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Patient-derived xenografts (PDXs) are frequently used as preclinical

models, but their recapitulation of tumour metabolismin patients has

not been closely examined. We developed a parallel workflow to analyse
[U-2Clglucose tracing and metabolomics data from patient melanomas

and matched PDXs. Melanomas from patients have substantial TCA cycle
labelling, similar to levels in human brain tumours. Although levels of TCA
cyclelabelling in PDXs were similar to those in the original patient tumours,
PDXs had higher labelling in glycolytic metabolites. Through metabolomics,
we observed consistent alterations of 100 metabolites among PDXs and
patient tumours that reflected species-specific differences in diet, host
physiology and microbiota. Despite these differences, most of nearly 200
PDXs retained a ‘metabolic fingerprint’ largely durable over six passages and
often traceable back to the patient tumour of origin. This study identifies
both high- and low-fidelity metabolites in the PDX model system, providing a
resource for cancer metabolism researchers.

Inthe pastdecade, the PDX model system has emerged as animportant
tool for studying cancer biology'. PDXs have been lauded for their
recapitulation of human cancer genetics’, heterogeneity?, therapy
response’ and metastatic capacity’. In recent years, the PDX model
system has also been used to dissect the biology of tumour metabo-
lismin vivo inmany cancer types®, including melanoma’’, and obtain
preclinical datafor drugs targeting putative metabolic vulnerabilities.
However, the fidelity in translating tumour metabolism across host
species remains an important open question’’, particularly because
PDXs are grown in murine hosts, which differ in their immune status,
colonizing microbiota, species-specific metabolism and diet. To date,
limited studies have explored how well PDXs reproduce the original
patient’s tumour metabolism™2, In this study, we developed a parallel

workflow to directly compare the metabolism of tumours from patients
withmelanomaand their matched PDXs using metabolomics andinvivo
[U-2Clglucose isotope tracing. Although we identify a subset of metab-
olites and pathways altered during xenotransplantation, most PDX
tumours maintain a unique and durable ‘metabolic fingerprint’ that
traces back to the original patient and distinguishes them from other
PDXs. Here, we provide a characterization of pathways and metabo-
lites, ranked by their fidelity and durability after xenotransplantation,
providing aresource for cancer-metabolism researchers.

Results
To evaluate the metabolic phenotypes of tumours from patients with
melanomaand their matched PDXs, we developed a protocol to obtain
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fresh melanomasamples during standard-of-care surgical resection. A
portionof melanoma tissue was snap-frozen for metabolomics analysis,
and an adjacent portion was digested and injected subcutaneously
intoimmunocompromised NSG mice for PDX formation. A subset of
patientsreceived intraoperative infusion of glucose uniformly labelled
withC (U-C) prior to resection to enable further metabolic analysis
through isotope tracing. Our isotope infusion approach is similar to
published protocols used to assess fuel utilization in human brain®,
lung'", kidney'® and paediatric” tumours. To generate PDXs, we used
awell-established method that recapitulates important aspects of
melanomabiology, including metastasis>*'*'*. Inaddition to comparing
metabolicfeatures of patient samples and matched PDXs, we also seri-
ally passaged the PDXs (up to six generations) because most pre-clinical
studies use PDXs already subjected to several passages in mice (Fig.1a).

Data and PDXs were derived from 33 melanoma samples from 24
patients (Supplementary Table1). Most patients had not received any
prior treatment and had stage Ill or IV melanoma, and 16 of the tumours
had a BRAF'*°* genotype. Most samples were collected from regional
lymph-node metastases, although primary melanomas and distant
metastases were also obtained. From the 33 samples, we generated 23
PDXs, yielding an engraftment rate of 70% (Supplementary Table 1).
Engraftment from lymph-node samples (56%) was lower than that
from primary (90%) and distant metastases (80%), and graft-versus
host disease (GVHD) was observed in 39% of the lymph-node sub-
group. The PDXs frequently retained gross macroscopic and histologic
features observed in the original patient samples (Fig. 1b,c).

Because melanoma metabolism has not been characterized
in patients through in vivo isotope tracing, we first compared how
melanomas and other human tumours utilize glucose. Six patients
were infused with [U-®*Clglucose, and *C enrichment of metabo-
lites extracted from 12 melanoma samples was analysed. First, in
metabolites of interest, we assessed total *C enrichment (that is,
1-(M+0)) normalized to enrichment in plasma glucose. This allowed
us to compare glucose metabolism between melanomas and other
human tumours analysed ina similar manner'®. Relevant labelling data
from tumours and plasma are provided in Supplementary Tables 2 and
3. Theinitial analysis revealed a high degree of labelling in glycolytic
and tricarboxylic acid (TCA) cycle intermediates in the melanoma
samples. Metabolites related to the TCA cycle (citrate, glutamate,
succinate, fumarate, malate and aspartate) were labelled as exten-
sively in melanomas as in any other tumour type (Fig. 1d). Although
only asmall number of patients with melanomareceived the infusion,
the melanoma samples displayed the broadest labelling range of all
cancers studied so far, possibly reflecting a particularly high level of
metabolic heterogeneity in this cancer type. This does not seem to
stem from differences in tumour site, because most samples came
from lymph nodes, which spanned the full range of *C enrichment
levels (Extended Data Fig. 1a).

To compare C labelling features between patients and PDX
models, we infused PDX-bearing mice (six PDX lines generated from
four patients) with [U-2Clglucose. We calculated the difference in
normalized fractional enrichment of the major labelled forms of gly-
colytic and TCA cycle intermediates between the PDX and patient
samples. Notably, this analysis included both early-passage (P1 or P2)
and late-passage (P6) PDXs. We observed an excess of labelling in gly-
colyticintermediates, pyruvate and lactatein nearly every PDX sample
(Fig.1leand Extended DataFig. 1b,c). These discrepancies could notbe
attributed to differencesin pool sizes, because the abundances of these
metabolites were similar in patient and PDX tumours (Extended Data
Fig. 1d). In contrast to metabolites linked to glycolysis, the fractional
enrichment ofthose related to the TCA cycle was very similarin patient
and PDX samples (Fig. 1e and Extended Data Fig. 1b,c). The citrate
M+2/pyruvate M+3 ratio is used as a surrogate of the contribution of
pyruvate dehydrogenase (PDH) to TCA cycle labelling and has been
associated with metastasisin humankidney®. This ratio was conserved

between patients and PDXs (Extended Data Fig. 2a) aside from one
late-passage PDX cohort (MP9D p6), which exhibited wide variation
incitrate labelling (Extended Data Fig. 2b).

To test whether tumour metabolomic profiles are maintained
after PDX generation, we analysed metabolomic profiles in 18 mela-
noma patient (PO) samples, alongside matched early passage (P1) PDX
samples. An initial univariate analysis was performed to identify the
clinico-pathologic factors with the greatestimpact on metabolic vari-
anceacross allsamples. Host species (that is, human versus mouse) was
the most prominent factor, with100 differentially expressed metabo-
lites (Fig.2a and Supplementary Table 4). Tumour pigmentation status
revealed that levels of 15 metabolites were altered, whereas other fea-
tures, such as BRAF mutation status, initial site of metastasis and patient
seX, did not contribute to metabolic variance in these models (Fig. 2a
and Supplementary Table 5). In a multivariate model, we identified
some metabolites that were influenced by both host and pigmentation
status, reflecting contributions from multiple factors (Fig. 2b).

Because host species played a significant role in metabolic varia-
tion, we next sought toidentify metabolites enriched ineither PDXs or
patients (Fig. 2c). Host-specific metabolites fell into several categories,
including microbial, dietary and species-specific pathway metabolites.
Mouse-specific microbiome-derived metabolites, including 1-hydroxy-
2-napthoate, N-methylglutamate and 4-guanidinobutanoate, were
found to be enriched in PDX tumours, highlighting the influence of
host microbiota (Fig. 2d). We also identified metabolites related to
the differences in endogenous metabolism and diet between mice
and humans. Creatinine levels were higher in human tumours, reflect-
ing the established difference in circulating levels between the two
species?? (Fig. 2e). Dietary influences included theophylline and
7-methylxanthine, two caffeine derivatives that were among the
most differentially abundant metabolites in humans (Fig. 2f). We also
observed a higher abundance of urate and alower abundance of allan-
toinin patient tumours, reflecting the presence of urate oxidase in mice
but not in humans?® (Fig. 2g).

We performed a broader pathway analysis to identify altered
pathways in PDXs (Fig. 2h) and found that levels of components of
pyrimidine metabolism were higher in PDXs than in patient tumours
(Fig. 2i). Interestingly, a similar phenomenon, noted 40 years ago in
enzymatic assays comparing human colon carcinomas and xenografts,
was attributed to the faster growth of xenografts*.

To gain further insight, adermatopathologist assessed histologic
features of 17 of our matched patient and PDX tumours for micro-
environmental composition and Ki-67 proliferation index. Overall,
tumours were histologically similar between patientand PDX tumours,
with a few key differences noted (Extended Data Fig. 3a,b). Matched
tumours had strong correlations in the percentage of viable tumour
(r=0.61) and necrosis (r = 0.74). Generally around 5% of the tumour
bed consisted of stromal cells and/or fibrosis. This percentage was
similar in about half of the pairs and differed modestly in the others
(r=0.32). The percentage of the tumour bed composed of immune
cells was very different between patient and PDX samples (r=0.052),
as expected, because the PDXs are grown in immunodeficient (NSG)
mice that lack lymphocytes. Patient tumours generally comprised
<10% immune cells, with lymphocytes always being the predominant
celltype. PDX tumoursrarely had inflammatory infiltrates; when they
did, theinfiltrate consisted of polymorphonuclear leucocytes (PMNs),
suchasneutrophils. Despite these histological discrepancies, the low
overall contribution of stromal and immune cells means that they are
unlikely to be predominant drivers of differences in metabolite levels
between patient tumours and PDXs.

PDXs nearly always had higher Ki67 proliferation indices (Fig. 2j),
with amedianrelative proliferationindex of 150% (range, 100-400%)
compared with the matched patient tumour. Notably, despite these
differences, the relative proliferation rates across patients were highly
conserved (r=0.92, P=2.2x107°) (Extended DataFig. 3b) indicating the
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Fig.1|In vivo labelling of human melanoma and matched PDXs infused

with [U-2C]glucose. a, Schematic of aworkflow for parallel metabolic analysis
of melanomasin patients (PO) and PDXs carried through multiple passages
(P1-P6) in mice. LC-MS/GC-MS, liquid chromatography-mass spectrometry
and gas chromatography-mass spectrometry. Created using BioRender.

b,c, Representative photographs (b) and histology images (c) of tumour samples
from patients and matched early passage PDXs. Scale bar =100 um. d, Total
labelling (1 - (M+0)) of indicated metabolites as analysed by mass spectrometry
and normalized to [*C]glucose enrichment (M+6) in patient plasma. Melanoma
tumours (n =12, from 6 patients) from this study were compared with published

data frombrain’, lung'* and kidney cancer’®. Data are mean + s.d. Statistical
analysis was done using two-way analysis of variance (ANOVA) with Tukey’s post
hoc test; Pvalues are shown. NSCLC, non-small-cell lung cancer; ccRCC, clear
cellrenal cell carcinoma; met, metastasis. e, Labelling of indicated metabolites
normalized to [*Clglucose tumour enrichment, displayed as the absolute
difference between the patient (Pt) and P2 or P3 PDXs (n =27). Each data point
represents an individual PDX tumour; midlines mark the mean. Pvalues are
shown above each plot for reference, indicating variations in metabolite labelling
dueto the host type in the two-way ANOVA.
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Fig. 2| Patient tumour xenotransplantationis associated with characteristic
metabolic alterations. a, Univariate association between metabolite levels

and tumour type or clinical features. Primary/LN/met, primary, lymph node

or met; human/PDX, human or PDX. b, Partition of variance explained in a
multivariate model predicting metabolite levels from human/PDX sample type
and pigmentation status. ¢, Volcano plot of metabolites exhibiting different
levels in patient and paired P1PDXs. d-g, Selected metabolites with prominent
differences between patient and PDX, including microbiota-derived metabolites
(d), dietary metabolites (f) and physiology-specific metabolites (e,g). h, Pathway
analysis of altered metabolites. i, Heatmap of altered metabolites in enriched
pathways. j, Percentage KI-67 staining compared between patient tumours and

PDX passage

PDXs of the same origin. The indicated P value was obtained through a two-sided
paired t-test. k, Pairwise Euclidean distance between human tumours and PDXs
from the same or different patients, calculated on the basis of all metabolites.

1, Matching PDX to patient by minimal pairwise Euclidean distance from 144
species-agnostic metabolites. For d-gand k, central lines indicate the median
value, and boxplots represent the interquartile range (IQR) with whiskers
extending to the smallest and largest values within 1.5 times the IQR. Mann-
Whitney tests were performed to calculate Pvalues, as described in Methods.
n=36 (18 pairs of matched patient tumour and PDX) for a—i; n = 28 (14 pairs) for
j;n=199 (11 patient tumours and 188 PDXs for k and |, see also Extended Data
Figure 3cfor details).
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most proliferative tumours in patients were the most proliferative in
NSG mice. The increased proliferation observed in PDXs might result
from decreased host immunity, a selective advantage of prolifera-
tive clones during engraftment or both. From all the histologic data
examined, this increased proliferation appears to be the most likely
driver ofthealterationsin pyrimidine synthesis following engraftment.

In addition to pyrimidine synthesis, primary bile acid pathways
were also altered in PDXs (Fig. 2h,i). In mice, the enzyme responsible
for amino acid conjugation of bile acids is specific to taurine, leading
to predominantly taurine-conjugated bile acids. By contrast, around
75% of bile acids in humans are glycine conjugated (thatis glycocholate
and glycochenodeoxycholate)?, and circulating levels of these inter-
mediates are higher in humans than in mice?.

Despite species-specific differences, we wanted to know whether
PDX tumours retained metabolic features unique to the human tumour
fromwhich they were derived. Gauging similarity by Euclideandistance
of the z-transformed metabolite levels, we observed that pairwise
comparisons of human and PDX samples from the same patient were
more similar than were samples from different patients (Fig. 2k). This
indicates that there is a substantial degree of metabolic durability
after xenotransplantation. To test whether this fidelity was maintained
after serial passaging, we performed liquid chromatography and mass
spectrometry (LC-MS) metabolomics on 171 melanoma samples,
including 11 tumours collected from 8 patients, passaged for 6 gen-
erations. We then asked whether metabolomic profiles could be used
to predict which patient tumour gave rise to each PDX sample. Using
144 metabolites that do not differ between PDXs and patient tumours
(P>0.1), most PDX samples (102/171) could be traced back to their
patient tumour of origin (Fig. 2I). Several PDXs (MP8A, MP8B, TX23A,
TX23B, TX36 and TX37) nearly always matched the original patient
tumour; one PDX (TX19) virtually never matched; and the rest (MP9D,
MP9F, MP10, and TX13) matched often but displayed infidelity insome
samples. Thus, 10 of 11 PDX tumours frequently traced back to the
patient tumour.

To assess the contribution of host-independent metabolites to
patient-PDX matching, we analysed the Euclidean distances between
matched and non-matched pairs, focusing on the metabolite-specific
contributions to similarity. For each metabolite, we calculated the
difference in squared distances between matched and non-matched
pairs (Ad,), as detailed in Methods. Metabolites with negative Ad, con-
tributed to greater similarity between a tumour and the PDX derived
fromit.In most matches, 90-130 metabolites (out of144) had Ad, < 0,
meaning they enhanced similarity in matched patient-PDX pairs.
Importantly, the specific metabolites driving similarity varied across
matches (Extended Data Fig. 4a), reflecting heterogeneity in their
contributions. On average, approximately 75% of the 144 metabolites
exhibited greater similarity in matched pairs, emphasizing their collec-
tiverolein driving patient-PDX resemblance (Extended Data Fig. 4b).

Inmany pre-clinical studies using PDXs, later passage PDXs must
be used to obtain enough mice to perform experiments. We there-
fore assessed metabolic durability over time to determine the extent
of metabolic drift with serial passaging. We analysed a panel of 199
samples, including 13 PDX tumours passaged for 6 generations over
aslongas3years (Extended DataFig. 5). We first performed a pathway
analysis using metabolites that changed during passaging (Supplemen-
tary Table 6 and Fig. 3a,b). Thisrevealed increased pyrimidine metabo-
lites and decreased glycerolipids with serial passaging (Fig. 3a-c).

Despite these metabolites, which exhibited variation withrepeated
passage, most metabolic differences among PDXs still arose from the
patient of origin. Amultivariate model that predicts metabolite levelsin
PDXs on the basis of passage number and sample origin demonstrated
that the impact of patient of origin was stronger than that of passage
number (Fig. 3d). When an unsupervised analysis of all samples with
allmetabolites was performed across P1-P6in 13 PDX models, the pas-
sage number was not the main source of variance in the top principal

components (Fig. 3e). When each PDX was examined individually,
most clustered together, with no clear separation by passage number
(Fig. 3f). This reinforces the notion that the individual patient sample
has a prominentimpact on PDX metabolomics.

We also analysed the correlation between the patient tumour
(P0O) and the late-passage PDX (P6) across all metabolites, observing
primarily positive correlations (Fig. 3g, y axis). Metabolites with large
variations explained by patient origin (Fig. 3g, x axis) also tended
to retain this correlation between PO and P6 (Extended Data Fig. 6).
Some classes of metabolites, such as carnitines and hydroxycarnitines,
display high fidelity across passages. Other metabolites, like pyrimi-
dines, have lower fidelity. A few examples of high-fidelity metabolites
are highlighted and shown in Fig. 3h-k. 2-Hydroxyglutarate levels
aredistinctively higherin TX23A and TX23B (more than tenfold), and
this is retained years later after six generations of tumour passaging
(Fig. 3h). Similarly, myoinositol is distinct and stable across passages
(Fig. 3i). We also found metabolites that demonstrated stability across
P1-P6 PDX passages but markedly shifted from PO (the patient) to
P1. These include guanosine, which decreased between patient and
PDX (Fig. 3j), and cystathionine, which increased (Fig. 3k). A mapping
of all metabolites on the basis of their fidelity (x axis) and stability
over time (y axis) in the PDX model system is available as a scientific
resource (Extended Data Fig. 7 and Supplementary Table 4).

Discussion

The goal of this study was to document the metabolic features of
PDXs that do or do not maintain fidelity with donor tumours in patients.
Previouswork hasuncovered metabolomicfingerprintsamongdifferent
melanoma PDX lines”, yet few studies have traced metabolic features
from patient to PDX. We also used anintraoperative stable-isotope infu-
sion protocol to examine consistency in glucose utilization between
PDXs and patient tumours. Relative to other tumour types studied
in humans, melanoma exhibits characteristics most similar to brain
tumours, with glucose-derived carbons making large contributions to
TCA cycle intermediates. Ongoing studies with [U-*C]glucose infusion
will determine whether metabolic tracing data can predict outcomes
or other relevant clinical features. If so, the large variance of labelling
across patients with melanoma could represent an opportunity for
biomarker development and patient stratification.

Of the variables examined in an extensive metabolomic analysis,
host organism had the greatest influence on tumour metabolism, and
very specific alterations were associated with diet and host physiology.
These findings not only serve as validation of the data generation
and analysis techniques, but also underscore the magnitude with
which the environmentimpacts tumour metabolism. Although some
alterations simply reflect host physiology, others might reflect aselec-
tion bias imposed on xenograft tumours. For example, PDX tumours
consistently had higher labelling in glycolytic intermediates and
increased levels of pyrimidine metabolites. The latter enrichment
continued beyond the initial xenografting and throughout passag-
ing. Whether this metabolic drift simply reflects ongoing expansion
of the most proliferative clones or an adaptation related to NSG
physiology is unclear. Similarly, we found that glycerophospholipids
decreased across passages. The homogeneous fat sources used in our
mouse-facility diets might contribute to this effect, but additional
lipidomics analyses are required to test this hypothesis.

Despite some consistent and recognizable differences associated
with xenografting, many metabolites and pathways were maintained
throughout six generations. When removing species-specific metabo-
lites, most melanoma PDXs had a ‘metabolic fingerprint’ that could
be traced to the patient tumour. This identity was retained through-
out passaging as PDXs from the same patient consistently clustered
together. To contextualize this surprising finding, our unsupervised
metabolomic analysis allowed 171 different PDX-derived samples to
associate with any of 8 patient origins, and in 102 cases they associated
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by all metabolites, with all samples together (e) or separated by origin (f).

g, Metabolites with high origin-specific variations (x axis) are also more
concordant between patient tumour (PO) and late-passage PDX (P6) (y axis).
h-k, Detailed examination of selected metabolites (also labelled ing). In each
plot, the top panel shows the levels from PO to P6, with linear regression lines
fitted for each PDX line from P1to P6. The variance contributed by origin or
passage are givenin the subtitle. Bottom, Pearson correlation between PO and
P6 samples and resulting Pvalues. The black line denotes where x =y, and the
bluelineisaregression line fromalinear fit. Colour denotes origin; see ffor the
colour key.

with the single correct source. This occurred despite PDX-related
heterogeneity, such as passage number or tumour size. Notably, many of
the metabolites that demonstrated the strongest origin fidelity and sta-
bility were mitochondrial-associated metabolites (2-hydroxyglutarate,
n-formylmethionine, oxoadipate and acylcarnitines).

Although some metabolic features are known to be sensitive to
nutrient availability, others could be independent of surrounding
environmental context and ‘fixed’ by driver mutations, mitochondrial

disfunctionoracquired pathway dependencies. These conserved meta-
bolicfeatures areimportant to identify because they could be cluesto
pathwaysthat are lessadaptable, and therefore more targetablein the
context of oncologic therapeutics.

When considering metabolic conservationin the melanoma PDX
model system, it is worth noting that tumours are implanted directly
into the subcutaneous space of the mouse flank. Although many of
the original tumours in this study came from melanoma tissues that
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had metastasized to lymph nodes or distant sites, we suspect that
melanoma tumours are already metabolically ‘equipped’ to survive
and proliferate in the skin. Other cancer types being established as
PDXsinanon-orthotopic manner might feature additional metabolic
variabilities that are not seen in the melanoma tumours owing to
metabolic influences related to the tissue of origin?®.

Through this analysis of 18 patient-PDX pairs and nearly 200
PDX melanomas passaged over time, we identified metabolites and
pathways demonstrating both conservation and divergence. The find-
ings lead us to advocate for a detailed evaluation of tumour metabo-
lism in matched patient samples and PDXs prior to the use of PDXs
for pre-clinical studies of tumour metabolism. Such an evaluation
can highlight any potential metabolic differences and limitations
that might influence the clinical relevance of pre-clinical studies.

Methods

Experimental model and study participant details

Human participants. This project was approved by the Institutional
Review Board of UT Southwestern Medical Center and complied with
all relevant ethical regulations. Recruitment of human participants
and sample acquisition were done through the University of Texas
Southwestern Medical Center Tissue Resource (STU102010-051, prin-
cipalinvestigator (PI): C. Lewis), the University of Texas Southwestern
Medical Center Human Melanoma Metabolism (HuMM) Biobank
Project (STU102017-082, PI:J. Gill; STU052018-031, PI:J. Gill), and the
University of Michigan (IRBMED no.2004-0618, PI: A. Durham and MTA
MMTA202002-0173, PI:). Gill). Writteninformed consent was obtained
from all participants. All adult patients undergoing standard-of-care
surgical resection of melanomawith sufficient tissue for research were
considered for enrolment. Those with poorly controlled diabetes were
noteligible for ®C-glucose infusions. Demographics and pertinent clini-
cal characteristics of patients are outlined in Supplementary Table 1.

Animals. All animal experiments were compliant with ethical regula-
tions and performed in accordance with protocols approved by the
Institutional Animal Care and Use Committee at the University of Texas
Southwestern Medical Center (Protocol 2016-101360). Patient-derived
melanomatumours were injected into 4- to 8-week-old male and female
NOD.CB17-Prkdc*/[2rg"™"/Sz] (NSG) mice. No formal randomization
algorithms were used and tumours were engrafted into randomly
selected cages and processed in an arbitrary order. For all experi-
ments, the maximum allowable tumour diameter was 2.5 cm and in
no experiments was this exceeded. Mice were fed normal chow and
ate ad-libitum. Mice were housed in barrier facilities managed by the
UTSW Animal Resource Center. A standard white light cycle was used
from 6:00AM to 5:59PM and a dark cycle was from 6:00PM to 5:59AM.
Room humidity was maintained between 30 and 70% and temperature
between 68 °F and 79°F.

Acquisition of human melanoma tumours. All human melanoma
samples were obtained through surgical procedures that were a part
of the patient’s standard of care. Portions of the tumour deemed by a
pathologist to be available for research were provided for the studies.
Samples were divided, and a portion of the tumour was immediately
snap-frozenin liquid nitrogen in preparation for later metabolic pro-
cessing. The other portion was placed in Leibovitz’s L-15 medium and
placed on ice for processing and injection into mice, as described
below. Allmelanomasamples (or their adjacent tissue from which they
were taken) were reviewed by a pathologist for confirmatory diagnosis.

Generation of patient-derived xenografts. Melanoma tissue was
transferred from Leibovitz’s L-15 mediuminto Kontes tubes. For larger
tissues, sampleswerefirst quickly chopped witharazorblade onasterile
Petridishbeforetransfer;1x Hank’s Balanced Salt Solutionwith200 Uml™
collagenase 1V, 50 U ml™, DNase and 5 mM CaCl, was added to the

Kontes tubes. Samples were then homogenized and digested for 20 min
at 37 °C. Cells were then filtered through a 40-pm cell strainer and
washed to obtain a single-cell suspension. Depending on the volume
of the available tissue, the entire cell suspension was divided into
threeto five equal aliquots for injectioninto mice to establish the first
generation of PDX tumours. For subsequent passages after successful
engraftment, melanoma tissue was processed as described above,
and 10,000 cells were aliquoted for each mouse. PDX melanoma cells
in staining medium were mixed 1:1 with Matrigel for a final volume of
50 pl. This solution was drawn into syringes and injected subcutane-
ouslyinto the right flank of the NSG mice. Subcutaneous tumours were
measured weekly with calipers until tumoursreached 2-2.5 cmin their
greatest diameter, at which point mice were euthanized for endpoint
tumour-metabolism assessment. To confirm accurate tumour identi-
ties after the passaging experiments, PDX tumours from passage 6
underwent geneprinting with the GenePrint®10 System to ensure they
matched the original patient and/or first passage as expected.

[“*Clglucose isotope infusions. Patients receiving [*C]glucose
infusions were generally fasted for 8-16 h, per the standard-of-care
pre-operative protocol. A peripheral intravenous line was placed on the
morning of the surgery to serve as a dedicated line for the [*Clglucose
infusion. Asterile, pyrogen-free solution of13.3% [U-*C]glucose in water
was infused as a bolus of 8 g over 10 min, followed by 4 g h™’. Standard
surgical procedures were followed for tumour resection. To assess frac-
tional enrichment in plasma, peripheral blood samples were obtained
before infusion, immediately after the bolus and every 30-60 min
thereafter, using a differentintravenous catheter than the one infusing
the [U-®C]glucose. After melanoma tissue was obtained, the infusion
was stopped. The average infusion duration was around 3 h. This infu-
sionapproach was consistent with previously described studies™"".

Mouse infusions were conducted when PDX subcutaneous
tumours were 2-2.5 cmin diameter. Mice were fasted for 16 h prior to
infusion. Mice were anaesthetized and a27-G catheter was placed in the
lateral tail vein. [U-*Clglucose was infused as a bolus of 0.4125 mg g™
of body mass over 1 min in 125 pl of normal saline, followed by
continuous infusion of 0.008 mg g body mass per minutefor3 h(ina
volume of 150 plh™). To assess fractional enrichmentin plasma, 20 pl of
blood was collected retro-orbitally at baseline and after 30, 60,120 and
180 min of infusion. At the end of the infusion, mice were euthanized,
and tumours were collected and divided for sample processing (one
portion for snap-freezing for metabolic analysis; another for digesting
and passaging into additional generations of mice).

Sample processing. The mass of tissue samples processed generally
ranged from 25 mg to 100 mg. For extraction of metabolites for
metabolomic analysis, frozen tissues were homogenized manually with
apestleinanice-cold mixture of methanol and water (80:20, vol/vol).
After homogenization, samples were centrifuged at 13,000g for
15 min at 4 °C. Supernatants were transferred to a new Eppendorf
tube and equivalent amounts (per BCA quantification) were dried
downandresuspendedin 80% acetonitrile for analysis. HILIC chroma-
tographicseparation of metabolites was performed through a Millipore
ZIC-pHILIC column (5 pm, 2.1 x 150 mm) with a binary solvent system
of 10 mM ammonium acetate in water (pH 9.8) and acetonitrile with
a constant flow rate of 0.25 ml min™. Metabolites were detected on a
ThermoScientific QExactive HF-X hybrid quadrupole orbitrap high-
resolution mass spectrometer (HRMS) coupled to a Vanquish UHPLC.

For extraction of metabolites for fractional enrichment analysis,
frozen tissues were homogenized with a Qiagen TissueRuptor in an
ice-cold mixture of methanol and water (80:20, vol/vol). Samples
were then taken through three freeze-thaw cycles and centrifuged
for20 min at16,000g. For aninternal control, 1 pl of d27-myristic acid
was added to the supernatant. Samples were evaporated and resus-
pendedin40 plofanhydrous pyridine with 10 mg mlI™ methoxyamine.
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Samples were then mixed with 60 pl of N-(tert-butyldimethylsilyl)-
N-methyltrifluoroacetamide (MTBSTFA) derivatization reagent
and transferred to GC-MS vials. Samples were incubated for 1 h at
70°C,and1-2 pl wasinjected for analysis. Samples were analysed using
GC-MS (an Agilent 6890 gas chromatograph coupled to an Agilent
5973.N mass selective detector or 7890 gas chromatograph coupled
toan Agilent 5975C mass selective detector).

Mass spectrometry analysis. For metabolomics, metabolite identi-
ties were confirmed using three criteria: (1) the precursor ion m/z
matched the theoretical mass predicted by the chemical formulawithin
5ppm; (2) fragmention spectramatched known metabolite fragments
within 5 ppm; and (3) the metabolite retention time fell within 5% of
the retention time of a purified standard run with the same method.
Relative quantitation of the metabolites was done by integrating
the chromatographic peak area of the precursor ion withina 5 ppm
tolerance. To calculate relative abundance, the peak area was divided
by the total ion chromatogram (TIC) for that sample.

Forisotope tracing, unlabelled derivatized metabolite standards
were previously used to generate an in-house library of mass spectra
and served as references for the experimental metabolite peaks. The
metabolite ion distribution and retention time of each metabolite
peak were matched to ensure correct identification. The abundance
of each metabolite ion was calculated and corrected for naturally
abundant isotopes using a customized R script, found at the GitHub
repository (https://github.com/wencgu/nac).

Histology and Ki-67 staining. Portions of tumour samples not used
for metabolomics were placed in formalin and processed by either
UTSW Department of Clinical Laboratory Services, the UTSW Tissue
Management Shared Resource (TMSR), or the UTSW Histo Pathology
Core. All histologic assessments were performed by aboard-certified
dermatopathologist (T.V.). Ki-67 staining was performed by the UTSW
TMSR using the rabbit monoclonal antibody anti-Ki67 (Cell Signaling
Technology, no. 9027). Immunohistochemical analysis was per-
formed on a Leica Bond RX system. In brief, the slides were baked
for 30 min at 60 °C, then deparaffinized before the antigen retrieval
step. Heat-induced antigen retrieval was performed at pH 6 for 20 min.
The tissue was incubated with a peroxidase block and then antibody
(1:500) for 15 min. The staining was visualized using the Bond Polymer
Refine detection system without the Bond post-primary reagent.

Materials availability. There are restrictions to the availability of
human-derived specimensin this manuscript due tosharing limitations
set by the Institutional Review Board. In cases in which samples may
be shared, amaterials-transfer agreement (MTA) must be obtained.

Quantification and statistical analysis
Study design. Participant age and sex were reported by the human
participants that were receiving melanoma surgical resections at our
institution. Final sample size was dictated by the subsequent number of
successfully xenografted tumours. All available samples were obtained
andused for downstream analyses. No data were excluded. Although no
statisticalmethods were used to pre-determine sample sizes, our sample
sizesare similar to those reported using this infusion approachin previ-
ousstudies"*', For all analyses, data distribution was examined by den-
sity plotand was assumed to be normal, but this was not formally tested.
Data collection and analysis were not performed blind to the con-
ditions of the experiment. Because analyses were performed computa-
tionally using predefined algorithms applied uniformly across samples,
the potential for observer bias was effectively eliminated.

Analysis of isotope tracing data. To evaluate pyruvate dehydroge-
nase’s contribution to the TCA cycle, we used the ratio between citrate
M+2 over pyruvate M+3 (CitM2/PyrM3 ratio) as a proxy and calculated

this ratio for each sample. Samples from four origins—MP4A, MP8A,
MP9D and MP10—were selected. Each set contained three types of
samples—a single patient tumour (P0O), multiple early-passage PDXs
(P2/P3) and multiple late-passage PDXs (P6). A two-way ANOVA was
conducted to explore the effects of ‘origin’ and ‘type’ on the CitM2/
PyrM3 ratio. A two-sample ¢-test was also performed to evaluate dif-
ferences between early- and late-passage PDXs. Results are visualized
in Extended Data Figure 2a.

To evaluate the variability of additional labelled intermediates
fromtheinfusionexperimentsin patient tumour (PO) and early passage
(P2/P3) PDXs, we included 3-phosphoglycerate M+3, pyruvate M+3,
lactate M+3, alanine M+3, citrate M+2, glutamate M+2 (which exchanges
with alpha-ketoglutarate M+2), succinate M+2, fumarate M+2, malate
M+2 and aspartate M+2 (which exchanges with oxaloacetate M+2). The
levels of these labelled intermediates were normalized to the glucose
M+6 valuesinthe same sample, and atwo-way ANOVA was conducted
to explore the effects of ‘origin’ and ‘type’ on these labelled markers,
asvisualized in Extended Data Figure 1b.

Metabolomics data processing. Metabolites not detected in more
than 90% of the samples were excluded. Metabolites detected in all
samples, with medianlog,, intensities between 5 and 10, were used to
constructanormalizationfactor that represents total signal abundance
in each sample. This normalization factor was computed by scaling
individual values by the median intensity of each metabolite and subse-
quently taking the median of these ratios sample-wise. The normalized
data were then log,,-transformed, and missing values were imputed
based on the minimum non-missing values within each metabolite.
All processed metabolomics data are available in the source data file
associated with the paper.

Analysis of 18 matched patient tumour and PDX samples (‘Batch 1').
Metabolomics association with clinical features and sample types.
For the metabolomics comparison of patient tumours and their PDX
counterparts, 18 matched patient tumours and early-generation PDX
samples were selected for analysis. Only one patient-PDX pair was
selected per patient to prevent data skewing. Fifteen sample pairs were
obtained from UTSW samples, outlined in Supplementary Table1,and
three sample pairs were obtained through an MTA with the University
of Michigan.

Selected features including human or PDX (human/PDX) status,
pigment status, BRAF mutation status (binary), sex and primary site,
lymph node or metastasis designation were analysed through univari-
ate statistical methods. For each selected feature, non-missing data
wereisolated, and alinear model was fit using the ImFit function from
the limma package, followed by empirical Bayes moderation®. Sig-
nificant metabolites were identified on the basis of adjusted P values
(threshold < 0.05). Additionally, the variability of metabolite expres-
sionacross the selected features was assessed to understand the vari-
ance component attributed to each factor. Likewise, we also explored
the variance associated with human or PDX and pigment status in a
multivariate linear model, as each of these features significantly asso-
ciate asubset of metabolites in the univariate tests. This corresponds
to data shown in Fig. 2b. From this multivariate model, we identified
metabolites associated with human/PDX sample status to generate the
volcano plotinFig. 2c, with the fold change computed from converting
datafromthelog,,tolog,scale.Selected metabolites were comparedin
Fig.2d-gusing the non-parametric Mann-Whitney test because some
of the metabolites contain imputed values because of missing data.

Matching of patient and PDX samples. To compare the similarity
between patientand PDX samples from the same origin versus different
origins, all metabolites were z-transformed to compute Euclidean
distance. The pairwise distance between a patient sample and a PDX
sample was then compared with the Mann-Whitney test (Fig. 2k).
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Analysis of patient tumour and matched serially passaged PDX
samples (‘Batch 2’). Matching of patient and PDX samples. As metabo-
lomics data for the serially passaged PDX samples and the matched
patient tumours were acquiredin different batches, we performed asepa-
rate statistical test toidentify metabolites that differ between the patient
tumour and PDX. A linear mixed-effects model was employed using the
Imefunctionfromthe nime package. This model was structured toinclude
sample type (human tumour or PDX) as a fixed effect while accounting
for the random effects associated with variations between origins. We
determined Pvalues for the sample type and identified metabolites with
Pvalues larger than 0.1 as species-agnostic metabolites. Z-transformed
data of these species-agnostic metabolites were then used to compute
Euclidean distance. When the distance betweenaPDX and atumour from
thesame originisthe shortestamongall pairwise PDX-tumour distances
forthe PDX, itis considered a correct match to the patient (Fig. 2I).

To determine what fraction of PDX metabolites were most closely
matched to the correct patient tumour origin, we decomposed the
total Euclideandistance between PDX and patient tumours into squared
distances contributed by individual metabolites. This approach
allowed us to identify the specific contributions of each metabolite
to similarity or divergence.

Pairwise Euclidean distance
The total Euclidean distance is defined as:

Nmetabolites

Dyorar = =y

k=1

where x; is the value of metabolite k in the PDX sample, y, is the value
of metabolite k in the patient sample, and n is the total number of
selected metabolites (144).

Squared distance contributions
For each metabolite k, the squared distance contributionis:

d = =y)’

To assess each metabolite’s role in similarity, we calculated the
difference betwet:%n df“‘“‘ (for the matched pair) and the mean squared
. —Jfon—matc .
distance d; (for non-matched pairs):

- non—match

Adk — dkmatch —dk

If (Ad, < 0), the metabolite contributes to greater similarity
between matched pairs.

If (Ad, > 0), the metabolite contributes to divergence between
matched pairs.

To quantify how many metabolites contribute to lower Euclidean
distances (and hence higher similarity) between patient-PDX pairs,
we counted the number of metabolites with a negative Ad,, which is
presented as a histogram (Extended Data Fig. 4b). A heatmap of Ad,
across all 171 matches is presented in Extended Data Figure 4a.

Metabolomics associated with serial passaging or sample originin
PDX samples. To evaluate how origin and passage affect the metabo-
lite profiles within the PDX samples from P1to P6, we used ImFit from
the limma package to fit amultivariate modelincluding both features
as fixed effects. On the basis of this model, we partitioned the overall
variance observed in metabolites into components attributable to
differences in passage numbers and tumour types, thereby enabling
adeeper understanding of how these factors individually and jointly
affect the metabolomic profiles. This corresponds to data shown in
Fig.3d. Pathway analysis was subsequently performed using metabo-
litesidentified as significantly altered owing to passaging effectsinthe
multivariate analysis (Fig. 3a,b).

To evaluate fidelity of metabolites between patient tumour and
late-passage PDXs, we computed Pearson correlation coefficients
between PO and P6 samples for each metabolite. Out of 305 metabo-
lites,102 were selected as characteristic metabolites on the basis of the
following criteria: >30% variation explained by the origin and Pearson
correlation >0.3. These metabolites were used to cluster the samplesin
Extended DataFig. 6. The PO and P6 correlation and origin-associated
variation were also used to identify high-fidelity metabolites reviewed
inFig.3h-k.

Pathway analysis. Metabolic pathway enrichment analyses (in Figs. 2h
and 3a,b) were performed using hypergeometric tests with metabo-
lites detected in our custom metabolomics data as the background
reference. The metabolic signature sets we queried include the Kyoto
Encyclopedia of Genes and Genomes (KEGG), The Small Molecule
Pathway Database (SMPDB) pathway libraries and ‘main class’ metabo-
lite sets from RefMet*’, adapted from MetaboAnalyst v.5.0 (ref. 31).
Significant metabolites were visualized in heatmaps (Figs. 2i and 3c)
using R package ComplexHeatmap™.

Software and code

Patient tumour data were collected in and stored using REDCap
(v.14.4.1). Data analysis in this study was performed using R v.4.2.3
(2023-03-15). The following packages were utilized: ComplexHeatmap
(v.2.14.0), Hmisc (v.5.1-0), RColorBrewer (v.1.1-3), data.table (v.1.15.4),
dplyr(v.1.1.4), ggbeeswarm (v.0.7.2), ggplot2 (v.3.5.0), ggpubr (v.0.6.0),
ggrepel (v.0.9.5), ggside (v.0.3.1), limma (v.3.54.2), nime (v.3.1-162),
openxlsx (v.4.2.5.2), patchwork (v.1.2.0.9000), reshape2 (v.1.4.4), scales
(v.1.3.0), stringr (v.1.5.1), tidyr (v.1.3.1), variancePartition (v.1.28.9) and
viridis (v.0.6.3). Custom scripts for metabolomics analysis are available
in the following GitHub repository: https://github.com/cailing20/
Melanoma_PDX_metabolomics. A subset of graphs and data analysis
were performed using GraphPad Prism (v.10.3.1).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Metabolomics and isotope-tracing data derived from human and PDX
samples are available in the Supplementary Tables and Supplementary
Datafile associated with this manuscript. They are also publicly avail-
able from Dryad (https://doi.org/10.5061/dryad.dncjsxm91). Source
data are provided with this paper.

Code availability
Alloriginal code has beendeposited at https://github.com/cailing20/
Melanoma_PDX_metabolomics and is publicly available.
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Extended DataFig. 2| *C enrichment in early and late passage PDX relative to
patient tumors. (a) Four matched sets of citrate m + 2/pyruvate m + 3 ratios are
shown for tumors from: patient, early passage PDX, and late passage PDX. PDX
dataare mean + SEM (with each data point representing amean of 3 values from
anindividual PDX tumor), n = 3-5, withindividual n detailed on the x-axis. P-values
were calculated using two-way ANOVA, modeling the labeling ratio as a function

of sample type and origin. (b) Each plot shows the C enrichment of selected
metabolites normalized to tumor Glucose M + 6, with results for early passage
(P2 or P3,shownin black) and late passage (P6, shown in grey) PDXs. PDX data
are mean + SEM, with n as follows: MP4A (early passage n = 4, late passage n = 5);
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(a) Heatmap of metabolite-specific contributions to patient-PDX matching.
The heatmap displays the Adk values (difference between matched and average
non-matched Euclidean distances) for each of the 143 metabolites across

171 matched patient-PDX pairs. Columns represent metabolites, while rows
correspond to individual patient-PDX matches. Metabolites with negative Adk
(blue) contribute to greater similarity in matched pairs, while positive Adk (red)

indicate divergence. The variability in metabolite contributions across pairs
reflects heterogeneity in patient-PDX metabolite profiles. (b) Histogram of
metabolite contributions to similarity. The histogram summarizes the number
of metabolites (Adk < 0) contributing to greater similarity for each matched
patient-PDX pair. The majority of matches exhibit 90-130 metabolites with
Adk <0, indicating that most non-host-related metabolites play arole indriving
patient-PDX resemblance.
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Data collection  Patient tumor data was collected in and stored using REDCap 14.4.1.

Data analysis Data analysis in this study was performed using R version 4.2.3 (2023-03-15). The following packages were utilized: ComplexHeatmap (2.14.0),
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(1.3.1), variancePartition (1.28.9), viridis (0.6.3). Custom scripts for metabolomics analysis are available in the following GitHub repository:
https://github.com/cailing20/Melanoma_PDX_metabolomics. A subset of graphs and data analysis were performed using GraphPad Prism
10.3.1.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Metabolomics and isotope tracing data derived from human and PDX samples are available in the Supplementary Tables and data files associated with this
manuscript. They are also available from Dryad (https://doi.org/10.5061/dryad.dncjsxm91).

For pathway analysis, the metabolic signature sets we queried include the Kyoto Encyclopedia of Genes and Genomes (KEGG), The Small Molecule Pathway
Database (SMPDB) pathway libraries and “main class” metabolite sets from RefMet, adapted from MetaboAnalyst 5.0.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Human participants were recruited to the study independent of their sex or gender. The sex of human participants is
documented in Table 1 and was determined based on self-reporting. Sex was one of the covariates analyzed in Figure 2A and
was not a source of significant metabolic variation across tumors.

Reporting on race, ethnicity, or  Human participants were recruited to the study independent of their race, ethnicity, or other socially relevant groupings.

other socially relevant These variables are not reported or utilized as covariates in these studies.
groupings
Population characteristics All human participants with melanoma tissue available for research were eligible for inclusion in these studies. Relevant

patient and tumor data are included in Table 1.
Recruitment Patients undergoing melanoma surgery and with tissue available for research were recruited for participation. Unbiased
approaches were used to identify patients including screening of the electronic health record for key diagnoses codes and

through the UTSW Multidisciplinary Melanoma Tumor Board.

Ethics oversight The UTSW Institutional Review Board approved this project. IRB approval numbers are indicated in the manuscript.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size was dictated by the number of human participants that were receiving melanoma surgical resections at our institution and the
subsequent number of successfully xenografted tumors. All available samples were obtained and used for downstream analyses.

Data exclusions  No data was excluded.

Replication True replication is not possible in the human arm of the study due to each tumor sample originating from one unique patient. However,
during the PDX portion of this study, reproducibility was built into the study design with sampling from multiple xenografted mice per passage
per tumor (see Figure S2).

Randomization  This study does not involve allocation into specific experimental groups as it is observational in nature (eg assessing the differences across
variables such as host species, pigmentation, etc. that are naturally occurring and fixed).

Blinding Blinding was not relevant to this study because all analyses were performed computationally using algorithms applied uniformly across
samples. The outcomes were determined by objective parameters derived from sample annotations (e.g. sample identity, mutation status,
etc), without subjective interpretation influencing data processing or outcome classification. Because of the automated and annotation-driven
nature of the analytic pipeline, the potential for observer bias was largely mitigated.

>
Q
=)
e
(D
O
@)
=4
o
=
—
(D
O
@)
=
)
(@]
wv
C
=
=
)
<




Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
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Antibodies
Antibodies used rabbit mAb Anti-Ki67 (Cell Signaling Technology, #9027)
Validation This antibody has been validated by the manufacturer for use in immunohistochemistry against human Ki-67 (as used in this

manuscript). Additionally, it has been used widely with over 450 citations in the literature.

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals All mice used in these experiments were NOD.CB17-Prkdcscidll2rgtm1Wijl/Sz) (NSG) mice injected at an age of 4- to 8-weeks old.
Housing conditions are described in the manuscript.

Wild animals No wild animals were used.

Reporting on sex Sex was not considered in the study design or methods. No formal randomization algorithms were used and tumors were engrafted
into randomly selected cages of either sex and processed in an arbitrary order.

Field-collected samples  No field-collected samples were used.

Ethics oversight All animal experiments were approved by the Institutional Animal Care and Use Committee at the University of Texas Southwestern
Medical Center (Protocol 2016-101360).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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