Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Review
  • Published:

Tensor networks for quantum computing

Abstract

Tensor networks have become a useful tool in many areas of physics, especially in quantum information science and quantum computing, where they are used to represent and manipulate quantum states and processes. The original use of tensor networks is the simulation of quantum systems, where tensor networks provide compressed representations of the structured systems. As research into quantum computing and tensor networks progresses, a plethora of new applications are becoming increasingly relevant. This Technical Review discusses the diverse applications of tensor networks to demonstrate that they are an important instrument for quantum computing. Specifically, we summarize the application of tensor networks in various domains of quantum computing, including simulation of quantum computation, quantum circuit synthesis, quantum error correction and mitigation, and quantum machine learning. Finally, we provide an outlook on the opportunities that tensor-network techniques provide and the challenges they may face in the future.

Key points

  • Tensor networks often provide efficient representations of mathematical objects encountered in quantum physics and quantum computing.

  • Tensor networks are powerful tools for classical simulations of quantum computing, and they are crucial to the understanding of the potential of quantum computational advantage.

  • Tensor networks are useful for synthesizing quantum circuits that prepare potentially interesting quantum states.

  • Tensor networks are a useful mathematical tool for understanding quantum error correction and provide a powerful computational tool to implement quantum error correction and error mitigation.

  • It is an open question whether tensor networks can provide advantage for machine learning using quantum computing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Graphical representations of different mathematical objects and operations.
Fig. 2: Different types of tensor networks.
Fig. 3: Graphical representations of the mapping from tensors and tensor networks to quantum circuits.

Similar content being viewed by others

References

  1. Schollwöck, U. The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 326, 96–192 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  2. Orús, R. Tensor networks for complex quantum systems. Nat. Rev. Phys. 1, 538–550 (2019).

    Article  Google Scholar 

  3. Orús, R. A practical introduction to tensor networks: matrix product states and projected entangled pair states. Ann. Phys. 349, 117–158 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  4. Chubb, C. T. General tensor network decoding of 2D Pauli codes. Preprint at https://arxiv.org/abs/2101.04125 (2021).

  5. Pan, F. & Zhang, P. Simulation of quantum circuits using the big-batch tensor network method. Phys. Rev. Lett. 128, 030501 (2022).

    Article  ADS  Google Scholar 

  6. Fu, R. et al. Achieving energetic superiority through system-level quantum circuit simulation. In SC '24: Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis 1–20 (ACM, 2024).

  7. Oh, C., Liu, M., Alexeev, Y., Fefferman, B. & Jiang, L. Classical algorithm for simulating experimental Gaussian boson sampling. Nat. Phys. 20, 1461–1468 (2024).

    Article  Google Scholar 

  8. Tindall, J., Fishman, M., Stoudenmire, E. M. & Sels, D. Efficient tensor network simulation of IBM’s Eagle kicked Ising experiment. PRX Quantum 5, 010308 (2024).

    Article  ADS  Google Scholar 

  9. Tindall, J., Mello, A. F., Fishman, M., Stoudenmire, E. M. & Sels, D. Dynamics of disordered quantum systems with two- and three-dimensional tensor networks. Preprint at https://arxiv.org/abs/2503.05693 (2025).

  10. Bridgeman, J. C. & Chubb, C. T. Hand-waving and interpretive dance: an introductory course on tensor networks. J. Phys. A 50, 223001 (2017). A comprehensive and pedagogical introduction to tensor networks from the traditional many-body physics perspective.

    Article  ADS  MathSciNet  Google Scholar 

  11. Eckart, C. & Young, G. The approximation of one matrix by another of lower rank. Psychometrika 1, 211–218 (1936).

    Article  Google Scholar 

  12. Stewart, G. W. Matrix Algorithms, Vol. 1 Basic Decompositions (SIAM, 1998).

  13. Verstraete, F. & Cirac, J. I. Matrix product states represent ground states faithfully. Phys. Rev. B 73, 094423 (2006). Analytical results showing that MPS efficiently represents the ground states of 1D systems.

    Article  ADS  Google Scholar 

  14. Bañuls, M. C. Tensor network algorithms: a route map. Annu. Rev. Condens. Matter Phys. 14, 173–191 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  15. Oseledets, I. V. Tensor-train decomposition. SIAM J. Sci. Comput. 33, 2295–2317 (2011).

    Article  MathSciNet  Google Scholar 

  16. Schuch, N., Wolf, M. M., Verstraete, F. & Cirac, J. I. Computational complexity of projected entangled pair states. Phys. Rev. Lett. 98, 140506 (2007). Shows that contracting PEPS and arbitrary tensor networks is #P-complete.

    Article  ADS  MathSciNet  Google Scholar 

  17. Vidal, G. Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91, 147902 (2003).

    Article  ADS  Google Scholar 

  18. Shi, Y.-Y., Duan, L.-M. & Vidal, G. Classical simulation of quantum many-body systems with a tree tensor network. Phys. Rev. A 74, 022320 (2006).

    Article  ADS  Google Scholar 

  19. Wang, H. & Thoss, M. Multilayer formulation of the multiconfiguration time-dependent Hartree theory. J. Chem. Phys. 119, 1289–1299 (2003).

    Article  ADS  Google Scholar 

  20. Markov, I. L. & Shi, Y. Simulating quantum computation by contracting tensor networks. SIAM J. Comput. 38, 963–981 (2008). Proposes exact simulation of quantum circuits with tensor networks and links the complexity to the treewidth of the graph underlying the circuit.

    Article  MathSciNet  Google Scholar 

  21. DeCross, M. et al. The computational power of random quantum circuits in arbitrary geometries. Phys. Rev. X. 15, 021052 (2025).

    Google Scholar 

  22. Bayraktar, H. et al. cuQuantum SDK: a high-performance library for accelerating quantum science. Preprint at https://arxiv.org/pdf/2308.01999 (2023).

  23. Gray, J. quimb: A python package for quantum information and many-body calculations. J. Open Source Softw. 3, 819 (2018).

    Article  ADS  Google Scholar 

  24. Fishman, M., White, S. & Stoudenmire, E. The ITensor software library for tensor network calculations. SciPost Physics Codebases 004 (2022).

  25. Gray, J. & Kourtis, S. Hyper-optimized tensor network contraction. Quantum 5, 410 (2021).

    Article  Google Scholar 

  26. Hauschild, J. & Pollmann, F. Efficient numerical simulations with tensor networks: Tensor Network Python (TeNPy). SciPost Physics Lecture Notes 005 (2018).

  27. Zhai, H. et al. Block2: A comprehensive open source framework to develop and apply state-of-the-art dmrg algorithms in electronic structure and beyond. The Journal of Chemical Physics 159, 234801 (2023).

    Article  ADS  Google Scholar 

  28. White, S. R. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863 (1992).

    Article  ADS  Google Scholar 

  29. Wang, M. et al. Tensor networks meet neural networks: a survey and future perspectives. Preprint at https://arxiv.org/abs/2302.09019 (2023).

  30. Liao, H.-J., Liu, J.-G., Wang, L. & Xiang, T. Differentiable programming tensor networks. Phys. Rev.X 9, 031041 (2019).

    Google Scholar 

  31. Hauru, M., Van Damme, M. & Haegeman, J. Riemannian optimization of isometric tensor networks. SciPost Phys 10, 040 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  32. Luchnikov, I., Ryzhov, A., Filippov, S. & Ouerdane, H. QGOpt: Riemannian optimization for quantum technologies. SciPost Physics 10, 079 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  33. Berezutskii, A., Luchnikov, I. & Fedorov, A. Simulating quantum circuits using the multi-scale entanglement renormalization ansatz. Phys. Rev. Res. 7, 013063 (2025).

    Article  Google Scholar 

  34. Luchnikov, I., Krechetov, M. & Filippov, S. Riemannian geometry and automatic differentiation for optimization problems of quantum physics and quantum technologies. New J. Phys. (2021).

  35. Sandvik, A. W. & Vidal, G. Variational quantum Monte Carlo simulations with tensor-network states. Phys. Rev. Lett. 99, 220602 (2007).

    Article  ADS  Google Scholar 

  36. Wang, L., Pižorn, I. & Verstraete, F. Monte Carlo simulation with tensor network states. Phys. Rev. B—Condensed Matter and Materials Physics 83, 134421 (2011).

    Article  ADS  Google Scholar 

  37. Paeckel, S. et al. Time-evolution methods for matrix-product states. Ann. Phys. 411, 167998 (2019). A review of time-evolution methods on MPS.

    Article  MathSciNet  Google Scholar 

  38. Feiguin, A. E. & White, S. R. Time-step targeting methods for real-time dynamics using the density matrix renormalization group. Phys. Rev. B 72, 020404 (2005).

    Article  ADS  Google Scholar 

  39. Alvarez, G., Dias da Silva, L. G., Ponce, E. & Dagotto, E. Time evolution with the density-matrix renormalization-group algorithm: A generic implementation for strongly correlated electronic systems. Phys. Rev. E 84, 056706 (2011).

    Article  ADS  Google Scholar 

  40. Haegeman, J. et al. Time-dependent variational principle for quantum lattices. Phys. Rev. Lett. 107, 070601 (2011).

    Article  ADS  Google Scholar 

  41. Haegeman, J., Lubich, C., Oseledets, I., Vandereycken, B. & Verstraete, F. Unifying time evolution and optimization with matrix product states. Phys. Rev. B 94, 165116 (2016).

    Article  ADS  Google Scholar 

  42. Ran, S.-J., Sun, Z.-Z., Fei, S.-M., Su, G. & Lewenstein, M. Tensor network compressed sensing with unsupervised machine learning. Phys. Rev. Res. 2, 033293 (2020).

    Article  Google Scholar 

  43. Arnborg, S., Corneil, D. G. & Proskurowski, A. Complexity of finding embeddings in ak-tree. SIAM Journal on Algebraic Discrete Methods 8, 277–284 (1987).

    Article  MathSciNet  Google Scholar 

  44. Pfeifer, R. N., Haegeman, J. & Verstraete, F. Faster identification of optimal contraction sequences for tensor networks. Phys. Rev.E 90, 033315 (2014).

    Article  ADS  Google Scholar 

  45. Kourtis, S., Chamon, C., Mucciolo, E. & Ruckenstein, A. Fast counting with tensor networks. SciPost Physics 7, 060 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  46. Kalachev, G., Panteleev, P., Zhou, P. & Yung, M.-H. Classical sampling of random quantum circuits with bounded fidelity. Preprint at https://arxiv.org/abs/2112.15083 (2021).

  47. Morvan, A. et al. Phase transitions in random circuit sampling. Nature 634, 328–333 (2024).

    Article  ADS  Google Scholar 

  48. Meirom, E., Maron, H., Mannor, S. & Chechik, G. Optimizing tensor network contraction using reinforcement learning. (2022).

  49. Liu, X.-Y. & Zhang, Z. Classical simulation of quantum circuits using reinforcement learning: Parallel environments and benchmark (2023).

  50. Kalachev, G., Panteleev, P. & Yung, M.-H. Multi-tensor contraction for xeb verification of quantum circuits. Preprint at https://arxiv.org/abs/2108.05665 (2021).

  51. Huang, C. et al. Classical simulation of quantum supremacy circuits. Preprint at https://arxiv.org/abs/2005.06787 (2020).

  52. Aaronson, S. & Chen, L. Complexity-theoretic foundations of quantum supremacy experiments. In CCC '17: Proc. 32nd Computational Complexity Conference (CCC, 2017).

  53. Chen, J., Zhang, F., Huang, C., Newman, M. & Shi, Y. Classical simulation of intermediate-size quantum circuits. Preprint at https://arxiv.org/abs/1805.01450 (2018).

  54. Markov, I. L., Fatima, A., Isakov, S. V. & Boixo, S. Quantum supremacy is both closer and farther than it appears. Preprint at https://arxiv.org/abs/1807.10749 (2018).

  55. Villalonga, B. et al. A flexible high-performance simulator for verifying and benchmarking quantum circuits implemented on real hardware. npj Quantum Inf. 5, 86 (2019).

    Article  ADS  Google Scholar 

  56. Pednault, E. et al. Pareto-efficient quantum circuit simulation using tensor contraction deferral. Preprint at https://arxiv.org/abs/1710.05867 (2017).

  57. Huang, C. et al. Efficient parallelization of tensor network contraction for simulating quantum computation. Nature Computational Science 1, 578–587 (2021).

    Article  Google Scholar 

  58. Pan, F., Chen, K. & Zhang, P. Solving the Sampling Problem of the Sycamore Quantum Circuits. Phys. Rev. Lett. 129, 090502 (2022).

    Article  ADS  Google Scholar 

  59. Liu, Y. et al. Verifying Quantum Advantage Experiments with Multiple Amplitude Tensor Network Contraction. Phys. Rev. Lett. 132, 030601 (2024).

    Article  ADS  Google Scholar 

  60. Zhao, X.-H. et al. Leapfrogging sycamore: harnessing 1432 gpus for 7 × faster quantum random circuit sampling. National Science Review 12, nwae317 (2025).

    Article  Google Scholar 

  61. Roth, D. On the hardness of approximate reasoning. Artificial Intelligence 82, 273–302 (1996).

    Article  MathSciNet  Google Scholar 

  62. Nishino, T. & Okunishi, K. Corner transfer matrix renormalization group method. J. Phys. Soc. Japan 65, 891–894 (1996).

    Article  ADS  Google Scholar 

  63. Levin, M. & Nave, C. P. Tensor renormalization group approach to two-dimensional classical lattice models. Phys. Rev. Lett. 99, 120601 (2007).

    Article  ADS  Google Scholar 

  64. Xie, Z.-Y. et al. Coarse-graining renormalization by higher-order singular value decomposition. Phys. Rev. B 86, 045139 (2012).

    Article  ADS  Google Scholar 

  65. Evenbly, G. & Vidal, G. Tensor network renormalization. Phys. Rev. Lett. 115, 180405 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  66. Chen, J., Jiang, J., Hangleiter, D. & Schuch, N. Sign problem in tensor network contraction. PRX Quantum 6, 010312 (2025).

    Article  ADS  Google Scholar 

  67. Jiang, J., Chen, J., Schuch, N. & Hangleiter, D. Positive bias makes tensor-network contraction tractable. In STOC '25: Proc. 57th Annual ACM Symposium on Theory of Computing (ACM, 2025).

  68. Vidal, G. Class of quantum many-body states that can be efficiently simulated. Phys. Rev. Lett. 101, 110501 (2008).

    Article  ADS  Google Scholar 

  69. Verstraete, F. & Cirac, J. I. Renormalization algorithms for quantum-many body systems in two and higher dimensions. arXiv preprint cond-mat/0407066 (2004).

  70. Jiang, H.-C., Weng, Z.-Y. & Xiang, T. Accurate determination of tensor network state of quantum lattice models in two dimensions. Phys. Rev. Lett. 101, 090603 (2008).

    Article  ADS  Google Scholar 

  71. Corboz, P., Jordan, J. & Vidal, G. Simulation of fermionic lattice models in two dimensions with projected entangled-pair states: Next-nearest neighbor hamiltonians. Phys. Rev. B—Condensed Matter and Materials Physics 82, 245119 (2010).

    Article  ADS  Google Scholar 

  72. Lubasch, M., Cirac, J. I. & Banuls, M.-C. Unifying projected entangled pair state contractions. New J. Phys. 16, 033014 (2014).

    Article  ADS  Google Scholar 

  73. Pan, F., Zhou, P., Li, S. & Zhang, P. Contracting arbitrary tensor networks: general approximate algorithm and applications in graphical models and quantum circuit simulations. Phys. Rev. Lett. 125, 060503 (2020).

    Article  ADS  Google Scholar 

  74. Ma, L., Fishman, M., Stoudenmire, M. & Solomonik, E. Approximate contraction of arbitrary tensor networks with a flexible and efficient density matrix algorithm. Quantum 8, 1580 (2024).

    Article  Google Scholar 

  75. Gray, J. & Chan, G. K.-L. Hyperoptimized approximate contraction of tensor networks with arbitrary geometry. Phys. Rev.X 14, 011009 (2024).

    Google Scholar 

  76. Zhou, Y., Stoudenmire, E. M. & Waintal, X. What limits the simulation of quantum computers? Phys. Rev.X 10, 041038 (2020).

    Google Scholar 

  77. Liu, M., Liu, J., Alexeev, Y. & Jiang, L. Estimating the randomness of quantum circuit ensembles up to 50 qubits. npj Quantum Inf. 8, 137 (2022).

    Article  ADS  Google Scholar 

  78. Kim, Y. et al. Evidence for the utility of quantum computing before fault tolerance. Nature 618, 500–505 (2023).

    Article  ADS  Google Scholar 

  79. Zaletel, M. P. & Pollmann, F. Isometric tensor network states in two dimensions. Phys. Rev. Lett. 124, 037201 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  80. Tindall, J. & Fishman, M. Gauging tensor networks with belief propagation. SciPost Physics 15, 222 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  81. Anand, S., Temme, K., Kandala, A. & Zaletel, M. Classical benchmarking of zero noise extrapolation beyond the exactly-verifiable regime. Preprint at https://arxiv.org/abs/2306.17839 (2023).

  82. Patra, S., Jahromi, S. S., Singh, S. & Orús, R. Efficient tensor network simulation of ibm’s largest quantum processors. Phys. Rev. Res. 6, 013326 (2024).

    Article  Google Scholar 

  83. Rudolph, M. S., Fontana, E., Holmes, Z. & Cincio, L. Classical surrogate simulation of quantum systems with lowesa. Preprint at https://arxiv.org/abs/2308.09109 (2023).

  84. Bouland, A., Fefferman, B., Landau, Z. & Liu, Y. Noise and the frontier of quantum supremacy (2022).

  85. Krovi, H. Average-case hardness of estimating probabilities of random quantum circuits with a linear scaling in the error exponent. Preprint at https://arxiv.org/abs/2206.05642 (2022).

  86. Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019). The first experimental realization of random circuit sampling claiming quantum advantage.

    Article  ADS  Google Scholar 

  87. Wu, Y. et al. Strong quantum computational advantage using a superconducting quantum processor. Phys. Rev. Lett. 127, 180501 (2021).

    Article  ADS  Google Scholar 

  88. Zhu, Q. et al. Quantum computational advantage via 60-qubit 24-cycle random circuit sampling. Science bulletin 67, 240–245 (2022).

    Article  ADS  Google Scholar 

  89. Aaronson, S. & Hung, S.-H. Certified randomness from quantum supremacy (2023).

  90. Liu, M. et al. Certified randomness with a trapped-ion quantum processor. Nature 640, 343–348 (2025).

    Article  ADS  Google Scholar 

  91. Kaleoglu, F. et al. On the equivalence between classical position verification and certified randomness. Preprint at https://arxiv.org/abs/2410.03982 (2024).

  92. Amer, O. et al. Applications of certified randomness. Nat. Rev. Phys. https://doi.org/10.1038/s42254-025-00845-1 (2025).

  93. Pednault, E., Gunnels, J., Maslov, D. & Gambetta, J. On “quantum supremacy”. IBM Research Blog 21 (2019).

  94. Schutski, R., Lykov, D. & Oseledets, I. Adaptive algorithm for quantum circuit simulation. Phys. Rev.A 101, 042335 (2020).

    Article  ADS  Google Scholar 

  95. Ayral, T. et al. Density-matrix renormalization group algorithm for simulating quantum circuits with a finite fidelity. PRX Quantum 4, 020304 (2023).

    Article  ADS  Google Scholar 

  96. Haghshenas, R. et al. Digital quantum magnetism at the frontier of classical simulations. Preprint at https://arxiv.org/abs/2503.20870 (2025).

  97. Noh, K., Jiang, L. & Fefferman, B. Efficient classical simulation of noisy random quantum circuits in one dimension. Quantum 4, 318 (2020).

    Article  Google Scholar 

  98. Cheng, S. et al. Simulating noisy quantum circuits with matrix product density operators. Phys. Rev. Res. 3, 023005 (2021).

    Article  ADS  Google Scholar 

  99. Guo, C. et al. General-purpose quantum circuit simulator with projected entangled-pair states and the quantum supremacy frontier. Phys. Rev. Lett. 123, 190501 (2019).

    Article  ADS  Google Scholar 

  100. Ellerbrock, R. & Martinez, T. J. A multilayer multi-configurational approach to efficiently simulate large-scale circuit-based quantum computers on classical machines. J. Chem. Phys. 153, 051101 (2020).

    Article  ADS  Google Scholar 

  101. Dumitrescu, E. Tree tensor network approach to simulating shor’s algorithm. Phys. Rev.A 96, 062322 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  102. Gao, D. et al. Establishing a new benchmark in quantum computational advantage with 105-qubit zuchongzhi 3.0 processor. Phys. Rev. Lett. 134, 090601 (2025).

    Article  ADS  Google Scholar 

  103. Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 995–1001 (2017).

    Article  ADS  Google Scholar 

  104. Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nature Physics 8, 277–284 (2012).

    Article  ADS  Google Scholar 

  105. Browaeys, A. & Lahaye, T. Many-body physics with individually controlled Rydberg atoms. Nature Physics 16, 132–142 (2020).

    Article  ADS  Google Scholar 

  106. Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nature physics 8, 285–291 (2012).

    Article  ADS  Google Scholar 

  107. Houck, A. A., Türeci, H. E. & Koch, J. On-chip quantum simulation with superconducting circuits. Nature Physics 8, 292–299 (2012).

    Article  ADS  Google Scholar 

  108. Kadowaki, T. & Nishimori, H. Quantum annealing in the transverse ising model. Phys. Rev.E 58, 5355 (1998).

    Article  ADS  Google Scholar 

  109. King, A. D. et al. Beyond-classical computation in quantum simulation. Science 388, 6743 (2025).

    Article  MathSciNet  Google Scholar 

  110. Shaw, A. L. et al. Benchmarking highly entangled states on a 60-atom analogue quantum simulator. Nature 628, 71–77 (2024).

    Article  ADS  Google Scholar 

  111. King, A. D. et al. Comment on: “Dynamics of disordered quantum systems with two- and three-dimensional tensor networks”. Preprint at https://arxiv.org/abs/2504.06283 (2025).

  112. Aaronson, S. & Arkhipov, A. The computational complexity of linear optics (2011). Proposal of a near-term experiment for quantum advantage based on sampling, specifically boson sampling using linear optics.

  113. Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020). The first experimental realization of boson sampling claiming quantum advantage.

    Article  ADS  Google Scholar 

  114. Zhong, H.-S. et al. Phase-programmable Gaussian boson sampling using stimulated squeezed light. Phys. Rev. Lett. 127, 180502 (2021).

    Article  ADS  Google Scholar 

  115. Madsen, L. S. et al. Quantum computational advantage with a programmable photonic processor. Nature 606, 75–81 (2022).

    Article  ADS  Google Scholar 

  116. Deng, Y.-H. et al. Gaussian boson sampling with pseudo-photon-number-resolving detectors and quantum computational advantage. Phys. Rev. Lett. 131, 150601 (2023).

    Article  ADS  Google Scholar 

  117. Huang, H.-L., Bao, W.-S. & Guo, C. Simulating the dynamics of single photons in boson sampling devices with matrix product states. Phys. Rev. A 100, 032305 (2019).

    Article  ADS  Google Scholar 

  118. Oh, C., Noh, K., Fefferman, B. & Jiang, L. Classical simulation of lossy boson sampling using matrix product operators. Phys. Rev. A 104, 022407 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  119. Liu, M., Oh, C., Liu, J., Jiang, L. & Alexeev, Y. Simulating lossy Gaussian boson sampling with matrix-product operators. Phys. Rev. A 108, 052604 (2023).

    Article  ADS  Google Scholar 

  120. Hamilton, C. S. et al. Gaussian boson sampling. Phys. Rev. Lett. 119, 170501 (2017).

    Article  ADS  Google Scholar 

  121. Quesada, N. et al. Quadratic speed-up for simulating Gaussian boson sampling. PRX Quantum 3, 010306 (2022).

    Article  ADS  Google Scholar 

  122. Cilluffo, D., Lorenzoni, N. & Plenio, M. B. Simulating Gaussian boson sampling with tensor networks in the Heisenberg picture. Preprint at https://arxiv.org/abs/2305.11215 (2023).

  123. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2010).

  124. Biamonte, J. & Bergholm, V. Tensor networks in a nutshell. Preprint at https://arxiv.org/abs/1708.00006 (2017).

  125. Schön, C., Solano, E., Verstraete, F., Cirac, J. I. & Wolf, M. M. Sequential generation of entangled multiqubit states. Phys. Rev. Lett. 95, 110503 (2005). This paper shows how MPS can be synthesized as quantum circuits.

    Article  ADS  Google Scholar 

  126. Perez-Garcia, D., Verstraete, F., Wolf, M. M. & Cirac, J. I. Matrix product state representations. Preprint at https://arxiv.org/abs/quant-ph/0608197 (2006).

  127. Ran, S.-J. Encoding of matrix product states into quantum circuits of one- and two-qubit gates. Phys. Rev. A 101, 032310 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  128. Wei, Z.-Y., Malz, D. & Cirac, J. I. Efficient adiabatic preparation of tensor network states. Phys. Rev. Res. 5, L022037 (2023).

    Article  Google Scholar 

  129. Malz, D., Styliaris, G., Wei, Z.-Y. & Cirac, J. I. Preparation of matrix product states with log-depth quantum circuits. Phys. Rev. Lett. 132, 040404 (2024).

    Article  ADS  MathSciNet  Google Scholar 

  130. Haghshenas, R., Gray, J., Potter, A. C. & Chan, G. K.-L. Variational power of quantum circuit tensor networks. Phys. Rev. X 12, 011047 (2022).

    Google Scholar 

  131. Foss-Feig, M. et al. Holographic quantum algorithms for simulating correlated spin systems. Phys. Rev. Res. 3, 033002 (2021).

    Article  Google Scholar 

  132. Barratt, F. et al. Parallel quantum simulation of large systems on small NISQ computers. npj Quantum Inf. 7, 79 (2021).

    Article  ADS  Google Scholar 

  133. Smith, A., Jobst, B., Green, A. G. & Pollmann, F. Crossing a topological phase transition with a quantum computer. Phys. Rev. Res. 4, L022020 (2022).

    Article  Google Scholar 

  134. Meth, M. et al. Probing phases of quantum matter with an ion-trap tensor-network quantum eigensolver. Phys. Rev. X 12, 041035 (2022).

    Google Scholar 

  135. Lin, S.-H., Dilip, R., Green, A. G., Smith, A. & Pollmann, F. Real-and imaginary-time evolution with compressed quantum circuits. PRX Quantum 2, 010342 (2021).

    Article  Google Scholar 

  136. Haghshenas, R., O’Rourke, M. J. & Chan, G. K.-L. Conversion of projected entangled pair states into a canonical form. Phys. Rev. B 100, 054404 (2019).

    Article  ADS  Google Scholar 

  137. Wei, Z.-Y., Malz, D. & Cirac, J. I. Sequential generation of projected entangled-pair states. Phys. Rev. Lett. 128, 010607 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  138. Kim, I. H. & Swingle, B. Robust entanglement renormalization on a noisy quantum computer. Preprint at https://arxiv.org/abs/1711.07500 (2017).

  139. Martín, E. C., Plekhanov, K. & Lubasch, M. Barren plateaus in quantum tensor network optimization. Quantum 7, 974 (2023).

    Article  Google Scholar 

  140. Barthel, T. & Miao, Q. Absence of barren plateaus and scaling of gradients in the energy optimization of isometric tensor network states. Commun. Math. Phys. 406, 86 (2025).

    Article  ADS  MathSciNet  Google Scholar 

  141. Sewell, T. J. & Jordan, S. P. Preparing renormalization group fixed points on NISQ hardware. Preprint at https://arxiv.org/abs/2109.09787 (2021).

  142. Anand, S., Hauschild, J., Zhang, Y., Potter, A. C. & Zaletel, M. P. Holographic quantum simulation of entanglement renormalization circuits. PRX Quantum 4, 030334 (2023). This paper uses quantum circuits derived from MERA and uses a holographic encoding to simulate quantum systems larger than the quantum device.

    Article  ADS  Google Scholar 

  143. Haghshenas, R. et al. Probing critical states of matter on a digital quantum computer. Phys. Rev. Lett. 133, 266502 (2024).

    Article  ADS  Google Scholar 

  144. Miao, Q., Wang, T., Brown, K. R., Barthel, T. & Cetina, M. Probing entanglement scaling across a quantum phase transition on a quantum computer. Preprint at https://arxiv.org/abs/2412.18602 (2024).

  145. Zhang, Y., Gopalakrishnan, S. & Styliaris, G. Characterizing matrix-product states and projected entangled-pair states preparable via measurement and feedback. PRX Quantum 5, 040304 (2024).

    Article  ADS  Google Scholar 

  146. Larsen, J. B., Grace, M. D., Baczewski, A. D. & Magann, A. B. Feedback-based quantum algorithms for ground state preparation. Phys. Rev. Res. 6, 033336 (2024).

    Article  Google Scholar 

  147. Stephen, D. T. & Hart, O. Preparing matrix product states via fusion: constraints and extensions. Preprint at https://arxiv.org/abs/2404.16360 (2024).

  148. Smith, K. C., Crane, E., Wiebe, N. & Girvin, S. Deterministic constant-depth preparation of the AKLT state on a quantum processor using fusion measurements. PRX Quantum 4, 020315 (2023).

    Article  ADS  Google Scholar 

  149. Sahay, R. & Verresen, R. Classifying one-dimensional quantum states prepared by a single round of measurements. Preprint at https://arxiv.org/abs/2404.16753 (2024).

  150. Ben-Dov, M., Shnaiderov, D., Makmal, A. & Dalla Torre, E. G. Approximate encoding of quantum states using shallow circuits. npj Quantum Inf. 10, 65 (2024).

    Article  ADS  Google Scholar 

  151. Rudolph, M. S., Chen, J., Miller, J., Acharya, A. & Perdomo-Ortiz, A. Decomposition of matrix product states into shallow quantum circuits. Quantum Sci. Technol. 9, 015012 (2023).

    Article  ADS  Google Scholar 

  152. Melnikov, A. A., Termanova, A. A., Dolgov, S. V., Neukart, F. & Perelshtein, M. Quantum state preparation using tensor networks. Quantum Sci. Technol. 8, 035027 (2023).

    Article  ADS  Google Scholar 

  153. Termanova, A. et al. Tensor quantum programming. New J. Phys. 26, 123019 (2024).

    Article  ADS  MathSciNet  Google Scholar 

  154. Jaderberg, B. et al. Variational preparation of normal matrix product states on quantum computers. Preprint at https://arxiv.org/abs/2503.09683 (2025).

  155. Kukliansky, A., Younis, E., Cincio, L. & Iancu, C. QFactor: a domain-specific optimizer for quantum circuit instantiation. Preprint at https://arxiv.org/abs/2306.08152 (2023).

  156. Lidar, D. A. & Brun, T. A. Quantum Error Correction (Cambridge Univ. Press, 2013).

  157. Ferris, A. J. & Poulin, D. Tensor networks and quantum error correction. Phys. Rev. Lett. 113, 030501 (2014).

    Article  ADS  Google Scholar 

  158. Farrelly, T., Harris, R. J., McMahon, N. A. & Stace, T. M. Tensor-network codes. Phys. Rev. Lett. 127, 040507 (2021). Introduces TN codes with a natural TN decoder.

    Article  ADS  MathSciNet  Google Scholar 

  159. Farrelly, T., Tuckett, D. K. & Stace, T. M. Local tensor-network codes. New J. Phys. 24, 043015 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  160. Cao, C. & Lackey, B. Quantum lego: Building quantum error correction codes from tensor networks. PRX Quantum 3, 020332 (2022). Generalizes code concatenation with TNs, dubbed ‘quantum Lego’.

    Article  ADS  Google Scholar 

  161. Cao, C., Gullans, M. J., Lackey, B. & Wang, Z. Quantum Lego expansion pack: enumerators from tensor networks. PRX Quantum 5, 030313 (2024).

    Article  ADS  Google Scholar 

  162. Fan, J. et al. LEGO_HQEC: a software tool for analyzing holographic quantum codes. Preprint at https://arxiv.org/abs/2410.22861 (2024).

  163. Pastawski, F., Yoshida, B., Harlow, D. & Preskill, J. Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence. J. High Energy Phys. 2015, 149 (2015).

    Article  MathSciNet  Google Scholar 

  164. Jahn, A. & Eisert, J. Holographic tensor network models and quantum error correction: a topical review. Quantum Sci. Technol. 6, 033002 (2021).

    Article  ADS  Google Scholar 

  165. Steinberg, M., Feld, S. & Jahn, A. Holographic codes from hyperinvariant tensor networks. Nat. Commun. 14, 7314 (2023).

    Article  ADS  Google Scholar 

  166. Shen, R., Wang, Y. & Cao, C. Quantum Lego and XP stabilizer codes. Preprint at https://arxiv.org/abs/2310.19538 (2023).

  167. Schotte, A., Zhu, G., Burgelman, L. & Verstraete, F. Quantum error correction thresholds for the universal Fibonacci Turaev-Viro code. Phys. Rev. X 12, 021012 (2022).

    Google Scholar 

  168. Bettaque, V. & Swingle, B. NoRA: a tensor network ansatz for volume-law entangled equilibrium states of highly connected Hamiltonians. Quantum 8, 1362 (2024).

    Article  Google Scholar 

  169. Cao, C. & Lackey, B. Approximate Bacon–Shor code and holography. J. High Energy Phys. 2021, 127 (2021).

    Article  MathSciNet  Google Scholar 

  170. Steinberg, M. et al. Far from perfect: quantum error correction with (hyperinvariant) Evenbly codes. Preprint at https://arxiv.org/abs/2407.11926 (2024).

  171. Pastawski, F. & Preskill, J. Code properties from holographic geometries. Phys. Rev. X 7, 021022 (2017).

    Google Scholar 

  172. Su, V. P. et al. Discovery of optimal quantum error correcting codes via reinforcement learning. Phys. Rev. Appl. 23, 034048 (2025).

    Article  ADS  Google Scholar 

  173. Mauron, C., Farrelly, T. & Stace, T. M. Optimization of tensor network codes with reinforcement learning. New J. Phys. 26, 023024 (2024).

    Article  ADS  MathSciNet  Google Scholar 

  174. Bravyi, S., Suchara, M. & Vargo, A. Efficient algorithms for maximum likelihood decoding in the surface code. Phys. Rev. A 90, 032326 (2014).

    Article  ADS  Google Scholar 

  175. Chubb, C. T. & Flammia, S. T. Statistical mechanical models for quantum codes with correlated noise. Ann. Inst. Henri Poincaré D 8, 269–321 (2021). Introduces a mapping of any stabilizer code to a statistical-mechanical model, connecting the optimal threshold of the QEC code to a phase transition.

    Article  MathSciNet  Google Scholar 

  176. Darmawan, A. S., Nakata, Y., Tamiya, S. & Yamasaki, H. Low-depth random Clifford circuits for quantum coding against Pauli noise using a tensor-network decoder. Phys. Rev. Res. 6, 023055 (2025).

    Article  Google Scholar 

  177. Farrelly, T., Milicevic, N., Harris, R. J., McMahon, N. A. & Stace, T. M. Parallel decoding of multiple logical qubits in tensor-network codes. Phys. Rev. A 105, 052446 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  178. Google Quantum AI. Suppressing quantum errors by scaling a surface code logical qubit. Nature 614, 676–681 (2023).

    Article  ADS  Google Scholar 

  179. Piveteau, C., Chubb, C. T. & Renes, J. M. Tensor-network decoding beyond 2D. PRX Quantum 5, 040303 (2024).

    Article  ADS  Google Scholar 

  180. Shutty, N., Newman, M. & Villalonga, B. Efficient near-optimal decoding of the surface code through ensembling. Preprint at https://arxiv.org/abs/2401.12434 (2024).

  181. Kukliansky, A. & Lackey, B. Quantum circuit tensors and enumerators with applications to quantum fault tolerance. Preprint at https://arxiv.org/abs/2405.19643 (2024).

  182. Cao, C. & Lackey, B. Quantum weight enumerators and tensor networks. IEEE Trans. Inf. Theory 70, 3512–3528 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  183. Harris, R. J., McMahon, N. A., Brennen, G. K. & Stace, T. M. Calderbank-shor-steane holographic quantum error-correcting codes. Phys. Rev. A 98, 052301 (2018).

    Article  ADS  Google Scholar 

  184. Harris, R. J., Coupe, E., McMahon, N. A., Brennen, G. K. & Stace, T. M. Decoding holographic codes with an integer optimization decoder. Phys. Rev. A 102, 062417 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  185. Bao, N. & Naskar, J. Code properties of the holographic Sierpinski triangle. Phys. Rev. D 106, 126006 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  186. Fan, J., Steinberg, M., Jahn, A., Cao, C. & Feld, S. Overcoming the zero-rate hashing bound with holographic quantum error correction. Preprint at https://arxiv.org/abs/2408.06232 (2024).

  187. Tuckett, D. K. et al. Tailoring surface codes for highly biased noise. Phys. Rev. X 9, 041031 (2019).

    Google Scholar 

  188. Xu, Q. et al. Tailored xzzx codes for biased noise. Phys. Rev. Res. 5, 013035 (2023).

    Article  Google Scholar 

  189. Tuckett, D. K., Bartlett, S. D. & Flammia, S. T. Ultrahigh error threshold for surface codes with biased noise. Phys. Rev. Lett. 120, 050505 (2018).

    Article  ADS  Google Scholar 

  190. Bonilla Ataides, J. P., Tuckett, D. K., Bartlett, S. D., Flammia, S. T. & Brown, B. J. The XZZX surface code. Nat. Commun. 12, 2172 (2021).

    Article  ADS  Google Scholar 

  191. Dua, A., Kubica, A., Jiang, L., Flammia, S. T. & Gullans, M. J. Clifford-deformed surface codes. PRX Quantum 5, 010347 (2024).

    Article  ADS  Google Scholar 

  192. Kobayashi, F. et al. Tensor-network decoders for process tensor descriptions of non-Markovian noise. Preprint at https://arxiv.org/abs/2412.13739 (2024).

  193. Battistel, F. et al. Real-time decoding for fault-tolerant quantum computing: progress, challenges and outlook. Nano Futures 7, 032003 (2023).

    Article  ADS  Google Scholar 

  194. Temme, K., Bravyi, S. & Gambetta, J. M. Error mitigation for short-depth quantum circuits. Phys. Rev. Lett. 119, 180509 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  195. Li, Y. & Benjamin, S. C. Efficient variational quantum simulator incorporating active error minimization. Phys. Rev. X 7, 021050 (2017).

    Google Scholar 

  196. Guo, Y. & Yang, S. Quantum error mitigation via matrix product operators. PRX Quantum 3, 040313 (2022).

    Article  ADS  Google Scholar 

  197. Tepaske, M. S. & Luitz, D. J. Compressed quantum error mitigation. Phys. Rev. B 107, L201114 (2023).

    Article  ADS  Google Scholar 

  198. Filippov, S., Leahy, M., Rossi, M. A. & García-Pérez, G. Scalable tensor-network error mitigation for near-term quantum computing. Preprint at https://arxiv.org/abs/2307.11740 (2023).

  199. Filippov, S. N., Maniscalco, S. & García-Pérez, G. Scalability of quantum error mitigation techniques: from utility to advantage. Preprint at https://arxiv.org/abs/2403.13542 (2024).

  200. Fischer, L. E. et al. Dynamical simulations of many-body quantum chaos on a quantum computer. Preprint at https://arxiv.org/abs/2411.00765 (2024).

  201. Piveteau, C., Sutter, D., Bravyi, S., Gambetta, J. M. & Temme, K. Error mitigation for universal gates on encoded qubits. Phys. Rev. Lett. 127, 200505 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  202. Novikov, A., Podoprikhin, D., Osokin, A. & Vetrov, D. P. Tensorizing neural networks. In Advances in Neural Information Processing Systems (eds Cortes, C. et al.) Vol. 28, 442–450 (Curran, 2015).

  203. Novikov, A., Trofimov, M. & Oseledets, I. Exponential machines. Preprint at https://arxiv.org/abs/1605.03795 (2016).

  204. Stoudenmire, E. & Schwab, D. J. Supervised learning with tensor networks. In 30th Conference on Neural Information Processing Systems (NIPS, 2016)

  205. Chen, J., Cheng, S., Xie, H., Wang, L. & Xiang, T. Equivalence of restricted Boltzmann machines and tensor network states. Phys. Rev. B 97, 085104 (2018).

    Article  ADS  Google Scholar 

  206. Li, S., Pan, F., Zhou, P. & Zhang, P. Boltzmann machines as two-dimensional tensor networks. Phys. Rev. B 104, 075154 (2021).

    Article  ADS  Google Scholar 

  207. Han, Z.-Y., Wang, J., Fan, H., Wang, L. & Zhang, P. Unsupervised generative modeling using matrix product states. Phys. Rev.X 8, 031012 (2018).

    Google Scholar 

  208. Liu, J., Li, S., Zhang, J. & Zhang, P. Tensor networks for unsupervised machine learning. Phys. Rev.E 107, L012103 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  209. Glasser, I., Sweke, R., Pancotti, N., Eisert, J. & Cirac, I. Expressive power of tensor-network factorizations for probabilistic modeling. In Advances in Neural Information Processing Systems Vol. 32 pp. 1498–1510 (eds Wallach, H. et al.) (Curran, 2019).

  210. Cheng, S., Wang, L., Xiang, T. & Zhang, P. Tree tensor networks for generative modeling. Phys. Rev. B 99, 155131 (2019).

    Article  ADS  Google Scholar 

  211. Vieijra, T., Vanderstraeten, L. & Verstraete, F. Generative modeling with projected entangled-pair states. Preprint at https://arxiv.org/abs/2202.08177 (2022).

  212. Reyes, J. A. & Stoudenmire, E. M. Multi-scale tensor network architecture for machine learning. Mach. Learn. Sci. Technol. 2, 035036 (2021).

    Article  Google Scholar 

  213. Huggins, W., Patil, P., Mitchell, B., Whaley, K. B. & Stoudenmire, E. M. Towards quantum machine learning with tensor networks. Quantum Sci. Technol. 4, 024001 (2019).

    Article  ADS  Google Scholar 

  214. Wall, M. L., Abernathy, M. R. & Quiroz, G. Generative machine learning with tensor networks: benchmarks on near-term quantum computers. Phys. Rev. Res. 3, 023010 (2021).

    Article  Google Scholar 

  215. Grant, E. et al. Hierarchical quantum classifiers. npj Quantum Inf. 4, 65 (2018).

    Article  ADS  Google Scholar 

  216. Lazzarin, M., Galli, D. E. & Prati, E. Multi-class quantum classifiers with tensor network circuits for quantum phase recognition. Phys. Lett. A 434, 128056 (2022).

    Article  Google Scholar 

  217. Rieser, H.-M., Köster, F. & Raulf, A. P. Tensor networks for quantum machine learning. Proc. R. Soc. A 479, 20230218 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  218. Zhao, C. & Gao, X.-S. Analyzing the barren plateau phenomenon in training quantum neural networks with the ZX-calculus. Quantum 5, 466 (2021).

    Article  Google Scholar 

  219. Pesah, A. et al. Absence of barren plateaus in quantum convolutional neural networks. Phys. Rev. X 11, 041011 (2021).

    Google Scholar 

  220. Liao, H., Convy, I., Yang, Z. & Whaley, K. B. Decohering tensor network quantum machine learning models. Quant. Mach. Intell. 5, 7 (2023).

    Article  Google Scholar 

  221. Cong, I., Choi, S. & Lukin, M. D. Quantum convolutional neural networks. Nat. Phys. 15, 1273–1278 (2019).

    Article  Google Scholar 

  222. Bermejo, P. et al. Quantum convolutional neural networks are (effectively) classically simulable. Preprint at https://arxiv.org/abs/2408.12739 (2024).

  223. Dilip, R., Liu, Y.-J., Smith, A. & Pollmann, F. Data compression for quantum machine learning. Phys. Rev. Res. 4, 043007 (2022).

    Article  Google Scholar 

  224. Iaconis, J. & Johri, S. Tensor network based efficient quantum data loading of images. Preprint at https://arxiv.org/abs/2310.05897 (2023).

  225. Dborin, J., Barratt, F., Wimalaweera, V., Wright, L. & Green, A. G. Matrix product state pre-training for quantum machine learning. Quantum Sci. Technol. 7, 035014 (2022).

    Article  ADS  Google Scholar 

  226. Rudolph, M. S. et al. Synergy between quantum circuits and tensor networks: short-cutting the race to practical quantum advantage. Preprint at https://arxiv.org/abs/2208.13673 (2022).

  227. Khan, A., Clark, B. K. & Tubman, N. M. Pre-optimizing variational quantum eigensolvers with tensor networks. Preprint at https://arxiv.org/abs/2310.12965 (2023).

  228. Shin, S., Teo, Y. S. & Jeong, H. Dequantizing quantum machine learning models using tensor networks. Phys. Rev. Res. 6, 023218 (2024).

    Article  Google Scholar 

  229. de Beaudrap, N., Kissinger, A. & Meichanetzidis, K. Tensor network rewriting strategies for satisfiability and counting. Preprint at https://arxiv.org/abs/2004.06455 (2020).

  230. Rakovszky, T., Von Keyserlingk, C. & Pollmann, F. Dissipation-assisted operator evolution method for capturing hydrodynamic transport. Phys. Rev. B 105, 075131 (2022).

    Article  ADS  Google Scholar 

  231. Tarabunga, P. S., Tirrito, E., Bañuls, M. C. & Dalmonte, M. Nonstabilizerness via matrix product states in the Pauli basis. Phys. Rev. Lett. 133, 010601 (2024).

    Article  ADS  MathSciNet  Google Scholar 

  232. Masot-Llima, S. & Garcia-Saez, A. Stabilizer tensor networks: universal quantum simulator on a basis of stabilizer states. Phys. Rev. Lett. 133, 230601 (2024).

    Article  ADS  MathSciNet  Google Scholar 

  233. Breuckmann, N. P. & Eberhardt, J. N. Quantum low-density parity-check codes. PRX Quantum 2, 040101 (2021).

    Article  ADS  Google Scholar 

  234. Panteleev, P. & Kalachev, G. Asymptotically good quantum and locally testable classical LDPC codes. In STOC 2022: Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, 375–388 (ACM, 2022).

  235. Bausch, J. et al. Learning high-accuracy error decoding for quantum processors. Nature 635, 834–840 (2024).

    Article  ADS  Google Scholar 

  236. Zhou, H. H. et al. NVIDIA and QuEra decode quantum errors with AI. NVIDIA Technical Blog https://developer.nvidia.com/blog/nvidia-and-quera-decode-quantum-errors-with-ai/ (2025).

  237. Cerezo, M. et al. Does provable absence of barren plateaus imply classical simulability? or, why we need to rethink variational quantum computing. Preprint at https://arxiv.org/abs/2312.09121 (2023).

  238. Gil-Fuster, E., Gyurik, C., Pérez-Salinas, A. & Dunjko, V. On the relation between trainability and dequantization of variational quantum learning models. Preprint at https://arxiv.org/abs/2406.07072 (2024).

Download references

Acknowledgements

A.B., R.E., V.K., C.M., Al.M., Ar.M., V.M., D.M., F.N., M.Pe., M.Pf. and V.V. were supported by Terra Quantum AG. A.N. was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) Alliance Quantum Program (Grant ALLRP-578555), and the Canada First Research Excellence Fund, Quantum Materials and Future Technologies Program. S.M. is partially supported by the Prime Contract no. 80ARC020D0010 with the NASA Ames Research Center and acknowledges funding from DARPA under IAA 8839. A.B. thanks I. Luchnikov, M. Litvinov and S. Kourtis for discussions. A.A., Z.H., A.K., M.L., M.A.P., M.Pi., M.S. and R.S. thank their colleagues at the Global Technology Applied Research center of JPMorganChase for support and discussions.

Author information

Authors and Affiliations

Authors

Contributions

Yu.A., A.B., M.L. and V.V. conceptualized the work. A.B., R.E., J.G., R.H., A.K., M.L., A.N., F.N. and V.V. contributed to the ‘Tensor-network methods’ section. M.L., A.N. and F.N. contributed to the ‘Simulation of quantum computation’ section. A.A., R.H., Z.H., A.K., M.L., M.Pe. and V.V. contributed to the ‘Quantum circuit synthesis’ section. A.B., R.H., M.A.P., M.S. and B.V. contributed to the ‘Quantum error correction and mitigation’ section. A.A. and V.K. contributed to the ‘Tensor networks for quantum machine-learning’ section. All authors contributed to the ‘Introduction’ and the ‘Discussion and outlook’ sections. All authors were involved in shaping the direction of the manuscript, as well as in its discussion, review and editing.

Corresponding author

Correspondence to Yuri Alexeev.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Joonas Malmi, Matteo Rossi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Disclaimer This paper was prepared for informational purposes with contributions from the Global Technology Applied Research center of JPMorganChase. This paper is not a product of the Research Department of JPMorganChase or its affiliates. Neither JPMorganChase nor any of its affiliates makes any explicit or implied representation or warranty and none of them accept any liability in connection with this paper, including, without limitation, with respect to the completeness, accuracy, or reliability of the information contained herein and the potential legal, compliance, tax, or accounting effects thereof. This document is not intended as investment research or investment advice, or as a recommendation, offer, or solicitation for the purchase or sale of any security, financial instrument, financial product or service, or to be used in any way for evaluating the merits of participating in any transaction. The US Government retains and the publisher, by accepting the article for publication, acknowledges that the US Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for US Government purposes.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berezutskii, A., Liu, M., Acharya, A. et al. Tensor networks for quantum computing. Nat Rev Phys 7, 581–593 (2025). https://doi.org/10.1038/s42254-025-00853-1

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s42254-025-00853-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing