machine learning pose substantial challenges for conventional electronic computing platforms. Historically, advancing compute performance relied on miniaturization to increase the transistor count on a given chip area and, more recently, on the development of parallel and multicore architectures. Computing platforms that process data using multiple, orthogonal dimensions can achieve exponential scaling on trajectories much steeper than what is possible with conventional strategies. One promising analog platform is photonics, which makes use of the physics of light, such as sensitivity to material properties and ability to encode information across multiple degrees of freedom. With recent breakthroughs in integrated photonic hardware and control, large-scale photonic systems have become a practical and timely solution for data-intensive, real-time computational tasks. Here, we explain developments in the realization of multidimensional computing platforms based on photonic systems. Moving to such architectures holds promise for low-latency, high-bandwidth information processing at reduced energy consumption.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Degrees of freedom in optical computing.
Fig. 2: Overview of basic building blocks for neuromorphic photonic computing approaches and platforms.
Fig. 3: Configuration of a quantum neural network.
Fig. 4: Perspective for neuromorphic quantum photonics.

Similar content being viewed by others

References

  1. Mehonic, A. & Kenyon, A. J. Brain-inspired computing needs a master plan. Nature 604, 255–260 (2022).

    Article  ADS  Google Scholar 

  2. Sevilla, J. et al. Compute trends across three eras of machine learning. In International Joint Conference on Neural Networks (IJCNN), Padua, Italy 1–8 (IEEE, 2022); https://doi.org/10.1109/IJCNN55064.2022.9891914.

  3. Amodei, D. & Hernandez, D. AI and compute. https://openai.com/index/ai-and-compute/ (2018).

  4. Hernandez, D. & Brown, T. AI and efficiency. https://openai.com/index/ai-and-efficiency/ (2020).

  5. GPT-4o Mini: Advancing Cost-Efficient Intelligence (OpenAI, accessed 5 August 2024); https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/.

  6. Strubell, E., Ganesh, A. & McCallum, A. Energy and policy considerations for deep learning in NLP. Preprint at https://arxiv.org/abs/1906.02243 (2019).

  7. Patterson, D. et al. Carbon emissions and large neural network training (2021).

  8. Xu, X. et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021).

    Article  ADS  Google Scholar 

  9. Tan, M. et al. Photonic signal processor based on a Kerr microcomb for real-time video image processing. Commun. Eng. 2, 94 (2023).

    Article  Google Scholar 

  10. Xu, Z. et al. Large-scale photonic chiplet Taichi empowers 160-TOPS/W artificial general intelligence. Science 384, 202–209 (2024).

    Article  ADS  Google Scholar 

  11. Chen, Y. et al. All-analog photoelectronic chip for high-speed vision tasks. Nature 623, 48–57 (2023).

    Article  ADS  Google Scholar 

  12. Arrazola, J. M. et al. Quantum circuits with many photons on a programmable nanophotonic chip. Nature 591, 54–60 (2021).

    Article  ADS  Google Scholar 

  13. Huh, J., Guerreschi, G. G., Peropadre, B., McClean, J. R. & Aspuru-Guzik, A. Boson sampling for molecular vibronic spectra. Nat. Photon. 9, 615–620 (2015).

    Article  ADS  Google Scholar 

  14. Banchi, L., Fingerhuth, M., Babej, T., Ing, C. & Arrazola, J. M. Molecular docking with Gaussian boson sampling. Sci. Adv. 6, eaax1950 (2022).

    Article  ADS  Google Scholar 

  15. Yu, S. et al. A universal programmable Gaussian boson sampler for drug discovery. Nat. Comput. Sci. 3, 839–848 (2023).

    Article  ADS  Google Scholar 

  16. Shor, P. W. Algorithms for quantum computation: discrete logarithms and factoring. In Proc. 35th Annual Symposium on Foundations of Computer Science 124–134. https://doi.org/10.1109/SFCS.1994.365700 (1994).

  17. Grover, L. K. A fast quantum mechanical algorithm for database search. In Proc. Twenty-Eighth Annual ACM Symposium on Theory of Computing 212–219 (Association for Computing Machinery, 1996). https://doi.org/10.1145/237814.237866.

  18. Bennett, C. H., Bessette, F., Brassard, G., Salvail, L. & Smolin, J. Experimental quantum cryptography. J. Cryptol. 5, 3–28 (1992).

    Article  Google Scholar 

  19. Hillery, M. Quantum cryptography with squeezed states. Phys. Rev. A 61, 022309 (2000).

    Article  ADS  Google Scholar 

  20. Laudenbach, F. et al. Continuous-variable quantum key distribution with Gaussian modulation — the theory of practical implementations. Adv. Quantum Technol. 1, 1800011 (2018).

    Article  Google Scholar 

  21. Ralph, T. C. Continuous variable quantum cryptography. Phys. Rev. A 61, 010303 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  22. Tennie, F. & Palmer, T. N. Quantum computers for weather and climate prediction: the good, the bad, and the noisy. Bull. Am. Meteorol. Soc. 104, E488–E500 (2023).

    Article  ADS  Google Scholar 

  23. Suhas, S. & Divya, S. Quantum-improved weather forecasting: integrating quantum machine learning for precise prediction and disaster mitigation. In 2023 International Conference on Quantum Technologies, Communications, Computing, Hardware and Embedded Systems Security (iQ-CCHESS) 1–7. https://doi.org/10.1109/iQ-CCHESS56596.2023.10391714 (2023).

  24. Egger, D. J., García Gutiérrez, R., Mestre, J. C. & Woerner, S. Credit risk analysis using quantum computers. IEEE Trans. Comput. 70, 2136–2145 (2021).

    Article  MathSciNet  Google Scholar 

  25. Dri, E. et al. A more general quantum credit risk analysis framework. Entropy 25, 593 (2023).

    Article  ADS  Google Scholar 

  26. Herman, D. et al. Quantum computing for finance. Nat. Rev. Phys. 5, 450–465 (2023).

    Article  Google Scholar 

  27. Woerner, S. & Egger, D. J. Quantum risk analysis. npj Quantum Inf. 5, 15 (2019).

    Article  ADS  Google Scholar 

  28. Dri, E., Giusto, E., Aita, A. & Montrucchio, B. Towards practical quantum credit risk analysis. J. Phys. Conf. Ser. 2416, 012002 (2022).

    Article  Google Scholar 

  29. Jørgensen, A. A. et al. Petabit-per-second data transmission using a chip-scale microcomb ring resonator source. Nat. Photon. 16, 798–802 (2022).

    Article  ADS  Google Scholar 

  30. Rizzo, A. et al. Massively scalable Kerr comb-driven silicon photonic link. Nat. Photon. 17, 781–790 (2023).

    Article  ADS  Google Scholar 

  31. Yang, K. Y. et al. Multi-dimensional data transmission using inverse-designed silicon photonics and microcombs. Nat. Commun. 13, 7862 (2022).

    Article  ADS  Google Scholar 

  32. Pang, X. et al. 100 Gbit/s hybrid optical fiber-wireless link in the W-band (75–110 GHz). Opt. Express 19, 24944–24949 (2011).

    Article  ADS  Google Scholar 

  33. Pang, X. et al. 25 Gbit/s QPSK hybrid fiber-wireless transmission in the W-band (75–110 GHz) with remote antenna unit for in-building wireless networks. IEEE Photon. J. 4, 691–698 (2012).

    Article  ADS  Google Scholar 

  34. Li, F. et al. Optical I/Q modulation utilizing dual-drive MZM for fiber-wireless integration system at Ka-band. Opt. Lett. 44, 4235–4238 (2019).

    Article  ADS  Google Scholar 

  35. Han, Y. & Li, G. Coherent optical communication using polarization multiple-input–multiple-output. Opt. Express 13, 7527–7534 (2005).

    Article  ADS  Google Scholar 

  36. Appeltant, L. et al. Information processing using a single dynamical node as complex system. Nat. Commun. 2, 468 (2011).

    Article  ADS  Google Scholar 

  37. Hamerly, R. et al. Netcast: low-power edge computing with WDM-defined optical neural networks. J. Lightwave Technol. 42, 7795–7806 (2024).

    Article  Google Scholar 

  38. Brückerhoff-Plückelmann, F. et al. A large scale photonic matrix processor enabled by charge accumulation. Nanophotonics 12, 819–825 (2023).

    Article  Google Scholar 

  39. Zhang, J., Ma, B., Zhao, Y. & Zou, W. A large-scale photonic CNN based on spike coding and temporal integration. IEEE J. Sel. Top. Quantum Electron. 29, 1–10 (2023).

    Google Scholar 

  40. Tait, A. N. et al. Neuromorphic photonic networks using silicon photonic weight banks. Sci. Rep. 7, 7430 (2017).

    Article  ADS  Google Scholar 

  41. Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).

    Article  ADS  Google Scholar 

  42. Roztocki, P. et al. Practical system for the generation of pulsed quantum frequency combs. Opt. Express 25, 18940–18949 (2017).

    Article  ADS  Google Scholar 

  43. Zhang, L. et al. On-chip parallel processing of quantum frequency comb. npj Quantum Inf. 9, 57 (2023).

    Article  ADS  Google Scholar 

  44. Reimer, C. et al. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science 351, 1176–1180 (2016).

    Article  ADS  Google Scholar 

  45. Zhang, L. et al. A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces. Nat. Electron. 4, 218–227 (2021).

    Article  Google Scholar 

  46. Abdollahramezani, S., Hemmatyar, O. & Adibi, A. Meta-optics for spatial optical analog computing. Nanophotonics 9, 4075–4095 (2020).

    Article  Google Scholar 

  47. Wang, T. et al. An optical neural network using less than 1 photon per multiplication. Nat. Commun. 13, 123 (2022).

    Article  ADS  Google Scholar 

  48. Wang, T. et al. Image sensing with multilayer nonlinear optical neural networks. Nat. Photon. 17, 408–415 (2023).

    Article  ADS  Google Scholar 

  49. Porte, X. et al. A complete, parallel and autonomous photonic neural network in a semiconductor multimode laser. J. Phys. Photon. 3, 024017 (2021).

    Article  Google Scholar 

  50. Liu, Y. et al. Arbitrarily routed mode-division multiplexed photonic circuits for dense integration. Nat. Commun. 10, 3263 (2019).

    Article  ADS  Google Scholar 

  51. Wu, C. et al. Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network. Nat. Commun. 12, 96 (2021).

    Article  ADS  Google Scholar 

  52. Xiong, B. et al. Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise. Science 379, 294–299 (2023).

    Article  ADS  Google Scholar 

  53. Li, J., Hung, Y.-C., Kulce, O., Mengu, D. & Ozcan, A. Polarization multiplexed diffractive computing: all-optical implementation of a group of linear transformations through a polarization-encoded diffractive network. Light Sci. Appl. 11, 153 (2022).

    Article  ADS  Google Scholar 

  54. Dorrah, A. H., Rubin, N. A., Zaidi, A., Tamagnone, M. & Capasso, F. Metasurface optics for on-demand polarization transformations along the optical path. Nat. Photon. 15, 287–296 (2021).

    Article  ADS  Google Scholar 

  55. Walther, P. et al. Experimental one-way quantum computing. Nature 434, 169–176 (2005).

    Article  ADS  Google Scholar 

  56. Prevedel, R. et al. High-speed linear optics quantum computing using active feed-forward. Nature 445, 65–69 (2007).

    Article  ADS  Google Scholar 

  57. Heilmann, R., Gräfe, M., Nolte, S. & Szameit, A. Arbitrary photonic wave plate operations on chip: realizing Hadamard, Pauli-X and rotation gates for polarisation qubits. Sci. Rep. 4, 4118 (2014).

    Article  Google Scholar 

  58. Wang, J. et al. Orbital angular momentum and beyond in free-space optical communications. Nanophotonics 11, 645–680 (2022).

    Article  ADS  Google Scholar 

  59. Liu, S., Lou, Y. & Jing, J. Orbital angular momentum multiplexed deterministic all-optical quantum teleportation. Nat. Commun. 11, 3875 (2020).

    Article  ADS  Google Scholar 

  60. Ren, H. et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nat. Nanotechnol. 15, 948–955 (2020).

    Article  ADS  Google Scholar 

  61. Zhao, Z. et al. Dynamic spatiotemporal beams that combine two independent and controllable orbital-angular-momenta using multiple optical-frequency-comb lines. Nat. Commun. 11, 4099 (2020).

    Article  ADS  Google Scholar 

  62. Chen, B. et al. Bright solid-state sources for single photons with orbital angular momentum. Nat. Nanotechnol. 16, 302–307 (2021).

    Article  ADS  Google Scholar 

  63. Zahidy, M. et al. Photonic integrated chip enabling orbital angular momentum multiplexing for quantum communication. Nanophotonics 11, 821–827 (2022).

    Article  Google Scholar 

  64. Mehonic, A. et al. Roadmap to neuromorphic computing with emerging technologies. APL Mater. 12, 109201 (2024).

    Article  Google Scholar 

  65. Amitié/AEC-3 — Submarine Networks (Submarine Networks, accessed 2 December 2024); https://www.submarinenetworks.com/en/systems/trans-atlantic/amitie.

  66. NVIDIA Co-Packaged Silicon Photonics Networking Switches (NVIDIA, accessed 7 April 2025); https://www.nvidia.com/en-us/networking/products/silicon-photonics/.

  67. NVIDIA Announces Spectrum-X Photonics, Co-Packaged Optics Networking Switches to Scale AI Factories to Millions of GPUs (NVIDIA, accessed 7 April 2025); https://nvidianews.nvidia.com/news/nvidia-spectrum-x-co-packaged-optics-networking-switches-ai-factories.

  68. Antonik, P., Marsal, N., Brunner, D. & Rontani, D. Human action recognition with a large-scale brain-inspired photonic computer. Nat. Mach. Intell. 1, 530–537 (2019).

    Article  Google Scholar 

  69. Feldmann, J., Youngblood, N., Wright, C. D., Bhaskaran, H. & Pernice, W. H. P. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 569, 208–214 (2019).

    Article  ADS  Google Scholar 

  70. Dong, B. et al. Partial coherence enhances parallelized photonic computing. Nature 632, 55–62 (2024).

    Article  Google Scholar 

  71. Brückerhoff-Plückelmann, F. et al. Probabilistic photonic computing with chaotic light. Nat. Commun. 15, 10445 (2024).

    Article  Google Scholar 

  72. Zhou, T. et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat. Photon. 15, 367–373 (2021).

    Article  ADS  Google Scholar 

  73. Cheng, J. et al. Multimodal deep learning using on-chip diffractive optics with in situ training capability. Nat. Commun. 15, 6189 (2024).

    Article  Google Scholar 

  74. Sludds, A. et al. Delocalized photonic deep learning on the internet’s edge. Science 378, 270–276 (2022).

    Article  ADS  Google Scholar 

  75. Chen, Z. et al. Deep learning with coherent VCSEL neural networks. Nat. Photon. 17, 723–730 (2023).

    Article  ADS  Google Scholar 

  76. Xu, R. et al. Hybrid photonic integrated circuits for neuromorphic computing [Invited]. Opt. Mater. Express 13, 3553–3606 (2023).

    Article  ADS  Google Scholar 

  77. Abu-Mostafa, Y. S. & Psaltis, D. Optical neural computers. Sci. Am. 256, 88–95 (1987).

    Article  Google Scholar 

  78. Kalinin, K. P. et al. Analog iterative machine (AIM): using light to solve quadratic optimization problems with mixed variables. 41 (2023).

  79. Jaeger, H., Noheda, B. & van der Wiel, W. G. Toward a formal theory for computing machines made out of whatever physics offers. Nat. Commun. 14, 4911 (2023).

    Article  ADS  Google Scholar 

  80. Wright, L. G. et al. Deep physical neural networks trained with backpropagation. Nature 601, 549–555 (2022).

    Article  ADS  Google Scholar 

  81. Bueno, J. et al. Reinforcement learning in a large-scale photonic recurrent neural network. Optica 5, 756–760 (2018).

    Article  ADS  Google Scholar 

  82. Skalli, A. et al. Annealing-inspired training of an optical neural network with ternary weights. Commun. Phys. 8, 1–10 (2025).

    Article  Google Scholar 

  83. Abreu, S. et al. A photonics perspective on computing with physical substrates. Rev. Phys. 12, 100093 (2024).

    Article  Google Scholar 

  84. Jouppi, N. P. et al. TPU v4: an optically reconfigurable supercomputer for machine learning with hardware support for embeddings. In Proc. 50th Annual International Symposium on Computer Architecture 1–14 (Association for Computing Machinery, 2023).

  85. Akopyan, F. et al. TrueNorth: design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34, 1537–1557 (2015).

    Article  Google Scholar 

  86. Le Gallo, M. et al. A 64-core mixed-signal in-memory compute chip based on phase-change memory for deep neural network inference. Nat. Electron. 6, 680–693 (2023).

    Article  Google Scholar 

  87. Ashtiani, F., Geers, A. J. & Aflatouni, F. An on-chip photonic deep neural network for image classification. Nature 606, 501–506 (2022).

    Article  ADS  Google Scholar 

  88. Meng, X. et al. High-integrated photonic tensor core utilizing high-dimensional lightwave and microwave multidomain multiplexing. Light Sci. Appl. 14, 27 (2025).

    Article  Google Scholar 

  89. Fu, T. et al. Optical neural networks: progress and challenges. Light Sci. Appl. 13, 263 (2024).

    Article  Google Scholar 

  90. El Srouji, L. et al. Photonic and optoelectronic neuromorphic computing. APL Photon. 7, 051101 (2022).

    Article  ADS  Google Scholar 

  91. Lima, T. F., de Shastri, B. J., Tait, A. N., Nahmias, M. A. & Prucnal, P. R. Progress in neuromorphic photonics. Nanophotonics 6, 577–599 (2017).

    Article  Google Scholar 

  92. Meng, X. et al. Compact optical convolution processing unit based on multimode interference. Nat. Commun. 14, 3000 (2023).

    Article  ADS  Google Scholar 

  93. Zhou, H. et al. Photonic matrix multiplication lights up photonic accelerator and beyond. Light Sci. Appl. 11, 30 (2022).

    Article  ADS  Google Scholar 

  94. Lima, T. Fde et al. Primer on silicon neuromorphic photonic processors: architecture and compiler. Nanophotonics 9, 4055–4073 (2020).

    Article  Google Scholar 

  95. Karunaratne, G. et al. In-memory hyperdimensional computing. Nat. Electron. 3, 327–337 (2020).

    Article  Google Scholar 

  96. Karunaratne, G. et al. Robust high-dimensional memory-augmented neural networks. Nat. Commun. 12, 2468 (2021).

    Article  ADS  Google Scholar 

  97. Hersche, M., Zeqiri, M., Benini, L., Sebastian, A. & Rahimi, A. A neuro-vector-symbolic architecture for solving Raven’s progressive matrices. Nat. Mach. Intell. 5, 363–375 (2023).

    Article  Google Scholar 

  98. De Marinis, L., Cococcioni, M., Castoldi, P. & Andriolli, N. Photonic neural networks: a survey. IEEE Access 7, 175827–175841 (2019).

    Article  Google Scholar 

  99. Harrow, A. W., Hassidim, A. & Lloyd, S. Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103, 150502 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  100. Schuld, M. & Killoran, N. Quantum machine learning in feature Hilbert spaces. Phys. Rev. Lett. 122, 040504 (2019).

    Article  ADS  Google Scholar 

  101. Havlíček, V. et al. Supervised learning with quantum-enhanced feature spaces. Nature 567, 209–212 (2019).

    Article  ADS  Google Scholar 

  102. Biamonte, J. et al. Quantum machine learning. Nature 549, 195–202 (2017).

    Article  ADS  Google Scholar 

  103. Wiebe, N., Braun, D. & Lloyd, S. Quantum algorithm for data fitting. Phys. Rev. Lett. 109, 050505 (2012).

    Article  ADS  Google Scholar 

  104. Lloyd, S., Mohseni, M. & Rebentrost, P. Quantum principal component analysis. Nat. Phys. 10, 631–633 (2014).

    Article  Google Scholar 

  105. Rebentrost, P., Mohseni, M. & Lloyd, S. Quantum support vector machine for big data classification. Phys. Rev. Lett. 113, 130503 (2014).

    Article  ADS  Google Scholar 

  106. Aaronson, S. Read the fine print. Nat. Phys. 11, 291–293 (2015).

    Article  Google Scholar 

  107. Giovannetti, V., Lloyd, S. & Maccone, L. Quantum random access memory. Phys. Rev. Lett. 100, 160501 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  108. Cai, X.-D. et al. Experimental quantum computing to solve systems of linear equations. Phys. Rev. Lett. 110, 230501 (2013).

    Article  ADS  Google Scholar 

  109. Aghaee Rad, H. et al. Scaling and networking a modular photonic quantum computer. Nature 638, 912–919 (2025).

    Article  Google Scholar 

  110. Alexander, K. et al. A manufacturable platform for photonic quantum computing. Nature https://doi.org/10.1038/s41586-025-08820-7 (2025).

  111. Schuld, M., Bocharov, A., Svore, K. M. & Wiebe, N. Circuit-centric quantum classifiers. Phys. Rev. A 101, 032308 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  112. Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).

    Article  Google Scholar 

  113. Schuld, M. & Killoran, N. Is quantum advantage the right goal for quantum machine learning? PRX Quantum 3, 030101 (2022).

    Article  ADS  Google Scholar 

  114. Bowles, J., Ahmed, S. & Schuld, M. Better than classical? The subtle art of benchmarking quantum machine learning models. Preprint at https://arxiv.org/abs/2403.07059 (2024).

  115. Schütte, N.-E., Götting, N., Müntinga, H., List, M. & Gies, C. Expressive limits of quantum reservoir computing. Preprint at https://arxiv.org/abs/2501.15528 (2025).

  116. Abbas, A. et al. The power of quantum neural networks. Nat. Comput. Sci. 1, 403–409 (2021).

    Article  Google Scholar 

  117. Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340 (2016).

    Article  ADS  Google Scholar 

  118. Ding, X. et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401 (2016).

    Article  ADS  Google Scholar 

  119. Uppu, R. et al. Scalable integrated single-photon source. Sci. Adv. https://doi.org/10.1126/sciadv.abc8268 (2020).

  120. Le Jeannic, H. et al. Dynamical photon–photon interaction mediated by a quantum emitter. Nat. Phys. 18, 1191–1195 (2022).

    Article  Google Scholar 

  121. Nielsen, K. H. et al. Programmable nonlinear quantum photonic circuits. Preprint at https://arxiv.org/abs/2405.17941v1 (2024).

  122. Liu, S. et al. Violation of Bell inequality by photon scattering on a two-level emitter. Nat. Phys. https://doi.org/10.1038/s41567-024-02543-8 (2024).

  123. De Santis, L. et al. A solid-state single-photon filter. Nat. Nanotechnol. 12, 663–667 (2017).

    Article  ADS  Google Scholar 

  124. Fujii, K. & Nakajima, K. Harnessing disordered-ensemble quantum dynamics for machine learning. Phys. Rev. Appl. 8, 024030 (2017).

    Article  ADS  Google Scholar 

  125. Spagnolo, M. et al. Experimental photonic quantum memristor. Nat. Photon. 16, 318–323 (2022).

    Article  ADS  Google Scholar 

  126. Braunstein, S. L. & van Loock, P. Quantum information with continuous variables. Rev. Mod. Phys. 77, 513 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  127. Menicucci, N. C., Flammia, S. T. & Pfister, O. One-way quantum computing in the optical frequency comb. Phys. Rev. Lett. 101, 130501 (2008).

    Article  ADS  Google Scholar 

  128. Menicucci, N. C. Temporal-mode continuous-variable cluster states using linear optics. Phys. Rev. A 83, 062314 (2011).

    Article  ADS  Google Scholar 

  129. Lu, J., Li, M., Zou, C.-L., Al Sayem, A. & Tang, H. X. Toward 1% single-photon anharmonicity with periodically poled lithium niobate microring resonators. Optica 7, 1654–1659 (2020).

    Article  ADS  Google Scholar 

  130. Zhao, M. & Fang, K. InGaP quantum nanophotonic integrated circuits with 1.5% nonlinearity-to-loss ratio. Optica 9, 258–263 (2022).

    Article  ADS  Google Scholar 

  131. Yanagimoto, R. et al. Engineering a Kerr-based deterministic cubic phase gate via Gaussian operations. Phys. Rev. Lett. 124, 240503 (2020).

    Article  ADS  Google Scholar 

  132. Yanagimoto, R. et al. Onset of non-Gaussian quantum physics in pulsed squeezing with mesoscopic fields. Optica 9, 379–390 (2022).

    Article  ADS  Google Scholar 

  133. Yanagimoto, R., Nehra, R., Ng, E., Marandi, A. & Mabuchi, H. Engineering cubic quantum nondemolition Hamiltonian with mesoscopic optical parametric interactions. Preprint at https://arxiv.org/abs/2305.03260 (2023).

  134. Yanagimoto, R. et al. Quantum nondemolition measurements with optical parametric amplifiers for ultrafast universal quantum information processing. PRX Quantum 4, 010333 (2023).

    Article  ADS  Google Scholar 

  135. Yanagimoto, R. et al. Mesoscopic ultrafast nonlinear optics — the emergence of multimode quantum non-Gaussian physics. Optica 11, 896–918 (2024).

    Article  Google Scholar 

  136. Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020).

    Article  ADS  Google Scholar 

  137. Zhong, H.-S. et al. Phase-programmable Gaussian boson sampling using stimulated squeezed light. Phys. Rev. Lett. 127, 180502 (2021).

    Article  ADS  Google Scholar 

  138. Madsen, L. S. et al. Quantum computational advantage with a programmable photonic processor. Nature 606, 75–81 (2022).

    Article  ADS  Google Scholar 

  139. Bluvstein, D. et al. Logical quantum processor based on reconfigurable atom arrays. Nature 626, 58–65 (2024).

    Article  ADS  Google Scholar 

  140. Maring, N. et al. A versatile single-photon-based quantum computing platform. Nat. Photon. 18, 603–609 (2024).

    Article  ADS  Google Scholar 

  141. Wang, H. et al. Boson sampling with 20 input photons and a 60-mode interferometer in a 1014-dimensional Hilbert space. Phys. Rev. Lett. 123, 250503 (2019).

    Article  ADS  Google Scholar 

  142. Carosini, L. et al. Programmable multiphoton quantum interference in a single spatial mode. Sci. Adv. 10, eadj0993 (2024).

    Article  Google Scholar 

  143. Bao, J. et al. Very-large-scale integrated quantum graph photonics. Nat. Photon. 17, 573–581 (2023).

    Article  ADS  Google Scholar 

  144. Vigliar, C. et al. Error-protected qubits in a silicon photonic chip. Nat. Phys. 17, 1137–1143 (2021).

    Article  Google Scholar 

  145. Hazan, A. & Ezra Tsur, E. Neuromorphic analog implementation of neural engineering framework-inspired spiking neuron for high-dimensional representation. Front. Neurosci. 15, 627221 (2021).

    Article  Google Scholar 

  146. Semenova, N., Larger, L. & Brunner, D. Understanding and mitigating noise in trained deep neural networks. Neural Netw. 146, 151–160 (2022).

    Article  Google Scholar 

  147. Tang, G. et al. SENECA: building a fully digital neuromorphic processor, design trade-offs and challenges. Front. Neurosci. 17, 1187252 (2023).

    Article  Google Scholar 

  148. Slussarenko, S. & Pryde, G. J. Photonic quantum information processing: a concise review. Appl. Phys. Rev. 6, 041303 (2019).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank J. Stuhrmann, from Illustrato, for his assistance with the illustrations. The research is funded by the German Research Foundation under Germany’s Excellence Strategy EXC-2181/1 — 390900948 (the Heidelberg STRUCTURES Excellence Cluster), the Excellence Cluster 3D Matter Made to Order (EXC-2082/1 — 390761711) and CRC 1459 ‘Intelligent matter’ — European Union’s Horizon 2020 research and innovation programme (grant no. 101017237, PHOENICS project, grant no. 101119489, 2DNEURALVISION project) and the European Union’s Innovation Council Pathfinder programme (grant no. 101046878, HYBRAIN project).

Author information

Authors and Affiliations

Authors

Contributions

I.B., S.T. and F.L. wrote the initial version of the article. All authors contributed substantially to discussion of the content. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Wolfram Pernice.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Florian Marquardt, Yuxin Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bente, I., Taheriniya, S., Lenzini, F. et al. The potential of multidimensional photonic computing. Nat Rev Phys 7, 439–450 (2025). https://doi.org/10.1038/s42254-025-00843-3

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s42254-025-00843-3

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics