Abstract
Halide perovskites have exceptional optoelectronic properties, including low carrier recombination rates; however, their stability remains a challenge. Point defects play a crucial role in determining their physical characteristics, as they affect carrier dynamics and serve as the initiation sites for various ion migration processes. In the past five years, advances in computational methodologies have deepened the understanding of defect behaviour in these materials. In this Review, we focus on the role of point defects in metal halide perovskites, their impact on carrier dynamics, and ion-migration-related behaviours, and we discuss new understandings of defect tolerance.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460–466 (2019).
Brinkmann, K. O. et al. The optical origin of near-unity external quantum efficiencies in perovskite solar cells. Sol. RRL 5, 2100371 (2021).
Dutta, A., Behera, R. K., Pal, P., Baitalik, S. & Pradhan, N. Near-unity photoluminescence quantum efficiency for all CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals: a generic synthesis approach. Angew. Chem. Int. Ed. Engl. 58, 5552–5556 (2019).
Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N. & Seok, S. I. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013).
Kovalenko, M. V., Protesescu, L. & Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 358, 745–750 (2017).
Park, J. et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 616, 724–730 (2023).
Al-Ashouri, A. et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370, 1300–1309 (2020).
Green, M. A. et al. Solar cell efficiency tables (version 61). Prog. Photovolt. 31, 3–16 (2023).
Sun, Y. et al. Bright and stable perovskite light-emitting diodes in the near-infrared range. Nature 615, 830–835 (2023).
Yan, J. et al. Multifunctional organic–inorganic hybrid perovskite microcrystalline engineering and electromagnetic response switching multi-band devices. Adv. Mater. 35, 2300015 (2023).
Lei, L., Dong, Q., Gundogdu, K. & So, F. Metal halide perovskites for laser applications. Adv. Funct. Mater 31, 2010144 (2021).
Kim, J., Lee, S.-H., Lee, J. H. & Hong, K.-H. The role of intrinsic defects in methylammonium lead iodide perovskite. J. Phys. Chem. Lett. 5, 1312–1317 (2014).
Amat, A. et al. Cation-induced band-gap tuning in organohalide perovskites: interplay of spin–orbit coupling and octahedra tilting. Nano Lett. 14, 3608–3616 (2014).
Li, W., She, Y., Vasenko, A. S. & Prezhdo, O. V. Ab initio nonadiabatic molecular dynamics of charge carriers in metal halide perovskites. Nanoscale 13, 10239–10265 (2021).
Yu, B. et al. Ultrafast dynamics of photoexcited carriers in perovskite semiconductor nanocrystals. Nanophotonics 10, 1943–1965 (2021).
Kroger, F. & Vink, H. Relations between the concentrations of imperfections in crystalline solids. Solid State Phys 3, 307–435 (1956).
Green, M. A., Ho-Baillie, A. & Snaith, H. J. The emergence of perovskite solar cells. Nat. Photonics 8, 506–514 (2014).
Freysoldt, C. et al. First-principles calculations for point defects in solids. Rev. Mod. Phys. 86, 253–305 (2014).
Shahivandi, H. & Nosratjoo, M. Temperature dependence of iodine vacancies concentration in CH3NH3PbI3 perovskite: a theoretical analysis. Physica B 683, 415884 (2024).
Zhang, S. & Northrup, J. Chemical potential dependence of defect formation energies in GaAs: application to Ga self-diffusion. Phys. Rev. Lett. 67, 2339–2342 (1991).
Baraff, G. A. & Schlüter, M. Electronic structure, total energies, and abundances of the elementary point defects in GaAs. Phys. Rev. Lett. 55, 1327–1330 (1985).
Yin, W.-J., Shi, T. & Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014).
Liu, N. & Yam, C. First-principles study of intrinsic defects in formamidinium lead triiodide perovskite solar cell absorbers. Phys. Chem. Chem. Phys. 20, 6800–6804 (2018).
Kang, J. & Wang, L.-W. High defect tolerance in lead halide perovskite CsPbBr3. J. Phys. Chem. Lett. 8, 489–493 (2017).
Xue, H., Brocks, G. & Tao, S. Intrinsic defects in primary halide perovskites: a first-principles study of the thermodynamic trends. Phys. Rev. Mater 6, 055402 (2022).
Ahmad, B., Limon, M. S. R. & Ahmad, Z. Modulation of point defect properties near surfaces in metal halide perovskites. Phys. Rev. Mater 8, 125402 (2024).
Shockley, W. & Read, W. T. Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835–842 (1952).
Hall, R. N. Electron–hole recombination in germanium. Phys. Rev. 87, 387–387 (1952).
Hong, D. et al. Nature of photoinduced quenching traps in methylammonium lead triiodide perovskite revealed by reversible photoluminescence decline. ACS Photonics 5, 2034–2043 (2018).
Birkhold, S. T. et al. Interplay of mobile ions and injected carriers creates recombination centers in metal halide perovskites under bias. ACS Energy Lett. 3, 1279–1286 (2018).
Zhang, J., Zhong, Y. & Li, G. Benign deep-level defects in cesium lead iodine perovskite. J. Phys. Chem. C 125, 27016–27022 (2021).
Zhang, X., Turiansky, M. E., Shen, J.-X. & Van De Walle, C. G. Iodine interstitials as a cause of nonradiative recombination in hybrid perovskites. PRB 101, 140101 (2020).
Liu, Q., Li, A., Chu, W., Prezhdo, O. V. & Liang, W. Influence of intrinsic defects on the structure and dynamics of the mixed Pb–Sn perovskite: first-principles DFT and NAMD simulations. J. Mater. Chem. A 10, 234–244 (2022).
Shi, R., Guo, M. & Long, R. Improved defect tolerance and charge carrier lifetime in tin-lead mixed perovskites: ab initio quantum dynamics. J. Phys. Chem. Lett. 14, 499–507 (2023).
He, J. & Long, R. Unveiling the valence state of interstitial bromine on charge carrier lifetime in CH3NH3PbBr3 by quantum dynamics simulation. J. Phys. Chem. Lett. 13, 4193–4199 (2022).
Wang, J., Li, W. & Yin, W. Passivating detrimental DX centers in CH3NH3PbI3 for reducing nonradiative recombination and elongating carrier lifetime. Adv. Mater. 32, 1906115 (2020).
Zhang, Z., Qiao, L., Mora-Perez, C., Long, R. & Prezhdo, O. V. Pb dimerization greatly accelerates charge losses in MAPbI3: time-domain ab initio analysis. J. Chem. Phys. 152, 064707 (2020).
Sezen, E., Oner, S. M., Deger, C. & Yavuz, I. Defect pair formation in FAPbI3 perovskite solar cell absorbers. J. Phys. Chem. Lett. 13, 9718–9724 (2022).
Oner, S. M. et al. Surface defect formation and passivation in formamidinium lead triiodide (FAPbI3) perovskite solar cell absorbers. J. Phys. Chem. Lett. 13, 324–330 (2022).
Qiao, L., Fang, W.-H., Long, R. & Prezhdo, O. V. Atomic model for alkali metal passivation of point defects at perovskite grain boundaries. ACS Energy Lett. 5, 3813–3820 (2020).
Xue, H.-T. Interstitial doping of K and Mn induced structural distortion and electronic properties changes in all inorganic CsPbI2Br perovskite. Mater. Res. Express 9, 046304 (2022).
Huang, Y. et al. A site cation engineering for highly efficient MAPbI3 single crystal X ray detector. Angew. Chem. Int. Ed. 58, 17834–17842 (2019).
Liang, Y. et al. Hydrogen-anion-induced carrier recombination in MAPbI3 perovskite solar cells. J. Phys. Chem. Lett. 12, 10677–10683 (2021).
He, J., Fang, W.-H., Long, R. & Prezhdo, O. V. Superoxide/peroxide chemistry extends charge carriers’ lifetime but undermines chemical stability of CH3NH3PbI3 exposed to oxygen: time-domain ab initio analysis. J. Am. Chem. Soc. 141, 5798–5807 (2019).
Li, W. et al. Atomistic mechanism of passivation of halide vacancies in lead halide perovskites by alkali ions. Chem. Mater 33, 1285–1292 (2021).
Qiao, L. & Long, R. Substitutional alkaline earth metals delay nonradiative charge recombination in CH3NH3PbI3 perovskite: a time-domain study. J. Chem. Phys. 156, 014702 (2022).
Mustafa, G. et al. Lattice softness regulates recombination and lifetime of carrier in germanium doped CsPbI2Br perovskite: first principles DFT and NAMD simulations. Solid State Chem 322, 123981 (2023).
Yong, Z.-J. et al. Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield. J. Am. Chem. Soc. 140, 9942–9951 (2018).
Yin, J., Ahmed, G. H., Bakr, O. M., Brédas, J.-L. & Mohammed, O. F. Unlocking the effect of trivalent metal doping in all-inorganic CsPbBr3 perovskite. ACS Energy Lett. 4, 789–795 (2019).
Saidaminov, M. I. et al. Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nat. Energy 3, 648–654 (2018).
Lee, K. S., Park, D. Y., Jeong, M. S. & Kim, E. K. Analysis on the defect states of FAxMA1−xPbI3 perovskite single crystals grown by inverse-temperature crystallization. Appl. Phys. A 130, 393 (2024).
Righetto, M. et al. Hot carriers perspective on the nature of traps in perovskites. Nat. Commun 11, 2712 (2020).
Yu, B. et al. Size-dependent hot carrier dynamics in perovskite nanocrystals revealed by two-dimensional electronic spectroscopy. J. Phys. Chem. Lett. 12, 238–244 (2021).
Li, M. et al. Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals. Nat. Commun 8, 14350 (2017).
Hopper, T. R. et al. Ultrafast intraband spectroscopy of hot-carrier cooling in lead-halide perovskites. ACS Energy Lett. 3, 2199–2205 (2018).
Chen, J., Messing, M. E., Zheng, K. & Pullerits, T. Cation-dependent hot carrier cooling in halide perovskite nanocrystals. J. Am. Chem. Soc. 141, 3532–3540 (2019).
Madjet, M. E.-A. et al. Enhancing the carrier thermalization time in organometallic perovskites by halide mixing. Phys. Chem. Chem. Phys. 18, 5219–5231 (2016).
Mondal, N. & Samanta, A. Complete ultrafast charge carrier dynamics in photo-excited all-inorganic perovskite nanocrystals CsPbX3. Nanoscale 9, 1878–1885 (2017).
Banerjee, S., Kang, J., Zhang, X. & Wang, L.-W. The effects of interstitial iodine in hybrid perovskite hot carrier cooling: a non-adiabatic molecular dynamics study. J. Chem. Phys. 152, 091102 (2020).
Zhou, Z., He, J., Frauenheim, T., Prezhdo, O. V. & Wang, J. Control of hot carrier cooling in lead halide perovskites by point defects. J. Am. Chem. Soc. 144, 18126–18134 (2022).
Huo, T., Yan, L., Si, J., Ma, P. & Hou, X. Ultrafast photoinduced carrier dynamics in single crystalline perovskite films. J. Mater. Chem. C 11, 3736–3742 (2023).
Liu, W. et al. Mapping trap dynamics in a CsPbBr3 single-crystal microplate by ultrafast photoemission electron microscopy. Nano Lett. 21, 2932–2938 (2021).
Wang, X. et al. Hot carrier dynamics and charge trapping in surface passivated β-CsPbI3 inorganic perovskite. J. Phys. Chem. Lett. 12, 6907–6913 (2021).
Sze, S. & Irvin, J. Resistivity, mobility and impurity levels in GaAs, Ge, and Si at 300 K. Solid State Electron. Lett. 11, 599–602 (1968).
Liu, Y. et al. Two-inch-sized perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals: growth and characterization. Adv. Mater. 27, 5176–5183 (2015).
Le Corre, V. M. et al. Revealing charge carrier mobility and defect densities in metal halide perovskites via space-charge-limited current measurements. ACS Energy Lett. 6, 1087–1094 (2021).
Lang, D. Deep-level transient spectroscopy — new method to characterize traps insemiconductors. J. Appl. Phys. 45, 3023–3032 (1974).
Giorgi, G., Fujisawa, J.-I., Segawa, H. & Yamashita, K. Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: a density functional analysis. J. Phys. Chem. Lett. 4, 4213–4216 (2013).
Brivio, F., Butler, K. T., Walsh, A. & van Schilfgaarde, M. Relativistic quasiparticle self-consistent electronic structure of hybrid halide perovskite photovoltaic absorbers. Phys. Rev. B 89, 155204 (2014).
Sabino, F. P., Zunger, A. & Dalpian, G. M. Intrinsic doping limitations in inorganic lead halide perovskites. Mater. Horiz. 9, 791–803 (2022).
Chu, W., Saidi, W. A., Zhao, J. & Prezhdo, O. V. Soft lattice and defect covalency rationalize tolerance of β CsPbI3 perovskite solar cells to native defects. Angew. Chem. Int. Ed. 59, 6435–6441 (2020).
Chu, W., Zheng, Q., Prezhdo, O. V., Zhao, J. & Saidi, W. A. Low-frequency lattice phonons in halide perovskites explain high defect tolerance toward electron–hole recombination. Sci Adv 6, eaaw7453 (2020).
Zhang, X., Turiansky, M. E., Shen, J.-X. & Van De Walle, C. G. Defect tolerance in halide perovskites: a first-principles perspective. J. Appl. Phys. 131, 090901 (2022).
Du Fossé, I. et al. Limits of defect tolerance in perovskite nanocrystals: effect of local electrostatic potential on trap states. J. Am. Chem. Soc. 144, 11059–11063 (2022).
Ye, J. et al. Extending the defect tolerance of halide perovskite nanocrystals to hot carrier cooling dynamics. Nat. Commun 15, 8120 (2024).
Lv, J. et al. Hot carrier trapping and it’s influence to the carrier diffusion in CsPbBr3 perovskite film revealed by transient absorption microscopy. Adv. Sci. 11, 2403507 (2024).
Azpiroz, J. M., Mosconi, E., Bisquert, J. & De Angelis, F. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci. 8, 2118–2127 (2015).
Walsh, A., Scanlon, D. O., Chen, S., Gong, X. G. & Wei, S. Self regulation mechanism for charged point defects in hybrid halide perovskites. Angew. Chem. Int. Ed. 54, 1791–1794 (2015).
Frost, J. M. & Walsh, A. What is moving in hybrid halide perovskite solar cells? Acc. Chem. Res. 49, 528–535 (2016).
Eames, C. et al. Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun 6, 7497 (2015).
Minns, J. L., Zajdel, P., Chernyshov, D., Van Beek, W. & Green, M. A. Structure and interstitial iodide migration in hybrid perovskite methylammonium lead iodide. Nat. Commun 8, 15152 (2017).
Kaiser, W. et al. Defect formation and healing at grain boundaries in lead-halide perovskites. J. Mater. Chem. A 10, 24854–24865 (2022).
Lv, T. et al. Kinetic process with anti-Frenkel disorder in a CsPbI3 perovskite. J. Phys. Chem. Lett. 15, 2929–2935 (2024).
Cheng, Y. et al. Revealing the degradation and self-healing mechanisms in perovskite solar cells by sub-bandgap external quantum efficiency spectroscopy. Adv. Mater. 33, 2006170 (2021).
Tan, S. et al. Shallow iodine defects accelerate the degradation of α-phase formamidinium perovskite. Joule 4, 2426–2442 (2020).
Qiao, L., Fang, W. & Long, R. The interplay between lead vacancy and water rationalizes the puzzle of charge carrier lifetimes in CH3NH3PbI3: time domain ab initio analysis. Angew. Chem. Int. Ed. 59, 13347–13353 (2020).
Wang, N. & Wu, Y. First-principles investigation into the interaction of H2O with α-CsPbI3 and the intrinsic defects within it. Materials 17, 1091 (2024).
Kamat, P. V. & Kuno, M. Halide ion migration in perovskite nanocrystals and nanostructures. Acc. Chem. Res. 54, 520–531 (2021).
Sabino, F. P., Dalpian, G. M. & Zunger, A. Light induced Frenkel defect pair formation can lead to phase segregation of otherwise miscible halide perovskite alloys. Adv. Energy Mater. 13, 2301539 (2023).
Zhang, J. et al. Strain effects on the structural stability and defect properties of γ-CsPbI3. Appl. Surf. Sci. 679, 161235 (2025).
Li, N. et al. Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat. Energy 4, 408–415 (2019).
Liu, Q. et al. Highly crystalline and (110)-oriented n-type perovskite films with excellent structural stability via Cu doping. Cryst. Growth Des. 21, 462–470 (2021).
Son, D.-Y. et al. Universal approach toward hysteresis-free perovskite solar cell via defect engineering. J. Am. Chem. Soc. 140, 1358–1364 (2018).
Ren, X. et al. Mobile iodides capture for highly photolysis- and reverse-bias-stable perovskite solar cells. Nat. Mater. 23, 810–817 (2024).
Ono, L. K., Liu, S. F. & Qi, Y. Reducing detrimental defects for high performance metal halide perovskite solar cells. Angew. Chem. Int. Ed. 59, 6676–6698 (2020).
Fu, L. et al. Defect passivation strategies in perovskites for an enhanced photovoltaic performance. Energy Environ. Sci. 13, 4017–4056 (2020).
Chen, B., Rudd, P. N., Yang, S., Yuan, Y. & Huang, J. Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48, 3842–3867 (2019).
Ye, J. et al. Defect passivation in lead halide perovskite nanocrystals and thin films: toward efficient LEDs and solar cells. Angew. Chem. Int. Ed. 60, 21636–21660 (2021).
Zhang, H., Pfeifer, L., Zakeeruddin, S. M., Chu, J. & Grätzel, M. Tailoring passivators for highly efficient and stable perovskite solar cells. Nat. Rev. Chem. 7, 632–652 (2023).
Akkerman, Q. A., Rainò, G., Kovalenko, M. V. & Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 17, 394–405 (2018).
Bube, R. Trap density determination by space-charge-limited currents. J. Appl. Phys. 33, 1733–1737 (1962).
Duijnstee, E. A. et al. Toward understanding space-charge limited current measurements on metal halide perovskites. ACS Energy Lett. 5, 376–384 (2020).
Yang, W. S. et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017).
Ni, Z. et al. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 367, 1352–1358 (2020).
Moshat, S., Ray, P. P., Sil, S., Dhar, J. & Sanyal, D. Positron annihilation studies of methylammonium lead bromide perovskite. Phys. Scr. 98, 035822 (2023).
Grafutin, V. & Prokop’ev, E. Positron annihilation spectroscopy in materials structure studies. Phys. Uspekhi 45, 59–74 (2002).
Tuomisto, F. & Makkonen, I. Defect identification in semiconductors with positron annihilation: experiment and theory. Rev. Mod. Phys. 85, 1583–1631 (2013).
Ren, G. et al. Organic iodides in efficient and stable perovskite solar cells: strong surface passivation and interaction. Energy Environ. Sci. 16, 565–573 (2023).
Acknowledgements
This work was supported by the National Key R&D Program of China (2021YFF0500501) and the National Natural Science Foundation of China (22279053).
Author information
Authors and Affiliations
Contributions
N.X. conceived the topic, conducted the literature investigation and drafted the manuscript. B.W. provided supervision and validation. All authors contributed to reviewing the manuscript and providing suggestions.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Physics thanks Artem Bakulin and Jingjing Xue for their contribution to the peer review of this manuscript.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Xu, N., Qi, X., Shen, Z. et al. Point defects in metal halide perovskites. Nat Rev Phys 7, 554–564 (2025). https://doi.org/10.1038/s42254-025-00861-1
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s42254-025-00861-1