Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Platforms for the realization and characterization of Tomonaga–Luttinger liquids

Abstract

The concept of a Tomonaga–Luttinger liquid (TLL) has been established as a fundamental theory for the understanding of 1D quantum systems. Originally formulated as a replacement for the Fermi liquid theory of Landau, which accurately predicts the behaviour of most 3D metals but fails dramatically in 1D, the TLL description applies to an even broader class of 1D systems, including bosons and anyons. After a certain number of theoretical breakthroughs, its descriptive power has now been confirmed experimentally in different experimental platforms. They extend from organic conductors, carbon nanotubes, quantum wires, topological edge states of quantum spin Hall insulators to cold atoms, Josephson junctions, Bose liquids confined within 1D nanocapillaries, and spin chains. In the ground state of such systems, quantum fluctuations become correlated on all length scales, but, counter-intuitively, no long-range order exists. This Review will illustrate the validity of conformal field theory for describing real-world systems, establishing the boundaries for its application, and discuss how the quantum-critical TLL state governs the properties of many-body systems in 1D.

Key points

  • In 1D systems, the concept of quasiparticles with the same quantum numbers as individual particles fails. Instead, low-energy excitations consist of linearly dispersing collective modes linked to fluctuations in particle and spin densities, leading to the phenomenon of spin–charge separation.

  • The energy and momentum distributions of a 1D system exhibit power law singularities rather than steps at the Fermi energy, indicating a critical state known as the Tomonaga–Luttinger liquid (TLL). The critical exponents of this state depend on the Tomonaga–Luttinger parameters.

  • The initial experimental validation of TLL theory comes from studies on organic conductors, quantum wires, carbon nanotubes and spin chains. Recent advances include experimental probes in ultracold atomic gases and Josephson junction chains, opening new avenues for exploring TLL physics.

  • The TLL framework extends to systems such as 1D quantum antiferromagnets, bosonic systems and edge states in fractional quantum Hall systems (chiral TLLs) and topological insulators (helical TLLs). Nonlinear corrections to dispersion further refine the theory.

  • The interplay between Luttinger liquid behaviour and higher-dimensional systems presents an exciting opportunity to explore many-body effects, such as hinge states of higher-order topological insulators, layer domain walls in van der Waals heterostructures, carbon nanotubes deposited on graphene substrates, or atomic wires on semiconducting surface. It opens the field to new quantum phases or exotic boundary states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Josephson junction chains as pinned Tomonaga Luttinger Liquids (TLLs).
Fig. 2: Tomonaga–Luttinger liquids (TLLs) in spin chains and ladders.
Fig. 3: Tomonaga–Luttinger liquids (TLLs) in the edge states of 2D topological insulators (TIs).
Fig. 4: Experimental demonstrations of Tomonaga–Luttinger liquids (TLLs) as helical edge states in 2D topological insulators (TIs).
Fig. 5: Realizations of inter-edge tunnelling devices to probe Tomonaga–Luttinger liquids (TLLs) at the edges of quantum Hall and quantum spin Hall insulators.
Fig. 6: Spin and charge excitations via Bragg spectroscopy.

Similar content being viewed by others

References

  1. Tomonaga, S. Remarks on Bloch’s method of sound waves applied to many-fermion problems. Prog. Theor. Phys. 5, 544 (1950).

    Article  ADS  MathSciNet  Google Scholar 

  2. Luttinger, J. M. An exactly soluble model of a many-fermion system. J. Math. Phys. 4, 1154 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  3. Landau, L. D. Oscillations in a Fermi liquid. Sov. Phys. JETP 5, 101 (1957).

    MathSciNet  Google Scholar 

  4. Giamarchi, T. Quantum Physics in One Dimension (Oxford Univ. Press, 2004).

  5. Haldane, F. D. M. General relation of correlation exponents and spectral properties of one-dimensional Fermi systems: application to the anisotropic s=1/2 Heisenberg chain. Phys. Rev. Lett. 45, 1358 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  6. Kohn, W. Theory of the insulating state. Phys. Rev. 133, A171 (1964).

    Article  ADS  Google Scholar 

  7. Imambekov, A., Schmidt, T. & Glazman, L. One-dimensional quantum liquids: beyond the Luttinger liquid paradigm. Rev. Mod. Phys. 84, 1253 (2012).

    Article  ADS  Google Scholar 

  8. Luther, A. & Peschel, I. Calculation of critical exponents in two dimensions from quantum field theory in one dimension. Phys. Rev. B 12, 3908 (1975).

    Article  ADS  Google Scholar 

  9. Haldane, F. D. M. Effective harmonic-fluid approach to low-energy properties of one-dimensional quantum fluids. Phys. Rev. Lett. 47, 1840 (1981).

    Article  ADS  Google Scholar 

  10. Wen, X. G. Topological orders and edge excitations in fractional quantum Hall states. Adv. Phys. 44, 405 (1995).

    Article  ADS  Google Scholar 

  11. von Klitzing, K. et al. 40 years of the quantum Hall effect. Nat. Rev. Phys 2, 397–401 (2020).

    Article  Google Scholar 

  12. Wu, C., Bernevig, B. A. & Zhang, S.-C. Helical liquid and the edge of quantum spin Hall systems. Phys. Rev. Lett. 96, 106401 (2006).

    Article  ADS  Google Scholar 

  13. Xu, C. & Moore, J. E. Stability of the quantum spin Hall effect: effects of interactions, disorder, and Z2 topology. Phys. Rev. B 73, 045322 (2006).

    Article  ADS  Google Scholar 

  14. Watson, M. D. et al. Multiband one-dimensional electronic structure and spectroscopic signature of Tomonaga-Luttinger liquid behavior in K2Cr3As3. Phys. Rev. Lett. 118, 097002 (2017).

    Article  ADS  Google Scholar 

  15. Jerome, D. & Bourbonnais, C. Quasi one-dimensional organic conductors: from Fröhlich conductivity and Peierls insulating state to magnetically-mediated superconductivity, a retrospective. Comptes Rendus Phys. 25, 17–178 (2024).

    Article  ADS  Google Scholar 

  16. Jordan, P. & Wigner, E. Über das paulische äquivalenzverbot. Z. Phys. 47, 631 (1928).

    Article  ADS  Google Scholar 

  17. Tarucha, S., Saku, T., Tokura, Y. & Hirayama, Y. Sharvin resistance and its breakdown observed in long ballistic channels. Phys. Rev. B 47, 4064 (1993).

    Article  ADS  Google Scholar 

  18. Auslaender, O. et al. Spin-charge separation and localization in one dimension. Science 308, 88–92 (2005).

    Article  ADS  Google Scholar 

  19. Jompol, Y. et al. Probing spin-charge separation in a Tomonaga-Luttinger liquid. Science 325, 597 (2009).

    Article  ADS  Google Scholar 

  20. Steinberg, H. et al. Charge fractionalization in quantum wires. Nat. Phys. 4, 116–119 (2008).

    Article  Google Scholar 

  21. Deshpande, V. V., Bockrath, M., Glazman, L. I. & Yacoby, A. Electron liquids and solids in one dimension. Nature 464, 209 (2010).

    Article  ADS  Google Scholar 

  22. Bockrath, M. et al. Luttinger-liquid behaviour in carbon nanotubes. Nature 397, 598 (1999).

    Article  ADS  Google Scholar 

  23. Zhao, S. et al. Correlation of electron tunneling and plasmon propagation in a Luttinger liquid. Phys. Rev. Lett. 121, 047702 (2018).

    Article  ADS  Google Scholar 

  24. Tennant, D. A., Cowley, R. A., Nagler, S. E. & Tsvelik, A. M. Measurement of the spin-excitation continuum in one-dimensional KCuF3 using neutron scattering. Phys. Rev. B 52, 13368 (1995).

    Article  ADS  Google Scholar 

  25. Cazalilla, M. A., Citro, R., Giamarchi, T., Orignac, E. & Rigol, M. One dimensional bosons: from condensed matter systems to ultracold gases. Rev. Mod. Phys. 83, 1405–1466 (2011).

    Article  ADS  Google Scholar 

  26. Fazio, R., Wagenblast, K.-H., Winkelholz, C. & Schön, G. Tunneling into one-dimensional Josephson chains and Luttinger liquids. Phys. B 222, 364 (1996).

    Article  ADS  Google Scholar 

  27. Glazman, L. & Larkin, A. New quantum phase in a one-dimensional Josephson array. Phys. Rev. Lett. 79, 3736 (1997).

    Article  ADS  Google Scholar 

  28. Giamarchi, T. & Schulz, H. J. Anderson localization and interactions in one-dimensional metals. Phys. Rev. B 37, 325 (1988).

    Article  ADS  Google Scholar 

  29. Fisher, M. P. A., Weichman, P. B., Grinstein, G. & Fisher, D. S. Boson localization and the superfluid-insulator transition. Phys. Rev. B 40, 546 (1989).

    Article  ADS  Google Scholar 

  30. Fukuyama, H. & Lee, P. A. Dynamics of the charge-density wave. I. Impurity pinning in a single chain. Phys. Rev. B 17, 535 (1978).

    Article  ADS  Google Scholar 

  31. Suzumura, Y. & Fukuyama, H. Localization-delocalization transition by interactions in one-dimensional fermion systems. J. Phys. Soc. Jpn 52, 2870 (1983).

    Article  ADS  Google Scholar 

  32. Zapf, V., Marcelo, J. & Batista, C. D. Bose-Einstein condensation in quantum magnets. Rev. Mod. Phys. 86, 563 (2014).

    Article  ADS  Google Scholar 

  33. Giamarchi, T. & Tsvelik, A. M. Coupled ladders in a magnetic field. Phys. Rev. B 59, 11398 (1999).

    Article  ADS  Google Scholar 

  34. Orignac, E., Citro, R. & Andrei, N. Low-energy behavior of the spin-tube model and coupled xxz chains. Phys. Rev. B 61, 11533 (2000).

    Article  ADS  Google Scholar 

  35. Chitra, R. & Giamarchi, T. Critical properties of gapped spin-chains and ladders in a magnetic field. Phys. Rev. B 55, 5816 (1997).

    Article  ADS  Google Scholar 

  36. Bouillot, P. et al. Statics and dynamics of weakly coupled antiferromagnetic spin-1/2 ladders in a magnetic field. Phys. Rev. B 83, 054407 (2011).

    Article  ADS  Google Scholar 

  37. Hikihara, T. & Furusaki, A. Spin correlations in the two-leg antiferromagnetic ladder in a magnetic field. Phys. Rev. B 63, 134438 (2001).

    Article  ADS  Google Scholar 

  38. Lake, B., Tennant, D. A., Frost, C. D. & Nagler, S. E. Quantum criticality and universal scaling of a quantum antiferromagnet. Nat. Mater. 4, 329 (2005).

    Article  ADS  Google Scholar 

  39. Hagiwara, M. et al. Tomonaga-Luttinger liquid in a quasi-one-dimensional s = 1 antiferromagnet observed by specific heat measurements. Phys. Rev. Lett. 96, 147203 (2006).

    Article  ADS  Google Scholar 

  40. Klanjšek, M. et al. Controlling Luttinger liquid physics in spin ladders under a magnetic field. Phys. Rev. Lett. 101, 137207 (2008).

    Article  ADS  Google Scholar 

  41. Rüegg, C. et al. Thermodynamics of the spin Luttinger liquid in a model ladder material. Phys. Rev. Lett. 101, 247202 (2008).

    Article  ADS  Google Scholar 

  42. Thielemann, B. et al. Field-controlled magnetic order in the quantum spin-ladder system (Hpip)2CuBr4. Phys. Rev. B 79, 020408(R) (2009).

    Article  ADS  Google Scholar 

  43. Thielemann, B. et al. Direct observation of magnon fractionalization in the quantum spin ladder. Phys. Rev. Lett. 102, 107204 (2009).

    Article  ADS  Google Scholar 

  44. Hong, T. et al. Field-induced Tomonaga-Luttinger liquid phase of a two-leg spin-1/2 ladder with strong leg interactions. Phys. Rev. Lett. 105, 137207 (2010).

    Article  ADS  Google Scholar 

  45. Schmidiger, D. et al. Spectral and thermodynamic properties of a strong-leg quantum spin ladder. Phys. Rev. Lett. 108, 167201 (2012).

    Article  ADS  Google Scholar 

  46. Ninios, K. et al. Wilson ratio of a Tomonaga-Luttinger liquid in a spin-1/2 Heisenberg ladder. Phys. Rev. Lett. 108, 097201 (2012).

    Article  ADS  Google Scholar 

  47. Jeong, M. et al. Attractive Tomonaga-Luttinger liquid in a quantum spin ladder. Phys. Rev. Lett. 111, 106404 (2013).

    Article  ADS  Google Scholar 

  48. Jeong, M. et al. Dichotomy between attractive and repulsive Tomonaga-Luttinger liquids in spin ladders. Phys. Rev. Lett. 117, 106402 (2016).

    Article  ADS  Google Scholar 

  49. Schmidiger, D. et al. Spectrum of a magnetized strong-leg quantum spin ladder. Phys. Rev. Lett. 111, 107202 (2013).

    Article  ADS  Google Scholar 

  50. Okunishi, K. & Suzuki, T. Field-induced incommensurate order for the quasi-one-dimensional xxz model in a magnetic field. Phys. Rev. B 76, 224411 (2007).

    Article  ADS  Google Scholar 

  51. Kimura, S. et al. Field-induced order-disorder transition in antiferromagnetic BaCo2V2O8 driven by a softening of spinon excitation. Phys. Rev. Lett. 99, 087602 (2007).

    Article  ADS  Google Scholar 

  52. Kimura, S. et al. Novel ordering of an s = 1/2 quasi-1D Ising-like antiferromagnet in magnetic field. Phys. Rev. Lett. 100, 057202 (2008).

    Article  ADS  Google Scholar 

  53. Takayoshi, S., Furuya, S. C. & Giamarchi, T. Topological transition between competing orders in quantum spin chains. Phys. Rev. B 98, 184429 (2018).

    Article  ADS  Google Scholar 

  54. Klanjšek, M. et al. Giant magnetic field dependence of the coupling between spin chains in BaCo2V2O8. Phys. Rev. B 92, 060408(R) (2015).

    Article  ADS  Google Scholar 

  55. Kimura, S. et al. Longitudinal spin density wave order in a quasi-1D Ising-like quantum antiferromagnet. Phys. Rev. Lett. 101, 207201 (2008).

    Article  ADS  Google Scholar 

  56. Cui, Y. et al. Field-induced antiferromagnetism and Tomonaga-Luttinger liquid behavior in the quasi-one-dimensional Ising-antiferromagnet SrCo2V2O8. Phys. Rev. B 105, 174428 (2022).

    Article  ADS  Google Scholar 

  57. Shockley, W. On the surface states associated with a periodic potential. Phys. Rev. 56, 317–323 (1939).

    Article  ADS  Google Scholar 

  58. Tamm, I. Über eine mögliche art der elektronenbindung an kristalloberflächen. Z. Phys. 76, 849–850 (1932).

    Article  ADS  Google Scholar 

  59. Hatsugai, Y. Chern number and edge states in the integer quantum Hall effect. Phys. Rev. Lett. 71, 3697–3700 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  60. Klitzing, K. V., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

    Article  ADS  Google Scholar 

  61. Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982).

    Article  ADS  Google Scholar 

  62. Wen, X. G. Chiral Luttinger liquid and the edge excitations in the fractional quantum Hall states. Phys. Rev. B 41, 12838–12844 (1990).

    Article  ADS  Google Scholar 

  63. Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015–2018 (1988).

    Article  ADS  Google Scholar 

  64. Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    Article  ADS  Google Scholar 

  65. Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    Article  ADS  Google Scholar 

  66. König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article  ADS  Google Scholar 

  67. Strunz, J. et al. Interacting topological edge channels. Nat. Phys. 16, 83–88 (2020).

    Article  Google Scholar 

  68. Li, T. et al. Observation of a helical Luttinger liquid in InAs/GaSb quantum spin Hall edges. Phys. Rev. Lett. 115, 136804 (2015).

    Article  ADS  Google Scholar 

  69. Lodge, M. S., Yang, S. A., Mukherjee, S. & Weber, B. Atomically thin quantum spin Hall insulators. Adv. Mater. 33, 2008029 (2021).

    Article  Google Scholar 

  70. Weber, B. et al. 2024 roadmap on 2D topological insulators. J. Phys. Mater. 7, 022501 (2024).

    Article  Google Scholar 

  71. Bampoulis, P. et al. Quantum spin Hall states and topological phase transition in germanene. Phys. Rev. Lett. 130, 196401 (2023).

    Article  ADS  Google Scholar 

  72. Stühler, R. et al. Tomonaga-Luttinger liquid in the edge channels of a quantum spin Hall insulator. Nat. Phys. 16, 47–51 (2020).

    Article  Google Scholar 

  73. Fei, Z. et al. Edge conduction in monolayer WTe2. Nat. Phys. 13, 677–682 (2017).

    Article  Google Scholar 

  74. Tang, S. et al. Quantum spin Hall state in monolayer 1T′−WTe2. Nat. Phys. 13, 683–687 (2017).

    Article  Google Scholar 

  75. Wu, S. et al. Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal. Science 359, 76–79 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  76. Jia, J. et al. Tuning the many-body interactions in a helical Luttinger liquid. Nat. Commun. 13, 6046 (2022).

    Article  ADS  Google Scholar 

  77. Collins, J. L. et al. Electric-field-tuned topological phase transition in ultrathin Na3Bi. Nature 564, 390–394 (2018).

    Article  ADS  Google Scholar 

  78. Ferraro, D., Dolcetto, G., Citro, R., Romeo, F. & Sassetti, M. Spin current pumping in helical Luttinger liquids. Phys. Rev. B 87, 245419 (2013).

    Article  ADS  Google Scholar 

  79. Hsu, C.-H., Stano, P., Klinovaja, J. & Loss, D. Helical liquids in semiconductors. Semicond. Sci. Technol. 36, 123003 (2021).

    Article  ADS  Google Scholar 

  80. Chang, A. M. Chiral Luttinger liquids at the fractional quantum Hall edge. Rev. Mod. Phys. 75, 1449–1505 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  81. Fujisawa, T. Nonequilibrium charge dynamics of Tomonaga-Luttinger liquids in quantum Hall edge channels. Ann. Phys. 534, 2100354 (2022).

    Article  Google Scholar 

  82. Kamata, H., Kumada, N., Hashisaka, M., Muraki, K. & Fujisawa, T. Fractionalized wave packets from an artificial Tomonaga-Luttinger liquid. Nat. Nanotechnol. 9, 177–181 (2014).

    Article  ADS  Google Scholar 

  83. Prokudina, M. G. et al. Tunable nonequilibrium Luttinger liquid based on counterpropagating edge channels. Phys. Rev. Lett. 112, 216402 (2014).

    Article  ADS  Google Scholar 

  84. Yu, R. et al. Quantized anomalous Hall effect in magnetic topological insulators. Science 329, 61–64 (2010).

    Article  ADS  Google Scholar 

  85. Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    Article  ADS  Google Scholar 

  86. Chang, A. M., Pfeiffer, L. N. & West, K. W. Observation of chiral Luttinger behavior in electron tunneling into fractional quantum Hall edges. Phys. Rev. Lett. 77, 2538–2541 (1996).

    Article  ADS  Google Scholar 

  87. Hilke, M., Tsui, D. C., Grayson, M., Pfeiffer, L. N. & West, K. W. Fermi liquid to Luttinger liquid transition at the edge of a two-dimensional electron gas. Phys. Rev. Lett. 87, 186806 (2001).

    Article  ADS  Google Scholar 

  88. Reis, F. et al. Bismuthene on a SiC substrate: a candidate for a high-temperature quantum spin Hall material. Science 357, 287–290 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  89. Que, Y. et al. A gate-tunable ambipolar quantum phase transition in a topological excitonic insulator. Adv. Mater. 36, 2309356 (2024).

    Article  Google Scholar 

  90. Bieniek, M., Väyrynen, J. I., Li, G., Neupert, T. & Thomale, R. Theory of glide symmetry protected helical edge states in a WTe2 monolayer. Phys. Rev. B 107, 195105 (2023).

    Article  ADS  Google Scholar 

  91. Maciejko, J. et al. Kondo effect in the helical edge liquid of the quantum spin Hall state. Phys. Rev. Lett. 102, 256803 (2009).

    Article  ADS  Google Scholar 

  92. Wang, Y.-Q., Papaj, M. & Moore, J. E. Breakdown of helical edge state topologically protected conductance in time-reversal-breaking excitonic insulators. Phys. Rev. B 108, 205420 (2023).

    Article  ADS  Google Scholar 

  93. Wen, X.-G. Theory of the edge states in fractional quantum Hall effects. Int. J. Mod. Phys. B 6, 1711–1762 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  94. Kane, C. L. & Fisher, M. P. A. Transmission through barriers and resonant tunneling in an interacting one-dimensional electron gas. Phys. Rev. B 46, 15233–15262 (1992).

    Article  ADS  Google Scholar 

  95. Hou, C.-Y., Kim, E.-A. & Chamon, C. Corner junction as a probe of helical edge states. Phys. Rev. Lett. 102, 076602 (2009).

    Article  ADS  Google Scholar 

  96. Wang, Y. et al. Transport in helical Luttinger liquids in the fractional quantum Hall regime. Nat. Commun. 12, 5312 (2021).

    Article  ADS  Google Scholar 

  97. Cohen, L. A. et al. Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact. Science 382, 542–547 (2023).

    Article  ADS  Google Scholar 

  98. Gourmelon, A. et al. Characterization of helical Luttinger liquids in microwave stepped-impedance edge resonators. Phys. Rev. Res. 2, 043383 (2020).

    Article  Google Scholar 

  99. Zhang, F., Jung, J., Fiete, G. A., Niu, Q. & MacDonald, A. H. Spontaneous quantum Hall states in chirally stacked few-layer graphene systems. Phys. Rev. Lett. 106, 156801 (2011).

    Article  ADS  Google Scholar 

  100. Drozdov, I. K. et al. One-dimensional topological edge states of bismuth bilayers. Nat. Phys. 10, 664–669 (2014).

    Article  Google Scholar 

  101. Jäck, B. et al. Observation of a Majorana zero mode in a topologically protected edge channel. Science 364, 1255–1259 (2019).

    Article  ADS  Google Scholar 

  102. Wang, A. et al. A robust and tunable Luttinger liquid in correlated edge of transition-metal second-order topological insulator Ta2Pd3Te5. Nat. Commun. 14, 7647 (2023).

    Article  ADS  Google Scholar 

  103. Stern, A. Fractional topological insulators: a pedagogical review. Annu. Rev. Condens. Matter Phys. 7, 349–368 (2016).

    Article  ADS  Google Scholar 

  104. Andrei, E. Y. et al. The marvels of moiré materials. Nat. Rev. Mater. 6, 201–206 (2021).

    Article  ADS  Google Scholar 

  105. Cai, J. et al. Signatures of fractional quantum anomalous Hall states in twisted MoTe2. Nature 622, 63–68 (2023).

    Article  ADS  Google Scholar 

  106. Xu, F. et al. Observation of integer and fractional quantum anomalous Hall effects in twisted bilayer MoTe2. Phys. Rev. X 13, 031037 (2023).

    Google Scholar 

  107. Kang, K. et al. Evidence of the fractional quantum spin Hall effect in moiré MoTe2. Nature 628, 522–526 (2024).

    Article  ADS  Google Scholar 

  108. Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023).

    Article  ADS  Google Scholar 

  109. Kinoshita, T., Wenger, T. & Weiss, D. S. Observation of a one-dimensional Tonks-Girardeau gas. Science 305, 1125–1128 (2004).

    Article  ADS  Google Scholar 

  110. Paredes, B. et al. Tonks-Girardeau gas of ultracold atoms in an optical lattice. Nature 429, 277–281 (2004).

    Article  ADS  Google Scholar 

  111. Hofferberth, S., Lesanovsky, I., Fischer, B., Schumm, T. & Schmiedmayer, J. Non-equilibrium coherence dynamics in one-dimensional Bose gases. Nature 449, 324–327 (2007).

    Article  ADS  Google Scholar 

  112. Haller, E. et al. Pinning quantum phase transition for a Luttinger liquid of strongly interacting bosons. Nature 466, 597 (2010).

    Article  ADS  Google Scholar 

  113. Boéris, G. et al. Mott transition for strongly interacting one-dimensional bosons in a shallow periodic potential. Phys. Rev. A 93, 011601 (2016).

    Article  ADS  Google Scholar 

  114. Hilker, T. A. et al. Revealing hidden antiferromagnetic correlations in doped Hubbard chains via string correlators. Science 357, 484 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  115. Salomon, G. et al. Direct observation of incommensurate magnetism in Hubbard chains. Nature 565, 56 (2019).

    Article  ADS  Google Scholar 

  116. Vijayan, J. et al. Time-resolved observation of spin-charge deconfinement in fermionic Hubbard chains. Science 367, 186 (2020).

    Article  ADS  Google Scholar 

  117. Bernier, J.-S., Citro, R., Kollath, C. & Orignac, E. Correlation dynamics during a slow interaction quench in a one-dimensional Bose gas. Phys. Rev. Lett. 112, 065301 (2014).

    Article  ADS  Google Scholar 

  118. Senaratne, R. et al. Spin-charge separation in a one-dimensional Fermi gas with tunable interactions. Science 376, 1305–1308 (2022).

    Article  ADS  Google Scholar 

  119. Cavazos-Cavazos, D., Senaratne, R., Kafle, A. & Hulet, R. G. Thermal disruption of a Luttinger liquid. Nat. Commun. 14, 3154 (2023).

    Article  ADS  Google Scholar 

  120. Barak, G. et al. Interacting electrons in one dimension beyond the Luttinger-liquid limit. Nat. Phys. 6, 489–493 (2010).

    Article  Google Scholar 

  121. Moreno, M. et al. Nonlinear spectra of spinons and holons in short GaAs quantum wires. Nat. Commun. 7, 12784 (2016).

    Article  ADS  Google Scholar 

  122. Jin, Y. et al. Momentum-dependent power law measured in an interacting quantum wire beyond the Luttinger limit. Nat. Commun. 10, 2821 (2019).

    Article  ADS  Google Scholar 

  123. Vianez, P. M. T. et al. Observing separate spin and charge Fermi seas in a strongly correlated one-dimensional conductor. Sci. Adv. 8, eabm2781 (2022).

    Article  Google Scholar 

  124. Tsyplyatyev, O. et al. Hierarchy of modes in an interacting one-dimensional system. Phys. Rev. Lett. 114, 196401 (2015).

    Article  ADS  Google Scholar 

  125. Tsyplyatyev, O. et al. Nature of the many-body excitations in a quantum wire: theory and experiment. Phys. Rev. B 93, 075147 (2016).

    Article  ADS  Google Scholar 

  126. Abanin, D. A. & Levitov, L. S. Tunable Fermi-edge resonance in an open quantum dot. Phys. Rev. Lett. 93, 126802 (2004).

    Article  ADS  Google Scholar 

  127. Bettelheim, E., Abanov, A. G. & Wiegmann, P. Nonlinear quantum shock waves in fractional quantum Hall edge states. Phys. Rev. Lett. 97, 246401 (2006).

    Article  ADS  Google Scholar 

  128. Bettelheim, E., Abanov, A. G. & Wiegmann, P. Quantum hydrodynamics and nonlinear differential equations for degenerate Fermi gas. J. Phys. A 41, 392003 (2008).

    Article  MathSciNet  Google Scholar 

  129. Cazalilla, M. A., Iucci, A. & Giamarchi, T. Competition between vortex unbinding and tunneling in an optical lattice. Phys. Rev. A 75, 051603(R) (2007).

    Article  ADS  Google Scholar 

  130. Orignac, E., Citro, R. & Andrei, N. Low-energy behavior of the spin-tube and spin-orbital models. Phys. Rev. B 61, 11533–11551 (2000).

    Article  ADS  Google Scholar 

  131. Cazalilla, M. A., Ho, A. F. & Giamarchi, T. Interacting Bose gases in quasi-one-dimensional optical lattices. N. J. Phys. 8, 158 (2006).

    Article  Google Scholar 

  132. Katanin, A. A. & Irkhin, V. Y. Magnetic order and spin fluctuations in low-dimensional insulating systems. Phys. Uspekhi 50, 613 (2007).

    Article  ADS  Google Scholar 

  133. Bocquet, M. Finite-temperature perturbation theory for quasi-one-dimensional spin-(1/2) Heisenberg antiferromagnets. Phys. Rev. B 65, 184415 (2002).

    Article  ADS  Google Scholar 

  134. Dupont, M., Capponi, S., Laflorencie, N. & Orignac, E. Dynamical response and dimensional crossover for spatially anisotropic antiferromagnets. Phys. Rev. B 98, 094403 (2018).

    Article  ADS  Google Scholar 

  135. Horvatić, M., Klanjšek, M. & Orignac, E. Direct determination of the Tomonaga-Luttinger parameter K in quasi-one-dimensional spin systems. Phys. Rev. B 101, 220406 (2020).

    Article  ADS  Google Scholar 

  136. Bourbonnais, C. & Caron, L. G. Int. J. Mod. Phys. B 5, 1033 (1991).

    Article  ADS  Google Scholar 

  137. Boies, D., Bourbonnais, C. & Tremblay, A.-M. S. Phys. Rev. Lett. 74, 968 (1995).

    Article  ADS  Google Scholar 

  138. Emery, V. J., Fradkin, E., Kivelson, S. A. & Lubensky, T. C. Quantum theory of the smectic metal state in stripe phases. Phys. Rev. Lett. 85, 2160 (2000).

    Article  ADS  Google Scholar 

  139. Vishwanath, A. & Carpentier, D. Two-dimensional anisotropic non-Fermi-liquid phase of coupled Luttinger liquids. Phys. Rev. Lett. 86, 676 (2001).

    Article  ADS  Google Scholar 

  140. Fleurov, V., Kagalovsky, V., Lerner, I. V. & Yurkevich, I. V. Instability of the sliding Luttinger liquid. J. Phys. Condens. Matter 30, 185602 (2018).

    Article  ADS  Google Scholar 

  141. Schemmer, M., Bouchoule, I., Doyon, B. & Dubail, J. Generalized hydrodynamics on an atom chip. Phys. Rev. Lett. 122, 090601 (2019).

    Article  ADS  Google Scholar 

  142. Malvania, N. et al. Generalized hydrodynamics in strongly interacting 1D Bose gases. Science 373, 1129–1133 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  143. Doyon, B., Gopalakrishnan, S., Møller, F., Schmiedmayer, J. & Vasseur, R. Generalized hydrodynamics: a perspective. Phys. Rev. X 15, 010501 (2025).

    Google Scholar 

  144. Castro-Alvaredo, O. A., Doyon, B. & Yoshimura, T. Emergent hydrodynamics in integrable quantum systems out of equilibrium. Phys. Rev. X 6, 041065 (2016).

    Google Scholar 

  145. Bertini, B., Collura, M., De Nardis, J. & Fagotti, M. Transport in out-of-equilibrium xxz chains: exact profiles of charges and currents. Phys. Rev. Lett. 117, 207201 (2016).

    Article  ADS  Google Scholar 

  146. Schüttelkopf, P. et al. Characterising transport in a quantum gas by measuring Drude weights. Preprint at https://doi.org/10.48550/arXiv.2406.17569 (2024).

  147. Faddeev, L. D. & Takhtajan, L. A. What is the spin of a spin wave? Phys. Lett. A 85, 375–377 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  148. Bernard, D., Pasquier, V. & Serban, D. Spinons in conformal field theory. Nucl. Phys. B 428, 612–628 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  149. Bouwknegt, P. & Schoutens, K. The SU(n)1 WZW models: spinon decomposition and Yangian structure. Nucl. Phys. B 482, 345 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  150. Haldane, F. D. M. Spontaneous dimerization in the spin-1/2 Heisenberg antiferromagnetic chain with competing interactions. Phys. Rev. B 25, 4925(R) (1982).

    Article  ADS  Google Scholar 

  151. Kenzelmann, M., Chen, Y., Broholm, C., Reich, D. H. & Qiu, Y. Bound spinons in an antiferromagnetic S=1/2 chain with a staggered field. Phys. Rev. Lett. 93, 017204 (2004).

    Article  ADS  Google Scholar 

  152. Kenzelmann, M. et al. S=1/2 chain in a staggered field: high-energy bound-spinon state and the effects of a discrete lattice. Phys. Rev. B 71, 94411 (2005).

    Article  ADS  Google Scholar 

  153. Lake, B. et al. Multispinon continua at zero and finite temperature in a near-ideal Heisenberg chain. Phys. Rev. Lett. 111, 137205 (2013).

    Article  ADS  Google Scholar 

  154. Bera, A. K. et al. Spinon confinement in a quasi one dimensional anisotropic Heisenberg magnet. Phys. Rev. B 96, 054423 (2017).

    Article  ADS  Google Scholar 

  155. Gannon, W. et al. Spinon confinement and a sharp longitudinal mode in Yb2Pt2Pb in magnetic fields. Nat. Commun. 10, 1123 (2019).

    Article  ADS  Google Scholar 

  156. Wu, L. et al. Tomonaga–Luttinger liquid behavior and spinon confinement in YbAlO3. Nat. Commun. 10, 698 (2019).

    Article  ADS  Google Scholar 

  157. Tran, T. T. et al. Spinon excitations in the quasi-one-dimensional S = 1/2 chain compound Cs4CuSb2Cl12. Phys. Rev. B 101, 235107 (2020).

    Article  ADS  Google Scholar 

  158. Gao, S. et al. Spinon continuum in the Heisenberg quantum chain compound Sr2V3O9. Phys. Rev. B 109, L020402 (2024).

    Article  ADS  Google Scholar 

  159. Tsyplyatyev, O. Splitting of the Fermi point of strongly interacting electrons in one dimension: a nonlinear effect of spin-charge separation. Phys. Rev. B 105, L121112 (2022).

    Article  ADS  Google Scholar 

  160. Fu, L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

    Article  ADS  Google Scholar 

  161. Fu, L. & Kane, C. L. Josephson current and noise at a superconductor/quantum-spin-Hall-insulator/superconductor junction. Phys. Rev. B 79, 161408 (2009).

    Article  ADS  Google Scholar 

  162. Alicea, J. New directions in the pursuit of Majorana fermions in solid state systems. Rep. Prog. Phys. 75, 076501 (2012).

    Article  ADS  Google Scholar 

  163. Zhang, F. & Kane, C. L. Time-reversal-invariant Z4 fractional Josephson effect. Phys. Rev. Lett. 113, 036401 (2014).

    Article  ADS  Google Scholar 

  164. Orth, C. P., Tiwari, R. P., Meng, T. & Schmidt, T. L. Non-Abelian parafermions in time-reversal-invariant interacting helical systems. Phys. Rev. B 91, 081406 (2015).

    Article  ADS  Google Scholar 

  165. Alicea, J. & Fendley, P. Topological phases with parafermions: theory and blueprints. Annu. Rev. Condens. Matter Phys. 7, 119–139 (2016).

    Article  ADS  Google Scholar 

  166. Read, N. & Rezayi, E. Beyond paired quantum Hall states: parafermions and incompressible states in the first excited Landau level. Phys. Rev. B 59, 8084–8092 (1999).

    Article  ADS  Google Scholar 

  167. Yarmolinsky, M. & Kuklov, A. B. Emergence of Luttinger liquid behavior of a superclimbing dislocation. Phys. Rev. B https://doi.org/10.1103/physrevb.96.024505 (2017).

  168. Zhang, C., Boninsegni, M., Kuklov, A., Prokof’ev, N. & Svistunov, B. Superclimbing modes in transverse quantum fluids: signature statistical and dynamical features. Phys. Rev. B 109, 214519 (2024).

    Article  ADS  Google Scholar 

  169. Schindler, F. et al. Higher-order topology in bismuth. Nat. Phys. 14, 918–924 (2018).

    Article  Google Scholar 

  170. Li, H. et al. Imaging tunable Luttinger liquid systems in van der Waals heterostructures. Nature 631, 765 (2024).

    Article  ADS  Google Scholar 

  171. Flebus, B. & MacDonald, A. H. Electronic structure of carbon nanotubes on graphene substrates. Phys. Rev. Res. 2, 022041 (2020).

    Article  Google Scholar 

  172. Pfnür, H. et al. Atomic wires on substrates: physics between one and two dimensions. Surf. Sci. Rep. 79, 100629 (2024).

    Article  Google Scholar 

  173. Guo, Y. et al. Experimental observation of the 2D–1D dimensional crossover in strongly interacting ultracold atoms. Nat. Phys. 20, 934 (2024).

    Article  Google Scholar 

  174. Giamarchi, T. Theoretical framework for quasi-one dimensional systems. Chem. Rev. 104, 5037 (2004).

    Article  Google Scholar 

  175. Citro, R., Orignac, E., De Palo, S. & Chiofalo, M. L. Evidence of Luttinger-liquid behavior in one-dimensional dipolar quantum gases. Phys. Rev. A 75, 051602 (2007).

    Article  ADS  Google Scholar 

  176. Orignac, E., Citro, R., Di Dio, M. & De Palo, S. Vortex lattice melting in a boson ladder in an artificial gauge field. Phys. Rev. B 96, 014518 (2017).

    Article  ADS  Google Scholar 

  177. Gutman, D. B., Gefen, Y. & Mirlin, A. D. Bosonization out of equilibrium. Europhys. Lett. 90, 37003 (2010).

    Article  ADS  Google Scholar 

  178. Protopopov, I. V., Gutman, D. B. & Mirlin, A. D. Many-particle correlations in a non-equilibrium Luttinger liquid. J. Stat. Mech. Theor. Exp. 11, 1 (2011).

    Google Scholar 

  179. Bácsi, Á., Moca, C. P. & Dóra, B. Dissipation-induced Luttinger liquid correlations in a one-dimensional Fermi gas. Phys. Rev. Lett. 124, 136401 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  180. Rosso, L., Biella, A., Nardis, J. D. & Mazza, L. A dynamical theory for one-dimensional fermions with strong two-body losses: universal non-Hermitian Zeno physics and spin-charge separation. Phys. Rev. A 107, 013303 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  181. Friedman, A. J. Dissipative Luttinger liquids. Preprint at https://doi.org/10.48550/arXiv.1910.06371 (2019).

  182. Majumdar, S., Foini, L., Giamarchi, T. & Rosso, A. Bath-induced phase transition in a Luttinger liquid. Phys. Rev. B 107, 165113 (2023).

    Article  ADS  Google Scholar 

  183. Poilblanc, D., Schuch, N. & Affleck, I. SU(2)1 chiral edge modes of a critical spin liquid. Phys. Rev. B 93, 174414 (2016).

    Article  ADS  Google Scholar 

  184. Thorngren, R., Vishwanath, A. & Verresen, R. Intrinsically gapless topological phases. Phys. Rev. B 104, 075132 (2021).

    Article  ADS  Google Scholar 

  185. Cedergren, K. et al. Insulating Josephson-junction chains as pinned Luttinger liquids. Phys. Rev. Lett. 119, 167701 (2017).

    Article  ADS  Google Scholar 

  186. Matsubara, T. & Matsuda, H. A Lattice model of liquid helium. Prog. Theor. Phys. 16, 416–417 (1956).

    Article  ADS  Google Scholar 

  187. Shastry, B. S. & Sutherland, B. Twisted boundary conditions and effective mass in Heisenberg-Ising and Hubbard rings. Phys. Rev. Lett. 65, 243 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  188. Schulz, H. J. Correlation exponents and the metal-insulator transition in the one-dimensional Hubbard model. Phys. Rev. Lett. 65, 2462–2465 (1990).

    Article  ADS  Google Scholar 

  189. Iucci, A., Fiete, G. A. & Giamarchi, T. Fourier transform of the 2kf Luttinger liquid density correlation function with different spin and charge velocities. Phys. Rev. B 75, 205116 (2007).

    Article  ADS  Google Scholar 

  190. Olver, F., Lozier, D., Boisvert, R. & Clark, C. (eds) NIST Handbook of Mathematical Functions (Cambridge Univ. Press, 2010).

  191. Meden, V. & Schönhammer, K. Spectral functions for the Tomonaga-Luttinger model. Phys. Rev. B 46, 15753 (1992).

    Article  ADS  Google Scholar 

  192. Voit, J. Charge-spin separation and the spectral properties of Luttinger liquids. J. Phys. Condens. Matter 5, 8305 (1993).

    Article  ADS  Google Scholar 

  193. Orignac, E., Tsuchiizu, M. & Suzumura, Y. Spectral functions of two-band spinless fermion and single-band spin-1/2 fermion models. Phys. Rev. B 84, 165128 (2011).

    Article  ADS  Google Scholar 

  194. Braunecker, B., Bena, C. & Simon, P. Spectral properties of Luttinger liquids: a comparative analysis of regular, helical, and spiral Luttinger liquids. Phys. Rev. B 85, 035136 (2012).

    Article  ADS  Google Scholar 

  195. Schulz, H. J. & Bourbonnais, C. Quantum fluctuations in quasi-one-dimensional superconductors. Phys. Rev. B 27, 5856 (1983).

    Article  ADS  Google Scholar 

  196. Nakamura, N. & Suzumura, Y. The effect of thermal fluctuation on spectral function for the Tomonaga-Luttinger model. Prog. Theor. Phys. 98, 29 (1997).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

R.C. was partly supported by the PNRR MUR project PE0000023 NQSTI (TOPQIN and SPUNTO) and PathFinder project IQARO (Grant agreement ID: 101115190) I.B., R.C., E.O. and T.G. thank the Institut Henri Poincaré (UAR 839 CNRS Sorbonne Université) and the Lab Ex CARMIN (ANR-10 LABX-59-01) for their support. T.G. was supported in part by the Swiss National Science Foundation under grants 200020-188687 and 200020-219400. B.W. acknowledges the support of the National Research Foundation (NRF) Singapore, under the Competitive Research Program ‘Towards On-Chip Topological Quantum Devices’ (NRF-CRP21-2018-0001), with further support from the Singapore Ministry of Education (MOE) Academic Research Fund Tier 3 grant (MOE-MOET32023-0003) ‘Quantum Geometric Advantage’. T.D. acknowledges support from the Centre of Excellence for Engineered Quantum Systems, an Australian Research Council Centre of Excellence, CE110001013. M.K. acknowledges the financial support of the Slovenian Research and Innovation Agency through the programme number P1-0125 and the project number J1-2456. R.G.H. was funded in part by the National Science Foundation (US), grant number 2309362.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Roberta Citro.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Paul Sokol and other, anonymous, reviewer(s) for their contribution to the peer-review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Dimensional crossover

The transition from 1D behaviour to higher-dimensional physics when multiple 1D structures are coupled, posing challenges and opportunities in condensed-matter physics.

Higher-order topological insulators

Advanced materials exhibiting hinge states wherein TLL concepts may apply, suggesting novel boundary phenomena in higher-dimensional systems.

Lieb–Liniger model

A model of 1D non-relativistic bosons with contact interactions, solved exactly by E. Lieb and W. Liniger.

Mott lobes

Regions in the interaction–chemical potential phase diagram in which the system is in a Mott insulating phase.

Quantum criticality

Describes the behaviour of systems in a continuous phase transition, influenced by quantum fluctuations. Tomonaga–Luttinger liquid (TLL) systems are ideal for studying quantum-critical phenomena in reduced dimensions.

Quantum spin liquids

Exotic phases of matter with long-range entanglement, wherein TLL physics intersects with studies of strongly correlated systems.

Tonks–Girardeau gas

Limit of the Lieb–Liniger gas in which the contact interaction becomes infinite. It can be mapped to non-interacting fermions.

Topological matter

Materials with protected edge states, wherein TLL theory may provide information on the interacting topological phases and bulk–boundary correspondence.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouchoule, I., Citro, R., Duty, T. et al. Platforms for the realization and characterization of Tomonaga–Luttinger liquids. Nat Rev Phys 7, 565–580 (2025). https://doi.org/10.1038/s42254-025-00866-w

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s42254-025-00866-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing