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phenotypes between patient tumours and 
matched xenografts
 

Aparna D. Rao1,2,3,14, Ling Cai1,4,14, Marelize Snyman5, Rachel E. Walsdorf5, 
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Ralph J. DeBerardinis    1,11,12,13,15   & Jennifer G. Gill    5,15 

Patient-derived xenografts (PDXs) are frequently used as preclinical 
models, but their recapitulation of tumour metabolism in patients has 
not been closely examined. We developed a parallel workflow to analyse 
[U-13C]glucose tracing and metabolomics data from patient melanomas 
and matched PDXs. Melanomas from patients have substantial TCA cycle 
labelling, similar to levels in human brain tumours. Although levels of TCA 
cycle labelling in PDXs were similar to those in the original patient tumours, 
PDXs had higher labelling in glycolytic metabolites. Through metabolomics, 
we observed consistent alterations of 100 metabolites among PDXs and 
patient tumours that reflected species-specific differences in diet, host 
physiology and microbiota. Despite these differences, most of nearly 200 
PDXs retained a ‘metabolic fingerprint’ largely durable over six passages and 
often traceable back to the patient tumour of origin. This study identifies 
both high- and low-fidelity metabolites in the PDX model system, providing a 
resource for cancer metabolism researchers.

In the past decade, the PDX model system has emerged as an important 
tool for studying cancer biology1. PDXs have been lauded for their 
recapitulation of human cancer genetics2, heterogeneity3, therapy 
response4 and metastatic capacity5. In recent years, the PDX model 
system has also been used to dissect the biology of tumour metabo-
lism in vivo in many cancer types6, including melanoma7–9, and obtain 
preclinical data for drugs targeting putative metabolic vulnerabilities. 
However, the fidelity in translating tumour metabolism across host 
species remains an important open question10, particularly because 
PDXs are grown in murine hosts, which differ in their immune status, 
colonizing microbiota, species-specific metabolism and diet. To date, 
limited studies have explored how well PDXs reproduce the original 
patient’s tumour metabolism11,12. In this study, we developed a parallel 

workflow to directly compare the metabolism of tumours from patients 
with melanoma and their matched PDXs using metabolomics and in vivo 
[U-13C]glucose isotope tracing. Although we identify a subset of metab-
olites and pathways altered during xenotransplantation, most PDX 
tumours maintain a unique and durable ‘metabolic fingerprint’ that 
traces back to the original patient and distinguishes them from other 
PDXs. Here, we provide a characterization of pathways and metabo-
lites, ranked by their fidelity and durability after xenotransplantation, 
providing a resource for cancer-metabolism researchers.

Results
To evaluate the metabolic phenotypes of tumours from patients with 
melanoma and their matched PDXs, we developed a protocol to obtain 
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between patients and PDXs (Extended Data Fig. 2a) aside from one 
late-passage PDX cohort (MP9D p6), which exhibited wide variation 
in citrate labelling (Extended Data Fig. 2b).

To test whether tumour metabolomic profiles are maintained 
after PDX generation, we analysed metabolomic profiles in 18 mela-
noma patient (P0) samples, alongside matched early passage (P1) PDX 
samples. An initial univariate analysis was performed to identify the 
clinico-pathologic factors with the greatest impact on metabolic vari-
ance across all samples. Host species (that is, human versus mouse) was 
the most prominent factor, with 100 differentially expressed metabo-
lites (Fig. 2a and Supplementary Table 4). Tumour pigmentation status 
revealed that levels of 15 metabolites were altered, whereas other fea-
tures, such as BRAF mutation status, initial site of metastasis and patient 
sex, did not contribute to metabolic variance in these models (Fig. 2a 
and Supplementary Table 5). In a multivariate model, we identified 
some metabolites that were influenced by both host and pigmentation 
status, reflecting contributions from multiple factors (Fig. 2b).

Because host species played a significant role in metabolic varia-
tion, we next sought to identify metabolites enriched in either PDXs or 
patients (Fig. 2c). Host-specific metabolites fell into several categories, 
including microbial, dietary and species-specific pathway metabolites. 
Mouse-specific microbiome-derived metabolites, including 1-hydroxy-
2-napthoate, N-methylglutamate and 4-guanidinobutanoate, were 
found to be enriched in PDX tumours, highlighting the influence of 
host microbiota (Fig. 2d). We also identified metabolites related to 
the differences in endogenous metabolism and diet between mice 
and humans. Creatinine levels were higher in human tumours, reflect-
ing the established difference in circulating levels between the two 
species21,22 (Fig. 2e). Dietary influences included theophylline and 
7-methylxanthine, two caffeine derivatives that were among the 
most differentially abundant metabolites in humans (Fig. 2f). We also 
observed a higher abundance of urate and a lower abundance of allan-
toin in patient tumours, reflecting the presence of urate oxidase in mice 
but not in humans23 (Fig. 2g).

We performed a broader pathway analysis to identify altered 
pathways in PDXs (Fig. 2h) and found that levels of components of 
pyrimidine metabolism were higher in PDXs than in patient tumours 
(Fig. 2i). Interestingly, a similar phenomenon, noted 40 years ago in 
enzymatic assays comparing human colon carcinomas and xenografts, 
was attributed to the faster growth of xenografts24.

To gain further insight, a dermatopathologist assessed histologic 
features of 17 of our matched patient and PDX tumours for micro-
environmental composition and Ki-67 proliferation index. Overall, 
tumours were histologically similar between patient and PDX tumours, 
with a few key differences noted (Extended Data Fig. 3a,b). Matched 
tumours had strong correlations in the percentage of viable tumour 
(r = 0.61) and necrosis (r = 0.74). Generally around 5% of the tumour 
bed consisted of stromal cells and/or fibrosis. This percentage was 
similar in about half of the pairs and differed modestly in the others 
(r = 0.32). The percentage of the tumour bed composed of immune 
cells was very different between patient and PDX samples (r = 0.052), 
as expected, because the PDXs are grown in immunodeficient (NSG) 
mice that lack lymphocytes. Patient tumours generally comprised 
≤10% immune cells, with lymphocytes always being the predominant 
cell type. PDX tumours rarely had inflammatory infiltrates; when they 
did, the infiltrate consisted of polymorphonuclear leucocytes (PMNs), 
such as neutrophils. Despite these histological discrepancies, the low 
overall contribution of stromal and immune cells means that they are 
unlikely to be predominant drivers of differences in metabolite levels 
between patient tumours and PDXs.

PDXs nearly always had higher Ki67 proliferation indices (Fig. 2j), 
with a median relative proliferation index of 150% (range, 100–400%) 
compared with the matched patient tumour. Notably, despite these 
differences, the relative proliferation rates across patients were highly 
conserved (r = 0.92, P = 2.2 × 10−6) (Extended Data Fig. 3b) indicating the 

fresh melanoma samples during standard-of-care surgical resection. A 
portion of melanoma tissue was snap-frozen for metabolomics analysis, 
and an adjacent portion was digested and injected subcutaneously 
into immunocompromised NSG mice for PDX formation. A subset of 
patients received intraoperative infusion of glucose uniformly labelled 
with 13C (U-13C) prior to resection to enable further metabolic analysis 
through isotope tracing. Our isotope infusion approach is similar to 
published protocols used to assess fuel utilization in human brain13, 
lung14,15, kidney16 and paediatric17 tumours. To generate PDXs, we used 
a well-established method that recapitulates important aspects of 
melanoma biology, including metastasis5,7,18,19. In addition to comparing 
metabolic features of patient samples and matched PDXs, we also seri-
ally passaged the PDXs (up to six generations) because most pre-clinical 
studies use PDXs already subjected to several passages in mice (Fig. 1a).

Data and PDXs were derived from 33 melanoma samples from 24 
patients (Supplementary Table 1). Most patients had not received any 
prior treatment and had stage III or IV melanoma, and 16 of the tumours 
had a BRAFV600E genotype. Most samples were collected from regional 
lymph-node metastases, although primary melanomas and distant 
metastases were also obtained. From the 33 samples, we generated 23 
PDXs, yielding an engraftment rate of 70% (Supplementary Table 1). 
Engraftment from lymph-node samples (56%) was lower than that  
from primary (90%) and distant metastases (80%), and graft-versus  
host disease (GVHD) was observed in 39% of the lymph-node sub-
group. The PDXs frequently retained gross macroscopic and histologic  
features observed in the original patient samples (Fig. 1b,c).

Because melanoma metabolism has not been characterized 
in patients through in vivo isotope tracing, we first compared how 
melanomas and other human tumours utilize glucose. Six patients 
were infused with [U-13C]glucose, and 13C enrichment of metabo-
lites extracted from 12 melanoma samples was analysed. First, in 
metabolites of interest, we assessed total 13C enrichment (that is, 
1 – (M+0)) normalized to enrichment in plasma glucose. This allowed 
us to compare glucose metabolism between melanomas and other 
human tumours analysed in a similar manner16. Relevant labelling data 
from tumours and plasma are provided in Supplementary Tables 2 and 
3. The initial analysis revealed a high degree of labelling in glycolytic 
and tricarboxylic acid (TCA) cycle intermediates in the melanoma 
samples. Metabolites related to the TCA cycle (citrate, glutamate, 
succinate, fumarate, malate and aspartate) were labelled as exten-
sively in melanomas as in any other tumour type (Fig. 1d). Although 
only a small number of patients with melanoma received the infusion, 
the melanoma samples displayed the broadest labelling range of all 
cancers studied so far, possibly reflecting a particularly high level of 
metabolic heterogeneity in this cancer type. This does not seem to 
stem from differences in tumour site, because most samples came 
from lymph nodes, which spanned the full range of 13C enrichment 
levels (Extended Data Fig. 1a).

To compare 13C labelling features between patients and PDX 
models, we infused PDX-bearing mice (six PDX lines generated from 
four patients) with [U-13C]glucose. We calculated the difference in 
normalized fractional enrichment of the major labelled forms of gly-
colytic and TCA cycle intermediates between the PDX and patient 
samples. Notably, this analysis included both early-passage (P1 or P2) 
and late-passage (P6) PDXs. We observed an excess of labelling in gly-
colytic intermediates, pyruvate and lactate in nearly every PDX sample 
(Fig. 1e and Extended Data Fig. 1b,c). These discrepancies could not be 
attributed to differences in pool sizes, because the abundances of these 
metabolites were similar in patient and PDX tumours (Extended Data 
Fig. 1d). In contrast to metabolites linked to glycolysis, the fractional 
enrichment of those related to the TCA cycle was very similar in patient 
and PDX samples (Fig. 1e and Extended Data Fig. 1b,c). The citrate 
M+2/pyruvate M+3 ratio is used as a surrogate of the contribution of 
pyruvate dehydrogenase (PDH) to TCA cycle labelling and has been 
associated with metastasis in human kidney20. This ratio was conserved 
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Fig. 1 | In vivo labelling of human melanoma and matched PDXs infused  
with [U-13C]glucose. a, Schematic of a workflow for parallel metabolic analysis  
of melanomas in patients (P0) and PDXs carried through multiple passages  
(P1–P6) in mice. LC–MS/GC–MS, liquid chromatography–mass spectrometry 
and gas chromatography–mass spectrometry. Created using BioRender.  
b,c, Representative photographs (b) and histology images (c) of tumour samples 
from patients and matched early passage PDXs. Scale bar = 100 µm. d, Total 
labelling (1 – (M+0)) of indicated metabolites as analysed by mass spectrometry 
and normalized to [13C]glucose enrichment (M+6) in patient plasma. Melanoma 
tumours (n = 12, from 6 patients) from this study were compared with published 

data from brain16, lung14 and kidney cancer16. Data are mean ± s.d. Statistical 
analysis was done using two-way analysis of variance (ANOVA) with Tukey’s post 
hoc test; P values are shown. NSCLC, non-small-cell lung cancer; ccRCC, clear 
cell renal cell carcinoma; met, metastasis. e, Labelling of indicated metabolites 
normalized to [13C]glucose tumour enrichment, displayed as the absolute 
difference between the patient (Pt) and P2 or P3 PDXs (n = 27). Each data point 
represents an individual PDX tumour; midlines mark the mean. P values are 
shown above each plot for reference, indicating variations in metabolite labelling 
due to the host type in the two-way ANOVA.

http://www.nature.com/natmetab


Nature Metabolism | Volume 7 | August 2025 | 1703–1713 1706

Resource https://doi.org/10.1038/s42255-025-01338-2

Py
rim

id
in

es

Cytidine monophosphate
Cytidine diphosphate
Orotate
Deoxyuridine
Thymine
Cytidine
Thymidine monophosphate
Ureidosuccinate
Dihydroorotate
Deoxycytidine

Sample

Pr
im

ar
y

bi
le

ac
id

s Glycochenodeoxycholate
Glycocholate
Glycine
Cholate

Sample
Human
PDX

z score

–4
–2
0
2
4

MP8
MP9

MP10
TX13
TX19
TX23
TX36
TX37

M
P8

B 
1

M
P8

A 
1

M
P8

A 
2

M
P8

B 
2

M
P8

A 
3

M
P8

A 
4

M
P8

A 
5

M
P8

A 
6

M
P8

B 
6

M
P9

F 
1

M
P9

D
 1

M
P9

D
 2

M
P9

F 
2

M
P9

F 
3

M
P9

F 
4

M
P9

F 
5

M
P9

D
 6

M
P9

F 
6

M
P1

0 
1

M
P1

0 
2

M
P1

0 
3

M
P1

0 
4

M
P1

0 
5

M
P1

0 
6

TX
13

 1
TX

13
 2

TX
13

 3
TX

13
 4

TX
13

 5
TX

13
 6

TX
19

 1
TX

19
 2

TX
19

 3
TX

19
 4

TX
19

 5
TX

19
 6

TX
23

A 
1

TX
23

B 
1

TX
23

A 
2

TX
23

B 
2

TX
23

B 
3

TX
23

A 
3

TX
23

B 
4

TX
23

A 
4

TX
23

A 
5

TX
23

B 
5

TX
23

B 
6

TX
23

A 
6

TX
36

 1
TX

36
 2

TX
36

 3
TX

36
 4

TX
36

 5
TX

36
 6

TX
37

 1
TX

37
 2

TX
37

 3
TX

37
 4

TX
37

 5
TX

37
 6

PDX passage

Pa
tie

nt Matched to patient
False
True

PDX–patient match by 144 metabolites that do not di�er between patient and PDX, 102/171 matched P = 0.00091

20

25

30

35

40

No Yes
Same patient

H
um

an
 v

s 
PD

X
pa

irw
is

e 
di

st
an

ce

d e

k

f g

h i

l

a b

c

j

100
15

0

0
0

Human/PDX
Pigment status

Binary BRAF mutation status
Primary/LN/Met

Sex

0 30 60 90

Number of statistically significant metabolites

Univariate association

0
0.2

0.4

0.6

0.8

MetaboliteVa
ria

nc
e 

ex
pl

ai
ne

d Multivariate association (human/PDX + pigmentation status)

Human/PDX Pigmentation status

Significant Significant Insignificant Insignificant

Creatinine

Kynurenine
Theophylline

Urate
Guanine

7-Methylxanthine
Quinolinate Cysteate

Ophthalmate
2-Hydroxybutyrate

GlycochenodeoxycholateHypoxanthine
Quinate

Histamine Thioproline
Leu ValPS (36:1)

Allantoin

N-Acetylphenylalanine
Aminocaprylate

N-Methylglutamate
1-Hydroxy-2-naphthoate

Pantothenate

Cholate
4-Guanidinobutanoate

Pyridoxal
PipecolateOctenoylglycine

Ascrobate
Hydroxy FA (6:0)

Orotate

Thymine Ureidosuccinate
0

5

10

–3 0 3 6
log2(fold change)

–l
og

10
(a

dj
. P

)

Creatinine
P = 2.2 × 10–10

Human PDX
8.4

8.8

9.2

9.6

lo
g 10

 v
al

ue

1-Hydroxy-2-naphthoate
P = 6.1 × 10–7

N-Methylglutamate
P = 1.8 × 10–7

4-Guanidinobutanoate
P = 2.7 × 10–7

Human PDX Human PDX Human PDX

6.5

7.0

7.5

8.0

8.5

6.00

6.25

6.50

6.75

7.00

5.50

5.75

6.00

6.25

6.50

6.75

lo
g 10

 v
al

ue

Theophylline
P = 4.7 × 10–8

7-Methylxanthine
P = 6.1 × 10–7

Human PDX Human PDX

6.0

6.5

7.0

7.5

6.0

6.5

7.0

7.5

8.0

8.5

lo
g 10

 v
al

ue

Urate
P = 9.9 × 10–9

Allantoin
P = 5.3 × 10–7

Human PDX Human PDX
5

6

7

8

7.5

8.0

8.5

9.0

lo
g 10

 v
al

ue

Pyrimidine metabolism
Primary bile acid biosynthesis

0

0.5

1.0

1.5

0.50 1.0 1.5 2.0 2.5

Enrichment ratio

–l
og

10
 (P

v)

Pathway analaysis by KEGG pathways

MP2b
TX26

MP9d
TX41

MP4a
TX19

MP10
TX23a
TX36
TX13

TX23b
TX37

MP8b
MP5

0 25 50 75
% Ki–67

Variable
Human
PDX

P = 2.8 × 10–5

Fig. 2 | Patient tumour xenotransplantation is associated with characteristic 
metabolic alterations. a, Univariate association between metabolite levels 
and tumour type or clinical features. Primary/LN/met, primary, lymph node 
or met; human/PDX, human or PDX. b, Partition of variance explained in a 
multivariate model predicting metabolite levels from human/PDX sample type 
and pigmentation status. c, Volcano plot of metabolites exhibiting different 
levels in patient and paired P1 PDXs. d–g, Selected metabolites with prominent 
differences between patient and PDX, including microbiota-derived metabolites 
(d), dietary metabolites (f) and physiology-specific metabolites (e,g). h, Pathway 
analysis of altered metabolites. i, Heatmap of altered metabolites in enriched 
pathways. j, Percentage KI-67 staining compared between patient tumours and 

PDXs of the same origin. The indicated P value was obtained through a two-sided 
paired t-test. k, Pairwise Euclidean distance between human tumours and PDXs 
from the same or different patients, calculated on the basis of all metabolites. 
l, Matching PDX to patient by minimal pairwise Euclidean distance from 144 
species-agnostic metabolites. For d–g and k, central lines indicate the median 
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n = 36 (18 pairs of matched patient tumour and PDX) for a–i; n = 28 (14 pairs) for 
j; n = 199 (11 patient tumours and 188 PDXs for k and l, see also Extended Data 
Figure 3c for details).
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most proliferative tumours in patients were the most proliferative in 
NSG mice. The increased proliferation observed in PDXs might result 
from decreased host immunity, a selective advantage of prolifera-
tive clones during engraftment or both. From all the histologic data  
examined, this increased proliferation appears to be the most likely 
driver of the alterations in pyrimidine synthesis following engraftment.

In addition to pyrimidine synthesis, primary bile acid pathways 
were also altered in PDXs (Fig. 2h,i). In mice, the enzyme responsible 
for amino acid conjugation of bile acids is specific to taurine, leading  
to predominantly taurine-conjugated bile acids. By contrast, around 
75% of bile acids in humans are glycine conjugated (that is glycocholate 
and glycochenodeoxycholate)25, and circulating levels of these inter-
mediates are higher in humans than in mice26.

Despite species-specific differences, we wanted to know whether 
PDX tumours retained metabolic features unique to the human tumour 
from which they were derived. Gauging similarity by Euclidean distance 
of the z-transformed metabolite levels, we observed that pairwise 
comparisons of human and PDX samples from the same patient were 
more similar than were samples from different patients (Fig. 2k). This 
indicates that there is a substantial degree of metabolic durability 
after xenotransplantation. To test whether this fidelity was maintained  
after serial passaging, we performed liquid chromatography and mass 
spectrometry (LC–MS) metabolomics on 171 melanoma samples, 
including 11 tumours collected from 8 patients, passaged for 6 gen-
erations. We then asked whether metabolomic profiles could be used 
to predict which patient tumour gave rise to each PDX sample. Using 
144 metabolites that do not differ between PDXs and patient tumours 
(P > 0.1), most PDX samples (102/171) could be traced back to their 
patient tumour of origin (Fig. 2l). Several PDXs (MP8A, MP8B, TX23A, 
TX23B, TX36 and TX37) nearly always matched the original patient 
tumour; one PDX (TX19) virtually never matched; and the rest (MP9D, 
MP9F, MP10, and TX13) matched often but displayed infidelity in some 
samples. Thus, 10 of 11 PDX tumours frequently traced back to the 
patient tumour.

To assess the contribution of host-independent metabolites to 
patient–PDX matching, we analysed the Euclidean distances between 
matched and non-matched pairs, focusing on the metabolite-specific 
contributions to similarity. For each metabolite, we calculated the 
difference in squared distances between matched and non-matched 
pairs (∆dk), as detailed in Methods. Metabolites with negative ∆dk con-
tributed to greater similarity between a tumour and the PDX derived 
from it. In most matches, 90–130 metabolites (out of 144) had ∆dk < 0, 
meaning they enhanced similarity in matched patient–PDX pairs. 
Importantly, the specific metabolites driving similarity varied across 
matches (Extended Data Fig. 4a), reflecting heterogeneity in their 
contributions. On average, approximately 75% of the 144 metabolites 
exhibited greater similarity in matched pairs, emphasizing their collec-
tive role in driving patient-PDX resemblance (Extended Data Fig. 4b).

In many pre-clinical studies using PDXs, later passage PDXs must 
be used to obtain enough mice to perform experiments. We there-
fore assessed metabolic durability over time to determine the extent  
of metabolic drift with serial passaging. We analysed a panel of 199  
samples, including 13 PDX tumours passaged for 6 generations over 
as long as 3 years (Extended Data Fig. 5). We first performed a pathway 
analysis using metabolites that changed during passaging (Supplemen-
tary Table 6 and Fig. 3a,b). This revealed increased pyrimidine metabo-
lites and decreased glycerolipids with serial passaging (Fig. 3a–c).

Despite these metabolites, which exhibited variation with repeated 
passage, most metabolic differences among PDXs still arose from the 
patient of origin. A multivariate model that predicts metabolite levels in 
PDXs on the basis of passage number and sample origin demonstrated 
that the impact of patient of origin was stronger than that of passage 
number (Fig. 3d). When an unsupervised analysis of all samples with 
all metabolites was performed across P1–P6 in 13 PDX models, the pas-
sage number was not the main source of variance in the top principal 

components (Fig. 3e). When each PDX was examined individually, 
most clustered together, with no clear separation by passage number 
(Fig. 3f). This reinforces the notion that the individual patient sample 
has a prominent impact on PDX metabolomics.

We also analysed the correlation between the patient tumour 
(P0) and the late-passage PDX (P6) across all metabolites, observing 
primarily positive correlations (Fig. 3g, y axis). Metabolites with large 
variations explained by patient origin (Fig. 3g, x axis) also tended 
to retain this correlation between P0 and P6 (Extended Data Fig. 6). 
Some classes of metabolites, such as carnitines and hydroxycarnitines, 
display high fidelity across passages. Other metabolites, like pyrimi-
dines, have lower fidelity. A few examples of high-fidelity metabolites 
are highlighted and shown in Fig. 3h–k. 2-Hydroxyglutarate levels  
are distinctively higher in TX23A and TX23B (more than tenfold), and 
this is retained years later after six generations of tumour passaging 
(Fig. 3h). Similarly, myoinositol is distinct and stable across passages 
(Fig. 3i). We also found metabolites that demonstrated stability across 
P1–P6 PDX passages but markedly shifted from P0 (the patient) to 
P1. These include guanosine, which decreased between patient and  
PDX (Fig. 3j), and cystathionine, which increased (Fig. 3k). A mapping 
of all metabolites on the basis of their fidelity (x axis) and stability  
over time (y axis) in the PDX model system is available as a scientific 
resource (Extended Data Fig. 7 and Supplementary Table 4).

Discussion
The goal of this study was to document the metabolic features of  
PDXs that do or do not maintain fidelity with donor tumours in patients. 
Previous work has uncovered metabolomic fingerprints among different  
melanoma PDX lines27, yet few studies have traced metabolic features 
from patient to PDX. We also used an intraoperative stable-isotope infu-
sion protocol to examine consistency in glucose utilization between 
PDXs and patient tumours. Relative to other tumour types studied 
in humans, melanoma exhibits characteristics most similar to brain 
tumours, with glucose-derived carbons making large contributions to 
TCA cycle intermediates. Ongoing studies with [U-13C]glucose infusion 
will determine whether metabolic tracing data can predict outcomes 
or other relevant clinical features. If so, the large variance of labelling 
across patients with melanoma could represent an opportunity for 
biomarker development and patient stratification.

Of the variables examined in an extensive metabolomic analysis, 
host organism had the greatest influence on tumour metabolism, and 
very specific alterations were associated with diet and host physiology. 
These findings not only serve as validation of the data generation  
and analysis techniques, but also underscore the magnitude with 
which the environment impacts tumour metabolism. Although some  
alterations simply reflect host physiology, others might reflect a selec-
tion bias imposed on xenograft tumours. For example, PDX tumours 
consistently had higher labelling in glycolytic intermediates and 
increased levels of pyrimidine metabolites. The latter enrichment 
continued beyond the initial xenografting and throughout passag-
ing. Whether this metabolic drift simply reflects ongoing expansion 
of the most proliferative clones or an adaptation related to NSG 
physiology is unclear. Similarly, we found that glycerophospholipids 
decreased across passages. The homogeneous fat sources used in our 
mouse-facility diets might contribute to this effect, but additional 
lipidomics analyses are required to test this hypothesis.

Despite some consistent and recognizable differences associated 
with xenografting, many metabolites and pathways were maintained 
throughout six generations. When removing species-specific metabo-
lites, most melanoma PDXs had a ‘metabolic fingerprint’ that could 
be traced to the patient tumour. This identity was retained through-
out passaging as PDXs from the same patient consistently clustered 
together. To contextualize this surprising finding, our unsupervised 
metabolomic analysis allowed 171 different PDX-derived samples to 
associate with any of 8 patient origins, and in 102 cases they associated 

http://www.nature.com/natmetab


Nature Metabolism | Volume 7 | August 2025 | 1703–1713 1708

Resource https://doi.org/10.1038/s42255-025-01338-2

with the single correct source. This occurred despite PDX-related  
heterogeneity, such as passage number or tumour size. Notably, many of 
the metabolites that demonstrated the strongest origin fidelity and sta-
bility were mitochondrial-associated metabolites (2-hydroxyglutarate, 
n-formylmethionine, oxoadipate and acylcarnitines).

Although some metabolic features are known to be sensitive to 
nutrient availability, others could be independent of surrounding 
environmental context and ‘fixed’ by driver mutations, mitochondrial 

disfunction or acquired pathway dependencies. These conserved meta-
bolic features are important to identify because they could be clues to 
pathways that are less adaptable, and therefore more targetable in the 
context of oncologic therapeutics.

When considering metabolic conservation in the melanoma PDX 
model system, it is worth noting that tumours are implanted directly 
into the subcutaneous space of the mouse flank. Although many of 
the original tumours in this study came from melanoma tissues that 
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Fig. 3 | Metabolomic profiling of tumours from serially passaged melanoma 
PDXs. a,b, Pathway analysis of the metabolites changed by PDX passaging, as 
identified through multivariate analysis, from P1 to P6 (from n = 188 samples). 
For statistical analysis, a hypergeometric test was used without adjustment  
for multiple comparisons. pv, P value. c, Heatmap of altered metabolites in 
enriched pathways. Samples in columns are ordered by passage, and within 
each passage, by the average across selected metabolites, showing concordant 
changes of metabolites from the same class or pathway. d, Variance partition 
from a multivariate model predicting PDX metabolite levels by passage and 
origin. e,f, Principal component analysis (PCA) of patient and PDX samples  

by all metabolites, with all samples together (e) or separated by origin (f).  
g, Metabolites with high origin-specific variations (x axis) are also more 
concordant between patient tumour (P0) and late-passage PDX (P6) (y axis).  
h–k, Detailed examination of selected metabolites (also labelled in g). In each 
plot, the top panel shows the levels from P0 to P6, with linear regression lines 
fitted for each PDX line from P1 to P6. The variance contributed by origin or 
passage are given in the subtitle. Bottom, Pearson correlation between P0 and  
P6 samples and resulting P values. The black line denotes where x = y, and the  
blue line is a regression line from a linear fit. Colour denotes origin; see f for the 
colour key.
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had metastasized to lymph nodes or distant sites, we suspect that 
melanoma tumours are already metabolically ‘equipped’ to survive  
and proliferate in the skin. Other cancer types being established as  
PDXs in a non-orthotopic manner might feature additional metabolic 
variabilities that are not seen in the melanoma tumours owing to  
metabolic influences related to the tissue of origin28.

Through this analysis of 18 patient–PDX pairs and nearly 200 
PDX melanomas passaged over time, we identified metabolites and 
pathways demonstrating both conservation and divergence. The find-
ings lead us to advocate for a detailed evaluation of tumour metabo-
lism in matched patient samples and PDXs prior to the use of PDXs 
for pre-clinical studies of tumour metabolism. Such an evaluation  
can highlight any potential metabolic differences and limitations  
that might influence the clinical relevance of pre-clinical studies.

Methods
Experimental model and study participant details
Human participants. This project was approved by the Institutional 
Review Board of UT Southwestern Medical Center and complied with 
all relevant ethical regulations. Recruitment of human participants 
and sample acquisition were done through the University of Texas 
Southwestern Medical Center Tissue Resource (STU102010-051, prin-
cipal investigator (PI): C. Lewis), the University of Texas Southwestern  
Medical Center Human Melanoma Metabolism (HuMM) Biobank  
Project (STU102017-082, PI: J. Gill; STU052018-031, PI: J. Gill), and the 
University of Michigan (IRB MED no. 2004-0618, PI: A. Durham and MTA 
MMTA202002-0173, PI: J. Gill). Written informed consent was obtained 
from all participants. All adult patients undergoing standard-of-care 
surgical resection of melanoma with sufficient tissue for research were 
considered for enrolment. Those with poorly controlled diabetes were 
not eligible for 13C-glucose infusions. Demographics and pertinent clini-
cal characteristics of patients are outlined in Supplementary Table 1.

Animals. All animal experiments were compliant with ethical regula-
tions and performed in accordance with protocols approved by the 
Institutional Animal Care and Use Committee at the University of Texas 
Southwestern Medical Center (Protocol 2016-101360). Patient-derived 
melanoma tumours were injected into 4- to 8-week-old male and female 
NOD.CB17-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice. No formal randomization 
algorithms were used and tumours were engrafted into randomly 
selected cages and processed in an arbitrary order. For all experi-
ments, the maximum allowable tumour diameter was 2.5 cm and in 
no experiments was this exceeded. Mice were fed normal chow and 
ate ad-libitum. Mice were housed in barrier facilities managed by the 
UTSW Animal Resource Center. A standard white light cycle was used 
from 6:00AM to 5:59PM and a dark cycle was from 6:00PM to 5:59AM. 
Room humidity was maintained between 30 and 70% and temperature 
between 68 °F and 79°F.

Acquisition of human melanoma tumours. All human melanoma 
samples were obtained through surgical procedures that were a part 
of the patient’s standard of care. Portions of the tumour deemed by a 
pathologist to be available for research were provided for the studies. 
Samples were divided, and a portion of the tumour was immediately 
snap-frozen in liquid nitrogen in preparation for later metabolic pro-
cessing. The other portion was placed in Leibovitz’s L-15 medium and 
placed on ice for processing and injection into mice, as described 
below. All melanoma samples (or their adjacent tissue from which they 
were taken) were reviewed by a pathologist for confirmatory diagnosis.

Generation of patient-derived xenografts. Melanoma tissue was 
transferred from Leibovitz’s L-15 medium into Kontes tubes. For larger 
tissues, samples were first quickly chopped with a razor blade on a sterile  
Petri dish before transfer; 1× Hank’s Balanced Salt Solution with 200 U ml−1  
collagenase IV, 50 U ml−1, DNase and 5 mM CaCl2 was added to the 

Kontes tubes. Samples were then homogenized and digested for 20 min 
at 37 °C. Cells were then filtered through a 40-µm cell strainer and 
washed to obtain a single-cell suspension. Depending on the volume  
of the available tissue, the entire cell suspension was divided into 
three to five equal aliquots for injection into mice to establish the first 
generation of PDX tumours. For subsequent passages after successful 
engraftment, melanoma tissue was processed as described above, 
and 10,000 cells were aliquoted for each mouse. PDX melanoma cells 
in staining medium were mixed 1:1 with Matrigel for a final volume of 
50 µl. This solution was drawn into syringes and injected subcutane-
ously into the right flank of the NSG mice. Subcutaneous tumours were 
measured weekly with calipers until tumours reached 2–2.5 cm in their 
greatest diameter, at which point mice were euthanized for endpoint 
tumour-metabolism assessment. To confirm accurate tumour identi-
ties after the passaging experiments, PDX tumours from passage 6 
underwent geneprinting with the GenePrint® 10 System to ensure they 
matched the original patient and/or first passage as expected.

[13C]glucose isotope infusions. Patients receiving [13C]glucose 
infusions were generally fasted for 8–16 h, per the standard-of-care 
pre-operative protocol. A peripheral intravenous line was placed on the 
morning of the surgery to serve as a dedicated line for the [13C]glucose 
infusion. A sterile, pyrogen-free solution of 13.3% [U-13C]glucose in water 
was infused as a bolus of 8 g over 10 min, followed by 4 g h−1. Standard 
surgical procedures were followed for tumour resection. To assess frac-
tional enrichment in plasma, peripheral blood samples were obtained  
before infusion, immediately after the bolus and every 30–60 min 
thereafter, using a different intravenous catheter than the one infusing  
the [U-13C]glucose. After melanoma tissue was obtained, the infusion 
was stopped. The average infusion duration was around 3 h. This infu-
sion approach was consistent with previously described studies13,15,16.

Mouse infusions were conducted when PDX subcutaneous 
tumours were 2–2.5 cm in diameter. Mice were fasted for 16 h prior to 
infusion. Mice were anaesthetized and a 27-G catheter was placed in the 
lateral tail vein. [U-13C]glucose was infused as a bolus of 0.4125 mg g−1  
of body mass over 1 min in 125 µl of normal saline, followed by  
continuous infusion of 0.008 mg g−1 body mass per minute for 3 h (in a 
volume of 150 µl h−1). To assess fractional enrichment in plasma, 20 µl of 
blood was collected retro-orbitally at baseline and after 30, 60, 120 and 
180 min of infusion. At the end of the infusion, mice were euthanized, 
and tumours were collected and divided for sample processing (one 
portion for snap-freezing for metabolic analysis; another for digesting 
and passaging into additional generations of mice).

Sample processing. The mass of tissue samples processed generally  
ranged from 25 mg to 100 mg. For extraction of metabolites for 
metabolomic analysis, frozen tissues were homogenized manually with 
a pestle in an ice-cold mixture of methanol and water (80:20, vol/vol).  
After homogenization, samples were centrifuged at 13,000g for 
15 min at 4 °C. Supernatants were transferred to a new Eppendorf 
tube and equivalent amounts (per BCA quantification) were dried 
down and resuspended in 80% acetonitrile for analysis. HILIC chroma-
tographic separation of metabolites was performed through a Millipore 
ZIC-pHILIC column (5 µm, 2.1 × 150 mm) with a binary solvent system  
of 10 mM ammonium acetate in water (pH 9.8) and acetonitrile with 
a constant flow rate of 0.25 ml min−1. Metabolites were detected on a  
ThermoScientific QExactive HF-X hybrid quadrupole orbitrap high- 
resolution mass spectrometer (HRMS) coupled to a Vanquish UHPLC.

For extraction of metabolites for fractional enrichment analysis, 
frozen tissues were homogenized with a Qiagen TissueRuptor in an 
ice-cold mixture of methanol and water (80:20, vol/vol). Samples 
were then taken through three freeze–thaw cycles and centrifuged 
for 20 min at 16,000g. For an internal control, 1 µl of d27-myristic acid 
was added to the supernatant. Samples were evaporated and resus-
pended in 40 µl of anhydrous pyridine with 10 mg ml−1 methoxyamine. 
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Samples were then mixed with 60 µl of N-(tert-butyldimethylsilyl)- 
N-methyltrifluoroacetamide (MTBSTFA) derivatization reagent  
and transferred to GC–MS vials. Samples were incubated for 1 h at 
70 °C, and 1–2 µl was injected for analysis. Samples were analysed using 
GC–MS (an Agilent 6890 gas chromatograph coupled to an Agilent 
5973.N mass selective detector or 7890 gas chromatograph coupled 
to an Agilent 5975C mass selective detector).

Mass spectrometry analysis. For metabolomics, metabolite identi-
ties were confirmed using three criteria: (1) the precursor ion m/z 
matched the theoretical mass predicted by the chemical formula within 
5 ppm; (2) fragment ion spectra matched known metabolite fragments  
within 5 ppm; and (3) the metabolite retention time fell within 5% of 
the retention time of a purified standard run with the same method. 
Relative quantitation of the metabolites was done by integrating 
the chromatographic peak area of the precursor ion within a 5 ppm  
tolerance. To calculate relative abundance, the peak area was divided 
by the total ion chromatogram (TIC) for that sample.

For isotope tracing, unlabelled derivatized metabolite standards 
were previously used to generate an in-house library of mass spectra 
and served as references for the experimental metabolite peaks. The 
metabolite ion distribution and retention time of each metabolite  
peak were matched to ensure correct identification. The abundance 
of each metabolite ion was calculated and corrected for naturally 
abundant isotopes using a customized R script, found at the GitHub 
repository (https://github.com/wencgu/nac).

Histology and Ki-67 staining. Portions of tumour samples not used 
for metabolomics were placed in formalin and processed by either 
UTSW Department of Clinical Laboratory Services, the UTSW Tissue 
Management Shared Resource (TMSR), or the UTSW Histo Pathology 
Core. All histologic assessments were performed by a board-certified 
dermatopathologist (T.V.). Ki-67 staining was performed by the UTSW 
TMSR using the rabbit monoclonal antibody anti-Ki67 (Cell Signaling  
Technology, no. 9027). Immunohistochemical analysis was per-
formed on a Leica Bond RX system. In brief, the slides were baked  
for 30 min at 60 °C, then deparaffinized before the antigen retrieval 
step. Heat-induced antigen retrieval was performed at pH 6 for 20 min. 
The tissue was incubated with a peroxidase block and then antibody 
(1:500) for 15 min. The staining was visualized using the Bond Polymer 
Refine detection system without the Bond post-primary reagent.

Materials availability. There are restrictions to the availability of 
human-derived specimens in this manuscript due to sharing limitations 
set by the Institutional Review Board. In cases in which samples may 
be shared, a materials-transfer agreement (MTA) must be obtained.

Quantification and statistical analysis
Study design. Participant age and sex were reported by the human 
participants that were receiving melanoma surgical resections at our 
institution. Final sample size was dictated by the subsequent number of 
successfully xenografted tumours. All available samples were obtained 
and used for downstream analyses. No data were excluded. Although no 
statistical methods were used to pre-determine sample sizes, our sample 
sizes are similar to those reported using this infusion approach in previ-
ous studies13,15,16. For all analyses, data distribution was examined by den-
sity plot and was assumed to be normal, but this was not formally tested.

Data collection and analysis were not performed blind to the con-
ditions of the experiment. Because analyses were performed computa-
tionally using predefined algorithms applied uniformly across samples, 
the potential for observer bias was effectively eliminated.

Analysis of isotope tracing data. To evaluate pyruvate dehydroge-
nase’s contribution to the TCA cycle, we used the ratio between citrate 
M+2 over pyruvate M+3 (CitM2/PyrM3 ratio) as a proxy and calculated 

this ratio for each sample. Samples from four origins—MP4A, MP8A, 
MP9D and MP10—were selected. Each set contained three types of 
samples—a single patient tumour (P0), multiple early-passage PDXs 
(P2/P3) and multiple late-passage PDXs (P6). A two-way ANOVA was 
conducted to explore the effects of ‘origin’ and ‘type’ on the CitM2/
PyrM3 ratio. A two-sample t-test was also performed to evaluate dif-
ferences between early- and late-passage PDXs. Results are visualized 
in Extended Data Figure 2a.

To evaluate the variability of additional labelled intermediates 
from the infusion experiments in patient tumour (P0) and early passage 
(P2/P3) PDXs, we included 3-phosphoglycerate M+3, pyruvate M+3, 
lactate M+3, alanine M+3, citrate M+2, glutamate M+2 (which exchanges 
with alpha-ketoglutarate M+2), succinate M+2, fumarate M+2, malate 
M+2 and aspartate M+2 (which exchanges with oxaloacetate M+2). The 
levels of these labelled intermediates were normalized to the glucose 
M+6 values in the same sample, and a two-way ANOVA was conducted 
to explore the effects of ‘origin’ and ‘type’ on these labelled markers, 
as visualized in Extended Data Figure 1b.

Metabolomics data processing. Metabolites not detected in more 
than 90% of the samples were excluded. Metabolites detected in all 
samples, with median log10 intensities between 5 and 10, were used to 
construct a normalization factor that represents total signal abundance 
in each sample. This normalization factor was computed by scaling 
individual values by the median intensity of each metabolite and subse-
quently taking the median of these ratios sample-wise. The normalized 
data were then log10-transformed, and missing values were imputed 
based on the minimum non-missing values within each metabolite. 
All processed metabolomics data are available in the source data file 
associated with the paper.

Analysis of 18 matched patient tumour and PDX samples (‘Batch 1’).  
Metabolomics association with clinical features and sample types. 
For the metabolomics comparison of patient tumours and their PDX 
counterparts, 18 matched patient tumours and early-generation PDX 
samples were selected for analysis. Only one patient–PDX pair was 
selected per patient to prevent data skewing. Fifteen sample pairs were 
obtained from UTSW samples, outlined in Supplementary Table 1, and 
three sample pairs were obtained through an MTA with the University 
of Michigan.

Selected features including human or PDX (human/PDX) status, 
pigment status, BRAF mutation status (binary), sex and primary site, 
lymph node or metastasis designation were analysed through univari-
ate statistical methods. For each selected feature, non-missing data 
were isolated, and a linear model was fit using the lmFit function from 
the limma package, followed by empirical Bayes moderation29. Sig-
nificant metabolites were identified on the basis of adjusted P values 
(threshold < 0.05). Additionally, the variability of metabolite expres-
sion across the selected features was assessed to understand the vari-
ance component attributed to each factor. Likewise, we also explored 
the variance associated with human or PDX and pigment status in a 
multivariate linear model, as each of these features significantly asso-
ciate a subset of metabolites in the univariate tests. This corresponds 
to data shown in Fig. 2b. From this multivariate model, we identified 
metabolites associated with human/PDX sample status to generate the 
volcano plot in Fig. 2c, with the fold change computed from converting 
data from the log10 to log2 scale. Selected metabolites were compared in 
Fig. 2d–g using the non-parametric Mann–Whitney test because some 
of the metabolites contain imputed values because of missing data.

Matching of patient and PDX samples. To compare the similarity 
between patient and PDX samples from the same origin versus different  
origins, all metabolites were z-transformed to compute Euclidean 
distance. The pairwise distance between a patient sample and a PDX 
sample was then compared with the Mann–Whitney test (Fig. 2k).
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Analysis of patient tumour and matched serially passaged PDX 
samples (‘Batch 2’). Matching of patient and PDX samples. As metabo-
lomics data for the serially passaged PDX samples and the matched 
patient tumours were acquired in different batches, we performed a sepa-
rate statistical test to identify metabolites that differ between the patient 
tumour and PDX. A linear mixed-effects model was employed using the 
lme function from the nlme package. This model was structured to include 
sample type (human tumour or PDX) as a fixed effect while accounting 
for the random effects associated with variations between origins. We 
determined P values for the sample type and identified metabolites with 
P values larger than 0.1 as species-agnostic metabolites. Z-transformed 
data of these species-agnostic metabolites were then used to compute 
Euclidean distance. When the distance between a PDX and a tumour from 
the same origin is the shortest among all pairwise PDX–tumour distances 
for the PDX, it is considered a correct match to the patient (Fig. 2l).

To determine what fraction of PDX metabolites were most closely 
matched to the correct patient tumour origin, we decomposed the  
total Euclidean distance between PDX and patient tumours into squared 
distances contributed by individual metabolites. This approach 
allowed us to identify the specific contributions of each metabolite 
to similarity or divergence.

Pairwise Euclidean distance
The total Euclidean distance is defined as:

Dtotal =
√√√
√

nmetabolites
∑
k=1

(xk−yk)
2

where xk is the value of metabolite k in the PDX sample, yk is the value  
of metabolite k in the patient sample, and n is the total number of 
selected metabolites (144).

Squared distance contributions
For each metabolite k, the squared distance contribution is:

dk = (xk−yk)
2

To assess each metabolite’s role in similarity, we calculated the 
difference between dmatchk  (for the matched pair) and the mean squared 
distance d̄

non−match
k  (for non-matched pairs):

Δdk = d match
k −d̄

non−match
k

If (∆dk < 0), the metabolite contributes to greater similarity 
between matched pairs.

If (∆dk > 0), the metabolite contributes to divergence between 
matched pairs.

To quantify how many metabolites contribute to lower Euclidean 
distances (and hence higher similarity) between patient–PDX pairs, 
we counted the number of metabolites with a negative ∆dk, which is 
presented as a histogram (Extended Data Fig. 4b). A heatmap of ∆dk 
across all 171 matches is presented in Extended Data Figure 4a.

Metabolomics associated with serial passaging or sample origin in 
PDX samples. To evaluate how origin and passage affect the metabo-
lite profiles within the PDX samples from P1 to P6, we used lmFit from 
the limma package to fit a multivariate model including both features 
as fixed effects. On the basis of this model, we partitioned the overall 
variance observed in metabolites into components attributable to 
differences in passage numbers and tumour types, thereby enabling 
a deeper understanding of how these factors individually and jointly 
affect the metabolomic profiles. This corresponds to data shown in 
Fig. 3d. Pathway analysis was subsequently performed using metabo-
lites identified as significantly altered owing to passaging effects in the 
multivariate analysis (Fig. 3a,b).

To evaluate fidelity of metabolites between patient tumour and 
late-passage PDXs, we computed Pearson correlation coefficients 
between P0 and P6 samples for each metabolite. Out of 305 metabo-
lites, 102 were selected as characteristic metabolites on the basis of the 
following criteria: >30% variation explained by the origin and Pearson 
correlation > 0.3. These metabolites were used to cluster the samples in 
Extended Data Fig. 6. The P0 and P6 correlation and origin-associated 
variation were also used to identify high-fidelity metabolites reviewed 
in Fig. 3h–k.

Pathway analysis. Metabolic pathway enrichment analyses (in Figs. 2h 
and 3a,b) were performed using hypergeometric tests with metabo-
lites detected in our custom metabolomics data as the background  
reference. The metabolic signature sets we queried include the Kyoto 
Encyclopedia of Genes and Genomes (KEGG), The Small Molecule 
Pathway Database (SMPDB) pathway libraries and ‘main class’ metabo-
lite sets from RefMet30, adapted from MetaboAnalyst v.5.0 (ref. 31). 
Significant metabolites were visualized in heatmaps (Figs. 2i and 3c) 
using R package ComplexHeatmap32.

Software and code
Patient tumour data were collected in and stored using REDCap 
(v.14.4.1). Data analysis in this study was performed using R v.4.2.3 
(2023-03-15). The following packages were utilized: ComplexHeatmap 
(v.2.14.0), Hmisc (v.5.1-0), RColorBrewer (v.1.1-3), data.table (v.1.15.4), 
dplyr (v.1.1.4), ggbeeswarm (v.0.7.2), ggplot2 (v.3.5.0), ggpubr (v.0.6.0), 
ggrepel (v.0.9.5), ggside (v.0.3.1), limma (v.3.54.2), nlme (v.3.1-162), 
openxlsx (v.4.2.5.2), patchwork (v.1.2.0.9000), reshape2 (v.1.4.4), scales 
(v.1.3.0), stringr (v.1.5.1), tidyr (v.1.3.1), variancePartition (v.1.28.9) and 
viridis (v.0.6.3). Custom scripts for metabolomics analysis are available 
in the following GitHub repository: https://github.com/cailing20/
Melanoma_PDX_metabolomics. A subset of graphs and data analysis 
were performed using GraphPad Prism (v.10.3.1).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Metabolomics and isotope-tracing data derived from human and PDX 
samples are available in the Supplementary Tables and Supplementary 
Data file associated with this manuscript. They are also publicly avail-
able from Dryad (https://doi.org/10.5061/dryad.dncjsxm91). Source 
data are provided with this paper.

Code availability
All original code has been deposited at https://github.com/cailing20/
Melanoma_PDX_metabolomics and is publicly available.
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Extended Data Fig. 1 | 13C enrichment in early passage PDX relative to patient 
tumors. (a) Total labeling [1-(M + 0)] of indicated metabolites in melanoma 
patient tumors normalized to 13C-glucose enrichment (M + 6) in plasma (See 
Fig. 1d, n = 12, mean ± SD). Note that the samples are colored by the site of tissue 
procurement, with no obvious difference by site. (b) Each plot shows the 13C 
enrichment of selected labelled markers normalized to tumor Glucose M + 6, 
with results for patient tumors (n = 6) and their corresponding PDX samples 
(n = 27) plotted for comparison, error bars represent upper and lower quartiles. 
Lines connect samples of the same patient origin, from patient tumor to 

median of PDX, and each origin type is denoted by a different color. Statistical 
significance between origins and tumor types (P-values) are shown above each 
plot for reference, indicating variations in metabolite labeling due to the origin 
of the PDX lines and the host type in the two-way analysis of variance (ANOVA). 
(c) Fractional enrichment of indicated metabolites normalized to tumor 
Glucose M + 6. Note that PDX samples (black, n = 3-4) exhibit higher glycolytic 
intermediate labeling than the parental patient tumors (blue). (d) Comparison 
of relative metabolite abundance between tumors and matched PDXs (6 pairs). 
P-values from two-sided paired t-tests are provided in each plot.
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Extended Data Fig. 2 | 13C enrichment in early and late passage PDX relative to 
patient tumors. (a) Four matched sets of citrate m + 2/pyruvate m + 3 ratios are 
shown for tumors from: patient, early passage PDX, and late passage PDX. PDX 
data are mean ± SEM (with each data point representing a mean of 3 values from 
an individual PDX tumor), n = 3-5, with individual n detailed on the x-axis. P-values 
were calculated using two-way ANOVA, modeling the labeling ratio as a function 

of sample type and origin. (b) Each plot shows the 13C enrichment of selected 
metabolites normalized to tumor Glucose M + 6, with results for early passage 
(P2 or P3, shown in black) and late passage (P6, shown in grey) PDXs. PDX data 
are mean ± SEM, with n as follows: MP4A (early passage n = 4, late passage n = 5); 
MP8A (early passage n = 4, late passage n = 4); MP9D (early passage n = 4, late 
passage n = 5); MP10 (early passage n = 5, late passage n = 3).
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Extended Data Fig. 3 | Tumor and PDX pathology analysis. (a) Quantification of 17 pairs of matched patient/PDX tumors for markers of histology, immune 
composition, and proliferation. (b) Visualization of comparison of patient tumor pathology features (x-axis) and PDX pathology features (y-axis) by scatterplot with 
Pearson correlation statistics (N = 18 pairs).
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Extended Data Fig. 4 | Metabolic contribution to patient-PDX matching.  
(a) Heatmap of metabolite-specific contributions to patient-PDX matching. 
The heatmap displays the Δdk values (difference between matched and average 
non-matched Euclidean distances) for each of the 143 metabolites across 
171 matched patient-PDX pairs. Columns represent metabolites, while rows 
correspond to individual patient-PDX matches. Metabolites with negative Δdk 
(blue) contribute to greater similarity in matched pairs, while positive Δdk (red) 

indicate divergence. The variability in metabolite contributions across pairs 
reflects heterogeneity in patient-PDX metabolite profiles. (b) Histogram of 
metabolite contributions to similarity. The histogram summarizes the number 
of metabolites (Δdk < 0) contributing to greater similarity for each matched 
patient-PDX pair. The majority of matches exhibit 90–130 metabolites with 
Δdk < 0, indicating that most non-host-related metabolites play a role in driving 
patient-PDX resemblance.
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Extended Data Fig. 5 | Tumor and PDX samples. Samples (n = 199) characterized by metabolomics in this study include patient tumor (passage 0) and serially 
passaged PDXs from 13 tumor fragments (left-side y-axis label) in 10 patients (right-side y-axis label).
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Extended Data Fig. 6 | Signature metabolites cluster samples by lineage. 
Top metabolites that explain over 30% of the variance by origin and Pearson 
correlation > 0.3 between P0 and P6 samples (see Fig. 3d, n = 199 samples) were 
used in this heatmap. Metabolites and samples are hierarchically clustered into 

distinctive groups with PDXs from the same origin showing distinctive metabolic 
patterns. 10 of the 13 patient tumors formed a cluster separate from the rest of 
the PDX clusters. Note that PDX lines from the same patients - MP8A/B, MP9D/F, 
and TX23A/B generally cluster together.
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Extended Data Fig. 7 | Plot of PDX metabolites based on their origin fidelity and stability. Metabolites are plotted based on origin-specific variations (x-axis) and 
concordance between patient tumor (P0) and late passage PDX (P6) (y-axis). (summarized from 11 patient tumors and 40 P6 PDX).

http://www.nature.com/natmetab







	Conservation and divergence of metabolic phenotypes between patient tumours and matched xenografts

	Results

	Discussion

	Methods

	Experimental model and study participant details

	Human participants
	Animals
	Acquisition of human melanoma tumours
	Generation of patient-derived xenografts
	[13C]glucose isotope infusions
	Sample processing
	Mass spectrometry analysis
	Histology and Ki-67 staining
	Materials availability

	Quantification and statistical analysis

	Study design
	Analysis of isotope tracing data
	Metabolomics data processing
	Analysis of 18 matched patient tumour and PDX samples (‘Batch 1’)
	Analysis of patient tumour and matched serially passaged PDX samples (‘Batch 2’)

	Pairwise Euclidean distance

	Squared distance contributions

	Metabolomics associated with serial passaging or sample origin in PDX samples
	Pathway analysis

	Software and code

	Reporting summary


	Acknowledgements

	Fig. 1 In vivo labelling of human melanoma and matched PDXs infused with [U-13C]glucose.
	Fig. 2 Patient tumour xenotransplantation is associated with characteristic metabolic alterations.
	Fig. 3 Metabolomic profiling of tumours from serially passaged melanoma PDXs.
	Extended Data Fig. 1 13C enrichment in early passage PDX relative to patient tumors.
	Extended Data Fig. 2 13C enrichment in early and late passage PDX relative to patient tumors.
	Extended Data Fig. 3 Tumor and PDX pathology analysis.
	Extended Data Fig. 4 Metabolic contribution to patient-PDX matching.
	Extended Data Fig. 5 Tumor and PDX samples.
	Extended Data Fig. 6 Signature metabolites cluster samples by lineage.
	Extended Data Fig. 7 Plot of PDX metabolites based on their origin fidelity and stability.




