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Learning integral operators via neural 
integral equations
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Nonlinear operators with long-distance spatiotemporal dependencies 
are fundamental in modelling complex systems across sciences; yet, 
learning these non-local operators remains challenging in machine 
learning. Integral equations, which model such non-local systems, have 
wide-ranging applications in physics, chemistry, biology and engineering. 
We introduce the neural integral equation, a method for learning unknown 
integral operators from data using an integral equation solver. To improve 
scalability and model capacity, we also present the attentional neural 
integral equation, which replaces the integral with self-attention. Both 
models are grounded in the theory of second-kind integral equations, where 
the indeterminate appears both inside and outside the integral operator. We 
provide a theoretical analysis showing how self-attention can approximate 
integral operators under mild regularity assumptions, further deepening 
previously reported connections between transformers and integration, as 
well as deriving corresponding approximation results for integral operators. 
Through numerical benchmarks on synthetic and real-world data, including 
Lotka–Volterra, Navier–Stokes and Burgers’ equations, as well as brain 
dynamics and integral equations, we showcase the models’ capabilities and 
their ability to derive interpretable dynamics embeddings. Our experiments 
demonstrate that attentional neural integral equations outperform existing 
methods, especially for longer time intervals and higher-dimensional 
problems. Our work addresses a critical gap in machine learning for 
non-local operators and offers a powerful tool for studying unknown 
complex systems with long-range dependencies.

Integral equations (IEs) are functional equations where the indetermi-
nate function appears under the sign of integration1. The theory of IEs 
has a long history in pure and applied mathematics, dating back to the 
1800s, and it is thought to have started with Fourier’s theorem2. Another 
early application of IEs was found in the Dirichlet’s problem (a partial 
differential equation (PDE)), which was originally solved through its 
integral formulation. Subsequent studies, carried out by Fredholm, 
Volterra, Hilbert and Schmidt, have significantly contributed to the 

establishment of this theory. IEs appear in many applications ranging 
from physics and chemistry to biology and engineering2,3, for instance, 
in potential theory, diffraction and inverse problems such as scattering 
in quantum mechanics2–4. Neural field equations, which model brain 
activity, can be described using IEs and integro-differential equations 
(IDEs), due to their highly non-local nature5. IEs are related to the theory 
of ordinary differential equations (ODEs) and PDEs; however, they 
possess unique properties. Although ODEs and PDEs describe local 
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approaches to solve given types of IE have been implemented12–16. 
In such cases, the IE is known, and we seek its solution. However, in 
practice, we often do not have access to the analytical form of the 
equation and we only have data sampled from a system. In such cases, 
we want to model the system by learning an operator that can repro-
duce the system. This is the setting of operator learning problems, 
and several approaches to operator learning, including using deep 
learning, have been presented17–28. Typical operator learning problems 
are formulated on finite grids (finite difference methods) that approxi-
mate the domain of functions. In this case, recovering the continuous 
limit is a very challenging problem, and irregularly sampled data can 
completely alter the evaluation of the learned operator. Operator 
learning for IEs has not been considered thus far, and it constitutes the 
main novelty of the present Article. This is entailed in the formulation 
of the operator learning problem through an IE solver. The conveni-
ence of this approach lies in the capability of the solver to continu-
ously sample the domain of integration, as well as the capabilities of 
IEs to model very complex dynamics, due to their highly non-local 
behaviour. A similar approach for IDEs has been followed in another 
work29. However, in the present work, our implementation does not 
include differential solvers, and the reformulation of such dynamical 
problems in terms of IEs has great benefits in terms of solver speed 
and stability. Moreover, our version of an IE solver that approximates 
integrals via self-attention allows for higher-dimensional integrals 
than those considered in ref. 29.

Learning continuous dynamics
Modelling continuous dynamics from discretely sampled data is 
a fundamental task in data science. Methods for continuous mod-
elling include those based on ODEs30,31. Although ODEs are useful 
for modelling temporal dynamics, they are fundamentally local 
equations that neither model spatial nor long-range temporal relations.  
Auxiliary tools30, such as recurrent neural networks (RNNs), have  
been employed to include non-locality. We point out that RNNs can 
be seen as performing a temporal integration (in discrete steps), to  
codify some degree of non-local (temporal) dependence in the  
dynamics. In this work, we introduce a framework that provides a  
more general and formal solution to this non-local integration 
problem. Moreover, the dynamics are not sequentially produced  
with respect to time, as done by ODE solvers, but are processed in 
parallel, thereby providing increased efficiency, as we will experi-
mentally demonstrate.

Integration via self-attention
The self-attention mechanism and transformers, introduced else-
where32, were applied to machine translation tasks. Owing to their initial 
success, they have since been used in many other domains, including 
operator learning for dynamics21,33. Interestingly, the self-attention 
mechanism can be interpreted as the Nyström method for approxi-
mating integrals34. Making use of this connection, we approximate 
the integral kernel of our model using self-attention, allowing efficient 
integration over higher dimensions.

NIEs
An IE (Urysohn type) takes the general form given by

y(t) = f(t) +∫
β(t)

α(t)
G(y(s), t, s)ds, (1)

where variable s is the local time used for integration for each t, which 
is the global time. Due to their fundamentally non-local behaviour, 
IEs have been used to model physical and biological phenomena, 
such as brain dynamics, virus spreading and plasma physics2,3,5. The 
case considered in this Article, where the indeterminate function y(t) 
appears both under the sign of integration and outside it, is termed 

behaviour, IEs model global (long-distance) spatiotemporal relations. 
Moreover, ODEs and PDEs have IE forms that, in certain circumstances, 
can be solved more effectively and efficiently due to the better stability 
properties of IE solvers compared with ODE and PDE solvers6,7. Another 
work8 provides an example of a PDE system that is solved with high 
accuracy through an IE method.

Learning non-local operators for dynamics with long-distance 
relations is an open problem in deep learning. In this Article, we intro-
duce and address the problem of learning non-local dynamics from 
data through IEs. Namely, we introduce the neural integral equation 
(NIE) and the attentional neural integral equation (ANIE). Our setup is 
that of an operator learning problem, where we learn the integral 
operator that generates dynamics that fit the given data. Often, one 
has observations of a dynamical system without knowing its analytical 
form. Our approach permits modelling the system purely from the 
observations. This model, via the learned integral operator, can be 
used to generate dynamics, as well as be used to infer the spatiotem-
poral relations that generated the data. The innovation of our proposed 
method lies in the fact that we formulate the operator learning problem 
associated to dynamics in the form of an optimization problem for the 
solutions of an IE obtained through an IE solver. Unlike other operator 
learning methods that learn dynamics as a mapping between function 
spaces for fixed time points, that is, as a mapping T ∶ ∏i𝒜𝒜i ⟶∏jℬj, 
where 𝒜𝒜i and ℬj are function spaces each representing a time coordi-
nate, NIE and ANIE allow to continuously learn dynamics with arbitrary 
time resolution. Our solver outputs solutions through an iterative 
procedure3, which converges to a solution of the IE.

Our contributions
In this Article, we introduce NIE and ANIE, which are neural- 
network-based methods for learning dynamics, in the form of IEs, from 
data. Our architectures allow modelling dynamics with long-distance 
spatiotemporal relations typical of non-local functional equations. Our 
main contributions are as follows:

•	 We introduce a method for learning dynamics from data as solu-
tions of IEs of the second kind through an IE solver.

•	 We implement a fully differentiable IE solver in PyTorch, available 
via GitHub at https://github.com/emazap7/ANIE.

•	 We implement a highly scalable version of the solver where integra-
tion is done with a self-attention mechanism.

•	 We derive theoretical results on convergence of the solver and 
approximation capabilities of our models.

•	 Our model provides explainable dynamics and meaningful embed-
dings of these dynamics.

•	 Finally, we use our method to model and interpret non-local 
dynamics from brain activity recordings.

Background and related work
IEs in numerical analysis
Due to their wide range of applications, the theory of IEs has attracted 
the attention of mathematicians, physicists and engineers for a long 
time. Detailed accounts on IEs can be found elsewhere3,9,10. Along with 
their theoretical properties, much attention has been devoted to the 
development of efficient IE solvers, focusing on rapidly obtaining highly 
accurate solutions of certain PDE systems6,7. In fact, it is known that IE 
solvers yield more accurate solutions than differential solvers for a 
variety of ODEs and PDEs. The methodology introduced in this work 
learns a neural integral operator through a numerical IE solver and it, 
therefore, differs from typical IE solvers where an integral operator 
needs to be given and fixed.

Operator learning
IE solvers are used to solve given equations through some iterative 
procedure, as done with other work3,11. Moreover, machine learning 

http://www.nature.com/natmachintell
https://github.com/emazap7/ANIE


Nature Machine Intelligence | Volume 6 | September 2024 | 1046–1062 1048

Article https://doi.org/10.1038/s42256-024-00886-8

an equation of the second kind, as opposed to the first kind where 
the indeterminate function appears only in the integral operator. IEs 
of the second kind are more stable than of the first kind for reasons 
rooted in functional analysis (see the ‘Existence and uniqueness of 
solutions’ section).

We introduce NIEs, a deep neural network model based on IEs. 
NIEs are IEs as defined by equation (1), where G is a neural network, 
parameterized by θ, and indicated by Gθ. Training an NIE consists of 
optimizing Gθ in such a way that the corresponding solution y to equa-
tion (1) fits the given data. At each step of training, we perform two 
fundamental procedures. The first one is to solve the IE determined by 
Gθ, and the second one is to optimize for Gθ in such a way that solving the 
corresponding IE produces a function that fits a given dataset. Details 
on the solver procedure and the training are given in the ‘IEs’ section.

IEs, in contrast to ODEs and PDEs, are non-local equations1 since 
to evaluate the integral operator ∫β(t)α(t) Gθ(•, t, s)ds ∶ 𝒜𝒜⟶𝒜𝒜 on a func-
tion y, we need the value of y over the full integration domain. In fact, 
to evaluate the right-hand side of equation (1) at an arbitrary time point 
t, the function y(s) between α(t) and β(t) is needed. Here α and β are 
arbitrary functions and common choices include α(t) = a and β(t) = b 
(called Fredholm equations) or α(t) = 0 and β(t) = t (called Volterra 
equations). Consequently, solving an IE requires an iterative procedure, 
based on the notion of Picard iterations (successive approximation 
method), where the solution is obtained as a sequence of approxima-
tions that converge to the solution. Details on the solver implemented 
in this Article are given in the ‘Generalities on solving IEs’ section, as 
well as the theory on which it is based and the proofs regarding the 
convergence of our algorithms to a solution of the given IE (see Theo-
rem 4.1 and Corollary 4.2). We also refer to another work3 for an elemen-
tary and computationally driven introduction to the theory behind the 
methods that motivate this procedure; a more detailed account is also 
provided elsewhere11.

Interestingly, utilizing NIEs to model ODEs allows to bypass the use 
of ODE solvers, as the one introduced in other work30,31. The conveni-
ence in this approach is that the IE solver is more stable than the ODE 
solver35. ODE solver instabilities, induced by equation stiffness, have 
been previously considered36,37. The IE solver presented in this work, 
thus, does not suffer from these problems, and is also considerably 
faster.

It is often useful to consider a more specific form for IEs, where the 
function G factors in the product of a kernel K and a generally nonlinear 
function F as G(y, t, s) = K(t, s)F(y). Here K is matrix valued, and it carries 

the dependence on time (both t and s), whereas F depends only on the 
indeterminate function y. Therefore, the form of this IE is

y(t) = f(t) +∫
β(t)

α(t)
K(t, s)F(y(s))ds. (2)

NIEs in this form comprise two neural networks, namely, K and F.  
We observe that in IEs, the initial condition is embedded in the 
equation itself, and it is not an arbitrary value to be specified as an 
extra condition. To solve the IE, we implement a solver that per-
forms an iterative procedure to obtain a solution (see the ‘IEs’ sec-
tion). During the iterations, Monte Carlo sampling is performed to  
evaluate the integrals. This procedure allows our deep learning  
model to be independent of the temporal grid points, thereby 
resulting in a continuous model, since the model internally uses  
randomly sampled points to generate the successive iterations, as 
opposed to using fixed grid points. The general algorithm for train-
ing the NIE is given in Algorithm 1, and a diagrammatic overview of  
it is shown in Fig. 1. Figure 2 shows a visualization of the general  
solving procedure.

Algorithm 1: NIE method training step: integration is performed using 
the torchquad module with the Monte Carlo method.
Require: y0(t)                                      ⊳initialization
Ensure: y(t)                      ⊳ solution to IE with initial y0(t)
  1: y0(t) ≔ y0(t)                             ⊳ initial solution guess
  2: While iter ≤ maxiter and error > tolerance do
  3:    Evaluate: yi+1(t) = f(yi, t) + ∫β(t)α(t) G(t, s,yi(s))ds
  4:    Set solution to be: ryi + (1 − r)yi+1

  5:    New error: error = metric(yi+1, yi)
  6: End while
  7: Output of solver: y(t)
  8: Compute loss with respect to observations: loss(y(t), obs)
  9: Gradient descent step

Space, time and higher-dimensional integration
IEs can have multiple space dimensions in addition to time. Such 
equations are formulated as

y(x, t) = f(x, t) +∫
β(t)

α(t)
∫
Ω

G(y(x′, s),x,x′, t, s)dx′ds, (3)

yk+1 = ∫ Gθ(yk, x, t)dxdt

∫

y0 = f(x, t)

y(t)

t t

x1

x2

k++ until convergence

Initialization

(Spatio)temporal integration Model fit

IE solver

Optimization

Attention (ANIE)

Monte Carlo (NIE)

Loss Explain dynamics

Embed dynamics

Data
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L = ||ydata – ymodel||
2
2
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Fig. 1 | Diagrammatic representation of the model. The solver is initialized 
with f, also called the free function. This initialization is often the first time point 
of the dynamics. To solve the IE and find the solution y, an iterative procedure is 
carried out in which at each solver step k, the integral of Gθ(yk, x, t) is computed 
and used as the solution yk+1 in the next step. Integration is done either with 
Monte Carlo (via torchquad) or with self-attention, representing NIE and ANIE, 
respectively. The solver integration steps are repeated until convergence of yk 

to the IE solution. This solution is then compared with the input data to compute 
a loss that—via backpropagation—is used to find θ that minimizes the error. The 
resulting integral operator represents the IE that models the data. Top right: an 
example of attention weights for calcium imaging dynamics is presented. Bottom 
right: an example of the dynamical embedding of the Navier–Stokes dataset 
coloured by velocity is shown.
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where Ω ⊂ ℝn  is a domain in ℝn  and y ∶ Ω × I⟶ℝm  for some  
interval I ⊂ ℝ. More commonly, in the literature, one finds a simpler 
case of higher-dimensional IEs, where the integral component 

∫β(t)α(t) ∫
Ω
G(y(x′, s),x,x′, t, s)dx′ds  is obtained as a sum of terms with 

only partial integrations. Such an equation takes the form

y(x, t) = f(x, t) +∫
β(t)

α(t)
G1(y(x, s),x, t, s)ds +∫

Ω

G2(y(x′, t),x,x′, t)dx′.

(4)

These equations are the integral counterpart of PDEs, similar to the 
relation between one-dimensional IEs and ODEs, and they are called 
partial integral equations (PIEs). With slight abuse of notation, we will 
still refer to equation (3) as a PIE, as we will, in practice, use such an 
approach to model PDEs in the case of Burgers’ equation and Navier–
Stokes equation.

Attentional NIEs
Training of NIE requires an integration step at each time point, incur-
ring a potentially high computational cost. This integration step is 
implemented using the torchquad package38, a high-performance 
numerical Monte Carlo integration method, resulting in the fast integra-
tion and high scalability of NIE. For example, solving ODEs using NIE is 
significantly faster than using traditional ODE solvers (Supplementary 
Table 1). However, several limitations are associated with the torchquad 
integration method. In fact, torchquad requires substantially increasing 
numbers of sampled points with increasing numbers of dimensions. To 
use NIE for solving PDEs and (P)IEs, we require efficient spatial integra-
tion in high dimensions.

To address these challenges, we have employed an approach to NIE 
where the integral operator is based on a self-attention mechanism. In 
fact, self-attention can be viewed as an approximation of an integra-
tion procedure34,39, where the product of queries and keys coincides 
with the notion of a kernel, as the one discussed in the ‘NIEs’ section. In 
another work21, the parallelism between self-attention and integration 
of kernels was further explored to interpret transformers as Galerkin 
projections in operator learning tasks.

We have replaced the analytical integral ∫β(t)α(t) G(t, s,y(s))ds  in  
equation (1) with a self-attention procedure. The resulting model, which 
we call ANIE, follows the same principle of iterative IE solving presented 
in the ‘NIEs’ section but where the neural networks K and F are replaced 
by attention matrices. It can be shown (see the ‘Generalities on solving 
IEs’ section) that the successive approximation method is still applica-
ble in this case to obtain a solution for the corresponding 
equation. Following the comparison between integration and 
self-attention, we observe that K is decomposed in the product of 
queries and keys, as described elsewhere21. The interval of integration 
[α(t), β(t)] is determined, in the attentional approximation, by  
means of the mask. In particular, if there is no mask, we have a  

Fredholm IE, whereas the causal attention mask40 corresponds to a 
Volterra type of IE.

An iterative procedure similar to the one discussed in Algorithm 1 
is implemented to solve the corresponding IE (see the ‘Generalities on 
solving IEs’ and ‘Implementation of ANIE’ sections). During iterations, 
we uniformly sample points from the spatiotemporal domain, and the 
corresponding integral operator does not depend on the grid points 
of the dataset. Our experiments on the Burgers’ dataset in the Experi-
ments section show that our model is stable with respect to the change 
in spatiotemporal stamps since the model internally uses randomly 
sampled points to generate successive iterations, rather than fixed 
grid points. A detailed description of the integration procedure, along 
with solver steps and training for ANIE, is given in the ‘Implementation 
of ANIE’ section. Moreover, Theorem 4.1, Corollary 4.2 and Remark 4.3 
show that the solver procedure converges to a solution under certain 
mild assumptions.

Algorithm 2 summarizes the solving and training procedures for 
ANIE. A detailed description of the meaning of 𝔄𝔄𝔄𝔄𝔄𝔄 is found in the ‘Imple-
mentation of ANIE’ section. Theoretical considerations on Fredholm 
generalized equations with general operators, integral operator 
approximation through self-attention and existence of the solutions 
for these equations are given in the ‘Existence and uniqueness of solu-
tions’ section. Supplementary Fig. 1 gives a diagrammatic representa-
tion of the integration procedure implemented in this Article, and 
Supplementary Fig. 2 gives a schematic of the solver procedure with 
space and time.

Algorithm 2:. ANIE method training step: integration here is replaced 
by a transformer employing self-attention.
Require:y0(x, t)                               ⊳ initialization
Ensure: y(x, t)                    ⊳ solution to IE with initial y0(x, t)
  1: y0(x, t) ≔ y0(x, t)                           ⊳ initial solution guess
  2: while iter ≤ maxiter and error > tolerance do
  3:  �  Concatenate space and time tokens to yi(x, t): ̃yi(x, t) =

concat(yi(x, t), s, t)
  4:    Evaluate with self-attention: yi+1(t) = f( ̃yi, t) + 𝔄𝔄tt( ̃yi(x, t))
  5:    Set solution to be ryi + (1 − r)yi+1

  6:    New error: error = metric(yi+1, yi)
  7: end while
  8: Output of solver: y(x, t)
  9: Compute loss with respect to observations: loss(y(x, t), obs)
  10: Gradient descent step

Experiments
Modelling PDEs with IEs: Burgers’ and Navier–Stokes 
equations
PDEs can be reformulated as IEs in several circumstances, and dynam-
ics generated by differential operators can, therefore, be modelled 
through an ANIE as a PIE, where integration is performed in space and 
time. We consider two well-known types of PDE, namely, the Burgers’ 
equation and the Navier–Stokes equation. Since NIE is implemented 
only for time integration, we use only ANIE in these experiments, which 
allows for efficient space and time integration. We observe that our 
implementation of Algorithm 2 applied to the case of the Navier–Stokes 
equation closely parallels the IE method employed in another work8, 
with the main difference that we learn the Green’s function through 
gradient descent, since no knowledge of the underlying Navier–Stokes 
equations is assumed.

For the Burgers’ equation, we focus on the ability of ANIE to con-
tinuously model both space and time and we therefore perform an 
interpolation task, where the model outputs time points that are not 
included in the training test, as well as for unseen initial conditions. This 
is in contrast to other work19,21 where a ‘static’ Burgers’ equation was con-
sidered in which the learned operator maps the initial condition (t = 0) 
to the final time (t = 1), thereby treating time as a discrete two-point set. 

0
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1 2 3
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Fig. 2 | Diagrammatic representation of the IE solver procedure. The solver is 
initialized with the free function y0 ≔ f. The integral operator is applied to y0, and 
a new guess y1 is obtained. This is repeated until convergence to a solution. The 
left panel shows the solution as a function of solver steps. The right panel shows 
the error of the solution as a function of solver steps.
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In our approach, we continuously model the system over a time interval 
and randomly sample points during iterations to perform the quadra-
ture of the temporal integrals. In this experiment, the Galerkin model21 
was not included for the higher-spatial-dimension setting because 
the amount of memory required exceeded what was available to us 
during the experiments. The results are reported in Table 1 (right), and 
an example of the learned dynamics is given in Supplementary Fig. 4.

For the Navier–Stokes equation, we consider an extrapolation 
task where we evaluate the model on unseen initial conditions. Previ-
ous works have shown high performance in the predicting dynamics 
of Navier–Stokes from new initial conditions, but they require several 
frames (that is, several time points) to be fed into the model to achieve 
such performance. We see that since ANIE learns the full dynamics from 
arbitrarily chosen initial conditions, we achieve good performance 
even when a single initial condition is used to initialize the system. We 
train FNO2D, ViT, ViTsmall and ViTparallel with initialization on a single 
time point, whereas convolutional long short-term memory (LSTM), 
FNO3D and ViT3D are trained with 2, 2 and 10 times for initialization, 
respectively. The results are given in Table 1 (left). We note that ANIE 
even outperforms models that use more data points for initialization. 
FNO2D did not converge for higher number of points, and therefore, 
results for time points t = 10 and t = 20 have not been reported, whereas 
for FNO3D, we have conducted the experiments only for t = 10 and t = 20 
since using fewer points for the time dimension would have effectively 
reduced FNO3D to FNO2D. Example predictions of dynamics with ANIE 
are shown in Fig. 3, where the convergence of the solver to a solution 
is represented.

Modelling brain dynamics using ANIE
Brain activity can be modelled as a spatiotemporal dynamical sys-
tem41. Although most connections between neurons are localized in 
space, there are numerous interactions that are long range42. As such, 
brain dynamics can be modelled using IEs5 that —unlike PDEs—allow 
for non-local interactions. Since ANIE allows the efficient learning of 
integral operators from data, we demonstrate the ability of ANIE to 
learn non-local brain dynamics from functional magnetic resonance 
imaging (fMRI) recordings.

To obtain fMRI data that has an arbitrary time duration as well as 
unlimited trials, we make use of neurolib43, an fMRI simulation package. 
The data provided by this tool permit for more extensive comparison 
and statistical power. neurolib simulates whole-brain activity using 
a system of delay differential equations, which are non-local equa-
tions, thereby allowing the testing of ANIE’s ability to model non-local 
systems. Here we show the performance of ANIE and other models in 
modelling data generated by neurolib. Details about data generation 
and preprocessing can be found in the ‘fMRI data generation’ section.

The generated fMRI data comprises neural activity for 80 nodes 
localized across the cortex. The first half of the data is used for training 
and the second half is used for testing. For training, the data are divided 
into segments of 20 time points, where the first time point is used as 
the initial condition, and the loss is computed over all the 20 points. 
As such, the models are trained as an initial condition problem. During 
inference, the models are given points from the test set as new initial 
conditions and asked to extrapolate for the following 19 points. The 
mean error per point for 200 new initial conditions is shown in Extended 
Data Fig. 1 and summarized in Extended Data Table 1. Extended Data 
Fig. 2 shows the data and model per fMRI recording node over time. 
We show that ANIE has better performance than other benchmarked 
methods for medium-time-step (t = 10) and long-time-step (t = 20) 
predictions, demonstrating its ability to model non-local dynamics. 
For shorter and more localized dynamics (t = 5), FNO1D shows better 
performance, which can be explained by the fact that FNO1D outputs 
the average of the initial points provided as the prediction for the first 
five time steps. The DeepONet + UNET model (Extended Data Table 1) 
is implemented similar to that in another work44.

Interpretable dynamics
In addition to modelling and generating new dynamics, it is useful to get 
an insight into the underlying process that generates the dynamics. For 
example, in neuroscience, a major goal is to understand how specific 
brain activity patterns give rise to cognition, learning and behaviour. 
To explore the interpretability of ANIE, we carry out two experiments. 
For the first experiment, we augment the spacetime integration domain 
with a Classify (CLS) token45, such that each dynamics is projected into 

Table 1 | Benchmark on the Navier–Stokes and Burgers’ equations

Navier–Stokes Burgers’

t = 3 t = 5 t = 10 t = 20 t = 10 t = 15 t = 25

s = 256 s = 512 s = 256 s = 512 s = 256 s = 512

LSTM 0.1384 0.2337 0.1422 0.2465 − − − − − −

ResNet − − − − 0.0295 0.0309 0.0280 0.0232 0.0194 0.0204

Conv1DLSTM − − − − 0.0132 0.0133 0.0132 0.0136 0.0124 0.0134

Conv2DLSTM 0.4935 0.4393 0.3931 0.2999 − − − − − −

FNO1D − − − − 0.0088 0.088 0.0087 0.087 0.083 0.086

Galerkin − − − − 0.525 NA 0.521 NA 0.518 NA

FNO2D 0.2795 0.2724 NA NA − − − − − −

FNO3D NA NA 0.1751 0.701 − − − − − −

ViT 0.1093 0.877 0.2473 0.2367 0.430 0.423 0.423 0.422 0.422 0.424

ViTsmall 0.926 0.702 0.677 0.655 0.429 0.429 0.426 0.427 0.417 0.424

ViTparallel 0.2901 0.2660 0.2475 0.2368 0.433 0.702 0.573 0.861 0.435 0.700

ViT3D 0.360 0.365 0.433 0.406 − − − − − −

ANIE (this work) 0.0194 0.0220 0.0193 0.0117 0.0024 0.0026 0.0024 0.0024 0.0022 0.0023

We evaluate the models on predicting dynamics of different lengths (t = 3, 5, 10, 20) for unseen initial conditions. The models that use a single time point are ANIE (this work), FNO2D, ViT80, 
ViTsmall81 and ViTparallel82 models, whereas the convolutional LSTM, FNO3D and ViT3D use more time points (2, 10 and 2, respectively) to predict the rest of the dynamics. ANIE even 
outperforms models that use more data points for initialization. Right, benchmark on the Burgers’ equation with different time intervals t = 10, 15, 25 and space resolutions s = 256, 512, where a 
time interpolation task is performed. The symbol ‘−’ indicates models that were not suitable for certain experiments (for example, wrong dimensionality), whereas ‘NA’ indicates models that did 
not converge or did not fit in memory.
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a single vector. This vector can then be related to specific properties 
of the dynamics. Specifically, we embed these vectors for different 
Navier–Stokes dynamics and find that the resulting manifold (projected 
using principal component analysis (PCA)) has a highly non-random 
structure. This is in contrast to the projection of the raw data (Extended 
Data Fig. 3). To further explore the resulting dynamics manifold, we 
colour it by the velocities of the dynamics, a property that was not 
explicitly seen by the model during training. We find that the manifold 
highly correlates with velocity, whereas the embedding of the raw data 
has no such correlation. To quantify this, we compute the k-nearest 
neighbor (kNN) regression error on the embeddings with respect to 
the velocities and find that the embedding obtained from ANIE has 
lower error (Extended Data Table 2).

For the second experiment, we inspect the attention weights of 
the model when predicting brain dynamics (calcium imaging; see the 
‘Calcium imaging dataset’ section) to infer which cortical loci drive neu-
ronal dynamics. Extended Data Fig. 4 shows that the motor and visual 
cortices are the areas of the brain with the highest attention values. We 
note that the attention plots are not directly correlated with the brain 
activity inputs, suggesting that they point to new information about 
the data. To validate this, we compare the performance of predicting 
the visual stimulus, which was not explicitly provided to the model, 
from either the raw data or the attention values using a kNN regressor 
(k = 3) (see the ‘Calcium imaging dataset’ section). In Extended Data 
Table 3, we show that the attention weights significantly (p = 0.035) 

outperform the raw data, thereby demonstrating that ANIE can provide 
insights into the modelled dynamics.

Further experiments
In the ‘Additional experiments’ section, we include several more experi-
ments regarding the training speed of ANIE, showcasing that it is sig-
nificantly faster than ODE-solver-based models, and hyperparameter 
sensitivity of the model (Supplementary Fig. 3) and modelling of IE 
dynamics (Extended Data Fig. 5 and Extended Data Table 4), along 
with further tables and figures on the experiments in the ‘Modelling 
PDEs with IEs: Burgers’ and Navier–Stokes equations’, ‘Modelling brain 
dynamics using ANIE’ and ‘Interpretable dynamics’ sections. In the 
‘Solver convergence’ section, we have explored the convergence of 
the solver to fixed points of the corresponding IE, and Supplementary 
Fig. 6 shows the dependence of the model with respect to increased 
solver steps.

Methods
We give here a detailed account of the implementation of the NIE and 
ANIE models (one-dimensional (1D) and (n + 1)-dimensional IEs, respec-
tively). More specifically, we provide a more thorough description of 
Algorithms 1 and 2 for solving the IEs associated with neural networks 
G (feed-forward) and 𝔄𝔄𝔄𝔄𝔄𝔄 (transformer), and contextualize these algo-
rithms in the optimization procedure that learns the neural 
networks.
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Fig. 3 | Example dynamics of the (2+1)-dimensional Navier–Stokes system, 
where the model is initialized only with the first frame of the dynamics. 
Ground-truth data are given at the bottom. Along with the final prediction  
(step 7), the subsequent solver guesses are shown. The error during the  

solution generation are reported on the right. The figure also shows that 
the solver converges when producing the final output (compare with 
Supplementary Fig. 5).
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Implementation of NIE
We only consider the case of equation (1), as the case where the func-
tion G splits in the product of a kernel K and the (possibly) nonlinear 
function F is substantially identical. We observe that the main com-
ponents of the training of NIEs are two. An optimization step that 
targets G, and a solver procedure to obtain a solution associated with 
the IE individuated by G, or more precisely, the integral operator that 
G defines. Therefore, we want to solve equation (1) for a fixed neural 
network G, determine how far this solution is from fitting the data and 
optimize G in such a way that at the next step, we obtain a solution that 
more accurately fits the data. At the end of the training, we have a neural 
network G that defines an integral operator and, in turn, an IE, whose 
associated solution(s) approximates the given data.

To fix the notation, let us call X as the dataset for training. This 
contains several instances of n-dimensional curves with respect to 
time. In other words, we consider X = {Xi}i≤N , where N is the number of 
instances and Xi = {xi0,… ,xim} , where each xi ∈ ℝq  is a q-dimensional 
vector, and the sequence of xik  refers to a discretization of the time 
interval where the curves are defined. For simplicity, we assume that 
time points are taken in [0, 1]. The neural network G defining the inte-
gral operator will be denoted by Gθ, to explicitly indicate the depend-
ence of G on its parameters. The objective of the training is to optimize 
θ in such a way that the corresponding Gθ defines an IE whose solutions 
yi(t) corresponding to different initializations pass through the discre-
tized curves xi(t).

Let us now consider one training step n, where the neural network 
Gθn has weights obtained from the previous training steps (or randomly 
initialized if this is the first step). We need to solve the IE

y = f(t) +∫
β(t)

α(t)
Gθn (y, t, s)ds (5)

associated with the integral operator ∫β(t)α(t) Gθn (y, t, s)ds corresponding 
to the weights θn at training step n.

For simplicity, we consider a batch size of 1 so that our train-
ing curve is given by {x0,…, xm}, where we suppress the superscript 
i because there is only one curve. Then, we select the first vector x0, 
and use this to initialize a full curve with repeated instances of this. In 
other words, we define f(t) = x0 for all times t. We now apply the IE solver 
procedure, and set the zero-order solution to the IE to be y0(t) = f(t) = x0. 
We now apply the integral operator determined by Gθ computing

z0 = f(t) +∫
β(t)

α(t)
Gθn (y0, t, s)ds.

Observe that at this stage, we can perform the integration over the 
interval [α(t), β(t)] for each time t, since y0 is given for all times t. We then 
set y1 = ry0 + (1 − r)z1, where r is a smoothing factor and 0 ≤ r < 1, which 
is set beforehand. The function y1(t) is now the new approximation for 
the solution of the IE given in equation (5). We can now compute the 
global error between y0 and y1, which we denote by m(y0, y1). This error 
is internal to the solver and does not refer to how well the model fits 
the data. It refers to how far the solver is from converging. We iterate 
this procedure. Let us assume that this has been done k times. Then, 
we have a function that approximates a solution of the IE at the kth 
iteration, denoted by yk(t). We compute

zk = f(t) +∫
β(t)

α(t)
Gθn (yk, t, s)ds,

where, as before, we can evaluate the integral over the intervals 
[α(t), β(t)] because the function yk(t) is defined over the full time length 
of the dynamics.

This iterative procedure converges to a solution of the IE for the 
integral operator defined through Gθn (ref. 11). To optimize the parameters 

θ of G, we require gradients on the input of Gθn when applying the neural 
network, we compute the loss between the solution y obtained through 
the iterative solution and the data, and we then backpropagate.

Implementation of ANIE
We now consider ANIE, which is an IE model where the integral is 
approximated via self-attention. As the iterative solver procedure to 
obtain a solution of the IE determined by the integral operator is con-
ceptually the same as in the case of NIE given above, we mostly focus 
on the details relative to the use of self-attention in this setting. First, 
we consider an IE with space and time, which takes the form of  
equation (9). Our dataset now consists of instances of a given dynamics 
X = {Xi}i≤N, where N is the number of instances in the dataset, and each 
Xi = {xis1 ,…,sd, j } is a family of q-dimensional vectors (where q is the dimen-
sion of the dynamics), indexed by the spatial and temporal indices s1,…, 
sd and j corresponding to a discretization (for example, a mesh) of the 
spatiotemporal domain Ω × [0, T]. Observe that the dimension of the 
spatial domain Ω here is assumed to be d, thereby implying that each 
x depends on d indices. Therefore, one can think of each dynamics 
instance in the dataset as being a temporal sequence of spatial meshes, 
for example, a sequence of images when d = 2. We will assume that the 
number of time points in such a sequence is equal to mT and the total 
number of space points is equal to mΩ; we set m = mTmΩ.

For the sake of simplicity, we assume that the attention  
model approximating the integral operator consists of a single 
self-attention layer. Let 𝔄𝔄𝔄𝔄𝔄𝔄 denote a self-attention layer, and assume 
that 𝔄𝔄𝔄𝔄𝔄𝔄 ∶ ℝm×(q+d+1) ⟶ ℝm×(q+d+1) . Observe that the attention layer  
maps sequences of length m of (q + d + 1)-dimensional vectors to 
sequences of the same type. We, therefore, think of 𝔄𝔄𝔄𝔄𝔄𝔄 ∶ 𝔄𝔄 ⟶ 𝔄𝔄 as a 
mapping between two function spaces 𝔄𝔄 and 𝔄𝔄, whose elements are 
functions y(x, t) in a discretized form, where x ∈ Ω and t ∈ [a, b]. As 
discussed in other work21,34, the self-attention mechanism can be 
thought of as an approximation of an integral operator where given a 
discretized function y(x, t), 𝔄𝔄𝔄𝔄𝔄𝔄(y(x, t)) is another discretized function 
obtained through an approximation of an integration over the variables 
x and t. This theoretical motivation, and the computational complexity 
of performing the Monte Carlo integration in higher dimensions, led 
us to consider an IE solver where instead of learning a simple neural 
network G as in the setting of NIE, we learn the integral operator in the 
form of its attentional approximation 𝔄𝔄𝔄𝔄𝔄𝔄.

As for the detailed description of NIE given above, we assume that 
the batch size is equal to 1, and the dataset is X = {Xi}i≤N with Xi = {xis1 ,…,sd, j } 
for a discretization of a spatiotemporal domain Ω × [0, T], as described 
earlier. Let 𝔄𝔄𝔄𝔄𝔄𝔄θ denote the transformer with parameters θ obtained at 
epoch n of the training session. Here, if n = 0, it simply means that 𝔄𝔄𝔄𝔄𝔄𝔄θ 
is randomly initialized. We want to inspect epoch n + 1. The IE we solve 
at each training epoch takes the form

y = f(x, t) + 𝔄𝔄𝔄𝔄𝔄𝔄θ(y,x, t), (6)

where 𝔄𝔄𝔄𝔄𝔄𝔄θ(y,x, t)  is an approximation of an integral operator ∫T0 ∫Ω
G(y,x,x′, t, s)dx′ds  for some G. The solver is initialized through the free 
function f(x, t), which plays the role of the first ‘guess’ for the IE solution. 
Observe that since f is evaluated on the full discretization of Ω × [0, T], 
then the length m of the sequence of vectors that approximates f(x, t) 
equates the product of the number of space points sk for each dimension 
and time point tr. The solver, therefore, creates its first approximation by 
setting y0(x, t) = f(x, t). Then, for the first iteration of the solver, we create 
the new sequence ̃y0 by concatenating to each y and the spatiotemporal 
m coordinates (xs, tr). Now, ̃y consists of a sequence of m = mTmΩ vectors 
(one per spacetime point), which also possess spacetime encoding 
(through concatenation). Supplementary Fig. 1 shows a schematic of the 
integration procedure through a transformer. Then, we set

̃y1(x, t) = f(x, t) + 𝔄𝔄𝔄𝔄𝔄𝔄θ( ̃y0),
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where the dependence of ̃y1 on spacetime coordinates x and t indicates 
that we have one vector ̃y1 per spacetime coordinate. If q is the dimension 
of the dynamics (that is, the number of channels per spacetime point), 
then the sequence ̃y1 consists of vectors of dimension q + d + 1, where d 
is the number of space dimensions. This happens because ̃y1 is the output 
of a transformer of a sequence obtained by a sequence of q-dimensional 
vectors concatenated with a (d + 1)-dimensional sequence. The two 
simplest options are either to discard the last d + 1 dimensions of the 
vectors or add an additional linear layer that projects from q + d + 1 dimen-
sions to q. As tests have not shown a significant difference between the 
two approaches, we have adopted the former. Consequently, we obtain 
the one-dimensional sequence z1(x, t). Last, we set y1(x, t) = ry0 + (1 − r)z1, 
where r is a smoothing factor that is a hyperparameter of the solver. One, 
therefore, computes the error m(y0, y1) between the initial step and the 
second one to quantify the degree of change in the new approximation, 
where m(•, •) is a global error metric fixed throughout.

Now, we iterate the same procedure and assuming that the approx-
imation yi to the equation has been obtained, we then concatenate the 
spacetime coordinates to obtain ̃yi and set

̃yi+1(x, t) = f(x, t) + 𝔄𝔄𝔄𝔄𝔄𝔄θ( ̃yi),

which we use to obtain zi+1 (by deleting the last d + 1 dimensions). Then, 
we set yi+1 = ryi + (1 − r)zi+1 and compute the global error m(yi, yi+1). Sup-
plementary Fig. 2 shows a solver step integration in detail.

In practice, the number of iterations for the solver is a fixed hyper-
parameter that we have set between 3 and 5 in our experiments. This 
has been sufficient to achieve good results, as well as to learn a model 
that is stable under the solving procedure described above. Since the 
solver is fully implemented in PyTorch and the model that approxi-
mates the integral operator is a transformer, we can simply backpropa-
gate through the solver at each epoch, after we have solved for y and 
compared the solution with the given data {Xi}i≤N.

We complete this subsection with a more concrete description of 
the motivations for approximating integration through the mechanism 
of self-attention. Very similar perspectives have appeared in other 
sources21,34, but we provide a formulation of such considerations that 
more easily fit the perspectives of integral operators for IEs used in this 
Article. This also serves as a more explicit description of 𝔄𝔄𝔄𝔄𝔄𝔄 found in 
Algorithm 2.

We consider an n-dimensional dynamics y(x, t) depending on 
space x ∈ Ω (for some domain Ω) and time t ∈ [0, 1]. The queries, keys 
and values of self-attention can be considered as maps 
ψW ∶ ℝn+1 ×Ω × [0, 1]⟶ ℝ1×d , where d is the latent dimension of the 
self-attention, and W = Q, K and V for queries, keys and values, respec-
tively. Then, (for W = Q, K, V), we have

W [y|x|t] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ψ0
W[y|x|t]

⋮

ψiW[y|x|t]

⋮

ψd−1W [y|x|t]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where [y∣x∣t] indicates the concatenation of the terms in the bracket. 
Let us now consider the ‘traditional’ quadratic self-attention. Similar 
considerations also apply for the linear attention used in the experi-
ments, mutatis mutandis. The product between queries and keys gives

[(⋯ψiQ [y|x|t]⋯) ⋅ (⋯ψ j
K [y|x|t]⋯)

T
]
ij
= (ψiQ ⋅ ψ̂

j
K) ,

where T indicates transposition and ψ̂ indicates the columns of the 
transposed matrix. Then, if z is the output of the self-attention layer 

(observe that this consists of (zi)j, where i indicates a spatiotemporal 
point and j indicates the jth dimension of the n-dimensional dynamics). 
Then, we have

(zi)j = ∑
j
(ψiQ ⋅ ψ̂

j
K)ψ

j
V ≈ ∫

Ω×[0,1]
K(y,x, t,y′,x′, t′)F(y′,x′, t′)dx′dt′,

where the prime symbols indicate the variables we are summing on 
(this is why the are ‘being integrated’ in the integral), and y is evaluated 
at x and t whereas y′ is evaluated at x′ and t′.

Additional experiments
Benchmark of (A)NIE training speed. Neural ordinary differential 
equations (NODEs) can be slow and have poor scalability46. As such, sev-
eral methods have been introduced to improve their performance46–50. 
Despite these improvements, a NODE is still significantly slower than 
discrete methods such as LSTMs. We hypothesize that an (A)NIE has sig-
nificantly better scalability than a NODE, comparable with fast but dis-
crete LSTMs, despite being a continuous model. To test this, we compare 
NIE and ANIE with the latest optimized version of (latent) NODE51 and to 
LSTM on three different dynamical systems: Lotka–Volterra equations, 
Lorenz system and IE-generated two-dimensional (2D) spirals (see the 
‘Artificial dataset generation’ section for the data generation details). 
During training, models were initialized with the first half of the data and 
were tasked to predict the second half. The training speeds are reported 
in Supplementary Table 1. Although all the models achieve comparable 
(good) fits to the data, we find that ANIE outperforms all the models in 
two out of the three datasets in terms of speed. Furthermore, ANIE has 
better MSE compared with all the other models.

Hyperparameter sensitivity benchmark. For most deep learning 
models, including NODEs, finding numerically stable solutions usu-
ally requires an extensive hyperparameter search. Since IE solvers are 
known to be more stable than ODE solvers, we hypothesize that (A)NIE 
is less sensitive to hyperparameter changes. To test this, we quantify 
the model fit, for the Lotka–Volterra dynamical system, as a function 
of two different hyperparameters: learning rate and L2 norm weight 
regularization. We perform this experiment for three different models: 
LSTM, latent NODE and ANIE. As shown in Supplementary Fig. 3, we 
find that ANIE generally has a lower validation error as well as more 
consistent errors across hyperparameter values, compared with LSTM 
and NODE, thereby validating our hypothesis.

Modelling 2D IE spirals. To further test the ability of ANIE in modelling 
non-local systems, we benchmark ANIE, NODE and LSTM on a dataset of 
2D spirals generated by IEs. These data consist of 500 2D curves of 100 
time points each. The data were split in half for training and testing. Dur-
ing training, the first 20 points were given as the initial condition and 
the models were tasked to predict the full 100-point dynamics. Details 
on the data generation are described in the ‘Artificial dataset genera-
tion’ section. For ANIE, the initialization is given via the free function f, 
which assumes the values of the first 20 points and sets the remaining 
80 points to be equal to the value of the 20th point. For NODEs, the 
initialization is given as the RNN on the first 20 points, which outputs 
a distribution corresponding to the first time point (details on latent 
ODE experiments are provided elsewhere30). For the LSTM, we input 
the data in segments of 20 points to predict the consecutive point of 
the sequence. The process is repeated with the output of the previous 
step until all the points of the curve are predicted. During inference, we 
test the models’ performance on never-before-seen initial conditions. 
Extended Data Table 4 shows the correlation between the ground-truth 
curve and the model predictions. Extended Data Fig. 5 shows the cor-
relation coefficients for the 500 curves. In summary, ANIE significantly 
outperforms the other tested methods in predicting IE-generated 
non-local dynamics.
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Solver convergence. We now consider the convergence of the solver 
to a solution of an IE for a trained model. Our experiment here consid-
ers a model that has been trained with a number of iterations, and we 
explore whether the solver iterations converge to a solution at the end 
of the training. These results show that the model learns to converge 
to a solution of equation (7) within the iterations that are fixed during 
training. They show that a fixed point for IE is obtained when output-
ting a prediction.

Supplementary Fig. 5 and Fig. 3 show the convergence error (that 
is, the value ∥yn+1 − yn∥), and the guesses produced by the solver dur-
ing inference (that is, yn for n corresponding to the iteration index), 
respectively.

IEs
IEs are equations where the unknown function appears under the sign 
of integral. These equations can be given, in general, as

λy = f + T(y), (7)

where T is an integral operator, for example, as in equations (1) and 
(3), and f is a known term of the equation. In fact, this functional 
equations have been studied for classes of compact operators T that are 
not necessarily in the form of integral operators52. We can distinguish 
two fundamental kinds of equation from the form given in equation 
(7), which have been extensively studied throughout the years. When 
λ = 0, we say that the corresponding IE is of the first kind, whereas when 
λ ≠ 0, we say that it is of the second kind.

In this Article, we formulate our methods based on equations of 
the second kind for the following important theoretical considera-
tions, which apply to the case where T is bounded over an infinite space 
(such as the space of functions as we consider in this Article). First, an 
equation of the first kind can easily have no solution, as the range of a 
bounded operator T on an infinite space is not the whole space53. There-
fore, for choices of f, there is no y such that T(y) = −f, and therefore, 
equation (7) has no solutions. The other issue is intrinsic to the nature 
of the equation of the first kind, and does not relate to the existence 
of solutions. In fact, any compact injective operator T (on an infinite 
space) does not admit a bounded left inverse53. In practice, this means 
that if equation (7) has a unique solution for f, then varying f by a small 
amount can result in very significant variations in the corresponding 
solution y. This is clearly a potential issue when dealing with a deep 
learning model that aims at learning operator T from the data. In fact, 
observations from which T is learned might be noisy, which might result 
in very considerable perturbations of the solution y and, consequently, 
considerable perturbations on the operator T that the model converges 
to. Since equations of the second kind are much more stable, we have 
formulated all the theory in this setting, and implemented our solver 
for such equations. The issues relating to the existence and uniqueness 
of the solution for these equations are discussed in the ‘Existence and 
uniqueness of solutions’ section.

The theories of IEs and IDEs are tightly related, and it is often 
the case to reduce problems in IEs to problems in IDEs and vice 
versa, both in practical and theoretical situations. IEs are also 
related to differential equations, and it is possible to reformulate  
problems in ODEs in the language of IEs or IDEs. In certain cases, 
IEs can also be converted to differential equation problems, even 
though this is not always possible9,54. In fact, the theory of IEs is not 
equivalent to that of differential equations. The most intuitive way 
of understanding this is by considering the local nature of differ-
ential equations, as opposed to the non-local origin of IEs. By the 
non-locality of IEs, it is meant that each spatiotemporal point in an 
IE depends on an integration over the full domain of the solution 
function y. In the case of differential equations, each local point 
depends only on the contiguous points through the local definition 
of the differential operators.

IE (1D). We first discuss IEs where the integral operator only involves 
a temporal integration (that is, 1D), as discussed in the ‘IEs’ section. In 
analogy with the case of differential equations, this case can be con-
sidered as the one corresponding to ODEs.

These IEs are given by an equation of type

y(t) = f(t) +∫
β(t)

α(t)
G(y, t, s)ds, (8)

where f is the free term, which does not depend on y, whereas the 
unknown function y appears both on the left- and right-hand sides 
under the sign of the integral. The term ∫β(t)α(t) G(y, t, s)ds  is an integral 
operator 𝒞𝒞(D)⟶ 𝒞𝒞(D) from the space of integrable functions 𝒞𝒞(D) over 
some domain of ℝ, into itself. We observe that the variables t and s 
appearing in G are both in D, and they are interpreted as time variables. 
We refer to them as global and local times, respectively, following the 
convention used in another work29. The functions α and β determine 
the extremes of integration for each (global) time t. Common choices 
for α and β include α(t) = 0 and β(t) = t (Volterra equations) or α(t) = a 
and β(t) = b (Fredholm equations).

The fundamental question in the theory of IEs is whether solutions 
exist and are unique. It turns out that under relatively mild assumptions 
on the regularity of G, IEs admit unique solutions9. Furthermore, the 
proofs in another work4 show the close relation between IEs and IDEs, as 
the existence of uniqueness problems for IDEs are shown to be equiva-
lent to analogous problems for IEs. Then, the fixed-point theorems of 
Schauder and Tychonoff are used to prove the results.

IEs (n + 1D). We now discuss the case of IEs where the integral operator 
involves integration over a multidimensional domain of ℝn. This is the 
IE version of PDEs, and they are commonly referred to as PIEs when 
integration separately occurs on different components. We will con-
sider equations where the multidimensional integral is obtained 
through multiple integrations. An equation of this type takes the form

y(x, t) = f(x, t) +∫
β(t)

α(t)
∫
Ω

G(y,x,x′, t, s)dx′ds, (9)

where Ω ⊂ ℝn is a domain in ℝn and y ∶ Ω × ℝ⟶ℝm. Here m does not 
necessarily coincide with n.

PIEs and higher-dimensional IEs have been studied in some 
restricted form since the 1800s, as they have been employed to for-
mulate the laws of electromagnetism before the unified version of 
Maxwell’s equations was published. In addition, early work on the 
Dirichlet’s problem found the IE approach proficuous, and it is well 
known that several problems in scattering theory (molecular, atomic 
and nuclear) are formulated in terms of (P)IEs. In fact, the Schrödinger 
equation can be recast as an IE55. Bound-state problems have also been 
treated with the IE formalism56.

Generalities on solving IEs. The most striking difference between the 
procedure of solving an IE and an ODE is that for an IE to evaluate at a 
single time point, one needs to know the solution for all the time points. 
This is clearly an issue, since solving for one point requires that we 
already know a solution for all the points. To better elucidate this point, 
we consider a simple comparison between the solution procedure of 
an ODE equation of type ̇y = f(y, t) and an IE of type y = f(t) + ∫1

0 G(y, t, s)ds.
Let us assume that we are solving an ODE of type ̇y(t) = f(y, t) and 

that y is known at time points t0, t1,…, tk−1. Then, one can obtain y at tk 
by means of the Euler method by using the known value at tk−1 by taking 
small enough steps Δt forward in time. In general, therefore, one starts 
by the initial condition y0 and determines the solution y at the points 
t0,…, tn by taking small steps and representing the derivative as Δf/Δt 
for small intervals Δt. Of course, more sophisticated methods are 
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possible for the numerical solution of the ODE, but they essentially 
produce the next time point from the previous one in a sequential way. 
Let us now consider an analogous Fredholm IE to the ODE given above. 
This is a simple equation of the type y = f(t) + ∫1

0 G(y, t, s)ds. Suppose we 
know y at time points t0,…, tk−1. To determine y(tk), we need to compute 
f(tk) + ∫1

0 G(y, tk, s)ds, which requires us to know y over the full interval 
[0, 1], as G is integrated over [0, 1]. It is obvious that knowing a single 
time point for y (or a sequence of values) does not suffice anymore. In 
a Volterra type of equation, the integral would be between [0, tk] (where 
the unknown value tk is included), which does not really change the 
essence of the issue.

Although several methods can be employed to solve IEs, most (if 
not all) of them are based on the concept of iteration over some initial 
guess for the solution of the IE. Iterating on the initial guess produces a 
sequence of functions that then converges to a solution of the IE. More 
specifically, one can consider the von Neumann series of the integral 
operator, as discussed below. In fact, let us consider equation (7), which 
can be rewritten as

( − T )(y) = f,

where we assume, for a moment, that T is a linear operator. Observe 
that if we can find the inverse of − T , then we obtain y as ( − T )−1( f ). 
This can be done by writing the von Neumann series for ( − T )−1 =
∑∞
k=0 Tk . This expression makes sense whenever the series ∑∞

k=0 Tk  
converges in the operator norm, which is guaranteed in important 
cases such as when ∑∞

k=0 ∥ T∥
k  converges (for example, when ∥T∥ < 1), 

whereas milder conditions on the convergence of the series exist, too. 
In such a situation, when the von Neumann series is meaningful, we can 
then obtain y by iteratively applying Tk to f. The nonlinear case is han-
dled in a similar iterative procedure, which is called the method of 
successive approximations or Picard’s iterations57. It is, in fact, straight-
forward that under mild conditions, the method will output a solution 
of the IE. Conditions under which such succession is guaranteed to 
converge can be found elsewhere57. A particularly well-known case is 
when the integrand of the integral operator is contractive (that is, 
Lipschitz with a constant between 0 and 1) with respect to the variable 
y. We give a proof of such an approach for our setting; similar results 
are available in other work57.

Theorem 4.1. Let ϵ > 0 be fixed, and suppose that T is Lipschitz with con-
stant k < 1. Then, we can find y ∈ X such that ∥T(y) + f − y∥ < ϵ, independent 
of the choice of f.

Proof. Let us set y0 ≔ f and yn+1 = f + T(yn) and consider the term ∥y1 − y0∥. 
We have

∥ y1 − y0 ∥=∥ T( y0) ∥ .

For an arbitrary n > 1, we have

∥ yn+1 − yn ∥=∥ T( yn) − T( yn−1) ∥≤ k ∥ yn − yn−1 ∥ .

Therefore, applying the same procedure to yn − yn−1 = T(yn−1) − T(yn−2) 
until we reach y1 − y0, we obtain the inequality

∥ yn+1 − yn ∥≤ kn ∥ T( y0) ∥ .

Since k < 1, the term kn∥T(y0)∥ is eventually smaller than ϵ for all  
n ≥ ν for some choice of ν. Defining y ≔ yν for such ν gives the  
following:

∥ T( yν) + f − yν ∥=∥ yν+1 − yν ∥< ϵ.

The following now follows easily.

Corollary 4.2. Consider the same hypotheses as above. Then, equation 
(7) admits a solution. In particular, if the integrand G in equation (8) is 
contractive with respect to y with constant k such that k ⋅ (b − a) < 1 (where 
[a, b] is the co-domain of α and β), the iterative method in Algorithm 1 
converges to a solution of the equation.

Proof. From the proof of Theorem 4.1, it follows that the sequence yn 
is a Cauchy sequence. Since X is Banach, then yn converges to y ∈ X. By 
continuity of T, y is a solution to equation (7). For the second part of the 
statement, observe that when G is contractive with respect to y, then we 
can apply Theorem 4.1 to show that the sequence generated following 
Algorithm 1 is Cauchy, and we can proceed as in the first part of the proof.

Remark 4.3. Observe that the result in Corollary 4.2 applies to Algorithm 
2, too, under the assumptions that the transformer architecture is con-
tractive with respect to the input sequence y. Also, a statement that 
refers to higher-dimensional IEs can be obtained (and proved) similar 
to the second part of the statement of Corollary 4.2, using the measure 
of Ω × [a, b] instead of the value (b − a).

In practice, the method of successive approximations is imple-
mented as follows. The initial guess for the IE is simply given by the free 
function f (that is, T0(f)), which is used to initialize the iterative proce-
dure. Then, we apply T to y0 ≔ T0(f) to obtain a new solution 
z1 ≔ f(t) + T1(y0). We set y1 ≔ ry0 + (1 − r)z1 and apply T2 to the solution y1 
and repeat. Here r is a smoothing factor that determines the amount 
of contribution from the new approximation to consider at each step. 
As the iterations grow, the fractions of the contributions due to the 
smoothing factor r tend to 1. Observe that when we sum ryi + (1 − r)yi+1 
with r = 0, we obtain the terms of the von Neumann series up to degree 
i applied to f: ∑i

0 T k( f ). The smoothing factor generally shows good 
empirical regularization for IE solvers, and we have set r = 1/2 through-
out our experiments, even though we have not seen any concrete dif-
ference between different values of r. This procedure is shown in Fig. 2.

In another work11, computations on the error bounds for the itera-
tive procedure described above when the integrand function G splits 
into the product of a kernel (see above) and a linear function F are given. 
Also, a detailed description of the Nyström approximation for the com-
putation of the error is given. We describe a concrete realization of the 
iterative procedure discussed above in the ‘IEs’ section, along with the 
learning steps for the training of our model. Moreover, we additionally 
observe that the procedure described above does not depend on T 
being an integral operator or a general operator, and therefore, apply-
ing this methodology to the case where we have a transformer instead 
of T is still meaningful, in the assumption that T is such that the iterated 
series of approximations is convergent.

Depending on the specific IE that one is solving (for example, 
Fredholm or Volterra, 1D or (n + 1)-dimensional), the actual numeri-
cal procedure for finding a numerical solution can vary. For instance, 
several studies have showcased such a wide variety of specific methods 
for the solution of certain types of equation35,58–61. Such variations on 
the same theme of iterative procedure depend on finding the most 
efficient way of converging to a solution, finding the best error bounds, 
improving stability of the solver and substantially depending on the 
form of the integral operator. As our method is applied without the 
actual knowledge of the shape of the integral operator, but it actually 
aims at inferring (that is, learning) the integral operator from data, we 
implement an iterative procedure that is fixed and depends only on a 
hyperparameter smoothing factor. This is described in detail in the next 
section. However, we point out that since the integrand, and therefore 
the integral operator itself, is learned during the training, one can 
assume that the model will optimize with respect to the procedure in a 
way that our iterations are in a sense ‘optimal’ with respect to the target.

Thus far, our considerations on the implementation of IE solvers 
seem to point to a fundamental computational issue, since they entail 
a more sophisticated solving procedure than that of ODEs or PDEs. 
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However, in various situations, even solving ODEs and PDEs through IE 
solvers presents significant advantages that are not necessarily obvi-
ous from the above discussions. The first advantage is that IE solvers 
are significantly more stable than ODE and PDE solvers, as shown in 
other work6,7,35. This, in particular, provides a solution to the issue of 
underflowing during the training of NODEs that does not consist of a 
regularization, but of a complete change in perspective. In addition, 
even though one needs to iterate to solve an IE, in general, the num-
ber of iterations is not particularly high. In fact, in our experiments, 
the total number of iterations turned out to be sufficient to be fixed 
between 4 and 6. However, when solving, for instance, an ODE, one 
needs to sequentially go through each time step. These can be in the 
order of 100 (as that in some of our experiments). On the contrary, our 
IE solver processes the full time interval in parallel for each iteration. 
This results in a much faster algorithm compared with differential 
solvers, as shown in our experiments.

Existence and uniqueness of solutions. The solver procedure 
described in the previous subsection, of course, assumes that there 
exists a solution to start with. As mentioned at the beginning of the sec-
tion, we treat equations of the second kind in this Article also because 
the existence conditions are better behaved than for the equations of 
the first kind. We now give some theoretical considerations in this 
regard. We will also discuss when these solutions are uniquely deter-
mined. Existence and uniqueness are two fundamental parts of the 
well posedness of IEs, the other being the continuity of solutions with 
respect to the initial data.

A concise and relatively self-contained reference for the existence 
and uniqueness of solutions for (linear) Fredholm IEs is provided else-
where53. In fact, it is shown that if a Fredholm equation has a Hermitian 
kernel, then the IE has a unique solution whenever λ is not an eigenvalue 
of the integral operator. For real coefficients, which is the case we are 
interested in, one can simply reduce the case to symmetric kernels, 
which are kernels for which K(t, s) = K(s, t) for all t and s. In this  
Article, since we have assumed λ = 1, the condition becomes equivalent 
to saying that there is no function z such that ∫1

0 K(t, s)z(s)ds = z(t)   
for all t.

For more general (linear) integral operators (bounded on a Hilbert 
space), a similar result holds. In fact, from ref. 53, we know that a gen-
eralized Fredholm IE admits solutions if and only if the free function is 
orthogonal to each solution of the associated homogeneous adjoint 
equation. The latter admits the zero function as a solution (therefore, 
the solution set is not empty), and is obtained from equation (7) by 
deleting f, and by taking the adjoint of T and the complex conjugate 
of y. In the real case, the conjugate of y is y itself. Moreover, unique-
ness is guaranteed if the associated homogeneous equation has only 
trivial solutions. In the case of nonlinear integral operators, several 
existence and uniqueness conditions along with specific formulations 
can be found in the literature4,9,57. Generally speaking, such conditions 
are assumed on the integrand functions that determine the integral 
operator, in such a way that contractive theorems (such as Schauder 
and Tychonoff) can be applied.

Observe that such formulations of the existence and uniqueness 
based on the contractive properties of the operator T are particularly 
interesting in the case where the integral operator is replaced by a gen-
eral neural network (between function spaces), which is not necessarily 
obtained through integration. In practice, when T is a general neural 
network that is possibly nonlinear on all the entries, except with respect 
to the function y, T can be approximated by an IE using the following 
reasoning. It is known that Hilbert–Schmidt operators on the Hilbert 
space of square integrable functions are approximated by integral 
operators53. It is reasonable to assume that neural network operators 
are sufficiently well behaved to be considered Hilbert–Schmidt opera-
tors. They, hence, approximate some integral operator, and the training 
process, therefore, learns an IE.

More generally, for nonlinear IEs of the Urysohn or Hammerstein 
type, the existence and uniqueness problems are well known under 
much milder conditions, namely, when the operator is completely 
continuous62,63. In this situation, it is sufficient for the operator to have 
a non-zero topological index to guarantee that the corresponding IE 
admits a solution, and to study the problem of uniqueness, one can 
determine the value of the topological index in a bounded subset of 
the Banach space in consideration, since this is directly related to the 
number of fixed points of the given IE.

The previous discussion, however, does not directly apply to the 
case when T is a transformer. Such equations can still be considered 
generalized Fredholm equations, and conditions on nonlinear opera-
tors T being approximated by integral operators can be found in the 
literature, but the extent to which such equations are equivalent to 
IEs is a fascinating question, which will not be explicitly considered 
in this Article.

Informatively, we mention that the general theory ensures the exist-
ence and uniqueness of solutions under some (mild) assumptions. Of 
course, in principle, one should impose constraints to ensure that such 
assumptions are satisfied and that the results would apply. However, 
in our experiments, we have observed good stability and good conver-
gence without imposing any additional constraints. This does not apply 
in general, but we hypothesized that during optimization, the model 
converges towards operators whose associated IE is well behaved, to 
avoid regimes of poor stability due to the lack of solutions or the lack of 
uniqueness of solutions. For different datasets, such behaviour might 
not be satisfied, and extra care in this regard might be needed.

Initial condition for IEs. NIE does not learn a dynamical system via the 
derivative of a function y, as is the case for ODEs and IDEs. Therefore, 
we do not need to specify an initial condition in the solver during train-
ing and evaluation. In fact, the initial condition for IEs is encoded in 
the equation itself. For instance, taking t = 0 in a Volterra or Fredholm 
equation uniquely fixes y(x, 0) for all x.

Therefore, we can specify a condition for IEs by constraining the 
free function f(y, t). Hereafter, we will make use of this paradigm several 
times. There are two immediate ways one could impose constraints on 
the free function. The simplest is to fix a value y0 and let f(y, t) be fixed 
to be y0 for all t. Alternatively, one could choose an arbitrary function f 
and keep this function fixed. In practice, the latter is conceptually more 
meaningful. For instance, in theoretical physics, when transforming 
the Schrödinger equation into an IE, on the right-hand side, one can 
choose an arbitrary function ψ(y, t), which corresponds to the wave 
function of free particles, that is, without potential V. Applications of 
this procedure are found below in the experiments.

Approximation capabilities
In this section, we consider the capabilities of our models to approxi-
mate (nonlinear) integral operators and IEs.

NIE. We consider two settings, where the integral operator is modelled 
by a single-hidden-layer feed-forward neural network of arbitrary 
width, or by an arbitrarily deep neural network.

We want to show that when we restrict ourselves to single- 
hidden-layer feed-forward neural networks of arbitrary depth for our 
function Gθ in equation (1), we can approximate a wide class of IEs over 
a suitable subset of the space of functions. In the case of deep neural 
networks, we will argue that the NIE architecture can approximate any 
‘regular enough’ integral operator, where regularity will be described 
below. We restrict our considerations to the case of function spaces 
where the domain is ℝ, since the higher-dimensional case is easily 
adapted from this discussion. We will, therefore, use y instead of y to 
indicate the elements of the domain of the integral operators.

Let T: C([0, 1]) ⟶ C([0, 1]) be an integral operator on the space of 
continuous functions, defined as y↦ T( y)(t) ∶= ∫β(t)α(t) G( y(s), t, s)ds  for 
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continuous functions α and β: [0 1] ⟶ [0, 1] and continuous 
G ∶ ℝ × [0, 1] × [0, 1]⟶ ℝ. In fact, in the following, we could consider G 
as being Borel measurable, instead of imposing the more restrictive 
condition of being continuous. However, since in applications, continu-
ity is generally required, we impose this more restrictive condition. 
Moreover, our discussion easily extends to the case when the definition 
intervals are [a, b] instead of [0, 1] with simple modifications, and a 
similar approach also extends to higher-dimensional integrals. We 
assume that T is such that the corresponding IE of the second kind, that 
is, equation (1), admits a solution y∗ ∶ [0, 1]⟶ ℝ in C([0, 1]). Since y* is 
continuous, there exists a compact K = [−k, k], for k > 0, such that 
y*([0, 1]) ⊂ K. Let us now consider a neighbourhood UK of y* in the 
compact-open topology such that for all y ∈ UK, we have the property 
y([0, 1]) ⊂ K. This could be, for instance, the space of functions y map-
ping [0, 1] into the open (−k, k) = K°. We can, therefore, restrict G to the 
domain K × [0, 1] × [0, 1], and we will still indicate this restriction by G 
and the corresponding integral operator by T (defined over the neigh-
bourhood UK), for notational simplicity.

For an arbitrarily chosen ϵ > 0, we want to show that we can approx-
imate T(y) with error at most ϵ in the metric induced by C([0, 1]) on UK 
through an NIE integral operator Tθ( y)(t) ∶= ∫β(t)α(t) Gθ( y(s), t, s)ds. To this 
purpose, let us set Q = sup[0,1] |β(t) − α(t)| , and observe that by  
applying the universal approximation theorem for single-hidden- 
layer feed-for ward neural net works 6 4 to the func tion 
G ∶ K × [0, 1] × [0, 1]⟶ ℝ , we can find a single-hidden-layer neural 
network Gθ ∶ K × [0, 1] × [0, 1]⟶ ℝ such that for all t and s ∈ [0, 1], we 
have ∣G(y(s), t, s) − Gθ(y(s), t, s)∣ < ϵ/Q. With such a Gθ, for all functions 
y ∈ UK, we have for any fixed t* in [0, 1],

‖
‖‖‖
T( y)(t∗) −∫

β(t∗)

α(t∗)
Gθ( y(s), t∗, s)ds

‖
‖‖‖

≤ ∫
β(t∗)

α(t∗)

‖
‖G( y(s), t

∗, s) − Gθ( y(s), t∗, s)‖‖ds

< |β(t∗) − α(t∗)|ϵ/Q.

Therefore, uniformly, in the variable t, we have

‖
‖‖‖
T( y)(t) −∫

β(t)

α(t)
Gθ( y(s), t, s)ds

‖
‖‖‖
< ϵ.

But this means that d(T(y), Tθ(y)) < ϵ with the metric d on UK induced 
by that of C([0, 1]).

We observe that although this approximation does not hold in 
complete generality, it is valid for a class of integral operators of impor-
tance, since we are usually interested in operators whose correspond-
ing IE admits continuous solutions, and we are interested in modelling 
the operator in the neighbourhood of a solution. Moreover, under 
mild assumptions (see the ‘Existence and uniqueness of solutions’ 
section), the dependence of the solution on the initial data is continu-
ous, and therefore, the solutions to the equation for perturbed f lie in 
a neighbourhood of a solution y* obtained for f. So, our results apply 
in such important cases. Last, we point out that throughout the previ-
ous reasoning, we have implicitly assumed that numerical integration 
is performed with infinite precision. Of course, this is not the case in 
practice, but since we can reduce the numerical error in the integration 
procedure by arbitrarily choosing dense enough samples for a choice 
of the integration scheme, the error due to numerical integration can 
be rendered small enough so that the previous inequalities hold.

We now consider the case where we allow deep neural networks65. 
In this case, we argue that for any IE of the second kind as in equation 
(1) where we set T( y)(t) ∶= ∫β(t)α(t) G( y(s), t, s)ds  for a Lebesgue integral 
function G, we can approximate the integral operator T with arbitrary 
precision. As a consequence, there is an NIE model that realizes any IE 
as in equation (1) with arbitrary accuracy. We can proceed as for the 

case of single-hidden-layer neural networks above, with the main dif-
ference that when applying a theorem from another work65, we do not 
need to restrict ourselves to a neighbourhood UK of a solution y* of the 
IE, and the neural integral operator ∫β(t)α(t) Gθ(y(s), t, s)ds uniformly approxi-
mates T with respect to t for any y ∈ C([0, 1]). Observe that to use the 
data from ref. 65, we need to pre-compose G and Gθ by a characteristic 
function χ[0, 1], which does not affect the result.

ANIE. We give some comments on the approximation properties of 
ANIE with respect to generalized Fredholm equations. For simplicity, 
we consider the case where the integration is performed only over time, 
even though the same reasoning can be extended to spatiotemporal 
domains. Let T: C([0, 1]) ⟶ C([0, 1]) denote a Fredholm integral opera-
tor defined through the assignment T( y)(t) = ∫1

0 G(y(t), t,y(s), s)ds . 
Observe that this integral form is more general than that considered 
in equation (1), and it follows the interpretation of integration in terms 
of self-attention (see the ‘Implementation of ANIE’ section, where the 
integration approximation used in this Article is given in more detail).

Let us assume that the IE y = f* + T(y) admits a unique continuous 
solution y* ∈ C2([0, 1]), and that G is regular enough so that the 
equation admits a unique solution in C([0, 1]) for given functions f in a 
neighbourhood of f* in the compact-open topology. Observe that such 
well-posedness conditions are usually relatively mild (see, for instance, 
the ‘Existence and uniqueness of solutions’ section), and this is the 
main situation of interest in applications. Then, there exists a compact 
K = [−k, k] such that y*([0, 1]) ⊂ K and we can choose a neighbourhood 
UK of y* in the compact-open topology of C([0, 1]) such that y([0, 1]) ⊂ K 
for all y ∈ UK. In fact, one can simply choose UK ≔ {y ∈ C([0, 1]) ∣ ∣y([0, 1])∣  
< k}. Under such a hypothesis, there are numerical integration schemes 
that can approximate the integral ∫1

0 G(y(t), t,y(s), s)ds  for any fixed 
choice of t with arbitrary precision, on choosing a number of points for 
evaluation that is sufficiently large. For instance, for any fixed t, the 
error for trapezoidal rules is bound by a term that goes to zero as n 
grows, where n is the number of points chosen in [0, 1] for approximat-
ing the integral66. This term is the modulus of continuity as follows:

ωt(1/n) ∶= max
|s1−s2 |<1/n

||G(y(t), t,y(s1), s1) − G(y(t), t,y(s2), s2)||.

For each choice of n, there exists a compact Kn ≔ [−kn, kn] such that y* maps 
into Kn, and G restricted to Kn × [0, 1] × Kn × [0, 1] has ωt(1/n) < 1/n for all t ∈ Kn.  
In this situation, we can choose a neighbourhood of y∗,UKn such that 
ωt(1/n) < 1/n for all t ∈ Kn for each choice of y ∈ UKn, and this numerical 
integration approximates the value of T(y)(t) with arbitrarily high 
accuracy.

We indicate our numerical integration scheme using the formula

T( y)(t) = ∫
1

0
G(y(t), t,y(s), s)ds ≈

n
∑
i=0
wi(t)G(y(t), t,y(si), si),

where si indicates the ith grid point of {ti} ⊂ [0, 1]. We can, therefore, 
obtain the evaluation of T(y) at the grid points tj as

T( y)(tj) = ∫
1

0
G(y(tj), tj,y(s), s)ds ≈

n
∑
i=0
wi(tj)G(y(tj), tj,y(si), si),

by choosing t to be one of the grid points.
From our regularity assumptions on the derivatives, we can uni-

formly bound the error on evaluating T(y) at the points tj such that for 
sufficiently dense grids, the evaluation error is smaller than ϵ/2 for any 
choice of ϵ > 0, when evaluating on functions y in a neighbourhood of y*.

Let us now consider a permutation of the input of T(y) for some 
σ ∈ Σn. This means that we permute the grid points {ti} as {tσi}. The 
approximated integration above gives

T( y)(ti) ≈ ∑
i
wσi(tσj)G(y(tσj), tσj,y(sσi), sσi) = ∑

i
wi(tσj)G(y(tσj), tσj,y(si), si),

http://www.nature.com/natmachintell


Nature Machine Intelligence | Volume 6 | September 2024 | 1046–1062 1058

Article https://doi.org/10.1038/s42256-024-00886-8

where the second equality follows from the fact that we are summing 
over all the permuted indices i. This means that our approximation of 
the integration, evaluated on grid points, is permutation equivariant. 
Using results from ref. 67, we are able to find a transformer  
architecture and a weight configuration, which we denote by 𝒯𝒯 , such 
that ∥ ∑n

i=0 wi(tj)G(y(tj), tj,y(si), si) − 𝒯𝒯𝒯 y(tj))∥p < ϵ/2, as a function of the 
tj values. As a consequence, we obtain the approximation

‖T( y)(t) − 𝒯𝒯𝒯 y(t))‖p ≤
‖
‖‖T( y)(tj) −

n
∑
i=0
wi(tj)G(y(tj), tj,y(si), si)

‖
‖‖p

+
‖
‖‖
n
∑
i=0
wi(tj)G(y(tj), tj,y(si), si) − 𝒯𝒯𝒯 y(tj))

‖
‖‖p

< ϵ/2 + ϵ/2 = ϵ,

for any choice of y in a neighbourhood of y*.

Dependence of the model on iteration steps
Here we explore the dependence of model extrapolation on the initial 
condition for the Navier–Stokes dataset with respect to the number 
of iterations of the solver. The results are reported in Supplementary 
Table 2 and Supplementary Table 3, where the mean squared error 
and standard deviations are reported. Supplementary Fig. 6 shows 
the results reported in Supplementary Table 2. We perform our experi-
ments with two different models, one with a much higher number of 
parameters than the other. We see that for a smaller model, the impact 
of the number of solver steps becomes much more pronounced. This 
indicates that although a very large model is able to compensate the 
effect of the solver steps and reduce the difference in testing quality, a 
smaller model can greatly benefit from a higher number of iterations. 
We notice, in particular, that an ANIE model with a single layer performs 
as well as an ANIE model with four layers and lower number of iterations. 
In all the cases, a higher number of solver steps gives better evaluations 
than single-iteration models with statistical significance (P < 0.0001).

Computational cost
We now give more details regarding the computational cost of our 
models.

The theoretical order of the computation for NIE per iteration is 
in the order of N × T, where N is the number of Monte Carlo sampling 
points and T is the number of time points used in the solver. This has 
to be multiplied by the number of iterations, which, for example, has 
been taken to be three in the experiments on training speed.

For ANIE, we have performed our experiments using a linear ver-
sion of self-attention, which requires a linear computational cost in 
the number of spacetime points used (this changes depending on the 
resolution of the dataset). So, for a spacetime grid Ωn ⊂ Ω consisting 
of n space points, and a grid Tm ⊂ I consisting of m time points, the 
computational cost is in the order of n × m times the number of solver 
iterations. The iterations for ANIE varied between three and seven 
throughout the experiments. We observe that quadratic attention 
would result in a computational cost of the order of (nm)2 × r, where r 
is the number of iterations of the solver.

Artificial dataset generation
Lotka–Volterra system. Lotka–Volterra equations are a classic system 
of nonlinear differential equations that model the interaction between 
two populations. The equations are given by

dx
dt

= αxy − βy

dy
dt

= δxy − γy
,

where α and δ define the population interaction terms, and β and γ are 
the intrinsic population growth for population x and y. To generate our 

dataset, 100 values of α, β, δ and γ have been randomly generated and 
the corresponding system has been solved with a fixed initial condition. 
Our code was adapted from https://scipy-cookbook.readthedocs.io/
items/LoktaVolterraTutorial.html.

Lorenz system. The Lorenz system is a three-dimensional system of 
ODEs for modelling atmospheric convection. Furthermore, this system 
is known to be chaotic, which means that small variations in initial 
conditions can significantly affect the final trajectory. The system is 
given by

dx
dt

= σ( y − x)

dy
dt

= x( ρ − z) − y

dz
dt

= xy − βz

.

We have sampled 100 random initial conditions, and have solved 
the system with the same fixed parameters. Our code was adapted from 
https://github.com/gboeing/lorenz-system.

IE spirals. The 2D IE spirals have been obtained by solving an IE with 
the following form:

y(t) = ∫
t

0
[

cos 2π(t − s) − sin 2π(t − s)

− sin 2π(t − s) − cos 2π(t − s)
] tanh(2πy(s))dx + z0

+[
cos(t)

cos(t + π)
] ,

where z0 was sampled from a uniform distribution.
The equation has been numerically solved through our solver (with 

analytical functions instead of neural networks) for different known 
functions f corresponding to different choices of z0.

fMRI data generation. The simulated fMRI data were generated using 
neurolib43. This tool encompasses code to generate fMRI data for the 
resting state with a given structural connectivity matrix and a delay 
matrix. The code can be found at https://github.com/neurolib-dev/
neurolib/blob/master/examples/example-0-aln-minimal.ipynb. We 
used this code to generate 100,000 time points of data for 80 voxels 
corresponding to regions of the cortex.

The generated data are normalized via computing the z score of 
the logarithm of the whole data. These data are then downsampled in 
time by a factor of 10, thereby resulting in 10,000 time points. In our 
tests, we use the first 5,000 points, where the first 2,500 points are 
used for training and the remaining points are reserved for testing. 
During batching, each point is taken as the initial condition of a curve 
of length 20 points.

Calcium imaging dataset
C57BL/6J mice were kept on a 12 h light/dark cycle, provided with food 
and water ad libitum and individually housed following headpost 
implants. Imaging experiments were performed during the light 
phase of the cycle. For mesoscopic imaging, brain-wide expression 
of jRCaMP1b was achieved via postnatal sinus injection, as described 
elsewhere68,69.

Briefly, P0–P1 litters were removed from their home cage and 
placed on a heating pad. Pups were kept on ice for 5 min to induce 
anaesthesia via hypothermia and then maintained on a metal plate sur-
rounded by ice for the duration of injection. Pups were injected bilater-
ally with 4 µl of AAV9-hsyn-NES-jRCaMP1b (2.5 × 1013 gc ml–1, Addgene). 
Mice also received an injection of AAV9-hsyn-ACh3.0 to express the 
genetically encoded cholinergic sensor ACh3.0 (ref. 70). Once the entire 
litter was injected, pups were returned to their home cage.

http://www.nature.com/natmachintell
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Surgical procedures were performed on sinus-injected animals 
once they reached adulthood (>P50). Mice were anaesthetized using 
12% isoflurane and maintained at 37 °C for the duration of the sur-
gery. For mesoscopic imaging, the skin and fascia above the skull were 
removed from the nasal bone to the posterior of the intraparietal bone 
and laterally between the temporal muscles. The surface of the skull was 
thoroughly cleaned with saline and the edges of the incision secured 
to the skull with Vetbond. A custom titanium headpost for head fixa-
tion was secured to the posterior of the nasal bone with transparent 
dental cement (Metabond, Parkell), and a thin layer of dental cement 
was applied to the entire dorsal surface of the skull. Next, a layer of 
cyanoacrylate (Maxi-Cure, Bob Smith Industries) was used to cover 
the skull and left to cure for 30 min at room temperature to provide a 
smooth surface for transcranial imaging.

Mesoscopic calcium imaging was performed using a Zeiss Axiozoom 
with a ×1, 0.25-numerical-aperture objective with a 56 mm working dis-
tance (Zeiss). Epifluorescent excitation was provided by an LED bank 
(SPECTRA X Light Engine, Lumencor) using two output wavelengths: 
395/25 nm (isosbestic for ACh3.0, ref. 71) and 575/25 nm (jRCaMP1b). Emit-
ted light passed through a dual-camera image splitter (TwinCam, Cairn 
Research) and then through either a 525/50 nm (ACh3.0) or 630/75 nm 
(jRCaMP1b) emission filter (Chroma) before it reached two sCMOS cam-
eras (Orca-Flash V3, Hamamatsu). Images were acquired at 512 × 512 pixel 
resolution after 4× pixel binning. Each channel was acquired at 10 Hz with 
20 ms exposure using HCImage software (Hamamatsu).

For visual stimulation, sinusoidal drifting gratings (2 Hz, 
0.04 cycles per degree) were generated using custom-written functions 
based on the Psychtoolbox in MATLAB and presented on an LCD moni-
tor at a distance of 20 cm from the right eye. Stimuli were presented 
for 2 s with a 5 s interstimulus interval.

Imaging frames were grouped by the excitation wavelength (395, 
470 and 575 nm) and downsampled from 512 × 512 to 256 × 256 pix-
els. Detrending was applied using a low-pass filter (N = 100, fcutoff =  
0.001 Hz). Time traces were obtained using (ΔF/F)i = (Fi − F(i, o))/F(i, o), 
where Fi is the fluorescence of pixel i and F(i, o) is the corresponding 
low-pass filtered signal.

Haemodynamic artefacts were removed using a linear regres-
sion accounting for spatiotemporal dependencies between 
neighbouring pixels. We used the isosbestic excitation of ACh3.0 
(395 nm) co-expressed in these mice as the means of measuring 
activity-independent fluctuations in fluorescence associated with 
haemodynamic signals. Briefly, given two p × 1 random signals y1 and 
y2 corresponding to ΔF/F of p pixels for two excitation wavelengths 
‘green’ and ‘UV’, we consider the following linear model:

y1 = x + z + η, (10)

y2 = Az + ξ, (11)

where x and z are mutually uncorrelated p × 1 random signals corre-
sponding to p pixels of the neuronal and haemodynamic signals, respec-
tively. η and ξ are white Gaussian p × 1 noise signals and A is an unknown  
p × p real invertible matrix. We estimate the neuronal signal as the  
optimal linear estimator for x (in the sense of the minimum mean  
squared error):

̂x = H (
y1
y2
) , (12)

H = ∑
xy
∑
y

−1
, (13)

where y = ( y1y2
)  is given by stacking y1 on top of y2, ∑y = E[yyT] is the 

autocorrelation matrix of y and ∑xy = E[xyT] is the cross-correlation 

matrix between x and y. The matrix ∑y is directly estimated from the 
observations, and the matrix ∑xy is estimated as

∑
xy
=
⎛
⎜⎜
⎝
∑
y1
−σ2ηI − (∑

y1 y2
(∑
y2
−σ2ξ I)

−1

∑
y2

−1
∑
y1 y2

T
)

T

0
⎞
⎟⎟
⎠
, (14)

where σ2η and σ2ξ  are the noise variances of η and ξ, respectively, and I is 
the p × p identity matrix. The noise variances σ2η and σ2ξ  are evaluated 
according to the median of the singular values of the corresponding 
correlation matrices ∑y1 and ∑y2. This analysis is usually performed in 
patches where the size of the patch p is determined by the amount of 
time samples available and estimated parameters. In the present study, 
we used p = 9. The final activity traces were obtained by z scoring the 
corrected ΔF/F signals per pixel. The dimensionality of the resulting 
video is then reduced via PCA to ten components, which represents 
~80% of data variance.

Burgers’ equations
The Burgers’ equation is a quasilinear parabolic PDE that takes the form

∂u
∂t

+ u∂u
∂x

= ν∂
2u

∂x2
, (15)

where x is a spatial dimension, whereas t indicates time and ν is a dif-
fusion coefficient called viscosity72. A very interesting behaviour of 
the solutions of the Burgers’ equation is evident in the presence of 
shock waves.

Our dataset is generated using the MATLAB code used in ref. 19, 
which can be found at https://github.com/zongyi-li/fourier_neural_
operator/tree/master/data_generation/burgers. The solution is given 
on a spatial mesh of 1,024 and 400 time points are generated from a 
random initial condition. We use 1,000 curves for training and test on 
200 unseen curves, where the interval spans one-fourth of the original 
time used for testing.

Navier–Stokes equations
The Navier–Stokes equations are PDEs that arise in fluid mechanics, 
where they are used to describe the motion of viscous fluids. They 
are derived from the conservation laws (for momentum and mass) 
for Newtonian fluids subject to an external force with the addition of 
pressure and friction forces, where the unknown function indicates the 
velocity vector of the fluid73,74. Their expression is given by the system

∂
∂t
ui +∑

j
uj

∂ui
∂xj

= νΔui −
∂p
∂xi

+ fi(x, t), (16)

divu = ∑
i

∂ui
∂xi

, (17)

where Δ is the Laplacian operator, f is the external force and u is the 
unknown velocity function. We experiment on the same dataset for 
ν = 1e−3 (ref. 19), which is available at https://github.com/zongyi-li/
fourier_neural_operator/tree/master/data_generation/navier_stokes. 
They solved the viscous, incompressible 2D Navier–Stokes equation for 
vorticity on the unit torus, and with periodic boundary conditions. The 
initial time point is sampled from a Gaussian distribution. The forcing 
term is a linear combination of sine and cosine functions depending 
only on space and independent of time. The numerical method for the 
solution of the equation is pseudospectral, for the vorticity–stream-
function formulation. The solver scheme follows these steps: (1) solving 
the Poisson equation, (2) vorticity is differentiated and (3) the nonlinear 
term is added. A Crank–Nicholson update is used to advance time. 
Details are provided elsewhere19.
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We use 4,000 instances for training and 1,000 for testing. In our 
tasks, we utilize a single time point to initialize our model (ANIE) and 
obtain the full dynamics from a single frame. For comparison, we use 
the minimal number of time points allowed for the other models for 
comparison. This is not always possible, for instance, FNO3D cannot be 
applied on a single time point or few time points, as the time convolu-
tion needs several time points to produce significant results. Despite 
this significant advantage given to FNO3D, ANIE (this work) still per-
forms better on the prediction of 10 and 20 time points.

Additional details on experiments and computational 
resources
The number of parameters for the models used in the experiments are 
given in Supplementary Tables 4 and 5. In all the cases, the optimizer 
‘Adam’ has been employed. Experiments have been run on a 16 GB 
NVIDIA A100 GPU.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Methods for reproducing the synthetic databases are available via 
GitHub at https://github.com/emazap7/ANIE. The datasets are avail-
able via Figshare at https://figshare.com/articles/dataset/IE_spi-
rals/25606242 (ref. 75) for the IE spirals, https://figshare.com/articles/
dataset/Burgers_1k_t400/25606149 (ref. 76) for Burgers’ data, https://
figshare.com/articles/dataset/Navier_Stokes_Dataset_mat/25606152 
(ref. 77) for Navier–Stokes data and https://figshare.com/articles/
dataset/fMRI_data/25606272 (ref. 78) for the simulated fMRI data. 
Lotka–Volterra and Lorenz system datasets can be generated using 
the information at https://github.com/emazap7/ANIE. The calcium 
imaging dataset is not available under an open-source license. We have 
included a detailed account of the techniques used in refs. 68,69 (see 
the ‘Existence and uniqueness of solutions’ section), including how to 
obtain the dataset. Source data are provided with this paper.

Code availability
All codes are available via GitHub at https://github.com/emazap7/
ANIE (ref. 79), including detailed installation descriptions. Jupyter 
notebooks for training and testing of the models for the main experi-
ments are also provided. Pre-trained models are directly accessible, 
and instructions on how to run the notebooks are added in the form of 
comments throughout the notebooks. The main codes for the models, 
along with the experiments, are found in the ‘IE_source’ directory.
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Extended Data Fig. 1 | fMRI brain dynamics error per time point. 
Quantification, using absolute error per time point, of model fits to simulated 
fMRI dataset. Models were run during inference on initial conditions not seen 
during training. ANIE has the best performance (lowest error) in predicting 

longer dynamics, which encompass a higher non-local component. Data is 
represented as mean ± standard deviation. The statistics is based on n = 19 
predictions.
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Extended Data Fig. 2 | Example fMRI data and predictions. Example dynamics of fMRI data and corresponding model prediction. For each image, time is 
represented on the x⃗  axis, and cortical locations (80 nodes) are represented on the y⃗ axis.
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Extended Data Fig. 3 | Embedding of Navier-Stokes dynamics. Embedding of 
Navier-Stokes dynamics using ANIE (Panel 1), PCA (Panel 2), and sample dynamics 
from the embedding spaces (Panel 3). We see that the leftmost dynamics in Panel 

A correspond to lower velocity dynamics, and embedding smoothly transitions 
toward higher velocities from left to right. Such structure is lost when directly 
embedding using other methods (for example the reported PCA plot).
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Extended Data Fig. 4 | Brain attention. Example dynamics for the calcium imaging dataset and their respective attention plots. We see that the attention weights do 
not directly reflect the input intensity and show activity for the motor and visual cortices.
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Extended Data Fig. 5 | 2D IE Spirals. Quantification, using R-squared, of model fits to 2D IE spiral dataset. Models were run during inference on initial conditions not 
seen during training. ANIE has the best performance (highest R-squared) in predicting the dynamics. Data is represented as mean ± standard deviation. The statistics is 
based on n = 500 predictions.
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Extended Data Fig. 6 | Example of Navier-Stokes Prediction. Example dynamics of Navier-Stokes system. Ground truth data (top) and prediction using ANIE 
(bottom) are shown. Prediction was generated using an initial condition that was not seen during training. R2 values quantify the model fit.
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Extended Data Table 1 | Benchmark on fMRI brain dynamics

Benchmark on predicting fMRI brain dynamics. We report the mean squared errors per extrapolated dynamics of different lengths (t = 5, 10, 20) on new initial conditions. All models use a 
single data point as initial condition, while the LSTM model uses 2 time points. We see that as the dynamics gets more non-local (that is longer time intervals) only ANIE can correctly predict it, 
as shown by lower mean squared errorhile.
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Extended Data Table 2 | Embedding Experiment

Benchmark on embedding experiment. We perform KNN regression with k = 5 on embeddings of Navier-Stokes dynamics correlating the velocity of the dynamics and the embedding. All 
values are mean squared errors and are multiplied by a factor of 10−4.
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Extended Data Table 3 | Visual Stimuli Experiment

Performance in R2 of a KNN Regressor in regressing the contrast of visual stimuli from the learned latent representation. Results presented as (mean ± std, N=1600 frames, cross-validation=10).
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Extended Data Table 4 | 2D IE Spirals

Benchmark on 2D IE spirals. R2 values of model fits are provided for ANIE, NODE, LSTM, ViT and FNO. ANIE has the best performance.
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