Table 2 Performance of different GNN architectures for regression tasks
From: Geometry-enhanced molecular representation learning for property prediction
 | RMSE | MAE | ||||
---|---|---|---|---|---|---|
Method | ESOL | FreeSolv | Lipo | QM7 | QM8 | QM9 |
GIN19 | 1.067(0.051) | 2.346(0.122) | 0.757(0.022) | 110.3(7.2) | 0.0199(0.0002) | 0.00886(0.00005) |
GAT46 | 1.556(0.085) | 3.559(0.050) | 1.021(0.029) | 103.0(4.4) | 0.0224(0.0005) | 0.01117(0.00018) |
GCN47 | 1.211(0.052) | 3.174(0.308) | 0.773(0.007) | 100.0(3.8) | 0.0203(0.0005) | 0.00923(0.00019) |
D-MPNN43 | 1.050(0.008) | 2.082(0.082) | 0.683(0.016) | 103.5(8.6) | a0.0190(0.0001) | 0.00814(0.00009) |
AttentiveFP44 | a0.877(0.029) | a2.073(0.183) | a0.721(0.001) | a72.0(2.7) | 0.0179(0.0001) | a0.00812(0.00001) |
GTransformer4 | 2.298(0.118) | 4.480(0.155) | 1.112(0.029) | 161.3(7.1) | 0.0361(0.0008) | 0.00923(0.00019) |
SGCN16 | 1.629(0.001) | 2.363(0.050) | 1.021(0.013) | 131.3(11.6) | 0.0285(0.0005) | 0.01459(0.00055) |
DimeNet17 | 0.878(0.023) | 2.094(0.118) | 0.727(0.019) | 95.6(4.1) | 0.0215(0.0003) | 0.01031(0.00076) |
HMGNN6 | 1.39(0.073) | 2.123(0.179) | 2.116(0.473) | 101.6(3.2) | 0.0249(0.0004) | 0.01239(0.0001) |
GeoGNN | 0.832(0.010) | 1.857(0.071) | 0.666(0.015) | 59.0(3.4) | 0.0173(0.0004) | 0.00746(0.00003) |