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Predicting the prevalence of complex genetic 
diseases from individual genotype profiles 
using capsule networks

Xiao Luo1,2,3, Xiongbin Kang1,2,3 & Alexander Schönhuth    1,2 

Diseases that have a complex genetic architecture tend to suffer from 
considerable amounts of genetic variants that, although playing a role in 
the disease, have not yet been revealed as such. Two major causes for this 
phenomenon are genetic variants that do not stack up effects, but interact 
in complex ways; in addition, as recently suggested, the omnigenic model 
postulates that variants interact in a holistic manner to establish disease 
phenotypes. Here we present DiseaseCapsule, as a capsule-network-based 
approach that explicitly addresses to capture the hierarchical structure 
of the underlying genome data, and has the potential to fully capture the 
non-linear relationships between variants and disease. DiseaseCapsule 
is the first such approach to operate in a whole-genome manner when 
predicting disease occurrence from individual genotype profiles. In 
experiments, we evaluated DiseaseCapsule on amyotrophic lateral 
sclerosis (ALS) and Parkinson’s disease, with a particular emphasis 
on ALS, which is known to have a complex genetic architecture and is 
affected by 40% missing heritability. On ALS, DiseaseCapsule achieves 
86.9% accuracy on hold-out test data in predicting disease occurrence, 
thereby outperforming all other approaches by large margins. Also, 
DiseaseCapsule required sufficiently less training data for reaching 
optimal performance. Last but not least, the systematic exploitation of  
the network architecture yielded 922 genes of particular interest, and  
644 ‘non-additive’ genes that are crucial factors in DiseaseCapsule, but 
remain masked within linear schemes.

Amyotrophic lateral sclerosis (ALS) is a rare primary neurodegenerative 
syndrome characterized by human motor system degeneration. So far, 
ALS is still not curable, but symptomatic treatment can significantly 
improve life quality and survival of the affected1. As the diagnosis of ALS 
often comes at a considerable delay2, most patients miss the advanta-
geous opportunities of early intervention3; for example, recent studies 
show that NAD+ replenishment can improve clinical features of patients 
with ALS, indicating an encouraging potential novel treatment for 

ALS4,5. These explain why efficient methods and tools for predicting 
the prevalence and occurrence of ALS have life-saving potential.

Various studies6–8 have demonstrated that ALS is a complex disor-
der that has an encompassing genetic background9 and its heritability 
amounts to 50% (ref. 10). However, the genetic variants delivered by 
genome-wide association studies (GWAS) have been amounting to 
only 10% of the heritability11 of ALS. It is therefore reasonable to assume 
that the missing heritability of ALS amounts to approximately 40%.
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superior performance29 had been remaining. However, in clinical appli-
cations, data can be expensive, and the inability to explain lets one 
remain with ethical concerns30,31.

Capsule networks (CapsNets)32,33 were presented as a remedy for 
addressing such critical issues. The major motivation for CapsNets 
was to classify distorted or entangled patterns in images correctly. 
The improved modelling of spatial hierarchies, as empowered by 
the ‘viewpoint invariance property’, led to major improvements with 
respect to the accuracy of the predictions. Beyond that, the ‘viewpoint 
invariance property’ is the likely reason for the reduced requirements 
in terms of training data that one observed in comparison with CNNs. 
Further, although not primarily intended, CapsNets also enabled a 
human-mind-friendly interpretation of results.

Therefore, CapsNets have shown to have the potential to resolve 
two issues of primary concern in biomedical applications. Recent stud-
ies indicate that the potential of CapsNets to learn complex hierarchical 
structures can indeed be leveraged also for biomedical data34,35. These 
applications of CapsNets add to the earlier (innumerous) applica-
tions36–40 of ordinary CNNs or machine learning models in biology  
or medicine.

There also have been recent applications of deep learning when 
predicting phenotype from genotype profiles, such as the detection 
of epistasis41,42, or the prediction of ALS from genotype profiles of the 
promoter regions from four chromosomes43. Last but not least, an 
approach was presented that models non-linearities within the range 
of LD (linkage disequilibrium) blocks, while joining effects of LD blocks 
in a linear manner44, which prevents recognition of non-linear interac-
tions across LD blocks.

The omnigenic model12 requires the modelling of gene–gene inter-
actions across the entire genome, in a way that allows genes to interact 
in non-additive ways for establishing their joint effects. From this point 
of view, none of the approaches presented so far in the literature builds 
on the omnigenic model as its foundation.

The striking amount of missing heritability, or even the idea that 
genotype–phenotype relationships are based on the omnigenic12,13 
and not the polygenic model—where only the polygenic model renders 
the concept of missing heritability a truly reasonable concept—is sup-
posed to be among the major reasons for the poor prognosis of ALS. 
In summary, the major methodological challenges are as follows: (1) 
the association signals of complex diseases can spread across most 
of the genome instead of involving just a few core pathways12,14, which 
means that the omnigenic model applies; (2) when following the poly-
genic model, the corresponding linear models that underlie the GWAS 
analysis techniques cannot detect non-additive genetic effects such as 
epistasis15,16. Several studies have modelled gene–gene interactions17–19. 
However, only a few of them have been directly applied to predicting 
the prevalence of complex genetic diseases.

Methods that aim to exploit non-additive relationships have 
left behind various open questions. When being based on statisti-
cal hypothesis testing, they tend to suffer from a lack of power. On 
the other hand, approaches that are based on potentially omnigenic 
machine learning models are relatively rare, and so far have left ample 
room for improvements.

Deep learning, as a predominant machine learning approach, has 
established the state of the art in many areas. Extensions of the univer-
sal approximation theorem20 provide a theoretical basis for the insight 
that not only the width of the layers but also the depth of the network 
is crucial for reaching superior levels of prediction accuracy21,22. The 
intuitive idea is to detect and arrange patterns in a hierarchical way, 
which leads to elevated levels of resolution when mapping the data23.

Convolutional neural networks (CNNs) reflect network archi-
tectures that are particularly suitable to implement the idea of hier-
archies of patterns 24. While CNNs such as AlexNet22, VGG25, ResNet26 
and DenseNet27 indeed achieved the breakthrough successes in deep 
learning, major criticisms with regard to interpretability (‘deep black 
boxes’)28 and the enormous demand for training data for reaching 
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Fig. 1 | An overview of the workflow. In the tables for each gene, S1, S2, ..., Si represent sample IDs, and PC1, PC2, ..., PCk represent the 1, 2, ..., k-th principal component of 
each Gene-PCA, respectively. The number of PC is 8 or 4 or 1, which depends on the length of the input, that is, the number of SNPs.
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Our approach will be the first approach to model whole-genome 
wide, non-additive interactions between genes. For that, it takes a route 
that one can consider the opposite of the protocol presented in ref. 44: 
we summarize local (gene-range) effects of variants linearly, and then 
combine the local effects in non-additive ways globally (across the 
entire genome). In this Article, we present a deep neural network-based 
approach that caters to the omnigenic model as a conceptual basis. 
More specifically, from a methodical point of view, we present the 
first approach that employs capsule networks, as an advanced deep 
neural network class of functions, to map genotypes onto phenotypes.

We refer the interested reader to Supplementary Note 1 for full 
details on arguments referring to deep learning and capsule networks 
raised in the introduction.

Results
We present DiseaseCapsule as a framework that can handle 
genome-scale variant input and reveal non-additive interactions across 
genes. Please see Supplementary Note 2 for an overview of the approach 
and a summarizing account of the results; here, for the sake of repro-
ducibility, we will report results in sufficient detail. For all methodical 
details, see Methods.

Workflow
DiseaseCapsule implements a two-step approach to successfully deal 
with genome-scale variant screens. The first step consists of a novel 
protocol to perform dimensionality reduction. This protocol enables to 
capture millions of polymorphic loci in a way that enables subsequent 
application of non-additive methods. The second step then is the appli-
cation of capsule networks, as a fundamentally non-additive model, to 
the reduced data. These two steps are preceded by basic quality control 

(QC) and batch effect removal, as well as a basic step to filter out vari-
ants that do not matter (regardless of the underlying approach). For an 
illustration, see Fig. 1. In the following, we describe the essence of the 
two steps, and refer the reader to Methods for full methodical details. In 
the following, the data on which DiseaseCapsule and competing meth-
ods are validated refers to 10,405 DNA-array-based, whole-genome 
genotype samples from the Dutch cohort of Project MinE8,11,45.

For the first step, the challenge is the fact that the application of 
principal component analysis (PCA) across the polymorphic loci of the 
entire genome—which is the standard protocol to reduce the dimen-
sionality of the data—annihilates the effects of subsequent application 
of genome-wide, non-linear models in so far as non-linear interactions 
between global, linear combinations of variants remain meaning less 
for the analyst. Our solution is to apply linear techniques, such as PCA, 
only for small, biologically well-defined functional units of the genome 
(that is, genes). As linearization happens only within small regions of 
the genome, non-linear interactions across such small regions can 
still be detected. Beyond this theoretical reasoning, our experiments 
confirm these ideas by revealing the idea of only local PCA as the consid-
erably stronger approach (Table 1 and Supplementary Tables 1 and 2). 
For more details about descriptions of the challenge and the solution, 
see Supplementary Note 3.

For the second step, see Fig. 2 for an illustration and a brief descrip-
tion of the architecture of DiseaseCapsule; for full details, see Methods.

Predicting ALS: Gene-PCA + DiseaseCapsule yields optimal 
performance
For the following, see Table 1. We evaluated the performance of Disease-
Capsule with various state-of-the-art approaches, including predomi-
nant machine learning approaches and polygenic risk scores (PRS). To 
further evaluate the contribution of the novel gene-scale dimension-
ality reduction protocol, we combined each method with standard 
genome-scale PCA (‘All-PCA’) on the one hand, and the novel, local 
PCA-based protocol (‘Gene-PCA’) on the other hand. We discuss results 
briefly in the following; for full details, see Supplementary Note 4.

The first observation is that all neural network-based (so fully 
non-additive) models profit from using ‘Gene-PCA’ instead of ‘All-PCA’: 

Table 1 | Classification results for ALS test data. The values 
are represented as percentages. SVM, support vector 
machine. a, b, c and d represent PRS-based models that the 
SNPs were selected by GWAS with the threshold P < 5 × 10−2, 
P < 5 × 10−4, P < 5 × 10−6 and P < 5 × 10−8, respectively. Note that 
the best score is marked in bold

Dimension 
reduction

Classifier Accuracy Precision Recall F1 score

Gene-PCA DiseaseCapsule 86.9 85.2 89.4 87.2

Gene-PCA MLP 84.2 92.2 74.8 82.6

Gene-PCA Logistic 
regression

78.2 71.1 94.8 81.3

Gene-PCA SVM 76.3 94.8 55.8 70.3

Gene-PCA CNN 74.5 86.1 58.5 69.7

Gene-PCA Random forest 63.3 73.0 42.1 53.4

Gene-PCA AdaBoost 62.7 86.3 30.2 44.7

All-PCA DiseaseCapsule 81.9 80.7 83.8 82.2

All-PCA Logistic 
regression

78.1 70.7 96.0 81.4

All-PCA SVM 76.3 94.8 55.8 70.3

All-PCA MLP 72.5 85.2 54.4 66.4

All-PCA AdaBoost 67.6 84.8 42.9 57.0

All-PCA Random forest 64.1 73.3 44.4 55.3

All-PCA CNN 53.8 54.8 42.5 47.9

– PRSa 81.8 91.5 70.2 79.4

– PRSb 78.5 84.4 69.8 76.4

– PRSc 74.2 76.8 69.4 72.9

– PRSd 63.5 63.5 63.3 63.4
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Fig. 2 | The architecture of DiseaseCapsule. The input is the concatenation 
of the compressed features from all Gene-PCA models, where each feature 
corresponds to one Gene-PCA. The number of Gene-PCAs is 75,584, so the 
dimensionality of the input is 75,584 × 1. DiseaseCapsule consists of three 
layers: a fully connected layer (FC), a primary capsule layer (PrimaryCaps) and 
a phenotype capsule layer (PhenoCaps). The FC layer consists of 150 neurons 
followed by ReLU as activation function. The PrimaryCaps is composed of  
32 primary capsules. Each of them involves four different convolutional filters 
(kernel size 5 × 1, stride 2, no padding). PhenoCaps consists of two 16-dimensional 
vectors. Each phenotype capsule receives input from all 32 primary capsules. The 
output is a binary classification label (Healthy or ALS).
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the accuracy of DiseaseCapsule, multilayer perceptron (MLP) and CNN 
increases from 81.9 to 86.9, from 72.5 to 84.2 and from 53.8 to 74.5, 
respectively. All other approaches are run on ‘Gene-PCA’ or ‘All-PCA’ 
at near-identical performance. This points out that Gene-PCA pre-
dominantly caters to neural network models. From a conceptual point 
of view, this was to be anticipated, because Gene-PCA preserves the 
potential to detect non-linearities across genes, whereas ordinary PCA 
does not. Since applying local linearization before a linear model-based 
analysis still results in an approach that is linear overall, as the concat-
enation of two linear functions, linear methods cannot profit from 
Gene-PCA; still they fail to pick up non-linearities.

In an overall account, DiseaseCapsule achieves a prediction accu-
racy of 86.9, which establishes the top performance, rivalled only by 
MLP, as an alternative non-additive approach (84.2). The third-best 
performance is achieved by DiseaseCapsule on ‘All-PCA’ (81.9), closely 
followed by PRS at a GWAS threshold of 5 × 10−2 (81.8). All other perfor-
mance rates drop below 79. This means in particular that, in a relative 
comparison with PRS, as a standard prediction technique, Disease-
Capsule leaves 28% fewer individuals misclassified, which establishes 
considerable, relevant progress, both from the point of view of clini-
cal applications and from the point of view of predictive power in 
general. It also establishes a first quantification of the contribution of 
non-additive constellations of variants/genes to identifying ALS (for 
further analyses, see Supplementary Note 4).

DiseaseCapsule also clearly reveals itself as the most balanced and 
strongest approach overall: DiseaseCapsule achieves precision and 
recall of 85.2 and 89.4, respectively, which combines into an F1 score 
of 87.2, which is unrivalled by the other approaches.

In addition, results show that, compared with other classifiers, 
DiseaseCapsule is less sensitive to batch-induced or cohort-specific 
confounding effects (Supplementary Table 3) and needs less data for 
training (Supplementary Table 4). For a fully detailed discussion of 
the corresponding experiments, see Supplementary Notes 5 and 6.

Validating DiseaseCapsule on PD
We also validated the predictive performance of DiseaseCapsule in 
Parkinson’s disease (PD) data46–49, following the exact same protocol 
as for ALS. In a summary of results, in analogy to ALS, Gene-PCA + Dis-
easeCapsule outperforms all other approaches in terms of accuracy 
(62.0%), recall (68.1%) and F1 score (64.2%) in PD (Supplementary  
Table 5). For more details, see Supplementary Note 7. The loss of accu-
racy in comparison with ALS, observed for all methods, can be attrib-
uted to the relatively small amounts of polymorphic loci inspected 

for the PD cohorts, which has a clear impact on the expressiveness of 
all models.

Increasing number of genes improves classification
For the classification performance of DiseaseCapsule when varying 
the number of genes, see Supplementary Fig. 1, and for full details, 
see Supplementary Note 8. It is immediately evident that increasing 
the number of genes improves results in all aspects. This arguably sup-
ports the hypothesis that the omnigenic model12 is in effect. It remains 
to design a strategy through which to select the genes that are most 
relevant for classification; most likely, such genes have key roles in 
establishing or preventing the disease.

Determining genes decisive for classification
For explanations in the following, see Extended Data Fig. 1 and see 
‘The architecture and parameters of DiseaseCapsule’ and ‘Model 
interpretation’ subsections in Methods. While i indexes primary cap-
sules, j indexes higher-level (‘phenotype’) capsules. In the Disease-
Capsule network, the vectors of the two phenotype capsules ‘ALS’ and 
‘Healthy’ (sj in Extended Data Fig. 1) consist of linear combinations of 
output vectors provided by the primary capsules (uj∣i in Extended Data  
Fig. 1). The linear weights cij that connect the sj with the uj∣i are referred 
to as coupling coefficients. Unlike ordinary parameters of the network 
(for example, Wij in Extended Data Fig. 1), the cij are not learned (using 
backpropagation), but determined through the dynamic routing pro-
cedure, as a novel and characteristic component of capsule networks. 
The dynamic routing algorithm induces situations that favour only 
few—often even only one—large cij over several equally large cij for each i.  
This means that each primary capsule predominantly ‘routes’ its output 
to only few or even only one higher-level capsule.

Primary capsules that have great coupling coefficients in connec-
tion with the ‘ALS’ capsule are likely to code for constellations of genes 
that drive the disease. Vice versa, primary capsules sharing links with 
the ‘Healthy’ output capsule that are equipped with large coupling 
coefficients code for genes whose activation (or de-activation) distin-
guishes healthy individuals from the ones affected with ALS.

Primary capsules that predominantly route their output to one of 
the phenotype capsules, ‘ALS’ or ‘Healthy’, are crucial factors for the 
classification process. We therefore investigated how primary capsules 
related to the ‘ALS’ output capsule (which predominantly fires when 
ALS is to be predicted) on the one hand, and the ‘Healthy’ output cap-
sule (which predominantly fires when the individual is to be classified 
as not being affected by ALS) on the other hand.
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To highlight primary capsules that share exceptionally large cou-
pling coefficients with one of the two phenotype capsules, we ran all 
training and all test samples through the network, amounting to two 
separate runs, one for the training and one for the test data. The intui-
tion is to demonstrate that, despite not having been part of the training, 
effects reproduce on data that had not been seen before. We collected 
the resulting coupling coefficients; we recall that coupling coefficients 
are computed individually for each sample by way of the ‘dynamic rout-
ing’ protocol during the forward pass32. If coupling coefficients were 
determined as part of backpropagation during training, coupling coef-
ficients would be equal for all individuals. We averaged the resulting 
coupling coefficients across all samples, for each of the 2 × 32 possible 
combinations of PrimaryCaps and PhenoCaps. As above-mentioned, 
we did this for both training and test data. The corresponding aver-
aged coupling coefficients are displayed in the two heat maps in Fig. 3, 
where Fig. 3a is for the training data and Fig. 3b is for the test data. For 
further details on the experiments and the corresponding visualization 
process, see also Methods.

The most striking effect is that primary capsule 5 establishes the 
strongest link to the ‘ALS’ output capsule, both for training and test data. 
Far lesser so, but still apparent, primary capsule 28 activates the ‘ALS’ 
capsule. The agreement between training and test data demonstrates 
that effects do not only get manifested on data that were used to estab-
lish the parameters of the network (namely, the training data). In sum-
mary, activation of primary capsule 5 is the by far predominant effect 
from which to determine whether an individual is affected with ALS.

Correspondingly, we developed an algorithmic protocol accord-
ing to which to determine core genes that markedly contribute to the 
activation of primary capsule 5; for details, see Methods. Using this 
protocol, we obtained 922 core genes that contribute to the activa-
tion of primary capsule 5 (Fig. 4a). This means that these 922 genes 
are important for DiseaseCapsule to identify the occurrence of ALS. To 
validate the predictive power of these 922 genes, we masked all other 
genes in the test data (that is, we set entries in the input vector to zero 
if referring to genes not among the 922 selected ones), and ran the 
modified test data through the (trained) DiseaseCapsule model. As a 
result, using these 922 genes alone—which as we recall are crucial for 

activating primary capsule 5—a test accuracy of 76% was achieved. Note 
that random selections of 922 genes yielded 70% accuracy on average, 
with a standard deviation of 1%; for corresponding results, see Fig. 4b. 
So, the 76% achieved by the genes selected through our protocol is 
significantly greater (P < 2.2 × 10−16).

To further corroborate the predictive power of the 922 selected 
genes, we computed the average of the coupling coefficients across all 
test individuals when using only the 922 preferentially selected core 
genes, see Fig. 4c. The level of activation of primary capsule 5 (0.0342) 
nearly matches the one when using all genes (0.0399).

It therefore made sense to examine and classify these 922 genes 
further; for the resulting list, see Supplementary Table 6. In summary, 
when examining these 922 genes, we found some overlapping genes 
with the Amyotrophic Lateral Sclerosis online Database (ALSoD) and 
other studies 44. Additionally, the collection of enriched Gene Ontol-
ogy terms and pathways have been shown to significantly relate with 
human nervous system related diseases, which do include ALS in most 
cases50–55. For full details, see Supplementary Note 9.

644 ‘non-additive’ genes
We designed a simple target function that, for a selection of genes, 
measures the difference between the genes supporting DiseaseCap-
sule and the genes supporting a common logistic regression scheme, 
in terms of accurate classification. This difference is quantified by the 
difference in accuracy that one achieves when running DiseaseCap-
sule using these genes alone, on the one hand, and when running the 
logistic regression scheme using these genes alone, on the other hand. 
Employing a genetic algorithm, we determined a subset of 644 genes 
(Supplementary Table 7) that yields a maximum of that target function. 
So, running methods on these 644 genes maximizes the difference 
between the accuracy achieved in the non-additive scheme (Disease-
Capsule) and the accuracy achieved in the additive scheme (regres-
sion). For full details, see Methods. In other words, these 644 genes 
remain useless when being used in a linear scheme, but decisively con-
tribute to classification in DiseaseCapsule, as a non-additive scheme; 
more than that, these 644 genes reflect a selection that is optimal in  
that respect.
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To reinforce that these 644 ‘non-additive’ genes are responsi-
ble for predominantly non-additive effects, we ran both DiseaseCap-
sule (Gene-PCA + DiseaseCapsule in Table 1) and logistic regression 
(Gene-PCA + logistic regression, which proved the strongest additive 
protocol; Table 1), on both training (which led to establishing param-
eters for both DiseaseCapsule and logistic regression) and test data 
(hitherto unseen by either approach). The differences in accuracy 
are striking, on both training (difference 0.227) and test (difference 
0.162) data.

The difference between training and test data may be due to hid-
den biases. To prevent such biases, and ensure that these 644 genes 
nearly exclusively yield non-additive effects—which can only be picked 
up by DiseaseCapsule—we retrained both DiseaseCapsule and logistic 
regression on these 644 genes alone. This gives both approaches the 
same fair chance: try to get the most out of the 644 genes they were 
provided with.

For the corresponding results, see Table 2. Retraining both models 
yields accuracies of 0.712 for DiseaseCapsule, but only 0.512 for logistic 
regression (amounting to a difference of exactly 0.2, matching the 
range of the earlier results). Note that because test data were balanced 
(equal cases and controls), 0.5 means random performance. So, on 
these 644 genes, logistic regression matches random classifier rates, 
while DiseaseCapsule achieves excellent performance rates.

Breaking down results in terms of precision and recall confirms 
that DiseaseCapsule establishes decent performance rates (precision 
0.715; recall 0.706), whereas logistic regression’s performance does 
not even match minimum standards (precision 0.522; recall 0.292(!)). 
For functional annotations of the 644 non-additive genes, see Sup-
plementary Note 10.

Discussion
In this study, we have presented DiseaseCapsule, as a novel 
deep-learning-based approach to infer disease phenotype from individ-
ual genotype. As the major novelty, DiseaseCapsule captures non-linear, 
potentially arbitrarily complex functional relationships between geno-
type and phenotype across the whole genome. All prior approaches 
presented so far considered to evaluate variants in additive schemes 
(which reflects the common standard), presented approaches that 
consider non-additivity only within small local regions of the genome, 
or resorted to considering only a few genes, or some selected chromo-
somes when operating in more global ways.

DiseaseCapsule has come with two immediate theoretical advan-
tages. First, because it operates across the whole genome, DiseaseCap-
sule does not need to focus exclusively on a few core disease-related 
genes, so it does not miss the weak effects of abundant peripheral 
genes. Second, DiseaseCapsule improves on capturing the hierarchical 
structures of the underlying genetic interactions thanks to the high 
degree of complexity that capsule networks can capture. This plays a 
particularly relevant role for ALS, because ALS is commonly hypoth-
esized to have a complex genetic architecture.

In practical terms, DiseaseCapsule has outperformed all 
state-of-the-art approaches when predicting ALS from individual geno-
type: it has achieved 87% accuracy on hold-out test data. This translates 
into a relative increase of 28% over PRS, so it remains with 28% fewer 

misclassified people in comparison with the current clinical standard. 
This establishes substantial (arguably even drastic) advantages in 
comparison with what was possible earlier. Analysing results further 
has revealed that DiseaseCapsule achieves 89.4% recall, which reflects 
that DiseaseCapsule identifies 64% of the patients with ALS who remain 
undiscovered according to clinical standards (PRS 70.2%), so it may 
miss the advantages of early intervention according to current practice.

DiseaseCapsule has also redeemed its two major theoretical prom-
ises for application in clinical practice: sustainable use of training 
input, which reduces costs and efforts when raising clinical data, as 
well as advances in terms of interpretability of predictions. The latter 
point has become obvious through experiments based on inspecting 
the individual capsules of the network. The experiments have revealed 
922 candidate genes for being associated with ALS, many of which had 
not been pointed out before following standard GWAS protocols; note 
that all of them appear to be plausible according to their functional 
annotations.

Realizing these advantages has required overcoming various 
non-negligible technical hurdles. First, integrating whole-genome data 
means dealing with feature spaces whose dimensions are in the millions, 
which corresponds to the amount of polymorphic sites in the human 
genome. Here we have developed a protocol that yields gene-specific 
principal components. These gene-specific principal components can 
then be combined in non-linear ways to reflect non-linear interactions 
across genes, where non-linearities can span the entire genome.

Secondly, capsule networks had never been applied to whole- 
genome genotype data before. We have enabled this by means of an 
architecture that uses fully connected, instead of convolutional layers 
as early layers in the capsule networks. This preserves to capture inter-
actions between genes across the whole genome to a maximal degree, 
and appropriately accommodates the sequential nature of the input.

While determining the exact reasons for the superiority of Dis-
easeCapsule in predicting ALS from genotype still requires further 
investigation, some plausible hypotheses can be raised already.

First, as already alluded to above, capsule networks have the poten-
tial to learn the intrinsic hierarchical structures that underlie the data. 
The enhanced capability to analyse complex biological relationships 
that underlie diseases (see also ref. 34) explains the improved generali-
zation over other models.

Second, DiseaseCapsule is able to pick up non-linear genetic inter-
actions between variants (for example, epistasis) that have remained 
overlooked by the standard approaches.

To further investigate this hypothesis, we considered an objective 
function that addressed to find genes that supported classification 
in (the non-linear) DiseaseCapsule, but not in linear regression type 
schemes. Optimizing according to this objective function (as per a 
genetic algorithm) yielded a subset of 644 genes that significantly 
contributed to predicting ALS in DiseaseCapsule (accuracy 71.2%), 
while not working within the frame of logistic regression (accuracy 
51.2%). Evidently, linear approaches remain blind to these 644 genes. 
Although these 644 genes still require further inspection, it is reason-
able to assume that various genes among them have the potential to 
be of future use in exploring the heritability of ALS further.

Third, one can hypothesize that ALS follows an omnigenic model12 
to a non-negligible degree. Results for PRS corroborate this idea. Gradu-
ally relaxing the threshold for inclusion of variants from 5 × 10−8 to 
5 × 10−2 increases the accuracy by 20%. This means that numerous vari-
ants of small effect contribute to establishing ALS, in addition to the 
core disease-causing genes. DiseaseCapsule follows a whole-genome 
approach that does not put significance thresholds on individual vari-
ants (or genes) to appropriately take this into account.

As already alluded to above, DiseaseCapsule requires less training 
data than other approaches to establish excellent performance. While 
the effects are obvious, the translation of the ‘viewpoint invariance 
property’ into the realm of genes and diseases still needs to be provided. 

Table 2 | Test accuracy, precision and recall using 
non-additive genes for prediction. Models are retrained 
using only 644 non-additive genes

Model Accuracy Precision Recall

Gene-PCA + DiseaseCapsule 0.712 0.715 0.706

Gene-PCA + logistic 
regression

0.512 0.522 0.292

Difference 0.200 0.193 0.414
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It is reasonable to hypothesize that capsule networks capture the core 
effects regardless of their distribution across the ancestors of the indi-
viduals, and their possible interference. Instead, other approaches may 
become confused by interfering pathways, so they need to be presented 
with all possible combinations of interacting pathways before reason-
able conclusions can be drawn.

Of course, several open questions have been remaining, some of 
which point to further promising avenues of research. Such immedi-
ate ideas are to also integrate epigenetic information, for example, 
or adapt models to haplotype data, so as to use phasing information 
whenever available.

In addition, it appears sensible to develop a formal protocol for 
machine-learning-based approaches by which to identify (combina-
tions of) variants that are associated with the diseases/phenotypes one 
examines. While such formal association schemes do not yet exist, we 
have suggested clear steps towards that goal. For example, DiseaseCap-
sule has already been able to deliver 922 genes that may be associated 
with ALS, which deserve to be investigated further.

In addition, fortunately, the field of explainable deep neural net-
works is moving fast. So, it is reasonable to expect that one will under-
stand the molecular mechanisms that drive diseases from examining 
the non-linear deep-learning-based approaches further in the nearer 
future. This then will aid practitioners in their assessment of strategies 
for preventing and treating the diseases.

Methods
Data: Project MinE
The data we used are from Project MinE (https://www.projectmine.
com), a large-scale study that aims to reveal the epi-/genetic mecha-
nisms that underlie ALS, in the frame of globally concerted collabora-
tion45. The data we use in this project are from the Dutch cohort of the 
project. We have complied with all relevant ethical regulations, and 
informed consent was obtained from participants. The data contain 
7,213 healthy (also known as control) individuals and 3,192 individuals 
affected with ALS. The cohort counts 5,208 females and 5,197 males. 
All participants of the study were genotyped using Illumina 2.5M single 
nucleotide polymorphism (SNP) array.

QC. First, we annotated SNPs according to dbSNP137 and mapped them 
to hg19 as the reference genome. We first performed QC so as to remove 
low-quality SNPs and individuals of low quality overall, by using PLINK 
1.9 (refs. 56,57) (-geno 0.1 and -mind 0.1). We stratified individuals accord-
ing to the genotyping platform, and subsequently performed a more 
stringent SNP QC (-geno 0.0, -maf 0.01, -hwe 1e-5 midp include-nonctrl). 
We kept only SNPs in autosomal regions, and filtered on the basis of 
differential missingness (-test-missing midp), excluding SNPs of a  
P value over 1 × 10−4. As a result, we obtained 4,370,685 SNPs, all of which 
are contained in the intersection the four batches (see below) the data 
consist of (Supplementary Fig. 2).

Batch structure and batch effects. The dataset consists of four 
batches, pertaining to technical identifiers C1, C3, C5 and C44. The 
number of samples and the ratio of cases versus controls can vary sub-
stantially across batches: C1 contains 225 cases and 380 controls, C3 is 
130 cases and 49 controls, and C5 no cases but 5,155 controls, whereas 
C44 finally contains 2,387 cases and 1,629 controls (Supplementary 
Table 8). It is important to realize that C5 and C44, both of which are 
highly imbalanced—C5 contains no cases, while the majority of C44 are 
cases—cover approximately 92.5% of the samples, and thus dominate 
the dataset.

This points to the importance of removing batch effects. Other-
wise, predicting cases and controls can be confounded with predicting 
C44 from C5, at still decent performance rates.

To remove artefacts by which to distinguish C44 from C5, we con-
sidered only the 5,155 and 1,629 healthy individuals from C5 and C44, 

respectively. Any SNP that supports discrimination between C5 and 
C44 healthy individuals can be identified as signalling batch-induced 
effects, and thus should be removed from further analysis.

To filter for batch-effect-transporting SNPs, we computed a 2 × 2 
contingency table for each SNP, where rows represent alleles (major 
or minor allele) and columns represent batches (C5 or C44). Entries in 
this table reflect allele counts per batch. Subsequently, we performed 
a Pearson chi-squared test on each table, and thereby obtained a  
P value for each SNP. Small P values indicated that the particular SNP 
transports batch effects. To correct for multiple testing, we used the 
Benjamini–Hochberg procedure 58 and filtered all SNPs according to 
their adjusted P values, removing SNPs with an adjusted P value of less 
than 0.05. Filtering out 8,664 potentially batch-effect-signal-carrying 
SNPs this way, we remained with 4,362,021 SNPs from 22 autosomes.

Dimensionality reduction
GWAS for SNP selection. The dimension of the feature spaces amounts 
to 4,362,021, agreeing with the number of SNPs that passed quality and 
batch effect control. On the one hand, this means that the number of 
SNPs one can work with is sufficiently high to transport relevant mean-
ing. On the other hand, it means that the number of features is too large 
for machine learning approaches to not overfit. Therefore, as usual, the 
dimensionality of the data needs to be reduced for machine learning 
approaches to generalize, while preserving the expressiveness of the 
original set of 4,362,021 features.

To this end, we performed a GWAS using PLINK v1.9 (ref. 56), and  
discarded SNPs that are very unlikely to carry disease-status-related 
signals. This reasoning is based on the fact that every SNP must carry 
an—albeit potentially rather weak—signal in its own right. Using only 
the training data (see below for descriptions of training, validation and 
test data), in agreement with the fact that regular GWAS makes use of 
disease status labels and thus classifies as part of the training process, 
we discarded all SNPs whose P values were greater than 0.05. Note that a 
threshold of 0.05 is considerably relaxed relative to the stringent thresh-
old of 5 × 10−8 (ref. 59) that is used in regular GWAS. Unlike in regular GWAS, 
however, we would like to keep as many potentially associated SNPs. So, 
we do not discard all SNPs whose individual signals are too weak in their 
own right, knowing that weak individual signals can accumulate to strong 
signals where SNPs interact in possibly non-additive constellations in  
the deep learning models that we use. As a result, 505,333 SNPs were 
retained in this step (Supplementary Fig. 3); signals of all SNPs discarded 
were found to be too weak to potentially play a role.

We further annotated all 505,333 SNPs using ANNOVAR (24 Octo-
ber 2019; latest version)60, assigning them to genes (‘gene-based anno-
tation’) based on the human reference genome (hg19). Genes were 
defined using the NCBI Reference Sequence (RefSeq) database. Each 
SNP could be assigned to at least one gene. When annotating SNPs 
with more than one gene, we kept track of the corresponding mapping 
relationships: if annotated as ‘intergenic’, SNPs were assigned to only 
the nearest gene. If annotated as non-intergenic with variant functions 
in different genes, we assigned the SNP to all related genes. As a result, 
SNPs were annotated with 18,279 genes overall, where the vast majority 
of genes have less than 200 SNPs annotated (Supplementary Fig. 4).

As usual, we also transformed genotype data according to minor 
allele information. Each SNP corresponds to a value i ∈ {0, 1, 2} in each 
individual, where i is the minor allele count at the particular polymor-
phic site in the individual.

PCA. PCA61 has been widely applied to exploit SNP data and demon-
strated great effectiveness62. We recall that whole-genome PCA is 
not applicable for non-additive approaches to properly work, while 
gene-based PCA preserves to detect non-additive variant patterns 
across different genes. In agreement with that reasoning, we performed 
PCA for each collection of SNPs that became assigned to identical 
genes. In the following, we refer to that procedure as Gene-PCA.

http://www.nature.com/natmachintell
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Correspondingly, for each gene g, we constructed a matrix 
Ag ∈ {0, 1, 2}m×n where m = 10,405 is the total number of individual sam-
ples, and n ∈ 1, ..., 1,383 corresponds with the number of SNPs that 
became assigned to gene g; note that the maximum amount of SNPs 
assigned to a gene is 1,383, where however the number of genes with 
more than 200 SNPs assigned was small (see above). For an illustra-
tion, see Fig. 1.

PCA can remove noise and generate a robust compressed represen-
tation from input features. PCA is efficiently implemented on the basis 
of singular value decomposition: Ag is factorized into three matrices

Am×n ≈ Um×kΣΣΣk×kVT
k×n (1)

Here Σ is a k × k (usually k ≪ n) rectangular diagonal matrix of singular 
values σk; importantly, k is the number of principal components one 
will use. U and V are matrices whose columns are orthogonal unit vec-
tors called the left and the right singular vectors of A, respectively. To 
take into account that the input dimension n varies, we varied k, rela-
tive to n, accordingly: k = 8 for n > 20, k = 4 for 4 < n ≤ 20 and k = 1 for  
1 ≤ n ≤ 4.

The reduction in dimension we achieve through this procedure 
is from 505,333 down to 75,584, where each of the 75,584 dimensions 
corresponds to a principal component computed for one of the 18,279 
genes that had become annotated with potentially relevant SNPs, as 
discussed above.

The architecture and parameters of DiseaseCapsule
DiseaseCapsule is a neural network model that takes a real-valued 
vector of length 75,584 as input, and generates binary-valued output, 
0 for control/healthy and 1 for ALS/disease. In general, DiseaseCapsule 
can be flexibly adapted to input vectors of varying sizes, as long as the 
length of the input vectors does not exceed a certain upper limit; the 
procedure based on GWAS filtering and Gene-PCA described above 
warrants this for whole-genome input.

The architecture of DiseaseCapsule follows the architecture of 
the capsule network that was described in the seminal paper, with 
modifications to accommodate that the input does not reflect rectan-
gular, pixel-structured image data, and the output is binary. In detail, 
DiseaseCapsule consists of three layers: a fully connected layer (FC), 
a primary capsule layer (PrimaryCaps) and a phenotype capsule layer 
(PhenoCaps); for an illustration and details, see Fig. 2). The initial fully 
connected layer replaces the convolutional layers used in the seminal 
application, reflecting that convolution addresses to process rectan-
gularly arranged image data. However, here we expect interactions 
between all genes across the whole genome, which the fully connected 
layer reflects.

The FC layer consists of 150 (regular) neurons followed by ReLU as 
activation function63. During training, a dropout rate of 0.5 was used 
for FC to prevent overfitting. Correspondingly, the output of FC is a 
150 × 1 tensor, so virtually a 150-dimensional vector. This, in turn, is 
the input for the PrimaryCaps layer.

The PrimaryCaps is the first (‘low-level’) capsule layer. As such, 
it incorporates convolutional operations. It consists of 32 primary 
capsules. Each of these involves four different convolutional filters, 
implementing a 5 × 1 kernel, operating at a stride of 2, with no zero 
padding. This means that each convolutional filter computes a 73 × 1 
tensor (that is a 73-dimensional vector) from the 150-dimensional 
input (FC output) vector. Using four convolutional filters per capsule 
results in 73 vectors of length 4 per capsule. This yields 32 × 73 = 2,336 
vectors of length 4 as the output of PrimaryCaps. We refer to each of 
these vectors as ui, i = 1, ..., 2,336. Further, as is common, one refers to 
each array of 73 such four-dimensional vectors as one primary capsule. 
If needed, we index primary capsules using k ∈ {1, ..., 32}. Importantly, 
all 73 ui making part of one primary capsule k share their parameters 
when transiting to PhenoCaps, the last layer.

Finally, the output of PhenoCaps is used to derive predictions 
from. PhenoCaps consists of two 16-dimensional vectors vj, j = 1, 2, one 
referring to ‘ALS’ and one to ‘Healthy’. Each phenotype capsule receives 
input from all 32 primary capsules (that is, virtually from all 2,336 ui) 
making part of PrimaryCaps.

To transform PrimaryCaps output into PhenoCaps input, so-called 
pose matrices Wij are applied to the wi, which yields

ûj|i = Wijui (2)

In our case, pose matrices are 4 × 16-dimensional, so the uj∣i are 
16-dimensional. This corresponds with the dimensionality of Pheno-
Caps. Pose matrices are learnt during training. As mentioned above, 
pose matrices are shared for all (73) i that refer to an identical primary 
capsule k. This means that there are 32 pose matrices to be learnt for 
each j = 1, 2.

Subsequently, we performed dynamic routing, as a key feature 
of capsule networks, intended to improve on the pooling operations. 
Dynamic routing is an iterative procedure that converges quickly. Here 
we used three iterations. For the corresponding details, see Extended 
Data Fig. 1. According to the routing procedure, the input sj to one of 
the PhenoCaps capsules evaluates as

sj = ∑
i
cijûj|i (3)

where cij are the coupling coefficients, as determined through the 
dynamic routing procedure. In a rough description, first bij are com-
puted by the iterative update bij ← bij + ûj|i ⋅ vj (and initialized as zero), 
which rewards if uj∣i and vj point in the same direction, which means 
that the output of primary capsule i agrees with phenotype capsule j. 
To turn bij into cij and ensure that ∑icij = 1, one eventually performs

cij =
exp (bij)

∑i exp (bij)
(4)

to obtain the coupling coefficients.
Reflecting another key principle of capsule networks, one uses 

the squashing operation

vj = squash(sj) =
‖
‖sj
‖
‖
2

1 + ‖
‖sj
‖
‖
2

sj
‖
‖sj
‖
‖

(5)

as a non-linear activation function that can process vectors. This 
ensures that the length of the input vectors vj is between 0 and 1. 
Importantly, the length of capsule output vectors ui and vj indicates 
the probability that the capsule ‘is activated’.

To derive predictions from the vj, categorical cross entropy was 
employed as the loss function used during training.

Model training and testing
We randomly split the dataset into a set of samples used for training 
and validation set, which comprised 90% of individuals, and a test set, 
comprising the remaining 10% of individuals. Importantly, the test set 
is balanced, that is, the ratio of cases and controls is 1 (here: 520 cases 
and 520 controls), to ensure that models can be evaluated without 
misleading biases. For details, see Supplementary Fig. 5.

The entire dataset was used for Gene-PCA. As dimensionality 
reduction works in an unsupervised way, and thus does not require 
labels, this agrees with a generally applicable protocol. Subsequently, 
using the training-validation part of the data, fivefold cross-validation 
was performed to optimize the architecture and determine all other 
hyperparameters of the capsule network (DiseaseCapsule). To ensure 
a balanced evaluation during validation, validation splits were first 
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randomly selected under the constraint of preserving a ratio of 1:1 
between cases and controls. Subsequently, the cases in the remaining 
training data were upsampled to the same ratio, so as to avoid poor 
performance in prediction in particular for the minority class (Sup-
plementary Fig. 5). This reflects a standard procedure in supervised 
machine learning. Upon having obtained all hyperparameters through 
cross-validation, the entire training-validation split, upsampled to 
ensure unbiased training, was used for training. This determines all 
parameters of the DiseaseCapsule network.

Specifically, we used the Adam algorithm64 to optimize all param-
eters in the frame of the usual backpropagation algorithm. We used an 
initial learning rate of 0.0001, and decayed it by γ = 0.8 in each epoch 
using an exponential scheduler. Optimization ran for 30 epochs, oper-
ating at a batch size of 128.

As for the simple three-layer perceptron (MLP) and the basic CNN 
(consisting of four convolution layers and two dense layers) that we 
used for benchmarking. For details, see Supplementary Fig. 6. Models 
were trained for 30 epochs with a batch size of 128 using the Adam 
optimizer, matching the procedure used for DiseaseCapsule.

Model interpretation
Relating coupling coefficients with phenotype recognition. When 
running DiseaseCapsule on the 1,040 test samples, coupling coeffi-
cients cij, i = 1, ..., 2,336, j = 1, 2 are determined individually for each of 
the test samples. This is due to the fact that coupling coefficients are 
determined during the forward step, and thus do not correspond to 
parameters to be learned during training. According to the general 
principles of capsule networks, one can interpret coupling coef-
ficients cij as the degree of activation by which ui contributes to phe-
notype capsule j; large cij means that ui makes a crucial contribution 
to activating j.

As is common, we also determine coupling coefficients ckj that 
virtually measure the degree by which primary capsule k ‘activates’ 
phenotype capsule j. To obtain ckj from the cij, one sums all coupling 
coefficients cij across all ui that make part of k:

ckj = ∑
ibelongs to k

cij (6)

where j is either ‘Healthy’ or ‘ALS’, referring to one of the two Phenotype 
capsules. Recalling that ckj differ for each individual sample, we eventu-
ally average the ckj across the individuals to obtain a summarizing ckj 
one can work with.

Selecting and annotating genes decisive for classification. Evalu-
ating combinations of primary and phenotype capsules according to 
ckj from equation (6) determines primary capsule 5 as the dominant 
driver to indicate that the phenotype capsule ‘ALS’ gets activated  
(Fig. 3a). In other words, genes that significantly contribute to activa-
tion of primary capsule 5 are potentially responsible for the develop-
ment of ALS; in that, these genes are likely to be the predominant factor 
(‘Determining genes decisive for classification’ in Results). Thanks to 
capsule networks reflecting non-additive relationships, such genes 
can interact in arbitrary ways.

Computation of ckj involves running DiseaseCapsule on all 18,279 
genes selected. Here we would like to determine the genes that play an 
important role in activating primary capsule 5 in their own right. To do 
so, we consider each gene g, g ∈ (1, 18,279) as exclusive input to the 
trained model. To implement this, we mask all other genes, that is, we 
set the values of all principal components that do not refer to the par-
ticularly picked gene g to zero. We do this for each individual sample. 
Subsequently, we run DiseaseCapsule on all the resulting 
‘one-gene-only’ individual samples and note down the resulting cou-
pling coefficients cgkj, for k = 5, j = ‘ALS’, for each of the individuals. Com-
putation of cgkj proceeds analogously to equation (6), when replacing 
the full individual sample with the ‘one-gene-only’ individual sample. 

Eventually, also here all individual cgkj are averaged across the individual 
samples to obtain a summarizing cgkj one can work with. We then kept 
all genes g whose cgkj was above the 95-percentile (Fig. 4a), amounting 
to 922 genes, as core genes decisive for classification.

To annotate the biological functions of these 922 genes, we 
employed g:Profiler65 to perform common Gene Ontology and path-
way enrichment analyses.

Selecting non-additive genes
Let S ⊂ G be a subset of genes selected from the set G of 18,279 genes 
overall. Let further ACCDC(S) be the training accuracy achieved by 
Gene-PCA + DiseaseCapsule (DC) and ACCLR(S) be the training accuracy 
of Gene-PCA + logistic regression (LR), as the best-performing linear 
approach, when running on only genes S. Running DC and LR on S is 
done by setting values of principal components referring to genes not 
from S to zero, in full analogy as for single genes g, as described above.

To determine a good subset of genes that predominantly interact 
in non-linear constellations, we make use of a genetic algorithm that 
seeks to determine

max
S⊂G

ACCDC(S) − ACCLR(S) (7)

that is, the set of genes S that delivers the greatest gains in terms of 
classification performance in the non-linear DC over the linear LR. 
To implement the genetic algorithm, we consider subsets of genes as 
18,279-dimensional binary-valued vectors (x1, x2, ..., x18,279) ∈ {0, 1}18,279  
where xg = 1 if g ∈ S, that is, gene g belongs to S, and xg = 0 otherwise. 
Representing sets of genes S this way, one can implement the common 
evolutionary operations of genetic algorithms, like ‘selection’, ‘crosso-
ver’, ‘mutation’ or ‘fitness evaluation’. For solving the optimization 
problem equation (7), we employ ‘segregative genetic algorithms’, as 
available through the high-performance genetic algorithm toolbox 
Geatpy v2.6.0 (ref. 66).

Subsets S were initialized randomly, and the genetic algorithm was 
run at a population size of 30 and a maximum of generations of 200 
as a stopping criterion. The subset of genes S that were determined to 
maximize equation (7) can be considered optimal in terms of interact-
ing in exclusively non-additive ways to establish the ‘ALS’ signal in the 
frame of the DiseaseCapsule network.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All data used in this study are publicly available. The ALS data used in 
this study are from the Dutch cohort of Project MinE8,11,45, and have been 
deposited at dbGaP Study Accession: phs003146.v1.p1. Amyotrophic 
Lateral Sclerosis online Database (ALSoD) is available at https://alsod.
ac.uk/. The data of PD were downloaded from dbGaP Study Accession: 
phs000918.v1.p1 (refs. 46–49). Source data for Fig. 4 and Supplementary 
Fig. 1 are provided with this paper.

Code availability
The source code of DiseaseCapsule is publicly available on GitHub 
(https://github.com/HaploKit/DiseaseCapsule). Another related code 
for reproducing results and generating figures in this study is publicly 
available at Zenodo (https://doi.org/10.5281/zenodo.7118988)67.
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Extended Data Fig. 1 | The schematic diagram of the dynamic routing 
algorithm. The PrimaryCaps layer outputs 32 × 73 = 2336 vectors 
ui(i = 1, . . . , 2336), which are then transformed into ûj|i(j = 1, 2) by premultiplying 
pose matrices Wij. Note that pose matrices are learned during training. The right 
half of this figure shows the iterative dynamic routing procedures. The coupling 

coefficients cij indicate the probability that primary capsule i agrees with 
phenotype capsule j. The input sj to one of the phenotype capsules is 
subsequently processed by using the squashing operation. The output vj is used 
to update the bij and cij until the model converges.
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