Abstract
The concept of a Tomonaga–Luttinger liquid (TLL) has been established as a fundamental theory for the understanding of 1D quantum systems. Originally formulated as a replacement for the Fermi liquid theory of Landau, which accurately predicts the behaviour of most 3D metals but fails dramatically in 1D, the TLL description applies to an even broader class of 1D systems, including bosons and anyons. After a certain number of theoretical breakthroughs, its descriptive power has now been confirmed experimentally in different experimental platforms. They extend from organic conductors, carbon nanotubes, quantum wires, topological edge states of quantum spin Hall insulators to cold atoms, Josephson junctions, Bose liquids confined within 1D nanocapillaries, and spin chains. In the ground state of such systems, quantum fluctuations become correlated on all length scales, but, counter-intuitively, no long-range order exists. This Review will illustrate the validity of conformal field theory for describing real-world systems, establishing the boundaries for its application, and discuss how the quantum-critical TLL state governs the properties of many-body systems in 1D.
Key points
-
In 1D systems, the concept of quasiparticles with the same quantum numbers as individual particles fails. Instead, low-energy excitations consist of linearly dispersing collective modes linked to fluctuations in particle and spin densities, leading to the phenomenon of spin–charge separation.
-
The energy and momentum distributions of a 1D system exhibit power law singularities rather than steps at the Fermi energy, indicating a critical state known as the Tomonaga–Luttinger liquid (TLL). The critical exponents of this state depend on the Tomonaga–Luttinger parameters.
-
The initial experimental validation of TLL theory comes from studies on organic conductors, quantum wires, carbon nanotubes and spin chains. Recent advances include experimental probes in ultracold atomic gases and Josephson junction chains, opening new avenues for exploring TLL physics.
-
The TLL framework extends to systems such as 1D quantum antiferromagnets, bosonic systems and edge states in fractional quantum Hall systems (chiral TLLs) and topological insulators (helical TLLs). Nonlinear corrections to dispersion further refine the theory.
-
The interplay between Luttinger liquid behaviour and higher-dimensional systems presents an exciting opportunity to explore many-body effects, such as hinge states of higher-order topological insulators, layer domain walls in van der Waals heterostructures, carbon nanotubes deposited on graphene substrates, or atomic wires on semiconducting surface. It opens the field to new quantum phases or exotic boundary states.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Tomonaga, S. Remarks on Bloch’s method of sound waves applied to many-fermion problems. Prog. Theor. Phys. 5, 544 (1950).
Luttinger, J. M. An exactly soluble model of a many-fermion system. J. Math. Phys. 4, 1154 (1963).
Landau, L. D. Oscillations in a Fermi liquid. Sov. Phys. JETP 5, 101 (1957).
Giamarchi, T. Quantum Physics in One Dimension (Oxford Univ. Press, 2004).
Haldane, F. D. M. General relation of correlation exponents and spectral properties of one-dimensional Fermi systems: application to the anisotropic s=1/2 Heisenberg chain. Phys. Rev. Lett. 45, 1358 (1980).
Kohn, W. Theory of the insulating state. Phys. Rev. 133, A171 (1964).
Imambekov, A., Schmidt, T. & Glazman, L. One-dimensional quantum liquids: beyond the Luttinger liquid paradigm. Rev. Mod. Phys. 84, 1253 (2012).
Luther, A. & Peschel, I. Calculation of critical exponents in two dimensions from quantum field theory in one dimension. Phys. Rev. B 12, 3908 (1975).
Haldane, F. D. M. Effective harmonic-fluid approach to low-energy properties of one-dimensional quantum fluids. Phys. Rev. Lett. 47, 1840 (1981).
Wen, X. G. Topological orders and edge excitations in fractional quantum Hall states. Adv. Phys. 44, 405 (1995).
von Klitzing, K. et al. 40 years of the quantum Hall effect. Nat. Rev. Phys 2, 397–401 (2020).
Wu, C., Bernevig, B. A. & Zhang, S.-C. Helical liquid and the edge of quantum spin Hall systems. Phys. Rev. Lett. 96, 106401 (2006).
Xu, C. & Moore, J. E. Stability of the quantum spin Hall effect: effects of interactions, disorder, and Z2 topology. Phys. Rev. B 73, 045322 (2006).
Watson, M. D. et al. Multiband one-dimensional electronic structure and spectroscopic signature of Tomonaga-Luttinger liquid behavior in K2Cr3As3. Phys. Rev. Lett. 118, 097002 (2017).
Jerome, D. & Bourbonnais, C. Quasi one-dimensional organic conductors: from Fröhlich conductivity and Peierls insulating state to magnetically-mediated superconductivity, a retrospective. Comptes Rendus Phys. 25, 17–178 (2024).
Jordan, P. & Wigner, E. Über das paulische äquivalenzverbot. Z. Phys. 47, 631 (1928).
Tarucha, S., Saku, T., Tokura, Y. & Hirayama, Y. Sharvin resistance and its breakdown observed in long ballistic channels. Phys. Rev. B 47, 4064 (1993).
Auslaender, O. et al. Spin-charge separation and localization in one dimension. Science 308, 88–92 (2005).
Jompol, Y. et al. Probing spin-charge separation in a Tomonaga-Luttinger liquid. Science 325, 597 (2009).
Steinberg, H. et al. Charge fractionalization in quantum wires. Nat. Phys. 4, 116–119 (2008).
Deshpande, V. V., Bockrath, M., Glazman, L. I. & Yacoby, A. Electron liquids and solids in one dimension. Nature 464, 209 (2010).
Bockrath, M. et al. Luttinger-liquid behaviour in carbon nanotubes. Nature 397, 598 (1999).
Zhao, S. et al. Correlation of electron tunneling and plasmon propagation in a Luttinger liquid. Phys. Rev. Lett. 121, 047702 (2018).
Tennant, D. A., Cowley, R. A., Nagler, S. E. & Tsvelik, A. M. Measurement of the spin-excitation continuum in one-dimensional KCuF3 using neutron scattering. Phys. Rev. B 52, 13368 (1995).
Cazalilla, M. A., Citro, R., Giamarchi, T., Orignac, E. & Rigol, M. One dimensional bosons: from condensed matter systems to ultracold gases. Rev. Mod. Phys. 83, 1405–1466 (2011).
Fazio, R., Wagenblast, K.-H., Winkelholz, C. & Schön, G. Tunneling into one-dimensional Josephson chains and Luttinger liquids. Phys. B 222, 364 (1996).
Glazman, L. & Larkin, A. New quantum phase in a one-dimensional Josephson array. Phys. Rev. Lett. 79, 3736 (1997).
Giamarchi, T. & Schulz, H. J. Anderson localization and interactions in one-dimensional metals. Phys. Rev. B 37, 325 (1988).
Fisher, M. P. A., Weichman, P. B., Grinstein, G. & Fisher, D. S. Boson localization and the superfluid-insulator transition. Phys. Rev. B 40, 546 (1989).
Fukuyama, H. & Lee, P. A. Dynamics of the charge-density wave. I. Impurity pinning in a single chain. Phys. Rev. B 17, 535 (1978).
Suzumura, Y. & Fukuyama, H. Localization-delocalization transition by interactions in one-dimensional fermion systems. J. Phys. Soc. Jpn 52, 2870 (1983).
Zapf, V., Marcelo, J. & Batista, C. D. Bose-Einstein condensation in quantum magnets. Rev. Mod. Phys. 86, 563 (2014).
Giamarchi, T. & Tsvelik, A. M. Coupled ladders in a magnetic field. Phys. Rev. B 59, 11398 (1999).
Orignac, E., Citro, R. & Andrei, N. Low-energy behavior of the spin-tube model and coupled xxz chains. Phys. Rev. B 61, 11533 (2000).
Chitra, R. & Giamarchi, T. Critical properties of gapped spin-chains and ladders in a magnetic field. Phys. Rev. B 55, 5816 (1997).
Bouillot, P. et al. Statics and dynamics of weakly coupled antiferromagnetic spin-1/2 ladders in a magnetic field. Phys. Rev. B 83, 054407 (2011).
Hikihara, T. & Furusaki, A. Spin correlations in the two-leg antiferromagnetic ladder in a magnetic field. Phys. Rev. B 63, 134438 (2001).
Lake, B., Tennant, D. A., Frost, C. D. & Nagler, S. E. Quantum criticality and universal scaling of a quantum antiferromagnet. Nat. Mater. 4, 329 (2005).
Hagiwara, M. et al. Tomonaga-Luttinger liquid in a quasi-one-dimensional s = 1 antiferromagnet observed by specific heat measurements. Phys. Rev. Lett. 96, 147203 (2006).
Klanjšek, M. et al. Controlling Luttinger liquid physics in spin ladders under a magnetic field. Phys. Rev. Lett. 101, 137207 (2008).
Rüegg, C. et al. Thermodynamics of the spin Luttinger liquid in a model ladder material. Phys. Rev. Lett. 101, 247202 (2008).
Thielemann, B. et al. Field-controlled magnetic order in the quantum spin-ladder system (Hpip)2CuBr4. Phys. Rev. B 79, 020408(R) (2009).
Thielemann, B. et al. Direct observation of magnon fractionalization in the quantum spin ladder. Phys. Rev. Lett. 102, 107204 (2009).
Hong, T. et al. Field-induced Tomonaga-Luttinger liquid phase of a two-leg spin-1/2 ladder with strong leg interactions. Phys. Rev. Lett. 105, 137207 (2010).
Schmidiger, D. et al. Spectral and thermodynamic properties of a strong-leg quantum spin ladder. Phys. Rev. Lett. 108, 167201 (2012).
Ninios, K. et al. Wilson ratio of a Tomonaga-Luttinger liquid in a spin-1/2 Heisenberg ladder. Phys. Rev. Lett. 108, 097201 (2012).
Jeong, M. et al. Attractive Tomonaga-Luttinger liquid in a quantum spin ladder. Phys. Rev. Lett. 111, 106404 (2013).
Jeong, M. et al. Dichotomy between attractive and repulsive Tomonaga-Luttinger liquids in spin ladders. Phys. Rev. Lett. 117, 106402 (2016).
Schmidiger, D. et al. Spectrum of a magnetized strong-leg quantum spin ladder. Phys. Rev. Lett. 111, 107202 (2013).
Okunishi, K. & Suzuki, T. Field-induced incommensurate order for the quasi-one-dimensional xxz model in a magnetic field. Phys. Rev. B 76, 224411 (2007).
Kimura, S. et al. Field-induced order-disorder transition in antiferromagnetic BaCo2V2O8 driven by a softening of spinon excitation. Phys. Rev. Lett. 99, 087602 (2007).
Kimura, S. et al. Novel ordering of an s = 1/2 quasi-1D Ising-like antiferromagnet in magnetic field. Phys. Rev. Lett. 100, 057202 (2008).
Takayoshi, S., Furuya, S. C. & Giamarchi, T. Topological transition between competing orders in quantum spin chains. Phys. Rev. B 98, 184429 (2018).
Klanjšek, M. et al. Giant magnetic field dependence of the coupling between spin chains in BaCo2V2O8. Phys. Rev. B 92, 060408(R) (2015).
Kimura, S. et al. Longitudinal spin density wave order in a quasi-1D Ising-like quantum antiferromagnet. Phys. Rev. Lett. 101, 207201 (2008).
Cui, Y. et al. Field-induced antiferromagnetism and Tomonaga-Luttinger liquid behavior in the quasi-one-dimensional Ising-antiferromagnet SrCo2V2O8. Phys. Rev. B 105, 174428 (2022).
Shockley, W. On the surface states associated with a periodic potential. Phys. Rev. 56, 317–323 (1939).
Tamm, I. Über eine mögliche art der elektronenbindung an kristalloberflächen. Z. Phys. 76, 849–850 (1932).
Hatsugai, Y. Chern number and edge states in the integer quantum Hall effect. Phys. Rev. Lett. 71, 3697–3700 (1993).
Klitzing, K. V., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).
Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982).
Wen, X. G. Chiral Luttinger liquid and the edge excitations in the fractional quantum Hall states. Phys. Rev. B 41, 12838–12844 (1990).
Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015–2018 (1988).
Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).
Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).
König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).
Strunz, J. et al. Interacting topological edge channels. Nat. Phys. 16, 83–88 (2020).
Li, T. et al. Observation of a helical Luttinger liquid in InAs/GaSb quantum spin Hall edges. Phys. Rev. Lett. 115, 136804 (2015).
Lodge, M. S., Yang, S. A., Mukherjee, S. & Weber, B. Atomically thin quantum spin Hall insulators. Adv. Mater. 33, 2008029 (2021).
Weber, B. et al. 2024 roadmap on 2D topological insulators. J. Phys. Mater. 7, 022501 (2024).
Bampoulis, P. et al. Quantum spin Hall states and topological phase transition in germanene. Phys. Rev. Lett. 130, 196401 (2023).
Stühler, R. et al. Tomonaga-Luttinger liquid in the edge channels of a quantum spin Hall insulator. Nat. Phys. 16, 47–51 (2020).
Fei, Z. et al. Edge conduction in monolayer WTe2. Nat. Phys. 13, 677–682 (2017).
Tang, S. et al. Quantum spin Hall state in monolayer 1T′−WTe2. Nat. Phys. 13, 683–687 (2017).
Wu, S. et al. Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal. Science 359, 76–79 (2018).
Jia, J. et al. Tuning the many-body interactions in a helical Luttinger liquid. Nat. Commun. 13, 6046 (2022).
Collins, J. L. et al. Electric-field-tuned topological phase transition in ultrathin Na3Bi. Nature 564, 390–394 (2018).
Ferraro, D., Dolcetto, G., Citro, R., Romeo, F. & Sassetti, M. Spin current pumping in helical Luttinger liquids. Phys. Rev. B 87, 245419 (2013).
Hsu, C.-H., Stano, P., Klinovaja, J. & Loss, D. Helical liquids in semiconductors. Semicond. Sci. Technol. 36, 123003 (2021).
Chang, A. M. Chiral Luttinger liquids at the fractional quantum Hall edge. Rev. Mod. Phys. 75, 1449–1505 (2003).
Fujisawa, T. Nonequilibrium charge dynamics of Tomonaga-Luttinger liquids in quantum Hall edge channels. Ann. Phys. 534, 2100354 (2022).
Kamata, H., Kumada, N., Hashisaka, M., Muraki, K. & Fujisawa, T. Fractionalized wave packets from an artificial Tomonaga-Luttinger liquid. Nat. Nanotechnol. 9, 177–181 (2014).
Prokudina, M. G. et al. Tunable nonequilibrium Luttinger liquid based on counterpropagating edge channels. Phys. Rev. Lett. 112, 216402 (2014).
Yu, R. et al. Quantized anomalous Hall effect in magnetic topological insulators. Science 329, 61–64 (2010).
Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).
Chang, A. M., Pfeiffer, L. N. & West, K. W. Observation of chiral Luttinger behavior in electron tunneling into fractional quantum Hall edges. Phys. Rev. Lett. 77, 2538–2541 (1996).
Hilke, M., Tsui, D. C., Grayson, M., Pfeiffer, L. N. & West, K. W. Fermi liquid to Luttinger liquid transition at the edge of a two-dimensional electron gas. Phys. Rev. Lett. 87, 186806 (2001).
Reis, F. et al. Bismuthene on a SiC substrate: a candidate for a high-temperature quantum spin Hall material. Science 357, 287–290 (2017).
Que, Y. et al. A gate-tunable ambipolar quantum phase transition in a topological excitonic insulator. Adv. Mater. 36, 2309356 (2024).
Bieniek, M., Väyrynen, J. I., Li, G., Neupert, T. & Thomale, R. Theory of glide symmetry protected helical edge states in a WTe2 monolayer. Phys. Rev. B 107, 195105 (2023).
Maciejko, J. et al. Kondo effect in the helical edge liquid of the quantum spin Hall state. Phys. Rev. Lett. 102, 256803 (2009).
Wang, Y.-Q., Papaj, M. & Moore, J. E. Breakdown of helical edge state topologically protected conductance in time-reversal-breaking excitonic insulators. Phys. Rev. B 108, 205420 (2023).
Wen, X.-G. Theory of the edge states in fractional quantum Hall effects. Int. J. Mod. Phys. B 6, 1711–1762 (1992).
Kane, C. L. & Fisher, M. P. A. Transmission through barriers and resonant tunneling in an interacting one-dimensional electron gas. Phys. Rev. B 46, 15233–15262 (1992).
Hou, C.-Y., Kim, E.-A. & Chamon, C. Corner junction as a probe of helical edge states. Phys. Rev. Lett. 102, 076602 (2009).
Wang, Y. et al. Transport in helical Luttinger liquids in the fractional quantum Hall regime. Nat. Commun. 12, 5312 (2021).
Cohen, L. A. et al. Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact. Science 382, 542–547 (2023).
Gourmelon, A. et al. Characterization of helical Luttinger liquids in microwave stepped-impedance edge resonators. Phys. Rev. Res. 2, 043383 (2020).
Zhang, F., Jung, J., Fiete, G. A., Niu, Q. & MacDonald, A. H. Spontaneous quantum Hall states in chirally stacked few-layer graphene systems. Phys. Rev. Lett. 106, 156801 (2011).
Drozdov, I. K. et al. One-dimensional topological edge states of bismuth bilayers. Nat. Phys. 10, 664–669 (2014).
Jäck, B. et al. Observation of a Majorana zero mode in a topologically protected edge channel. Science 364, 1255–1259 (2019).
Wang, A. et al. A robust and tunable Luttinger liquid in correlated edge of transition-metal second-order topological insulator Ta2Pd3Te5. Nat. Commun. 14, 7647 (2023).
Stern, A. Fractional topological insulators: a pedagogical review. Annu. Rev. Condens. Matter Phys. 7, 349–368 (2016).
Andrei, E. Y. et al. The marvels of moiré materials. Nat. Rev. Mater. 6, 201–206 (2021).
Cai, J. et al. Signatures of fractional quantum anomalous Hall states in twisted MoTe2. Nature 622, 63–68 (2023).
Xu, F. et al. Observation of integer and fractional quantum anomalous Hall effects in twisted bilayer MoTe2. Phys. Rev. X 13, 031037 (2023).
Kang, K. et al. Evidence of the fractional quantum spin Hall effect in moiré MoTe2. Nature 628, 522–526 (2024).
Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023).
Kinoshita, T., Wenger, T. & Weiss, D. S. Observation of a one-dimensional Tonks-Girardeau gas. Science 305, 1125–1128 (2004).
Paredes, B. et al. Tonks-Girardeau gas of ultracold atoms in an optical lattice. Nature 429, 277–281 (2004).
Hofferberth, S., Lesanovsky, I., Fischer, B., Schumm, T. & Schmiedmayer, J. Non-equilibrium coherence dynamics in one-dimensional Bose gases. Nature 449, 324–327 (2007).
Haller, E. et al. Pinning quantum phase transition for a Luttinger liquid of strongly interacting bosons. Nature 466, 597 (2010).
Boéris, G. et al. Mott transition for strongly interacting one-dimensional bosons in a shallow periodic potential. Phys. Rev. A 93, 011601 (2016).
Hilker, T. A. et al. Revealing hidden antiferromagnetic correlations in doped Hubbard chains via string correlators. Science 357, 484 (2017).
Salomon, G. et al. Direct observation of incommensurate magnetism in Hubbard chains. Nature 565, 56 (2019).
Vijayan, J. et al. Time-resolved observation of spin-charge deconfinement in fermionic Hubbard chains. Science 367, 186 (2020).
Bernier, J.-S., Citro, R., Kollath, C. & Orignac, E. Correlation dynamics during a slow interaction quench in a one-dimensional Bose gas. Phys. Rev. Lett. 112, 065301 (2014).
Senaratne, R. et al. Spin-charge separation in a one-dimensional Fermi gas with tunable interactions. Science 376, 1305–1308 (2022).
Cavazos-Cavazos, D., Senaratne, R., Kafle, A. & Hulet, R. G. Thermal disruption of a Luttinger liquid. Nat. Commun. 14, 3154 (2023).
Barak, G. et al. Interacting electrons in one dimension beyond the Luttinger-liquid limit. Nat. Phys. 6, 489–493 (2010).
Moreno, M. et al. Nonlinear spectra of spinons and holons in short GaAs quantum wires. Nat. Commun. 7, 12784 (2016).
Jin, Y. et al. Momentum-dependent power law measured in an interacting quantum wire beyond the Luttinger limit. Nat. Commun. 10, 2821 (2019).
Vianez, P. M. T. et al. Observing separate spin and charge Fermi seas in a strongly correlated one-dimensional conductor. Sci. Adv. 8, eabm2781 (2022).
Tsyplyatyev, O. et al. Hierarchy of modes in an interacting one-dimensional system. Phys. Rev. Lett. 114, 196401 (2015).
Tsyplyatyev, O. et al. Nature of the many-body excitations in a quantum wire: theory and experiment. Phys. Rev. B 93, 075147 (2016).
Abanin, D. A. & Levitov, L. S. Tunable Fermi-edge resonance in an open quantum dot. Phys. Rev. Lett. 93, 126802 (2004).
Bettelheim, E., Abanov, A. G. & Wiegmann, P. Nonlinear quantum shock waves in fractional quantum Hall edge states. Phys. Rev. Lett. 97, 246401 (2006).
Bettelheim, E., Abanov, A. G. & Wiegmann, P. Quantum hydrodynamics and nonlinear differential equations for degenerate Fermi gas. J. Phys. A 41, 392003 (2008).
Cazalilla, M. A., Iucci, A. & Giamarchi, T. Competition between vortex unbinding and tunneling in an optical lattice. Phys. Rev. A 75, 051603(R) (2007).
Orignac, E., Citro, R. & Andrei, N. Low-energy behavior of the spin-tube and spin-orbital models. Phys. Rev. B 61, 11533–11551 (2000).
Cazalilla, M. A., Ho, A. F. & Giamarchi, T. Interacting Bose gases in quasi-one-dimensional optical lattices. N. J. Phys. 8, 158 (2006).
Katanin, A. A. & Irkhin, V. Y. Magnetic order and spin fluctuations in low-dimensional insulating systems. Phys. Uspekhi 50, 613 (2007).
Bocquet, M. Finite-temperature perturbation theory for quasi-one-dimensional spin-(1/2) Heisenberg antiferromagnets. Phys. Rev. B 65, 184415 (2002).
Dupont, M., Capponi, S., Laflorencie, N. & Orignac, E. Dynamical response and dimensional crossover for spatially anisotropic antiferromagnets. Phys. Rev. B 98, 094403 (2018).
Horvatić, M., Klanjšek, M. & Orignac, E. Direct determination of the Tomonaga-Luttinger parameter K in quasi-one-dimensional spin systems. Phys. Rev. B 101, 220406 (2020).
Bourbonnais, C. & Caron, L. G. Int. J. Mod. Phys. B 5, 1033 (1991).
Boies, D., Bourbonnais, C. & Tremblay, A.-M. S. Phys. Rev. Lett. 74, 968 (1995).
Emery, V. J., Fradkin, E., Kivelson, S. A. & Lubensky, T. C. Quantum theory of the smectic metal state in stripe phases. Phys. Rev. Lett. 85, 2160 (2000).
Vishwanath, A. & Carpentier, D. Two-dimensional anisotropic non-Fermi-liquid phase of coupled Luttinger liquids. Phys. Rev. Lett. 86, 676 (2001).
Fleurov, V., Kagalovsky, V., Lerner, I. V. & Yurkevich, I. V. Instability of the sliding Luttinger liquid. J. Phys. Condens. Matter 30, 185602 (2018).
Schemmer, M., Bouchoule, I., Doyon, B. & Dubail, J. Generalized hydrodynamics on an atom chip. Phys. Rev. Lett. 122, 090601 (2019).
Malvania, N. et al. Generalized hydrodynamics in strongly interacting 1D Bose gases. Science 373, 1129–1133 (2021).
Doyon, B., Gopalakrishnan, S., Møller, F., Schmiedmayer, J. & Vasseur, R. Generalized hydrodynamics: a perspective. Phys. Rev. X 15, 010501 (2025).
Castro-Alvaredo, O. A., Doyon, B. & Yoshimura, T. Emergent hydrodynamics in integrable quantum systems out of equilibrium. Phys. Rev. X 6, 041065 (2016).
Bertini, B., Collura, M., De Nardis, J. & Fagotti, M. Transport in out-of-equilibrium xxz chains: exact profiles of charges and currents. Phys. Rev. Lett. 117, 207201 (2016).
Schüttelkopf, P. et al. Characterising transport in a quantum gas by measuring Drude weights. Preprint at https://doi.org/10.48550/arXiv.2406.17569 (2024).
Faddeev, L. D. & Takhtajan, L. A. What is the spin of a spin wave? Phys. Lett. A 85, 375–377 (1981).
Bernard, D., Pasquier, V. & Serban, D. Spinons in conformal field theory. Nucl. Phys. B 428, 612–628 (1994).
Bouwknegt, P. & Schoutens, K. The SU(n)1 WZW models: spinon decomposition and Yangian structure. Nucl. Phys. B 482, 345 (1996).
Haldane, F. D. M. Spontaneous dimerization in the spin-1/2 Heisenberg antiferromagnetic chain with competing interactions. Phys. Rev. B 25, 4925(R) (1982).
Kenzelmann, M., Chen, Y., Broholm, C., Reich, D. H. & Qiu, Y. Bound spinons in an antiferromagnetic S=1/2 chain with a staggered field. Phys. Rev. Lett. 93, 017204 (2004).
Kenzelmann, M. et al. S=1/2 chain in a staggered field: high-energy bound-spinon state and the effects of a discrete lattice. Phys. Rev. B 71, 94411 (2005).
Lake, B. et al. Multispinon continua at zero and finite temperature in a near-ideal Heisenberg chain. Phys. Rev. Lett. 111, 137205 (2013).
Bera, A. K. et al. Spinon confinement in a quasi one dimensional anisotropic Heisenberg magnet. Phys. Rev. B 96, 054423 (2017).
Gannon, W. et al. Spinon confinement and a sharp longitudinal mode in Yb2Pt2Pb in magnetic fields. Nat. Commun. 10, 1123 (2019).
Wu, L. et al. Tomonaga–Luttinger liquid behavior and spinon confinement in YbAlO3. Nat. Commun. 10, 698 (2019).
Tran, T. T. et al. Spinon excitations in the quasi-one-dimensional S = 1/2 chain compound Cs4CuSb2Cl12. Phys. Rev. B 101, 235107 (2020).
Gao, S. et al. Spinon continuum in the Heisenberg quantum chain compound Sr2V3O9. Phys. Rev. B 109, L020402 (2024).
Tsyplyatyev, O. Splitting of the Fermi point of strongly interacting electrons in one dimension: a nonlinear effect of spin-charge separation. Phys. Rev. B 105, L121112 (2022).
Fu, L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).
Fu, L. & Kane, C. L. Josephson current and noise at a superconductor/quantum-spin-Hall-insulator/superconductor junction. Phys. Rev. B 79, 161408 (2009).
Alicea, J. New directions in the pursuit of Majorana fermions in solid state systems. Rep. Prog. Phys. 75, 076501 (2012).
Zhang, F. & Kane, C. L. Time-reversal-invariant Z4 fractional Josephson effect. Phys. Rev. Lett. 113, 036401 (2014).
Orth, C. P., Tiwari, R. P., Meng, T. & Schmidt, T. L. Non-Abelian parafermions in time-reversal-invariant interacting helical systems. Phys. Rev. B 91, 081406 (2015).
Alicea, J. & Fendley, P. Topological phases with parafermions: theory and blueprints. Annu. Rev. Condens. Matter Phys. 7, 119–139 (2016).
Read, N. & Rezayi, E. Beyond paired quantum Hall states: parafermions and incompressible states in the first excited Landau level. Phys. Rev. B 59, 8084–8092 (1999).
Yarmolinsky, M. & Kuklov, A. B. Emergence of Luttinger liquid behavior of a superclimbing dislocation. Phys. Rev. B https://doi.org/10.1103/physrevb.96.024505 (2017).
Zhang, C., Boninsegni, M., Kuklov, A., Prokof’ev, N. & Svistunov, B. Superclimbing modes in transverse quantum fluids: signature statistical and dynamical features. Phys. Rev. B 109, 214519 (2024).
Schindler, F. et al. Higher-order topology in bismuth. Nat. Phys. 14, 918–924 (2018).
Li, H. et al. Imaging tunable Luttinger liquid systems in van der Waals heterostructures. Nature 631, 765 (2024).
Flebus, B. & MacDonald, A. H. Electronic structure of carbon nanotubes on graphene substrates. Phys. Rev. Res. 2, 022041 (2020).
Pfnür, H. et al. Atomic wires on substrates: physics between one and two dimensions. Surf. Sci. Rep. 79, 100629 (2024).
Guo, Y. et al. Experimental observation of the 2D–1D dimensional crossover in strongly interacting ultracold atoms. Nat. Phys. 20, 934 (2024).
Giamarchi, T. Theoretical framework for quasi-one dimensional systems. Chem. Rev. 104, 5037 (2004).
Citro, R., Orignac, E., De Palo, S. & Chiofalo, M. L. Evidence of Luttinger-liquid behavior in one-dimensional dipolar quantum gases. Phys. Rev. A 75, 051602 (2007).
Orignac, E., Citro, R., Di Dio, M. & De Palo, S. Vortex lattice melting in a boson ladder in an artificial gauge field. Phys. Rev. B 96, 014518 (2017).
Gutman, D. B., Gefen, Y. & Mirlin, A. D. Bosonization out of equilibrium. Europhys. Lett. 90, 37003 (2010).
Protopopov, I. V., Gutman, D. B. & Mirlin, A. D. Many-particle correlations in a non-equilibrium Luttinger liquid. J. Stat. Mech. Theor. Exp. 11, 1 (2011).
Bácsi, Á., Moca, C. P. & Dóra, B. Dissipation-induced Luttinger liquid correlations in a one-dimensional Fermi gas. Phys. Rev. Lett. 124, 136401 (2020).
Rosso, L., Biella, A., Nardis, J. D. & Mazza, L. A dynamical theory for one-dimensional fermions with strong two-body losses: universal non-Hermitian Zeno physics and spin-charge separation. Phys. Rev. A 107, 013303 (2023).
Friedman, A. J. Dissipative Luttinger liquids. Preprint at https://doi.org/10.48550/arXiv.1910.06371 (2019).
Majumdar, S., Foini, L., Giamarchi, T. & Rosso, A. Bath-induced phase transition in a Luttinger liquid. Phys. Rev. B 107, 165113 (2023).
Poilblanc, D., Schuch, N. & Affleck, I. SU(2)1 chiral edge modes of a critical spin liquid. Phys. Rev. B 93, 174414 (2016).
Thorngren, R., Vishwanath, A. & Verresen, R. Intrinsically gapless topological phases. Phys. Rev. B 104, 075132 (2021).
Cedergren, K. et al. Insulating Josephson-junction chains as pinned Luttinger liquids. Phys. Rev. Lett. 119, 167701 (2017).
Matsubara, T. & Matsuda, H. A Lattice model of liquid helium. Prog. Theor. Phys. 16, 416–417 (1956).
Shastry, B. S. & Sutherland, B. Twisted boundary conditions and effective mass in Heisenberg-Ising and Hubbard rings. Phys. Rev. Lett. 65, 243 (1990).
Schulz, H. J. Correlation exponents and the metal-insulator transition in the one-dimensional Hubbard model. Phys. Rev. Lett. 65, 2462–2465 (1990).
Iucci, A., Fiete, G. A. & Giamarchi, T. Fourier transform of the 2kf Luttinger liquid density correlation function with different spin and charge velocities. Phys. Rev. B 75, 205116 (2007).
Olver, F., Lozier, D., Boisvert, R. & Clark, C. (eds) NIST Handbook of Mathematical Functions (Cambridge Univ. Press, 2010).
Meden, V. & Schönhammer, K. Spectral functions for the Tomonaga-Luttinger model. Phys. Rev. B 46, 15753 (1992).
Voit, J. Charge-spin separation and the spectral properties of Luttinger liquids. J. Phys. Condens. Matter 5, 8305 (1993).
Orignac, E., Tsuchiizu, M. & Suzumura, Y. Spectral functions of two-band spinless fermion and single-band spin-1/2 fermion models. Phys. Rev. B 84, 165128 (2011).
Braunecker, B., Bena, C. & Simon, P. Spectral properties of Luttinger liquids: a comparative analysis of regular, helical, and spiral Luttinger liquids. Phys. Rev. B 85, 035136 (2012).
Schulz, H. J. & Bourbonnais, C. Quantum fluctuations in quasi-one-dimensional superconductors. Phys. Rev. B 27, 5856 (1983).
Nakamura, N. & Suzumura, Y. The effect of thermal fluctuation on spectral function for the Tomonaga-Luttinger model. Prog. Theor. Phys. 98, 29 (1997).
Acknowledgements
R.C. was partly supported by the PNRR MUR project PE0000023 NQSTI (TOPQIN and SPUNTO) and PathFinder project IQARO (Grant agreement ID: 101115190) I.B., R.C., E.O. and T.G. thank the Institut Henri Poincaré (UAR 839 CNRS Sorbonne Université) and the Lab Ex CARMIN (ANR-10 LABX-59-01) for their support. T.G. was supported in part by the Swiss National Science Foundation under grants 200020-188687 and 200020-219400. B.W. acknowledges the support of the National Research Foundation (NRF) Singapore, under the Competitive Research Program ‘Towards On-Chip Topological Quantum Devices’ (NRF-CRP21-2018-0001), with further support from the Singapore Ministry of Education (MOE) Academic Research Fund Tier 3 grant (MOE-MOET32023-0003) ‘Quantum Geometric Advantage’. T.D. acknowledges support from the Centre of Excellence for Engineered Quantum Systems, an Australian Research Council Centre of Excellence, CE110001013. M.K. acknowledges the financial support of the Slovenian Research and Innovation Agency through the programme number P1-0125 and the project number J1-2456. R.G.H. was funded in part by the National Science Foundation (US), grant number 2309362.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Physics thanks Paul Sokol and other, anonymous, reviewer(s) for their contribution to the peer-review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Dimensional crossover
-
The transition from 1D behaviour to higher-dimensional physics when multiple 1D structures are coupled, posing challenges and opportunities in condensed-matter physics.
- Higher-order topological insulators
-
Advanced materials exhibiting hinge states wherein TLL concepts may apply, suggesting novel boundary phenomena in higher-dimensional systems.
- Lieb–Liniger model
-
A model of 1D non-relativistic bosons with contact interactions, solved exactly by E. Lieb and W. Liniger.
- Mott lobes
-
Regions in the interaction–chemical potential phase diagram in which the system is in a Mott insulating phase.
- Quantum criticality
-
Describes the behaviour of systems in a continuous phase transition, influenced by quantum fluctuations. Tomonaga–Luttinger liquid (TLL) systems are ideal for studying quantum-critical phenomena in reduced dimensions.
- Quantum spin liquids
-
Exotic phases of matter with long-range entanglement, wherein TLL physics intersects with studies of strongly correlated systems.
- Tonks–Girardeau gas
-
Limit of the Lieb–Liniger gas in which the contact interaction becomes infinite. It can be mapped to non-interacting fermions.
- Topological matter
-
Materials with protected edge states, wherein TLL theory may provide information on the interacting topological phases and bulk–boundary correspondence.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Bouchoule, I., Citro, R., Duty, T. et al. Platforms for the realization and characterization of Tomonaga–Luttinger liquids. Nat Rev Phys 7, 565–580 (2025). https://doi.org/10.1038/s42254-025-00866-w
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s42254-025-00866-w