Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Point defects in metal halide perovskites

Abstract

Halide perovskites have exceptional optoelectronic properties, including low carrier recombination rates; however, their stability remains a challenge. Point defects play a crucial role in determining their physical characteristics, as they affect carrier dynamics and serve as the initiation sites for various ion migration processes. In the past five years, advances in computational methodologies have deepened the understanding of defect behaviour in these materials. In this Review, we focus on the role of point defects in metal halide perovskites, their impact on carrier dynamics, and ion-migration-related behaviours, and we discuss new understandings of defect tolerance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Point defects and their impact on carrier dynamics in metal halide perovskites.
Fig. 2: Understanding of defect tolerance.
Fig. 3: Point defect-mediated ion migrations.

Similar content being viewed by others

References

  1. Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460–466 (2019).

    Article  ADS  Google Scholar 

  2. Brinkmann, K. O. et al. The optical origin of near-unity external quantum efficiencies in perovskite solar cells. Sol. RRL 5, 2100371 (2021).

    Article  Google Scholar 

  3. Dutta, A., Behera, R. K., Pal, P., Baitalik, S. & Pradhan, N. Near-unity photoluminescence quantum efficiency for all CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals: a generic synthesis approach. Angew. Chem. Int. Ed. Engl. 58, 5552–5556 (2019).

    Article  Google Scholar 

  4. Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N. & Seok, S. I. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013).

    Article  ADS  Google Scholar 

  5. Kovalenko, M. V., Protesescu, L. & Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 358, 745–750 (2017).

    Article  ADS  Google Scholar 

  6. Park, J. et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 616, 724–730 (2023).

    Article  ADS  Google Scholar 

  7. Al-Ashouri, A. et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370, 1300–1309 (2020).

    Article  ADS  Google Scholar 

  8. Green, M. A. et al. Solar cell efficiency tables (version 61). Prog. Photovolt. 31, 3–16 (2023).

    Article  Google Scholar 

  9. Sun, Y. et al. Bright and stable perovskite light-emitting diodes in the near-infrared range. Nature 615, 830–835 (2023).

    Article  ADS  Google Scholar 

  10. Yan, J. et al. Multifunctional organic–inorganic hybrid perovskite microcrystalline engineering and electromagnetic response switching multi-band devices. Adv. Mater. 35, 2300015 (2023).

    Article  Google Scholar 

  11. Lei, L., Dong, Q., Gundogdu, K. & So, F. Metal halide perovskites for laser applications. Adv. Funct. Mater 31, 2010144 (2021).

    Article  Google Scholar 

  12. Kim, J., Lee, S.-H., Lee, J. H. & Hong, K.-H. The role of intrinsic defects in methylammonium lead iodide perovskite. J. Phys. Chem. Lett. 5, 1312–1317 (2014).

    Article  Google Scholar 

  13. Amat, A. et al. Cation-induced band-gap tuning in organohalide perovskites: interplay of spin–orbit coupling and octahedra tilting. Nano Lett. 14, 3608–3616 (2014).

    Article  ADS  Google Scholar 

  14. Li, W., She, Y., Vasenko, A. S. & Prezhdo, O. V. Ab initio nonadiabatic molecular dynamics of charge carriers in metal halide perovskites. Nanoscale 13, 10239–10265 (2021).

    Article  Google Scholar 

  15. Yu, B. et al. Ultrafast dynamics of photoexcited carriers in perovskite semiconductor nanocrystals. Nanophotonics 10, 1943–1965 (2021).

    Article  Google Scholar 

  16. Kroger, F. & Vink, H. Relations between the concentrations of imperfections in crystalline solids. Solid State Phys 3, 307–435 (1956).

    Article  Google Scholar 

  17. Green, M. A., Ho-Baillie, A. & Snaith, H. J. The emergence of perovskite solar cells. Nat. Photonics 8, 506–514 (2014).

    Article  ADS  Google Scholar 

  18. Freysoldt, C. et al. First-principles calculations for point defects in solids. Rev. Mod. Phys. 86, 253–305 (2014).

    Article  ADS  Google Scholar 

  19. Shahivandi, H. & Nosratjoo, M. Temperature dependence of iodine vacancies concentration in CH3NH3PbI3 perovskite: a theoretical analysis. Physica B 683, 415884 (2024).

    Article  Google Scholar 

  20. Zhang, S. & Northrup, J. Chemical potential dependence of defect formation energies in GaAs: application to Ga self-diffusion. Phys. Rev. Lett. 67, 2339–2342 (1991).

    Article  ADS  Google Scholar 

  21. Baraff, G. A. & Schlüter, M. Electronic structure, total energies, and abundances of the elementary point defects in GaAs. Phys. Rev. Lett. 55, 1327–1330 (1985).

    Article  ADS  Google Scholar 

  22. Yin, W.-J., Shi, T. & Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014).

    Article  ADS  Google Scholar 

  23. Liu, N. & Yam, C. First-principles study of intrinsic defects in formamidinium lead triiodide perovskite solar cell absorbers. Phys. Chem. Chem. Phys. 20, 6800–6804 (2018).

    Article  Google Scholar 

  24. Kang, J. & Wang, L.-W. High defect tolerance in lead halide perovskite CsPbBr3. J. Phys. Chem. Lett. 8, 489–493 (2017).

    Article  Google Scholar 

  25. Xue, H., Brocks, G. & Tao, S. Intrinsic defects in primary halide perovskites: a first-principles study of the thermodynamic trends. Phys. Rev. Mater 6, 055402 (2022).

    Article  Google Scholar 

  26. Ahmad, B., Limon, M. S. R. & Ahmad, Z. Modulation of point defect properties near surfaces in metal halide perovskites. Phys. Rev. Mater 8, 125402 (2024).

    Article  Google Scholar 

  27. Shockley, W. & Read, W. T. Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835–842 (1952).

    Article  ADS  Google Scholar 

  28. Hall, R. N. Electron–hole recombination in germanium. Phys. Rev. 87, 387–387 (1952).

    Article  ADS  Google Scholar 

  29. Hong, D. et al. Nature of photoinduced quenching traps in methylammonium lead triiodide perovskite revealed by reversible photoluminescence decline. ACS Photonics 5, 2034–2043 (2018).

    Article  Google Scholar 

  30. Birkhold, S. T. et al. Interplay of mobile ions and injected carriers creates recombination centers in metal halide perovskites under bias. ACS Energy Lett. 3, 1279–1286 (2018).

    Article  Google Scholar 

  31. Zhang, J., Zhong, Y. & Li, G. Benign deep-level defects in cesium lead iodine perovskite. J. Phys. Chem. C 125, 27016–27022 (2021).

    Article  Google Scholar 

  32. Zhang, X., Turiansky, M. E., Shen, J.-X. & Van De Walle, C. G. Iodine interstitials as a cause of nonradiative recombination in hybrid perovskites. PRB 101, 140101 (2020).

    Article  ADS  Google Scholar 

  33. Liu, Q., Li, A., Chu, W., Prezhdo, O. V. & Liang, W. Influence of intrinsic defects on the structure and dynamics of the mixed Pb–Sn perovskite: first-principles DFT and NAMD simulations. J. Mater. Chem. A 10, 234–244 (2022).

    Article  Google Scholar 

  34. Shi, R., Guo, M. & Long, R. Improved defect tolerance and charge carrier lifetime in tin-lead mixed perovskites: ab initio quantum dynamics. J. Phys. Chem. Lett. 14, 499–507 (2023).

    Article  Google Scholar 

  35. He, J. & Long, R. Unveiling the valence state of interstitial bromine on charge carrier lifetime in CH3NH3PbBr3 by quantum dynamics simulation. J. Phys. Chem. Lett. 13, 4193–4199 (2022).

    Article  Google Scholar 

  36. Wang, J., Li, W. & Yin, W. Passivating detrimental DX centers in CH3NH3PbI3 for reducing nonradiative recombination and elongating carrier lifetime. Adv. Mater. 32, 1906115 (2020).

    Article  Google Scholar 

  37. Zhang, Z., Qiao, L., Mora-Perez, C., Long, R. & Prezhdo, O. V. Pb dimerization greatly accelerates charge losses in MAPbI3: time-domain ab initio analysis. J. Chem. Phys. 152, 064707 (2020).

    Article  ADS  Google Scholar 

  38. Sezen, E., Oner, S. M., Deger, C. & Yavuz, I. Defect pair formation in FAPbI3 perovskite solar cell absorbers. J. Phys. Chem. Lett. 13, 9718–9724 (2022).

    Article  Google Scholar 

  39. Oner, S. M. et al. Surface defect formation and passivation in formamidinium lead triiodide (FAPbI3) perovskite solar cell absorbers. J. Phys. Chem. Lett. 13, 324–330 (2022).

    Article  Google Scholar 

  40. Qiao, L., Fang, W.-H., Long, R. & Prezhdo, O. V. Atomic model for alkali metal passivation of point defects at perovskite grain boundaries. ACS Energy Lett. 5, 3813–3820 (2020).

    Article  Google Scholar 

  41. Xue, H.-T. Interstitial doping of K and Mn induced structural distortion and electronic properties changes in all inorganic CsPbI2Br perovskite. Mater. Res. Express 9, 046304 (2022).

    Article  ADS  Google Scholar 

  42. Huang, Y. et al. A site cation engineering for highly efficient MAPbI3 single crystal X ray detector. Angew. Chem. Int. Ed. 58, 17834–17842 (2019).

    Article  Google Scholar 

  43. Liang, Y. et al. Hydrogen-anion-induced carrier recombination in MAPbI3 perovskite solar cells. J. Phys. Chem. Lett. 12, 10677–10683 (2021).

    Article  Google Scholar 

  44. He, J., Fang, W.-H., Long, R. & Prezhdo, O. V. Superoxide/peroxide chemistry extends charge carriers’ lifetime but undermines chemical stability of CH3NH3PbI3 exposed to oxygen: time-domain ab initio analysis. J. Am. Chem. Soc. 141, 5798–5807 (2019).

    Article  ADS  Google Scholar 

  45. Li, W. et al. Atomistic mechanism of passivation of halide vacancies in lead halide perovskites by alkali ions. Chem. Mater 33, 1285–1292 (2021).

    Article  Google Scholar 

  46. Qiao, L. & Long, R. Substitutional alkaline earth metals delay nonradiative charge recombination in CH3NH3PbI3 perovskite: a time-domain study. J. Chem. Phys. 156, 014702 (2022).

    Article  ADS  Google Scholar 

  47. Mustafa, G. et al. Lattice softness regulates recombination and lifetime of carrier in germanium doped CsPbI2Br perovskite: first principles DFT and NAMD simulations. Solid State Chem 322, 123981 (2023).

    Article  Google Scholar 

  48. Yong, Z.-J. et al. Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield. J. Am. Chem. Soc. 140, 9942–9951 (2018).

    Article  ADS  Google Scholar 

  49. Yin, J., Ahmed, G. H., Bakr, O. M., Brédas, J.-L. & Mohammed, O. F. Unlocking the effect of trivalent metal doping in all-inorganic CsPbBr3 perovskite. ACS Energy Lett. 4, 789–795 (2019).

    Article  Google Scholar 

  50. Saidaminov, M. I. et al. Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nat. Energy 3, 648–654 (2018).

    Article  ADS  Google Scholar 

  51. Lee, K. S., Park, D. Y., Jeong, M. S. & Kim, E. K. Analysis on the defect states of FAxMA1−xPbI3 perovskite single crystals grown by inverse-temperature crystallization. Appl. Phys. A 130, 393 (2024).

    Article  ADS  Google Scholar 

  52. Righetto, M. et al. Hot carriers perspective on the nature of traps in perovskites. Nat. Commun 11, 2712 (2020).

    Article  ADS  Google Scholar 

  53. Yu, B. et al. Size-dependent hot carrier dynamics in perovskite nanocrystals revealed by two-dimensional electronic spectroscopy. J. Phys. Chem. Lett. 12, 238–244 (2021).

    Article  Google Scholar 

  54. Li, M. et al. Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals. Nat. Commun 8, 14350 (2017).

    Article  ADS  Google Scholar 

  55. Hopper, T. R. et al. Ultrafast intraband spectroscopy of hot-carrier cooling in lead-halide perovskites. ACS Energy Lett. 3, 2199–2205 (2018).

    Article  Google Scholar 

  56. Chen, J., Messing, M. E., Zheng, K. & Pullerits, T. Cation-dependent hot carrier cooling in halide perovskite nanocrystals. J. Am. Chem. Soc. 141, 3532–3540 (2019).

    Article  ADS  Google Scholar 

  57. Madjet, M. E.-A. et al. Enhancing the carrier thermalization time in organometallic perovskites by halide mixing. Phys. Chem. Chem. Phys. 18, 5219–5231 (2016).

    Article  Google Scholar 

  58. Mondal, N. & Samanta, A. Complete ultrafast charge carrier dynamics in photo-excited all-inorganic perovskite nanocrystals CsPbX3. Nanoscale 9, 1878–1885 (2017).

    Article  Google Scholar 

  59. Banerjee, S., Kang, J., Zhang, X. & Wang, L.-W. The effects of interstitial iodine in hybrid perovskite hot carrier cooling: a non-adiabatic molecular dynamics study. J. Chem. Phys. 152, 091102 (2020).

    Article  ADS  Google Scholar 

  60. Zhou, Z., He, J., Frauenheim, T., Prezhdo, O. V. & Wang, J. Control of hot carrier cooling in lead halide perovskites by point defects. J. Am. Chem. Soc. 144, 18126–18134 (2022).

    Article  ADS  Google Scholar 

  61. Huo, T., Yan, L., Si, J., Ma, P. & Hou, X. Ultrafast photoinduced carrier dynamics in single crystalline perovskite films. J. Mater. Chem. C 11, 3736–3742 (2023).

    Article  Google Scholar 

  62. Liu, W. et al. Mapping trap dynamics in a CsPbBr3 single-crystal microplate by ultrafast photoemission electron microscopy. Nano Lett. 21, 2932–2938 (2021).

    Article  ADS  Google Scholar 

  63. Wang, X. et al. Hot carrier dynamics and charge trapping in surface passivated β-CsPbI3 inorganic perovskite. J. Phys. Chem. Lett. 12, 6907–6913 (2021).

    Article  Google Scholar 

  64. Sze, S. & Irvin, J. Resistivity, mobility and impurity levels in GaAs, Ge, and Si at 300 K. Solid State Electron. Lett. 11, 599–602 (1968).

    Article  ADS  Google Scholar 

  65. Liu, Y. et al. Two-inch-sized perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals: growth and characterization. Adv. Mater. 27, 5176–5183 (2015).

    Article  Google Scholar 

  66. Le Corre, V. M. et al. Revealing charge carrier mobility and defect densities in metal halide perovskites via space-charge-limited current measurements. ACS Energy Lett. 6, 1087–1094 (2021).

    Article  ADS  Google Scholar 

  67. Lang, D. Deep-level transient spectroscopy — new method to characterize traps insemiconductors. J. Appl. Phys. 45, 3023–3032 (1974).

    Article  ADS  Google Scholar 

  68. Giorgi, G., Fujisawa, J.-I., Segawa, H. & Yamashita, K. Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: a density functional analysis. J. Phys. Chem. Lett. 4, 4213–4216 (2013).

    Article  Google Scholar 

  69. Brivio, F., Butler, K. T., Walsh, A. & van Schilfgaarde, M. Relativistic quasiparticle self-consistent electronic structure of hybrid halide perovskite photovoltaic absorbers. Phys. Rev. B 89, 155204 (2014).

    Article  ADS  Google Scholar 

  70. Sabino, F. P., Zunger, A. & Dalpian, G. M. Intrinsic doping limitations in inorganic lead halide perovskites. Mater. Horiz. 9, 791–803 (2022).

    Article  Google Scholar 

  71. Chu, W., Saidi, W. A., Zhao, J. & Prezhdo, O. V. Soft lattice and defect covalency rationalize tolerance of β CsPbI3 perovskite solar cells to native defects. Angew. Chem. Int. Ed. 59, 6435–6441 (2020).

    Article  Google Scholar 

  72. Chu, W., Zheng, Q., Prezhdo, O. V., Zhao, J. & Saidi, W. A. Low-frequency lattice phonons in halide perovskites explain high defect tolerance toward electron–hole recombination. Sci Adv 6, eaaw7453 (2020).

    Article  ADS  Google Scholar 

  73. Zhang, X., Turiansky, M. E., Shen, J.-X. & Van De Walle, C. G. Defect tolerance in halide perovskites: a first-principles perspective. J. Appl. Phys. 131, 090901 (2022).

    Article  ADS  Google Scholar 

  74. Du Fossé, I. et al. Limits of defect tolerance in perovskite nanocrystals: effect of local electrostatic potential on trap states. J. Am. Chem. Soc. 144, 11059–11063 (2022).

    Article  ADS  Google Scholar 

  75. Ye, J. et al. Extending the defect tolerance of halide perovskite nanocrystals to hot carrier cooling dynamics. Nat. Commun 15, 8120 (2024).

    Article  ADS  Google Scholar 

  76. Lv, J. et al. Hot carrier trapping and it’s influence to the carrier diffusion in CsPbBr3 perovskite film revealed by transient absorption microscopy. Adv. Sci. 11, 2403507 (2024).

    Article  Google Scholar 

  77. Azpiroz, J. M., Mosconi, E., Bisquert, J. & De Angelis, F. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci. 8, 2118–2127 (2015).

    Article  Google Scholar 

  78. Walsh, A., Scanlon, D. O., Chen, S., Gong, X. G. & Wei, S. Self regulation mechanism for charged point defects in hybrid halide perovskites. Angew. Chem. Int. Ed. 54, 1791–1794 (2015).

    Article  Google Scholar 

  79. Frost, J. M. & Walsh, A. What is moving in hybrid halide perovskite solar cells? Acc. Chem. Res. 49, 528–535 (2016).

    Article  Google Scholar 

  80. Eames, C. et al. Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun 6, 7497 (2015).

    Article  ADS  Google Scholar 

  81. Minns, J. L., Zajdel, P., Chernyshov, D., Van Beek, W. & Green, M. A. Structure and interstitial iodide migration in hybrid perovskite methylammonium lead iodide. Nat. Commun 8, 15152 (2017).

    Article  ADS  Google Scholar 

  82. Kaiser, W. et al. Defect formation and healing at grain boundaries in lead-halide perovskites. J. Mater. Chem. A 10, 24854–24865 (2022).

    Article  Google Scholar 

  83. Lv, T. et al. Kinetic process with anti-Frenkel disorder in a CsPbI3 perovskite. J. Phys. Chem. Lett. 15, 2929–2935 (2024).

    Article  Google Scholar 

  84. Cheng, Y. et al. Revealing the degradation and self-healing mechanisms in perovskite solar cells by sub-bandgap external quantum efficiency spectroscopy. Adv. Mater. 33, 2006170 (2021).

    Article  Google Scholar 

  85. Tan, S. et al. Shallow iodine defects accelerate the degradation of α-phase formamidinium perovskite. Joule 4, 2426–2442 (2020).

    Article  Google Scholar 

  86. Qiao, L., Fang, W. & Long, R. The interplay between lead vacancy and water rationalizes the puzzle of charge carrier lifetimes in CH3NH3PbI3: time domain ab initio analysis. Angew. Chem. Int. Ed. 59, 13347–13353 (2020).

    Article  Google Scholar 

  87. Wang, N. & Wu, Y. First-principles investigation into the interaction of H2O with α-CsPbI3 and the intrinsic defects within it. Materials 17, 1091 (2024).

    Article  ADS  Google Scholar 

  88. Kamat, P. V. & Kuno, M. Halide ion migration in perovskite nanocrystals and nanostructures. Acc. Chem. Res. 54, 520–531 (2021).

    Article  Google Scholar 

  89. Sabino, F. P., Dalpian, G. M. & Zunger, A. Light induced Frenkel defect pair formation can lead to phase segregation of otherwise miscible halide perovskite alloys. Adv. Energy Mater. 13, 2301539 (2023).

    Article  Google Scholar 

  90. Zhang, J. et al. Strain effects on the structural stability and defect properties of γ-CsPbI3. Appl. Surf. Sci. 679, 161235 (2025).

    Article  Google Scholar 

  91. Li, N. et al. Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat. Energy 4, 408–415 (2019).

    Article  ADS  Google Scholar 

  92. Liu, Q. et al. Highly crystalline and (110)-oriented n-type perovskite films with excellent structural stability via Cu doping. Cryst. Growth Des. 21, 462–470 (2021).

    Article  Google Scholar 

  93. Son, D.-Y. et al. Universal approach toward hysteresis-free perovskite solar cell via defect engineering. J. Am. Chem. Soc. 140, 1358–1364 (2018).

    Article  ADS  Google Scholar 

  94. Ren, X. et al. Mobile iodides capture for highly photolysis- and reverse-bias-stable perovskite solar cells. Nat. Mater. 23, 810–817 (2024).

    Article  ADS  Google Scholar 

  95. Ono, L. K., Liu, S. F. & Qi, Y. Reducing detrimental defects for high performance metal halide perovskite solar cells. Angew. Chem. Int. Ed. 59, 6676–6698 (2020).

    Article  Google Scholar 

  96. Fu, L. et al. Defect passivation strategies in perovskites for an enhanced photovoltaic performance. Energy Environ. Sci. 13, 4017–4056 (2020).

    Article  Google Scholar 

  97. Chen, B., Rudd, P. N., Yang, S., Yuan, Y. & Huang, J. Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48, 3842–3867 (2019).

    Article  Google Scholar 

  98. Ye, J. et al. Defect passivation in lead halide perovskite nanocrystals and thin films: toward efficient LEDs and solar cells. Angew. Chem. Int. Ed. 60, 21636–21660 (2021).

    Article  Google Scholar 

  99. Zhang, H., Pfeifer, L., Zakeeruddin, S. M., Chu, J. & Grätzel, M. Tailoring passivators for highly efficient and stable perovskite solar cells. Nat. Rev. Chem. 7, 632–652 (2023).

    Article  Google Scholar 

  100. Akkerman, Q. A., Rainò, G., Kovalenko, M. V. & Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 17, 394–405 (2018).

    Article  ADS  Google Scholar 

  101. Bube, R. Trap density determination by space-charge-limited currents. J. Appl. Phys. 33, 1733–1737 (1962).

    Article  ADS  Google Scholar 

  102. Duijnstee, E. A. et al. Toward understanding space-charge limited current measurements on metal halide perovskites. ACS Energy Lett. 5, 376–384 (2020).

    Article  Google Scholar 

  103. Yang, W. S. et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017).

    Article  ADS  Google Scholar 

  104. Ni, Z. et al. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 367, 1352–1358 (2020).

    Article  ADS  Google Scholar 

  105. Moshat, S., Ray, P. P., Sil, S., Dhar, J. & Sanyal, D. Positron annihilation studies of methylammonium lead bromide perovskite. Phys. Scr. 98, 035822 (2023).

    Article  ADS  Google Scholar 

  106. Grafutin, V. & Prokop’ev, E. Positron annihilation spectroscopy in materials structure studies. Phys. Uspekhi 45, 59–74 (2002).

    Article  ADS  Google Scholar 

  107. Tuomisto, F. & Makkonen, I. Defect identification in semiconductors with positron annihilation: experiment and theory. Rev. Mod. Phys. 85, 1583–1631 (2013).

    Article  ADS  Google Scholar 

  108. Ren, G. et al. Organic iodides in efficient and stable perovskite solar cells: strong surface passivation and interaction. Energy Environ. Sci. 16, 565–573 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2021YFF0500501) and the National Natural Science Foundation of China (22279053).

Author information

Authors and Affiliations

Authors

Contributions

N.X. conceived the topic, conducted the literature investigation and drafted the manuscript. B.W. provided supervision and validation. All authors contributed to reviewing the manuscript and providing suggestions.

Corresponding authors

Correspondence to Yufei Zhong or Bing Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Artem Bakulin and Jingjing Xue for their contribution to the peer review of this manuscript.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, N., Qi, X., Shen, Z. et al. Point defects in metal halide perovskites. Nat Rev Phys 7, 554–564 (2025). https://doi.org/10.1038/s42254-025-00861-1

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s42254-025-00861-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing