
Nature Machine Intelligence | Volume 6 | September 2024 | 1046–1062 1046

nature machine intelligence

Article https://doi.org/10.1038/s42256-024-00886-8

Learning integral operators via neural
integral equations

Emanuele Zappala    1  , Antonio Henrique de Oliveira Fonseca2,
Josue Ortega Caro3, Andrew Henry Moberly4, Michael James Higley5,
Jessica Cardin6 & David van Dijk    3,7,8,9,10,11

Nonlinear operators with long-distance spatiotemporal dependencies
are fundamental in modelling complex systems across sciences; yet,
learning these non-local operators remains challenging in machine
learning. Integral equations, which model such non-local systems, have
wide-ranging applications in physics, chemistry, biology and engineering.
We introduce the neural integral equation, a method for learning unknown
integral operators from data using an integral equation solver. To improve
scalability and model capacity, we also present the attentional neural
integral equation, which replaces the integral with self-attention. Both
models are grounded in the theory of second-kind integral equations, where
the indeterminate appears both inside and outside the integral operator. We
provide a theoretical analysis showing how self-attention can approximate
integral operators under mild regularity assumptions, further deepening
previously reported connections between transformers and integration, as
well as deriving corresponding approximation results for integral operators.
Through numerical benchmarks on synthetic and real-world data, including
Lotka–Volterra, Navier–Stokes and Burgers’ equations, as well as brain
dynamics and integral equations, we showcase the models’ capabilities and
their ability to derive interpretable dynamics embeddings. Our experiments
demonstrate that attentional neural integral equations outperform existing
methods, especially for longer time intervals and higher-dimensional
problems. Our work addresses a critical gap in machine learning for
non-local operators and offers a powerful tool for studying unknown
complex systems with long-range dependencies.

Integral equations (IEs) are functional equations where the indetermi-
nate function appears under the sign of integration1. The theory of IEs
has a long history in pure and applied mathematics, dating back to the
1800s, and it is thought to have started with Fourier’s theorem2. Another
early application of IEs was found in the Dirichlet’s problem (a partial
differential equation (PDE)), which was originally solved through its
integral formulation. Subsequent studies, carried out by Fredholm,
Volterra, Hilbert and Schmidt, have significantly contributed to the

establishment of this theory. IEs appear in many applications ranging
from physics and chemistry to biology and engineering2,3, for instance,
in potential theory, diffraction and inverse problems such as scattering
in quantum mechanics2–4. Neural field equations, which model brain
activity, can be described using IEs and integro-differential equations
(IDEs), due to their highly non-local nature5. IEs are related to the theory
of ordinary differential equations (ODEs) and PDEs; however, they
possess unique properties. Although ODEs and PDEs describe local

Received: 19 November 2023

Accepted: 16 July 2024

Published online: 29 August 2024

 Check for updates

A full list of affiliations appears at the end of the paper.  e-mail: emanuelezappala@isu.edu

http://www.nature.com/natmachintell
https://doi.org/10.1038/s42256-024-00886-8
http://orcid.org/0000-0002-9684-9441
http://orcid.org/0000-0003-3911-9925
http://crossmark.crossref.org/dialog/?doi=10.1038/s42256-024-00886-8&domain=pdf
mailto:emanuelezappala@isu.edu

Nature Machine Intelligence | Volume 6 | September 2024 | 1046–1062 1047

Article https://doi.org/10.1038/s42256-024-00886-8

approaches to solve given types of IE have been implemented12–16.
In such cases, the IE is known, and we seek its solution. However, in
practice, we often do not have access to the analytical form of the
equation and we only have data sampled from a system. In such cases,
we want to model the system by learning an operator that can repro-
duce the system. This is the setting of operator learning problems,
and several approaches to operator learning, including using deep
learning, have been presented17–28. Typical operator learning problems
are formulated on finite grids (finite difference methods) that approxi-
mate the domain of functions. In this case, recovering the continuous
limit is a very challenging problem, and irregularly sampled data can
completely alter the evaluation of the learned operator. Operator
learning for IEs has not been considered thus far, and it constitutes the
main novelty of the present Article. This is entailed in the formulation
of the operator learning problem through an IE solver. The conveni-
ence of this approach lies in the capability of the solver to continu-
ously sample the domain of integration, as well as the capabilities of
IEs to model very complex dynamics, due to their highly non-local
behaviour. A similar approach for IDEs has been followed in another
work29. However, in the present work, our implementation does not
include differential solvers, and the reformulation of such dynamical
problems in terms of IEs has great benefits in terms of solver speed
and stability. Moreover, our version of an IE solver that approximates
integrals via self-attention allows for higher-dimensional integrals
than those considered in ref. 29.

Learning continuous dynamics
Modelling continuous dynamics from discretely sampled data is
a fundamental task in data science. Methods for continuous mod-
elling include those based on ODEs30,31. Although ODEs are useful
for modelling temporal dynamics, they are fundamentally local
equations that neither model spatial nor long-range temporal relations.
Auxiliary tools30, such as recurrent neural networks (RNNs), have
been employed to include non-locality. We point out that RNNs can
be seen as performing a temporal integration (in discrete steps), to
codify some degree of non-local (temporal) dependence in the
dynamics. In this work, we introduce a framework that provides a
more general and formal solution to this non-local integration
problem. Moreover, the dynamics are not sequentially produced
with respect to time, as done by ODE solvers, but are processed in
parallel, thereby providing increased efficiency, as we will experi-
mentally demonstrate.

Integration via self-attention
The self-attention mechanism and transformers, introduced else-
where32, were applied to machine translation tasks. Owing to their initial
success, they have since been used in many other domains, including
operator learning for dynamics21,33. Interestingly, the self-attention
mechanism can be interpreted as the Nyström method for approxi-
mating integrals34. Making use of this connection, we approximate
the integral kernel of our model using self-attention, allowing efficient
integration over higher dimensions.

NIEs
An IE (Urysohn type) takes the general form given by

y(t) = f(t) +∫
β(t)

α(t)
G(y(s), t, s)ds, (1)

where variable s is the local time used for integration for each t, which
is the global time. Due to their fundamentally non-local behaviour,
IEs have been used to model physical and biological phenomena,
such as brain dynamics, virus spreading and plasma physics2,3,5. The
case considered in this Article, where the indeterminate function y(t)
appears both under the sign of integration and outside it, is termed

behaviour, IEs model global (long-distance) spatiotemporal relations.
Moreover, ODEs and PDEs have IE forms that, in certain circumstances,
can be solved more effectively and efficiently due to the better stability
properties of IE solvers compared with ODE and PDE solvers6,7. Another
work8 provides an example of a PDE system that is solved with high
accuracy through an IE method.

Learning non-local operators for dynamics with long-distance
relations is an open problem in deep learning. In this Article, we intro-
duce and address the problem of learning non-local dynamics from
data through IEs. Namely, we introduce the neural integral equation
(NIE) and the attentional neural integral equation (ANIE). Our setup is
that of an operator learning problem, where we learn the integral
operator that generates dynamics that fit the given data. Often, one
has observations of a dynamical system without knowing its analytical
form. Our approach permits modelling the system purely from the
observations. This model, via the learned integral operator, can be
used to generate dynamics, as well as be used to infer the spatiotem-
poral relations that generated the data. The innovation of our proposed
method lies in the fact that we formulate the operator learning problem
associated to dynamics in the form of an optimization problem for the
solutions of an IE obtained through an IE solver. Unlike other operator
learning methods that learn dynamics as a mapping between function
spaces for fixed time points, that is, as a mapping T ∶ ∏i𝒜𝒜i ⟶∏jℬj,
where 𝒜𝒜i and ℬj are function spaces each representing a time coordi-
nate, NIE and ANIE allow to continuously learn dynamics with arbitrary
time resolution. Our solver outputs solutions through an iterative
procedure3, which converges to a solution of the IE.

Our contributions
In this Article, we introduce NIE and ANIE, which are neural-
network-based methods for learning dynamics, in the form of IEs, from
data. Our architectures allow modelling dynamics with long-distance
spatiotemporal relations typical of non-local functional equations. Our
main contributions are as follows:

•	 We introduce a method for learning dynamics from data as solu-
tions of IEs of the second kind through an IE solver.

•	 We implement a fully differentiable IE solver in PyTorch, available
via GitHub at https://github.com/emazap7/ANIE.

•	 We implement a highly scalable version of the solver where integra-
tion is done with a self-attention mechanism.

•	 We derive theoretical results on convergence of the solver and
approximation capabilities of our models.

•	 Our model provides explainable dynamics and meaningful embed-
dings of these dynamics.

•	 Finally, we use our method to model and interpret non-local
dynamics from brain activity recordings.

Background and related work
IEs in numerical analysis
Due to their wide range of applications, the theory of IEs has attracted
the attention of mathematicians, physicists and engineers for a long
time. Detailed accounts on IEs can be found elsewhere3,9,10. Along with
their theoretical properties, much attention has been devoted to the
development of efficient IE solvers, focusing on rapidly obtaining highly
accurate solutions of certain PDE systems6,7. In fact, it is known that IE
solvers yield more accurate solutions than differential solvers for a
variety of ODEs and PDEs. The methodology introduced in this work
learns a neural integral operator through a numerical IE solver and it,
therefore, differs from typical IE solvers where an integral operator
needs to be given and fixed.

Operator learning
IE solvers are used to solve given equations through some iterative
procedure, as done with other work3,11. Moreover, machine learning

http://www.nature.com/natmachintell
https://github.com/emazap7/ANIE

Nature Machine Intelligence | Volume 6 | September 2024 | 1046–1062 1048

Article https://doi.org/10.1038/s42256-024-00886-8

an equation of the second kind, as opposed to the first kind where
the indeterminate function appears only in the integral operator. IEs
of the second kind are more stable than of the first kind for reasons
rooted in functional analysis (see the ‘Existence and uniqueness of
solutions’ section).

We introduce NIEs, a deep neural network model based on IEs.
NIEs are IEs as defined by equation (1), where G is a neural network,
parameterized by θ, and indicated by Gθ. Training an NIE consists of
optimizing Gθ in such a way that the corresponding solution y to equa-
tion (1) fits the given data. At each step of training, we perform two
fundamental procedures. The first one is to solve the IE determined by
Gθ, and the second one is to optimize for Gθ in such a way that solving the
corresponding IE produces a function that fits a given dataset. Details
on the solver procedure and the training are given in the ‘IEs’ section.

IEs, in contrast to ODEs and PDEs, are non-local equations1 since
to evaluate the integral operator ∫β(t)α(t) Gθ(•, t, s)ds ∶ 𝒜𝒜⟶𝒜𝒜 on a func-
tion y, we need the value of y over the full integration domain. In fact,
to evaluate the right-hand side of equation (1) at an arbitrary time point
t, the function y(s) between α(t) and β(t) is needed. Here α and β are
arbitrary functions and common choices include α(t) = a and β(t) = b
(called Fredholm equations) or α(t) = 0 and β(t) = t (called Volterra
equations). Consequently, solving an IE requires an iterative procedure,
based on the notion of Picard iterations (successive approximation
method), where the solution is obtained as a sequence of approxima-
tions that converge to the solution. Details on the solver implemented
in this Article are given in the ‘Generalities on solving IEs’ section, as
well as the theory on which it is based and the proofs regarding the
convergence of our algorithms to a solution of the given IE (see Theo-
rem 4.1 and Corollary 4.2). We also refer to another work3 for an elemen-
tary and computationally driven introduction to the theory behind the
methods that motivate this procedure; a more detailed account is also
provided elsewhere11.

Interestingly, utilizing NIEs to model ODEs allows to bypass the use
of ODE solvers, as the one introduced in other work30,31. The conveni-
ence in this approach is that the IE solver is more stable than the ODE
solver35. ODE solver instabilities, induced by equation stiffness, have
been previously considered36,37. The IE solver presented in this work,
thus, does not suffer from these problems, and is also considerably
faster.

It is often useful to consider a more specific form for IEs, where the
function G factors in the product of a kernel K and a generally nonlinear
function F as G(y, t, s) = K(t, s)F(y). Here K is matrix valued, and it carries

the dependence on time (both t and s), whereas F depends only on the
indeterminate function y. Therefore, the form of this IE is

y(t) = f(t) +∫
β(t)

α(t)
K(t, s)F(y(s))ds. (2)

NIEs in this form comprise two neural networks, namely, K and F.
We observe that in IEs, the initial condition is embedded in the
equation itself, and it is not an arbitrary value to be specified as an
extra condition. To solve the IE, we implement a solver that per-
forms an iterative procedure to obtain a solution (see the ‘IEs’ sec-
tion). During the iterations, Monte Carlo sampling is performed to
evaluate the integrals. This procedure allows our deep learning
model to be independent of the temporal grid points, thereby
resulting in a continuous model, since the model internally uses
randomly sampled points to generate the successive iterations, as
opposed to using fixed grid points. The general algorithm for train-
ing the NIE is given in Algorithm 1, and a diagrammatic overview of
it is shown in Fig. 1. Figure 2 shows a visualization of the general
solving procedure.

Algorithm 1: NIE method training step: integration is performed using
the torchquad module with the Monte Carlo method.
Require: y0(t)                     ⊳initialization
Ensure: y(t)            ⊳ solution to IE with initial y0(t)
  1: y0(t) ≔ y0(t)                 ⊳ initial solution guess
  2: While iter ≤ maxiter and error > tolerance do
  3:   Evaluate: yi+1(t) = f(yi, t) + ∫β(t)α(t) G(t, s,yi(s))ds
  4:   Set solution to be: ryi + (1 − r)yi+1

  5:   New error: error = metric(yi+1, yi)
  6: End while
  7: Output of solver: y(t)
  8: Compute loss with respect to observations: loss(y(t), obs)
  9: Gradient descent step

Space, time and higher-dimensional integration
IEs can have multiple space dimensions in addition to time. Such
equations are formulated as

y(x, t) = f(x, t) +∫
β(t)

α(t)
∫
Ω

G(y(x′, s),x,x′, t, s)dx′ds, (3)

yk+1 = ∫ Gθ(yk, x, t)dxdt

∫

y0 = f(x, t)

y(t)

t t

x1

x2

k++ until convergence

Initialization

(Spatio)temporal integration Model fit

IE solver

Optimization

Attention (ANIE)

Monte Carlo (NIE)

Loss Explain dynamics

Embed dynamics

Data

Attention

L = ||ydata – ymodel||
2
2

ymodely0 ydata

Fig. 1 | Diagrammatic representation of the model. The solver is initialized
with f, also called the free function. This initialization is often the first time point
of the dynamics. To solve the IE and find the solution y, an iterative procedure is
carried out in which at each solver step k, the integral of Gθ(yk, x, t) is computed
and used as the solution yk+1 in the next step. Integration is done either with
Monte Carlo (via torchquad) or with self-attention, representing NIE and ANIE,
respectively. The solver integration steps are repeated until convergence of yk

to the IE solution. This solution is then compared with the input data to compute
a loss that—via backpropagation—is used to find θ that minimizes the error. The
resulting integral operator represents the IE that models the data. Top right: an
example of attention weights for calcium imaging dynamics is presented. Bottom
right: an example of the dynamical embedding of the Navier–Stokes dataset
coloured by velocity is shown.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 6 | September 2024 | 1046–1062 1049

Article https://doi.org/10.1038/s42256-024-00886-8

where Ω ⊂ ℝn is a domain in ℝn and y ∶ Ω × I⟶ℝm for some
interval I ⊂ ℝ. More commonly, in the literature, one finds a simpler
case of higher-dimensional IEs, where the integral component

∫β(t)α(t) ∫
Ω
G(y(x′, s),x,x′, t, s)dx′ds is obtained as a sum of terms with

only partial integrations. Such an equation takes the form

y(x, t) = f(x, t) +∫
β(t)

α(t)
G1(y(x, s),x, t, s)ds +∫

Ω

G2(y(x′, t),x,x′, t)dx′.

(4)

These equations are the integral counterpart of PDEs, similar to the
relation between one-dimensional IEs and ODEs, and they are called
partial integral equations (PIEs). With slight abuse of notation, we will
still refer to equation (3) as a PIE, as we will, in practice, use such an
approach to model PDEs in the case of Burgers’ equation and Navier–
Stokes equation.

Attentional NIEs
Training of NIE requires an integration step at each time point, incur-
ring a potentially high computational cost. This integration step is
implemented using the torchquad package38, a high-performance
numerical Monte Carlo integration method, resulting in the fast integra-
tion and high scalability of NIE. For example, solving ODEs using NIE is
significantly faster than using traditional ODE solvers (Supplementary
Table 1). However, several limitations are associated with the torchquad
integration method. In fact, torchquad requires substantially increasing
numbers of sampled points with increasing numbers of dimensions. To
use NIE for solving PDEs and (P)IEs, we require efficient spatial integra-
tion in high dimensions.

To address these challenges, we have employed an approach to NIE
where the integral operator is based on a self-attention mechanism. In
fact, self-attention can be viewed as an approximation of an integra-
tion procedure34,39, where the product of queries and keys coincides
with the notion of a kernel, as the one discussed in the ‘NIEs’ section. In
another work21, the parallelism between self-attention and integration
of kernels was further explored to interpret transformers as Galerkin
projections in operator learning tasks.

We have replaced the analytical integral ∫β(t)α(t) G(t, s,y(s))ds in
equation (1) with a self-attention procedure. The resulting model, which
we call ANIE, follows the same principle of iterative IE solving presented
in the ‘NIEs’ section but where the neural networks K and F are replaced
by attention matrices. It can be shown (see the ‘Generalities on solving
IEs’ section) that the successive approximation method is still applica-
ble in this case to obtain a solution for the corresponding
equation. Following the comparison between integration and
self-attention, we observe that K is decomposed in the product of
queries and keys, as described elsewhere21. The interval of integration
[α(t), β(t)] is determined, in the attentional approximation, by
means of the mask. In particular, if there is no mask, we have a

Fredholm IE, whereas the causal attention mask40 corresponds to a
Volterra type of IE.

An iterative procedure similar to the one discussed in Algorithm 1
is implemented to solve the corresponding IE (see the ‘Generalities on
solving IEs’ and ‘Implementation of ANIE’ sections). During iterations,
we uniformly sample points from the spatiotemporal domain, and the
corresponding integral operator does not depend on the grid points
of the dataset. Our experiments on the Burgers’ dataset in the Experi-
ments section show that our model is stable with respect to the change
in spatiotemporal stamps since the model internally uses randomly
sampled points to generate successive iterations, rather than fixed
grid points. A detailed description of the integration procedure, along
with solver steps and training for ANIE, is given in the ‘Implementation
of ANIE’ section. Moreover, Theorem 4.1, Corollary 4.2 and Remark 4.3
show that the solver procedure converges to a solution under certain
mild assumptions.

Algorithm 2 summarizes the solving and training procedures for
ANIE. A detailed description of the meaning of 𝔄𝔄𝔄𝔄𝔄𝔄 is found in the ‘Imple-
mentation of ANIE’ section. Theoretical considerations on Fredholm
generalized equations with general operators, integral operator
approximation through self-attention and existence of the solutions
for these equations are given in the ‘Existence and uniqueness of solu-
tions’ section. Supplementary Fig. 1 gives a diagrammatic representa-
tion of the integration procedure implemented in this Article, and
Supplementary Fig. 2 gives a schematic of the solver procedure with
space and time.

Algorithm 2:. ANIE method training step: integration here is replaced
by a transformer employing self-attention.
Require:y0(x, t)                ⊳ initialization
Ensure: y(x, t)             ⊳ solution to IE with initial y0(x, t)
  1: y0(x, t) ≔ y0(x, t)                   ⊳ initial solution guess
  2: while iter ≤ maxiter and error > tolerance do
  3:  � Concatenate space and time tokens to yi(x, t): ̃yi(x, t) =

concat(yi(x, t), s, t)
  4:   Evaluate with self-attention: yi+1(t) = f(̃yi, t) + 𝔄𝔄tt(̃yi(x, t))
  5:   Set solution to be ryi + (1 − r)yi+1

  6:   New error: error = metric(yi+1, yi)
  7: end while
  8: Output of solver: y(x, t)
  9: Compute loss with respect to observations: loss(y(x, t), obs)
  10: Gradient descent step

Experiments
Modelling PDEs with IEs: Burgers’ and Navier–Stokes
equations
PDEs can be reformulated as IEs in several circumstances, and dynam-
ics generated by differential operators can, therefore, be modelled
through an ANIE as a PIE, where integration is performed in space and
time. We consider two well-known types of PDE, namely, the Burgers’
equation and the Navier–Stokes equation. Since NIE is implemented
only for time integration, we use only ANIE in these experiments, which
allows for efficient space and time integration. We observe that our
implementation of Algorithm 2 applied to the case of the Navier–Stokes
equation closely parallels the IE method employed in another work8,
with the main difference that we learn the Green’s function through
gradient descent, since no knowledge of the underlying Navier–Stokes
equations is assumed.

For the Burgers’ equation, we focus on the ability of ANIE to con-
tinuously model both space and time and we therefore perform an
interpolation task, where the model outputs time points that are not
included in the training test, as well as for unseen initial conditions. This
is in contrast to other work19,21 where a ‘static’ Burgers’ equation was con-
sidered in which the learned operator maps the initial condition (t = 0)
to the final time (t = 1), thereby treating time as a discrete two-point set.

0

k = 5

(||
y da

ta
 –

 y
k || 22)

Solver steps, k

Er
ro

r

k = 4
k = 3
k = 2
k = 1
k = 0

ymodel

ydata

t

y(t)

yk = f(t) + ∫ Gθ (yk–1, t, s)ds

1 2 3

Solver steps, k
4 5

Fig. 2 | Diagrammatic representation of the IE solver procedure. The solver is
initialized with the free function y0 ≔ f. The integral operator is applied to y0, and
a new guess y1 is obtained. This is repeated until convergence to a solution. The
left panel shows the solution as a function of solver steps. The right panel shows
the error of the solution as a function of solver steps.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 6 | September 2024 | 1046–1062 1050

Article https://doi.org/10.1038/s42256-024-00886-8

In our approach, we continuously model the system over a time interval
and randomly sample points during iterations to perform the quadra-
ture of the temporal integrals. In this experiment, the Galerkin model21
was not included for the higher-spatial-dimension setting because
the amount of memory required exceeded what was available to us
during the experiments. The results are reported in Table 1 (right), and
an example of the learned dynamics is given in Supplementary Fig. 4.

For the Navier–Stokes equation, we consider an extrapolation
task where we evaluate the model on unseen initial conditions. Previ-
ous works have shown high performance in the predicting dynamics
of Navier–Stokes from new initial conditions, but they require several
frames (that is, several time points) to be fed into the model to achieve
such performance. We see that since ANIE learns the full dynamics from
arbitrarily chosen initial conditions, we achieve good performance
even when a single initial condition is used to initialize the system. We
train FNO2D, ViT, ViTsmall and ViTparallel with initialization on a single
time point, whereas convolutional long short-term memory (LSTM),
FNO3D and ViT3D are trained with 2, 2 and 10 times for initialization,
respectively. The results are given in Table 1 (left). We note that ANIE
even outperforms models that use more data points for initialization.
FNO2D did not converge for higher number of points, and therefore,
results for time points t = 10 and t = 20 have not been reported, whereas
for FNO3D, we have conducted the experiments only for t = 10 and t = 20
since using fewer points for the time dimension would have effectively
reduced FNO3D to FNO2D. Example predictions of dynamics with ANIE
are shown in Fig. 3, where the convergence of the solver to a solution
is represented.

Modelling brain dynamics using ANIE
Brain activity can be modelled as a spatiotemporal dynamical sys-
tem41. Although most connections between neurons are localized in
space, there are numerous interactions that are long range42. As such,
brain dynamics can be modelled using IEs5 that —unlike PDEs—allow
for non-local interactions. Since ANIE allows the efficient learning of
integral operators from data, we demonstrate the ability of ANIE to
learn non-local brain dynamics from functional magnetic resonance
imaging (fMRI) recordings.

To obtain fMRI data that has an arbitrary time duration as well as
unlimited trials, we make use of neurolib43, an fMRI simulation package.
The data provided by this tool permit for more extensive comparison
and statistical power. neurolib simulates whole-brain activity using
a system of delay differential equations, which are non-local equa-
tions, thereby allowing the testing of ANIE’s ability to model non-local
systems. Here we show the performance of ANIE and other models in
modelling data generated by neurolib. Details about data generation
and preprocessing can be found in the ‘fMRI data generation’ section.

The generated fMRI data comprises neural activity for 80 nodes
localized across the cortex. The first half of the data is used for training
and the second half is used for testing. For training, the data are divided
into segments of 20 time points, where the first time point is used as
the initial condition, and the loss is computed over all the 20 points.
As such, the models are trained as an initial condition problem. During
inference, the models are given points from the test set as new initial
conditions and asked to extrapolate for the following 19 points. The
mean error per point for 200 new initial conditions is shown in Extended
Data Fig. 1 and summarized in Extended Data Table 1. Extended Data
Fig. 2 shows the data and model per fMRI recording node over time.
We show that ANIE has better performance than other benchmarked
methods for medium-time-step (t = 10) and long-time-step (t = 20)
predictions, demonstrating its ability to model non-local dynamics.
For shorter and more localized dynamics (t = 5), FNO1D shows better
performance, which can be explained by the fact that FNO1D outputs
the average of the initial points provided as the prediction for the first
five time steps. The DeepONet + UNET model (Extended Data Table 1)
is implemented similar to that in another work44.

Interpretable dynamics
In addition to modelling and generating new dynamics, it is useful to get
an insight into the underlying process that generates the dynamics. For
example, in neuroscience, a major goal is to understand how specific
brain activity patterns give rise to cognition, learning and behaviour.
To explore the interpretability of ANIE, we carry out two experiments.
For the first experiment, we augment the spacetime integration domain
with a Classify (CLS) token45, such that each dynamics is projected into

Table 1 | Benchmark on the Navier–Stokes and Burgers’ equations

Navier–Stokes Burgers’

t = 3 t = 5 t = 10 t = 20 t = 10 t = 15 t = 25

s = 256 s = 512 s = 256 s = 512 s = 256 s = 512

LSTM 0.1384 0.2337 0.1422 0.2465 − − − − − −

ResNet − − − − 0.0295 0.0309 0.0280 0.0232 0.0194 0.0204

Conv1DLSTM − − − − 0.0132 0.0133 0.0132 0.0136 0.0124 0.0134

Conv2DLSTM 0.4935 0.4393 0.3931 0.2999 − − − − − −

FNO1D − − − − 0.0088 0.088 0.0087 0.087 0.083 0.086

Galerkin − − − − 0.525 NA 0.521 NA 0.518 NA

FNO2D 0.2795 0.2724 NA NA − − − − − −

FNO3D NA NA 0.1751 0.701 − − − − − −

ViT 0.1093 0.877 0.2473 0.2367 0.430 0.423 0.423 0.422 0.422 0.424

ViTsmall 0.926 0.702 0.677 0.655 0.429 0.429 0.426 0.427 0.417 0.424

ViTparallel 0.2901 0.2660 0.2475 0.2368 0.433 0.702 0.573 0.861 0.435 0.700

ViT3D 0.360 0.365 0.433 0.406 − − − − − −

ANIE (this work) 0.0194 0.0220 0.0193 0.0117 0.0024 0.0026 0.0024 0.0024 0.0022 0.0023

We evaluate the models on predicting dynamics of different lengths (t = 3, 5, 10, 20) for unseen initial conditions. The models that use a single time point are ANIE (this work), FNO2D, ViT80,
ViTsmall81 and ViTparallel82 models, whereas the convolutional LSTM, FNO3D and ViT3D use more time points (2, 10 and 2, respectively) to predict the rest of the dynamics. ANIE even
outperforms models that use more data points for initialization. Right, benchmark on the Burgers’ equation with different time intervals t = 10, 15, 25 and space resolutions s = 256, 512, where a
time interpolation task is performed. The symbol ‘−’ indicates models that were not suitable for certain experiments (for example, wrong dimensionality), whereas ‘NA’ indicates models that did
not converge or did not fit in memory.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 6 | September 2024 | 1046–1062 1051

Article https://doi.org/10.1038/s42256-024-00886-8

a single vector. This vector can then be related to specific properties
of the dynamics. Specifically, we embed these vectors for different
Navier–Stokes dynamics and find that the resulting manifold (projected
using principal component analysis (PCA)) has a highly non-random
structure. This is in contrast to the projection of the raw data (Extended
Data Fig. 3). To further explore the resulting dynamics manifold, we
colour it by the velocities of the dynamics, a property that was not
explicitly seen by the model during training. We find that the manifold
highly correlates with velocity, whereas the embedding of the raw data
has no such correlation. To quantify this, we compute the k-nearest
neighbor (kNN) regression error on the embeddings with respect to
the velocities and find that the embedding obtained from ANIE has
lower error (Extended Data Table 2).

For the second experiment, we inspect the attention weights of
the model when predicting brain dynamics (calcium imaging; see the
‘Calcium imaging dataset’ section) to infer which cortical loci drive neu-
ronal dynamics. Extended Data Fig. 4 shows that the motor and visual
cortices are the areas of the brain with the highest attention values. We
note that the attention plots are not directly correlated with the brain
activity inputs, suggesting that they point to new information about
the data. To validate this, we compare the performance of predicting
the visual stimulus, which was not explicitly provided to the model,
from either the raw data or the attention values using a kNN regressor
(k = 3) (see the ‘Calcium imaging dataset’ section). In Extended Data
Table 3, we show that the attention weights significantly (p = 0.035)

outperform the raw data, thereby demonstrating that ANIE can provide
insights into the modelled dynamics.

Further experiments
In the ‘Additional experiments’ section, we include several more experi-
ments regarding the training speed of ANIE, showcasing that it is sig-
nificantly faster than ODE-solver-based models, and hyperparameter
sensitivity of the model (Supplementary Fig. 3) and modelling of IE
dynamics (Extended Data Fig. 5 and Extended Data Table 4), along
with further tables and figures on the experiments in the ‘Modelling
PDEs with IEs: Burgers’ and Navier–Stokes equations’, ‘Modelling brain
dynamics using ANIE’ and ‘Interpretable dynamics’ sections. In the
‘Solver convergence’ section, we have explored the convergence of
the solver to fixed points of the corresponding IE, and Supplementary
Fig. 6 shows the dependence of the model with respect to increased
solver steps.

Methods
We give here a detailed account of the implementation of the NIE and
ANIE models (one-dimensional (1D) and (n + 1)-dimensional IEs, respec-
tively). More specifically, we provide a more thorough description of
Algorithms 1 and 2 for solving the IEs associated with neural networks
G (feed-forward) and 𝔄𝔄𝔄𝔄𝔄𝔄 (transformer), and contextualize these algo-
rithms in the optimization procedure that learns the neural
networks.

5.047e-3

1.413e-1

Root mean
squared error

8.803e-2

6.508e-2

3.342e-2

1.813e-2

9.439e-3

5.276e-3

Step 7

Data

Step 0

Time

So
lv

er
 s

te
ps

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Fig. 3 | Example dynamics of the (2+1)-dimensional Navier–Stokes system,
where the model is initialized only with the first frame of the dynamics.
Ground-truth data are given at the bottom. Along with the final prediction
(step 7), the subsequent solver guesses are shown. The error during the

solution generation are reported on the right. The figure also shows that
the solver converges when producing the final output (compare with
Supplementary Fig. 5).

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 6 | September 2024 | 1046–1062 1052

Article https://doi.org/10.1038/s42256-024-00886-8

Implementation of NIE
We only consider the case of equation (1), as the case where the func-
tion G splits in the product of a kernel K and the (possibly) nonlinear
function F is substantially identical. We observe that the main com-
ponents of the training of NIEs are two. An optimization step that
targets G, and a solver procedure to obtain a solution associated with
the IE individuated by G, or more precisely, the integral operator that
G defines. Therefore, we want to solve equation (1) for a fixed neural
network G, determine how far this solution is from fitting the data and
optimize G in such a way that at the next step, we obtain a solution that
more accurately fits the data. At the end of the training, we have a neural
network G that defines an integral operator and, in turn, an IE, whose
associated solution(s) approximates the given data.

To fix the notation, let us call X as the dataset for training. This
contains several instances of n-dimensional curves with respect to
time. In other words, we consider X = {Xi}i≤N , where N is the number of
instances and Xi = {xi0,… ,xim} , where each xi ∈ ℝq is a q-dimensional
vector, and the sequence of xik refers to a discretization of the time
interval where the curves are defined. For simplicity, we assume that
time points are taken in [0, 1]. The neural network G defining the inte-
gral operator will be denoted by Gθ, to explicitly indicate the depend-
ence of G on its parameters. The objective of the training is to optimize
θ in such a way that the corresponding Gθ defines an IE whose solutions
yi(t) corresponding to different initializations pass through the discre-
tized curves xi(t).

Let us now consider one training step n, where the neural network
Gθn has weights obtained from the previous training steps (or randomly
initialized if this is the first step). We need to solve the IE

y = f(t) +∫
β(t)

α(t)
Gθn (y, t, s)ds (5)

associated with the integral operator ∫β(t)α(t) Gθn (y, t, s)ds corresponding
to the weights θn at training step n.

For simplicity, we consider a batch size of 1 so that our train-
ing curve is given by {x0,…, xm}, where we suppress the superscript
i because there is only one curve. Then, we select the first vector x0,
and use this to initialize a full curve with repeated instances of this. In
other words, we define f(t) = x0 for all times t. We now apply the IE solver
procedure, and set the zero-order solution to the IE to be y0(t) = f(t) = x0.
We now apply the integral operator determined by Gθ computing

z0 = f(t) +∫
β(t)

α(t)
Gθn (y0, t, s)ds.

Observe that at this stage, we can perform the integration over the
interval [α(t), β(t)] for each time t, since y0 is given for all times t. We then
set y1 = ry0 + (1 − r)z1, where r is a smoothing factor and 0 ≤ r < 1, which
is set beforehand. The function y1(t) is now the new approximation for
the solution of the IE given in equation (5). We can now compute the
global error between y0 and y1, which we denote by m(y0, y1). This error
is internal to the solver and does not refer to how well the model fits
the data. It refers to how far the solver is from converging. We iterate
this procedure. Let us assume that this has been done k times. Then,
we have a function that approximates a solution of the IE at the kth
iteration, denoted by yk(t). We compute

zk = f(t) +∫
β(t)

α(t)
Gθn (yk, t, s)ds,

where, as before, we can evaluate the integral over the intervals
[α(t), β(t)] because the function yk(t) is defined over the full time length
of the dynamics.

This iterative procedure converges to a solution of the IE for the
integral operator defined through Gθn (ref. 11). To optimize the parameters

θ of G, we require gradients on the input of Gθn when applying the neural
network, we compute the loss between the solution y obtained through
the iterative solution and the data, and we then backpropagate.

Implementation of ANIE
We now consider ANIE, which is an IE model where the integral is
approximated via self-attention. As the iterative solver procedure to
obtain a solution of the IE determined by the integral operator is con-
ceptually the same as in the case of NIE given above, we mostly focus
on the details relative to the use of self-attention in this setting. First,
we consider an IE with space and time, which takes the form of
equation (9). Our dataset now consists of instances of a given dynamics
X = {Xi}i≤N, where N is the number of instances in the dataset, and each
Xi = {xis1 ,…,sd, j } is a family of q-dimensional vectors (where q is the dimen-
sion of the dynamics), indexed by the spatial and temporal indices s1,…,
sd and j corresponding to a discretization (for example, a mesh) of the
spatiotemporal domain Ω × [0, T]. Observe that the dimension of the
spatial domain Ω here is assumed to be d, thereby implying that each
x depends on d indices. Therefore, one can think of each dynamics
instance in the dataset as being a temporal sequence of spatial meshes,
for example, a sequence of images when d = 2. We will assume that the
number of time points in such a sequence is equal to mT and the total
number of space points is equal to mΩ; we set m = mTmΩ.

For the sake of simplicity, we assume that the attention
model approximating the integral operator consists of a single
self-attention layer. Let 𝔄𝔄𝔄𝔄𝔄𝔄 denote a self-attention layer, and assume
that 𝔄𝔄𝔄𝔄𝔄𝔄 ∶ ℝm×(q+d+1) ⟶ ℝm×(q+d+1) . Observe that the attention layer
maps sequences of length m of (q + d + 1)-dimensional vectors to
sequences of the same type. We, therefore, think of 𝔄𝔄𝔄𝔄𝔄𝔄 ∶ 𝔄𝔄 ⟶ 𝔄𝔄 as a
mapping between two function spaces 𝔄𝔄 and 𝔄𝔄, whose elements are
functions y(x, t) in a discretized form, where x ∈ Ω and t ∈ [a, b]. As
discussed in other work21,34, the self-attention mechanism can be
thought of as an approximation of an integral operator where given a
discretized function y(x, t), 𝔄𝔄𝔄𝔄𝔄𝔄(y(x, t)) is another discretized function
obtained through an approximation of an integration over the variables
x and t. This theoretical motivation, and the computational complexity
of performing the Monte Carlo integration in higher dimensions, led
us to consider an IE solver where instead of learning a simple neural
network G as in the setting of NIE, we learn the integral operator in the
form of its attentional approximation 𝔄𝔄𝔄𝔄𝔄𝔄.

As for the detailed description of NIE given above, we assume that
the batch size is equal to 1, and the dataset is X = {Xi}i≤N with Xi = {xis1 ,…,sd, j }
for a discretization of a spatiotemporal domain Ω × [0, T], as described
earlier. Let 𝔄𝔄𝔄𝔄𝔄𝔄θ denote the transformer with parameters θ obtained at
epoch n of the training session. Here, if n = 0, it simply means that 𝔄𝔄𝔄𝔄𝔄𝔄θ
is randomly initialized. We want to inspect epoch n + 1. The IE we solve
at each training epoch takes the form

y = f(x, t) + 𝔄𝔄𝔄𝔄𝔄𝔄θ(y,x, t), (6)

where 𝔄𝔄𝔄𝔄𝔄𝔄θ(y,x, t) is an approximation of an integral operator ∫T0 ∫Ω
G(y,x,x′, t, s)dx′ds for some G. The solver is initialized through the free
function f(x, t), which plays the role of the first ‘guess’ for the IE solution.
Observe that since f is evaluated on the full discretization of Ω × [0, T],
then the length m of the sequence of vectors that approximates f(x, t)
equates the product of the number of space points sk for each dimension
and time point tr. The solver, therefore, creates its first approximation by
setting y0(x, t) = f(x, t). Then, for the first iteration of the solver, we create
the new sequence ̃y0 by concatenating to each y and the spatiotemporal
m coordinates (xs, tr). Now, ̃y consists of a sequence of m = mTmΩ vectors
(one per spacetime point), which also possess spacetime encoding
(through concatenation). Supplementary Fig. 1 shows a schematic of the
integration procedure through a transformer. Then, we set

̃y1(x, t) = f(x, t) + 𝔄𝔄𝔄𝔄𝔄𝔄θ(̃y0),

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 6 | September 2024 | 1046–1062 1053

Article https://doi.org/10.1038/s42256-024-00886-8

where the dependence of ̃y1 on spacetime coordinates x and t indicates
that we have one vector ̃y1 per spacetime coordinate. If q is the dimension
of the dynamics (that is, the number of channels per spacetime point),
then the sequence ̃y1 consists of vectors of dimension q + d + 1, where d
is the number of space dimensions. This happens because ̃y1 is the output
of a transformer of a sequence obtained by a sequence of q-dimensional
vectors concatenated with a (d + 1)-dimensional sequence. The two
simplest options are either to discard the last d + 1 dimensions of the
vectors or add an additional linear layer that projects from q + d + 1 dimen-
sions to q. As tests have not shown a significant difference between the
two approaches, we have adopted the former. Consequently, we obtain
the one-dimensional sequence z1(x, t). Last, we set y1(x, t) = ry0 + (1 − r)z1,
where r is a smoothing factor that is a hyperparameter of the solver. One,
therefore, computes the error m(y0, y1) between the initial step and the
second one to quantify the degree of change in the new approximation,
where m(•, •) is a global error metric fixed throughout.

Now, we iterate the same procedure and assuming that the approx-
imation yi to the equation has been obtained, we then concatenate the
spacetime coordinates to obtain ̃yi and set

̃yi+1(x, t) = f(x, t) + 𝔄𝔄𝔄𝔄𝔄𝔄θ(̃yi),

which we use to obtain zi+1 (by deleting the last d + 1 dimensions). Then,
we set yi+1 = ryi + (1 − r)zi+1 and compute the global error m(yi, yi+1). Sup-
plementary Fig. 2 shows a solver step integration in detail.

In practice, the number of iterations for the solver is a fixed hyper-
parameter that we have set between 3 and 5 in our experiments. This
has been sufficient to achieve good results, as well as to learn a model
that is stable under the solving procedure described above. Since the
solver is fully implemented in PyTorch and the model that approxi-
mates the integral operator is a transformer, we can simply backpropa-
gate through the solver at each epoch, after we have solved for y and
compared the solution with the given data {Xi}i≤N.

We complete this subsection with a more concrete description of
the motivations for approximating integration through the mechanism
of self-attention. Very similar perspectives have appeared in other
sources21,34, but we provide a formulation of such considerations that
more easily fit the perspectives of integral operators for IEs used in this
Article. This also serves as a more explicit description of 𝔄𝔄𝔄𝔄𝔄𝔄 found in
Algorithm 2.

We consider an n-dimensional dynamics y(x, t) depending on
space x ∈ Ω (for some domain Ω) and time t ∈ [0, 1]. The queries, keys
and values of self-attention can be considered as maps
ψW ∶ ℝn+1 ×Ω × [0, 1]⟶ ℝ1×d , where d is the latent dimension of the
self-attention, and W = Q, K and V for queries, keys and values, respec-
tively. Then, (for W = Q, K, V), we have

W [y|x|t] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ψ0
W[y|x|t]

⋮

ψiW[y|x|t]

⋮

ψd−1W [y|x|t]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where [y∣x∣t] indicates the concatenation of the terms in the bracket.
Let us now consider the ‘traditional’ quadratic self-attention. Similar
considerations also apply for the linear attention used in the experi-
ments, mutatis mutandis. The product between queries and keys gives

[(⋯ψiQ [y|x|t]⋯) ⋅ (⋯ψ j
K [y|x|t]⋯)

T
]
ij
= (ψiQ ⋅ ψ̂

j
K) ,

where T indicates transposition and ψ̂ indicates the columns of the
transposed matrix. Then, if z is the output of the self-attention layer

(observe that this consists of (zi)j, where i indicates a spatiotemporal
point and j indicates the jth dimension of the n-dimensional dynamics).
Then, we have

(zi)j = ∑
j
(ψiQ ⋅ ψ̂

j
K)ψ

j
V ≈ ∫

Ω×[0,1]
K(y,x, t,y′,x′, t′)F(y′,x′, t′)dx′dt′,

where the prime symbols indicate the variables we are summing on
(this is why the are ‘being integrated’ in the integral), and y is evaluated
at x and t whereas y′ is evaluated at x′ and t′.

Additional experiments
Benchmark of (A)NIE training speed. Neural ordinary differential
equations (NODEs) can be slow and have poor scalability46. As such, sev-
eral methods have been introduced to improve their performance46–50.
Despite these improvements, a NODE is still significantly slower than
discrete methods such as LSTMs. We hypothesize that an (A)NIE has sig-
nificantly better scalability than a NODE, comparable with fast but dis-
crete LSTMs, despite being a continuous model. To test this, we compare
NIE and ANIE with the latest optimized version of (latent) NODE51 and to
LSTM on three different dynamical systems: Lotka–Volterra equations,
Lorenz system and IE-generated two-dimensional (2D) spirals (see the
‘Artificial dataset generation’ section for the data generation details).
During training, models were initialized with the first half of the data and
were tasked to predict the second half. The training speeds are reported
in Supplementary Table 1. Although all the models achieve comparable
(good) fits to the data, we find that ANIE outperforms all the models in
two out of the three datasets in terms of speed. Furthermore, ANIE has
better MSE compared with all the other models.

Hyperparameter sensitivity benchmark. For most deep learning
models, including NODEs, finding numerically stable solutions usu-
ally requires an extensive hyperparameter search. Since IE solvers are
known to be more stable than ODE solvers, we hypothesize that (A)NIE
is less sensitive to hyperparameter changes. To test this, we quantify
the model fit, for the Lotka–Volterra dynamical system, as a function
of two different hyperparameters: learning rate and L2 norm weight
regularization. We perform this experiment for three different models:
LSTM, latent NODE and ANIE. As shown in Supplementary Fig. 3, we
find that ANIE generally has a lower validation error as well as more
consistent errors across hyperparameter values, compared with LSTM
and NODE, thereby validating our hypothesis.

Modelling 2D IE spirals. To further test the ability of ANIE in modelling
non-local systems, we benchmark ANIE, NODE and LSTM on a dataset of
2D spirals generated by IEs. These data consist of 500 2D curves of 100
time points each. The data were split in half for training and testing. Dur-
ing training, the first 20 points were given as the initial condition and
the models were tasked to predict the full 100-point dynamics. Details
on the data generation are described in the ‘Artificial dataset genera-
tion’ section. For ANIE, the initialization is given via the free function f,
which assumes the values of the first 20 points and sets the remaining
80 points to be equal to the value of the 20th point. For NODEs, the
initialization is given as the RNN on the first 20 points, which outputs
a distribution corresponding to the first time point (details on latent
ODE experiments are provided elsewhere30). For the LSTM, we input
the data in segments of 20 points to predict the consecutive point of
the sequence. The process is repeated with the output of the previous
step until all the points of the curve are predicted. During inference, we
test the models’ performance on never-before-seen initial conditions.
Extended Data Table 4 shows the correlation between the ground-truth
curve and the model predictions. Extended Data Fig. 5 shows the cor-
relation coefficients for the 500 curves. In summary, ANIE significantly
outperforms the other tested methods in predicting IE-generated
non-local dynamics.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 6 | September 2024 | 1046–1062 1054

Article https://doi.org/10.1038/s42256-024-00886-8

Solver convergence. We now consider the convergence of the solver
to a solution of an IE for a trained model. Our experiment here consid-
ers a model that has been trained with a number of iterations, and we
explore whether the solver iterations converge to a solution at the end
of the training. These results show that the model learns to converge
to a solution of equation (7) within the iterations that are fixed during
training. They show that a fixed point for IE is obtained when output-
ting a prediction.

Supplementary Fig. 5 and Fig. 3 show the convergence error (that
is, the value ∥yn+1 − yn∥), and the guesses produced by the solver dur-
ing inference (that is, yn for n corresponding to the iteration index),
respectively.

IEs
IEs are equations where the unknown function appears under the sign
of integral. These equations can be given, in general, as

λy = f + T(y), (7)

where T is an integral operator, for example, as in equations (1) and
(3), and f is a known term of the equation. In fact, this functional
equations have been studied for classes of compact operators T that are
not necessarily in the form of integral operators52. We can distinguish
two fundamental kinds of equation from the form given in equation
(7), which have been extensively studied throughout the years. When
λ = 0, we say that the corresponding IE is of the first kind, whereas when
λ ≠ 0, we say that it is of the second kind.

In this Article, we formulate our methods based on equations of
the second kind for the following important theoretical considera-
tions, which apply to the case where T is bounded over an infinite space
(such as the space of functions as we consider in this Article). First, an
equation of the first kind can easily have no solution, as the range of a
bounded operator T on an infinite space is not the whole space53. There-
fore, for choices of f, there is no y such that T(y) = −f, and therefore,
equation (7) has no solutions. The other issue is intrinsic to the nature
of the equation of the first kind, and does not relate to the existence
of solutions. In fact, any compact injective operator T (on an infinite
space) does not admit a bounded left inverse53. In practice, this means
that if equation (7) has a unique solution for f, then varying f by a small
amount can result in very significant variations in the corresponding
solution y. This is clearly a potential issue when dealing with a deep
learning model that aims at learning operator T from the data. In fact,
observations from which T is learned might be noisy, which might result
in very considerable perturbations of the solution y and, consequently,
considerable perturbations on the operator T that the model converges
to. Since equations of the second kind are much more stable, we have
formulated all the theory in this setting, and implemented our solver
for such equations. The issues relating to the existence and uniqueness
of the solution for these equations are discussed in the ‘Existence and
uniqueness of solutions’ section.

The theories of IEs and IDEs are tightly related, and it is often
the case to reduce problems in IEs to problems in IDEs and vice
versa, both in practical and theoretical situations. IEs are also
related to differential equations, and it is possible to reformulate
problems in ODEs in the language of IEs or IDEs. In certain cases,
IEs can also be converted to differential equation problems, even
though this is not always possible9,54. In fact, the theory of IEs is not
equivalent to that of differential equations. The most intuitive way
of understanding this is by considering the local nature of differ-
ential equations, as opposed to the non-local origin of IEs. By the
non-locality of IEs, it is meant that each spatiotemporal point in an
IE depends on an integration over the full domain of the solution
function y. In the case of differential equations, each local point
depends only on the contiguous points through the local definition
of the differential operators.

IE (1D). We first discuss IEs where the integral operator only involves
a temporal integration (that is, 1D), as discussed in the ‘IEs’ section. In
analogy with the case of differential equations, this case can be con-
sidered as the one corresponding to ODEs.

These IEs are given by an equation of type

y(t) = f(t) +∫
β(t)

α(t)
G(y, t, s)ds, (8)

where f is the free term, which does not depend on y, whereas the
unknown function y appears both on the left- and right-hand sides
under the sign of the integral. The term ∫β(t)α(t) G(y, t, s)ds is an integral
operator 𝒞𝒞(D)⟶ 𝒞𝒞(D) from the space of integrable functions 𝒞𝒞(D) over
some domain of ℝ, into itself. We observe that the variables t and s
appearing in G are both in D, and they are interpreted as time variables.
We refer to them as global and local times, respectively, following the
convention used in another work29. The functions α and β determine
the extremes of integration for each (global) time t. Common choices
for α and β include α(t) = 0 and β(t) = t (Volterra equations) or α(t) = a
and β(t) = b (Fredholm equations).

The fundamental question in the theory of IEs is whether solutions
exist and are unique. It turns out that under relatively mild assumptions
on the regularity of G, IEs admit unique solutions9. Furthermore, the
proofs in another work4 show the close relation between IEs and IDEs, as
the existence of uniqueness problems for IDEs are shown to be equiva-
lent to analogous problems for IEs. Then, the fixed-point theorems of
Schauder and Tychonoff are used to prove the results.

IEs (n + 1D). We now discuss the case of IEs where the integral operator
involves integration over a multidimensional domain of ℝn. This is the
IE version of PDEs, and they are commonly referred to as PIEs when
integration separately occurs on different components. We will con-
sider equations where the multidimensional integral is obtained
through multiple integrations. An equation of this type takes the form

y(x, t) = f(x, t) +∫
β(t)

α(t)
∫
Ω

G(y,x,x′, t, s)dx′ds, (9)

where Ω ⊂ ℝn is a domain in ℝn and y ∶ Ω × ℝ⟶ℝm. Here m does not
necessarily coincide with n.

PIEs and higher-dimensional IEs have been studied in some
restricted form since the 1800s, as they have been employed to for-
mulate the laws of electromagnetism before the unified version of
Maxwell’s equations was published. In addition, early work on the
Dirichlet’s problem found the IE approach proficuous, and it is well
known that several problems in scattering theory (molecular, atomic
and nuclear) are formulated in terms of (P)IEs. In fact, the Schrödinger
equation can be recast as an IE55. Bound-state problems have also been
treated with the IE formalism56.

Generalities on solving IEs. The most striking difference between the
procedure of solving an IE and an ODE is that for an IE to evaluate at a
single time point, one needs to know the solution for all the time points.
This is clearly an issue, since solving for one point requires that we
already know a solution for all the points. To better elucidate this point,
we consider a simple comparison between the solution procedure of
an ODE equation of type ̇y = f(y, t) and an IE of type y = f(t) + ∫1

0 G(y, t, s)ds.
Let us assume that we are solving an ODE of type ̇y(t) = f(y, t) and

that y is known at time points t0, t1,…, tk−1. Then, one can obtain y at tk
by means of the Euler method by using the known value at tk−1 by taking
small enough steps Δt forward in time. In general, therefore, one starts
by the initial condition y0 and determines the solution y at the points
t0,…, tn by taking small steps and representing the derivative as Δf/Δt
for small intervals Δt. Of course, more sophisticated methods are

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 6 | September 2024 | 1046–1062 1055

Article https://doi.org/10.1038/s42256-024-00886-8

possible for the numerical solution of the ODE, but they essentially
produce the next time point from the previous one in a sequential way.
Let us now consider an analogous Fredholm IE to the ODE given above.
This is a simple equation of the type y = f(t) + ∫1

0 G(y, t, s)ds. Suppose we
know y at time points t0,…, tk−1. To determine y(tk), we need to compute
f(tk) + ∫1

0 G(y, tk, s)ds, which requires us to know y over the full interval
[0, 1], as G is integrated over [0, 1]. It is obvious that knowing a single
time point for y (or a sequence of values) does not suffice anymore. In
a Volterra type of equation, the integral would be between [0, tk] (where
the unknown value tk is included), which does not really change the
essence of the issue.

Although several methods can be employed to solve IEs, most (if
not all) of them are based on the concept of iteration over some initial
guess for the solution of the IE. Iterating on the initial guess produces a
sequence of functions that then converges to a solution of the IE. More
specifically, one can consider the von Neumann series of the integral
operator, as discussed below. In fact, let us consider equation (7), which
can be rewritten as

(− T)(y) = f,

where we assume, for a moment, that T is a linear operator. Observe
that if we can find the inverse of − T , then we obtain y as (− T)−1(f).
This can be done by writing the von Neumann series for (− T)−1 =
∑∞
k=0 Tk . This expression makes sense whenever the series ∑∞

k=0 Tk
converges in the operator norm, which is guaranteed in important
cases such as when ∑∞

k=0 ∥ T∥
k converges (for example, when ∥T∥ < 1),

whereas milder conditions on the convergence of the series exist, too.
In such a situation, when the von Neumann series is meaningful, we can
then obtain y by iteratively applying Tk to f. The nonlinear case is han-
dled in a similar iterative procedure, which is called the method of
successive approximations or Picard’s iterations57. It is, in fact, straight-
forward that under mild conditions, the method will output a solution
of the IE. Conditions under which such succession is guaranteed to
converge can be found elsewhere57. A particularly well-known case is
when the integrand of the integral operator is contractive (that is,
Lipschitz with a constant between 0 and 1) with respect to the variable
y. We give a proof of such an approach for our setting; similar results
are available in other work57.

Theorem 4.1. Let ϵ > 0 be fixed, and suppose that T is Lipschitz with con-
stant k < 1. Then, we can find y ∈ X such that ∥T(y) + f − y∥ < ϵ, independent
of the choice of f.

Proof. Let us set y0 ≔ f and yn+1 = f + T(yn) and consider the term ∥y1 − y0∥.
We have

∥ y1 − y0 ∥=∥ T(y0) ∥ .

For an arbitrary n > 1, we have

∥ yn+1 − yn ∥=∥ T(yn) − T(yn−1) ∥≤ k ∥ yn − yn−1 ∥ .

Therefore, applying the same procedure to yn − yn−1 = T(yn−1) − T(yn−2)
until we reach y1 − y0, we obtain the inequality

∥ yn+1 − yn ∥≤ kn ∥ T(y0) ∥ .

Since k < 1, the term kn∥T(y0)∥ is eventually smaller than ϵ for all
n ≥ ν for some choice of ν. Defining y ≔ yν for such ν gives the
following:

∥ T(yν) + f − yν ∥=∥ yν+1 − yν ∥< ϵ.

The following now follows easily.

Corollary 4.2. Consider the same hypotheses as above. Then, equation
(7) admits a solution. In particular, if the integrand G in equation (8) is
contractive with respect to y with constant k such that k ⋅ (b − a) < 1 (where
[a, b] is the co-domain of α and β), the iterative method in Algorithm 1
converges to a solution of the equation.

Proof. From the proof of Theorem 4.1, it follows that the sequence yn
is a Cauchy sequence. Since X is Banach, then yn converges to y ∈ X. By
continuity of T, y is a solution to equation (7). For the second part of the
statement, observe that when G is contractive with respect to y, then we
can apply Theorem 4.1 to show that the sequence generated following
Algorithm 1 is Cauchy, and we can proceed as in the first part of the proof.

Remark 4.3. Observe that the result in Corollary 4.2 applies to Algorithm
2, too, under the assumptions that the transformer architecture is con-
tractive with respect to the input sequence y. Also, a statement that
refers to higher-dimensional IEs can be obtained (and proved) similar
to the second part of the statement of Corollary 4.2, using the measure
of Ω × [a, b] instead of the value (b − a).

In practice, the method of successive approximations is imple-
mented as follows. The initial guess for the IE is simply given by the free
function f (that is, T0(f)), which is used to initialize the iterative proce-
dure. Then, we apply T to y0 ≔ T0(f) to obtain a new solution
z1 ≔ f(t) + T1(y0). We set y1 ≔ ry0 + (1 − r)z1 and apply T2 to the solution y1
and repeat. Here r is a smoothing factor that determines the amount
of contribution from the new approximation to consider at each step.
As the iterations grow, the fractions of the contributions due to the
smoothing factor r tend to 1. Observe that when we sum ryi + (1 − r)yi+1
with r = 0, we obtain the terms of the von Neumann series up to degree
i applied to f: ∑i

0 T k(f). The smoothing factor generally shows good
empirical regularization for IE solvers, and we have set r = 1/2 through-
out our experiments, even though we have not seen any concrete dif-
ference between different values of r. This procedure is shown in Fig. 2.

In another work11, computations on the error bounds for the itera-
tive procedure described above when the integrand function G splits
into the product of a kernel (see above) and a linear function F are given.
Also, a detailed description of the Nyström approximation for the com-
putation of the error is given. We describe a concrete realization of the
iterative procedure discussed above in the ‘IEs’ section, along with the
learning steps for the training of our model. Moreover, we additionally
observe that the procedure described above does not depend on T
being an integral operator or a general operator, and therefore, apply-
ing this methodology to the case where we have a transformer instead
of T is still meaningful, in the assumption that T is such that the iterated
series of approximations is convergent.

Depending on the specific IE that one is solving (for example,
Fredholm or Volterra, 1D or (n + 1)-dimensional), the actual numeri-
cal procedure for finding a numerical solution can vary. For instance,
several studies have showcased such a wide variety of specific methods
for the solution of certain types of equation35,58–61. Such variations on
the same theme of iterative procedure depend on finding the most
efficient way of converging to a solution, finding the best error bounds,
improving stability of the solver and substantially depending on the
form of the integral operator. As our method is applied without the
actual knowledge of the shape of the integral operator, but it actually
aims at inferring (that is, learning) the integral operator from data, we
implement an iterative procedure that is fixed and depends only on a
hyperparameter smoothing factor. This is described in detail in the next
section. However, we point out that since the integrand, and therefore
the integral operator itself, is learned during the training, one can
assume that the model will optimize with respect to the procedure in a
way that our iterations are in a sense ‘optimal’ with respect to the target.

Thus far, our considerations on the implementation of IE solvers
seem to point to a fundamental computational issue, since they entail
a more sophisticated solving procedure than that of ODEs or PDEs.

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 6 | September 2024 | 1046–1062 1056

Article https://doi.org/10.1038/s42256-024-00886-8

However, in various situations, even solving ODEs and PDEs through IE
solvers presents significant advantages that are not necessarily obvi-
ous from the above discussions. The first advantage is that IE solvers
are significantly more stable than ODE and PDE solvers, as shown in
other work6,7,35. This, in particular, provides a solution to the issue of
underflowing during the training of NODEs that does not consist of a
regularization, but of a complete change in perspective. In addition,
even though one needs to iterate to solve an IE, in general, the num-
ber of iterations is not particularly high. In fact, in our experiments,
the total number of iterations turned out to be sufficient to be fixed
between 4 and 6. However, when solving, for instance, an ODE, one
needs to sequentially go through each time step. These can be in the
order of 100 (as that in some of our experiments). On the contrary, our
IE solver processes the full time interval in parallel for each iteration.
This results in a much faster algorithm compared with differential
solvers, as shown in our experiments.

Existence and uniqueness of solutions. The solver procedure
described in the previous subsection, of course, assumes that there
exists a solution to start with. As mentioned at the beginning of the sec-
tion, we treat equations of the second kind in this Article also because
the existence conditions are better behaved than for the equations of
the first kind. We now give some theoretical considerations in this
regard. We will also discuss when these solutions are uniquely deter-
mined. Existence and uniqueness are two fundamental parts of the
well posedness of IEs, the other being the continuity of solutions with
respect to the initial data.

A concise and relatively self-contained reference for the existence
and uniqueness of solutions for (linear) Fredholm IEs is provided else-
where53. In fact, it is shown that if a Fredholm equation has a Hermitian
kernel, then the IE has a unique solution whenever λ is not an eigenvalue
of the integral operator. For real coefficients, which is the case we are
interested in, one can simply reduce the case to symmetric kernels,
which are kernels for which K(t, s) = K(s, t) for all t and s. In this
Article, since we have assumed λ = 1, the condition becomes equivalent
to saying that there is no function z such that ∫1

0 K(t, s)z(s)ds = z(t)
for all t.

For more general (linear) integral operators (bounded on a Hilbert
space), a similar result holds. In fact, from ref. 53, we know that a gen-
eralized Fredholm IE admits solutions if and only if the free function is
orthogonal to each solution of the associated homogeneous adjoint
equation. The latter admits the zero function as a solution (therefore,
the solution set is not empty), and is obtained from equation (7) by
deleting f, and by taking the adjoint of T and the complex conjugate
of y. In the real case, the conjugate of y is y itself. Moreover, unique-
ness is guaranteed if the associated homogeneous equation has only
trivial solutions. In the case of nonlinear integral operators, several
existence and uniqueness conditions along with specific formulations
can be found in the literature4,9,57. Generally speaking, such conditions
are assumed on the integrand functions that determine the integral
operator, in such a way that contractive theorems (such as Schauder
and Tychonoff) can be applied.

Observe that such formulations of the existence and uniqueness
based on the contractive properties of the operator T are particularly
interesting in the case where the integral operator is replaced by a gen-
eral neural network (between function spaces), which is not necessarily
obtained through integration. In practice, when T is a general neural
network that is possibly nonlinear on all the entries, except with respect
to the function y, T can be approximated by an IE using the following
reasoning. It is known that Hilbert–Schmidt operators on the Hilbert
space of square integrable functions are approximated by integral
operators53. It is reasonable to assume that neural network operators
are sufficiently well behaved to be considered Hilbert–Schmidt opera-
tors. They, hence, approximate some integral operator, and the training
process, therefore, learns an IE.

More generally, for nonlinear IEs of the Urysohn or Hammerstein
type, the existence and uniqueness problems are well known under
much milder conditions, namely, when the operator is completely
continuous62,63. In this situation, it is sufficient for the operator to have
a non-zero topological index to guarantee that the corresponding IE
admits a solution, and to study the problem of uniqueness, one can
determine the value of the topological index in a bounded subset of
the Banach space in consideration, since this is directly related to the
number of fixed points of the given IE.

The previous discussion, however, does not directly apply to the
case when T is a transformer. Such equations can still be considered
generalized Fredholm equations, and conditions on nonlinear opera-
tors T being approximated by integral operators can be found in the
literature, but the extent to which such equations are equivalent to
IEs is a fascinating question, which will not be explicitly considered
in this Article.

Informatively, we mention that the general theory ensures the exist-
ence and uniqueness of solutions under some (mild) assumptions. Of
course, in principle, one should impose constraints to ensure that such
assumptions are satisfied and that the results would apply. However,
in our experiments, we have observed good stability and good conver-
gence without imposing any additional constraints. This does not apply
in general, but we hypothesized that during optimization, the model
converges towards operators whose associated IE is well behaved, to
avoid regimes of poor stability due to the lack of solutions or the lack of
uniqueness of solutions. For different datasets, such behaviour might
not be satisfied, and extra care in this regard might be needed.

Initial condition for IEs. NIE does not learn a dynamical system via the
derivative of a function y, as is the case for ODEs and IDEs. Therefore,
we do not need to specify an initial condition in the solver during train-
ing and evaluation. In fact, the initial condition for IEs is encoded in
the equation itself. For instance, taking t = 0 in a Volterra or Fredholm
equation uniquely fixes y(x, 0) for all x.

Therefore, we can specify a condition for IEs by constraining the
free function f(y, t). Hereafter, we will make use of this paradigm several
times. There are two immediate ways one could impose constraints on
the free function. The simplest is to fix a value y0 and let f(y, t) be fixed
to be y0 for all t. Alternatively, one could choose an arbitrary function f
and keep this function fixed. In practice, the latter is conceptually more
meaningful. For instance, in theoretical physics, when transforming
the Schrödinger equation into an IE, on the right-hand side, one can
choose an arbitrary function ψ(y, t), which corresponds to the wave
function of free particles, that is, without potential V. Applications of
this procedure are found below in the experiments.

Approximation capabilities
In this section, we consider the capabilities of our models to approxi-
mate (nonlinear) integral operators and IEs.

NIE. We consider two settings, where the integral operator is modelled
by a single-hidden-layer feed-forward neural network of arbitrary
width, or by an arbitrarily deep neural network.

We want to show that when we restrict ourselves to single-
hidden-layer feed-forward neural networks of arbitrary depth for our
function Gθ in equation (1), we can approximate a wide class of IEs over
a suitable subset of the space of functions. In the case of deep neural
networks, we will argue that the NIE architecture can approximate any
‘regular enough’ integral operator, where regularity will be described
below. We restrict our considerations to the case of function spaces
where the domain is ℝ, since the higher-dimensional case is easily
adapted from this discussion. We will, therefore, use y instead of y to
indicate the elements of the domain of the integral operators.

Let T: C([0, 1]) ⟶ C([0, 1]) be an integral operator on the space of
continuous functions, defined as y↦ T(y)(t) ∶= ∫β(t)α(t) G(y(s), t, s)ds for

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 6 | September 2024 | 1046–1062 1057

Article https://doi.org/10.1038/s42256-024-00886-8

continuous functions α and β: [0 1] ⟶ [0, 1] and continuous
G ∶ ℝ × [0, 1] × [0, 1]⟶ ℝ. In fact, in the following, we could consider G
as being Borel measurable, instead of imposing the more restrictive
condition of being continuous. However, since in applications, continu-
ity is generally required, we impose this more restrictive condition.
Moreover, our discussion easily extends to the case when the definition
intervals are [a, b] instead of [0, 1] with simple modifications, and a
similar approach also extends to higher-dimensional integrals. We
assume that T is such that the corresponding IE of the second kind, that
is, equation (1), admits a solution y∗ ∶ [0, 1]⟶ ℝ in C([0, 1]). Since y* is
continuous, there exists a compact K = [−k, k], for k > 0, such that
y*([0, 1]) ⊂ K. Let us now consider a neighbourhood UK of y* in the
compact-open topology such that for all y ∈ UK, we have the property
y([0, 1]) ⊂ K. This could be, for instance, the space of functions y map-
ping [0, 1] into the open (−k, k) = K°. We can, therefore, restrict G to the
domain K × [0, 1] × [0, 1], and we will still indicate this restriction by G
and the corresponding integral operator by T (defined over the neigh-
bourhood UK), for notational simplicity.

For an arbitrarily chosen ϵ > 0, we want to show that we can approx-
imate T(y) with error at most ϵ in the metric induced by C([0, 1]) on UK
through an NIE integral operator Tθ(y)(t) ∶= ∫β(t)α(t) Gθ(y(s), t, s)ds. To this
purpose, let us set Q = sup[0,1] |β(t) − α(t)| , and observe that by
applying the universal approximation theorem for single-hidden-
layer feed-for ward neural net works 6 4 to the func tion
G ∶ K × [0, 1] × [0, 1]⟶ ℝ , we can find a single-hidden-layer neural
network Gθ ∶ K × [0, 1] × [0, 1]⟶ ℝ such that for all t and s ∈ [0, 1], we
have ∣G(y(s), t, s) − Gθ(y(s), t, s)∣ < ϵ/Q. With such a Gθ, for all functions
y ∈ UK, we have for any fixed t* in [0, 1],

‖
‖‖‖
T(y)(t∗) −∫

β(t∗)

α(t∗)
Gθ(y(s), t∗, s)ds

‖
‖‖‖

≤ ∫
β(t∗)

α(t∗)

‖
‖G(y(s), t

∗, s) − Gθ(y(s), t∗, s)‖‖ds

< |β(t∗) − α(t∗)|ϵ/Q.

Therefore, uniformly, in the variable t, we have

‖
‖‖‖
T(y)(t) −∫

β(t)

α(t)
Gθ(y(s), t, s)ds

‖
‖‖‖
< ϵ.

But this means that d(T(y), Tθ(y)) < ϵ with the metric d on UK induced
by that of C([0, 1]).

We observe that although this approximation does not hold in
complete generality, it is valid for a class of integral operators of impor-
tance, since we are usually interested in operators whose correspond-
ing IE admits continuous solutions, and we are interested in modelling
the operator in the neighbourhood of a solution. Moreover, under
mild assumptions (see the ‘Existence and uniqueness of solutions’
section), the dependence of the solution on the initial data is continu-
ous, and therefore, the solutions to the equation for perturbed f lie in
a neighbourhood of a solution y* obtained for f. So, our results apply
in such important cases. Last, we point out that throughout the previ-
ous reasoning, we have implicitly assumed that numerical integration
is performed with infinite precision. Of course, this is not the case in
practice, but since we can reduce the numerical error in the integration
procedure by arbitrarily choosing dense enough samples for a choice
of the integration scheme, the error due to numerical integration can
be rendered small enough so that the previous inequalities hold.

We now consider the case where we allow deep neural networks65.
In this case, we argue that for any IE of the second kind as in equation
(1) where we set T(y)(t) ∶= ∫β(t)α(t) G(y(s), t, s)ds for a Lebesgue integral
function G, we can approximate the integral operator T with arbitrary
precision. As a consequence, there is an NIE model that realizes any IE
as in equation (1) with arbitrary accuracy. We can proceed as for the

case of single-hidden-layer neural networks above, with the main dif-
ference that when applying a theorem from another work65, we do not
need to restrict ourselves to a neighbourhood UK of a solution y* of the
IE, and the neural integral operator ∫β(t)α(t) Gθ(y(s), t, s)ds uniformly approxi-
mates T with respect to t for any y ∈ C([0, 1]). Observe that to use the
data from ref. 65, we need to pre-compose G and Gθ by a characteristic
function χ[0, 1], which does not affect the result.

ANIE. We give some comments on the approximation properties of
ANIE with respect to generalized Fredholm equations. For simplicity,
we consider the case where the integration is performed only over time,
even though the same reasoning can be extended to spatiotemporal
domains. Let T: C([0, 1]) ⟶ C([0, 1]) denote a Fredholm integral opera-
tor defined through the assignment T(y)(t) = ∫1

0 G(y(t), t,y(s), s)ds .
Observe that this integral form is more general than that considered
in equation (1), and it follows the interpretation of integration in terms
of self-attention (see the ‘Implementation of ANIE’ section, where the
integration approximation used in this Article is given in more detail).

Let us assume that the IE y = f* + T(y) admits a unique continuous
solution y* ∈ C2([0, 1]), and that G is regular enough so that the
equation admits a unique solution in C([0, 1]) for given functions f in a
neighbourhood of f* in the compact-open topology. Observe that such
well-posedness conditions are usually relatively mild (see, for instance,
the ‘Existence and uniqueness of solutions’ section), and this is the
main situation of interest in applications. Then, there exists a compact
K = [−k, k] such that y*([0, 1]) ⊂ K and we can choose a neighbourhood
UK of y* in the compact-open topology of C([0, 1]) such that y([0, 1]) ⊂ K
for all y ∈ UK. In fact, one can simply choose UK ≔ {y ∈ C([0, 1]) ∣ ∣y([0, 1])∣ 
< k}. Under such a hypothesis, there are numerical integration schemes
that can approximate the integral ∫1

0 G(y(t), t,y(s), s)ds for any fixed
choice of t with arbitrary precision, on choosing a number of points for
evaluation that is sufficiently large. For instance, for any fixed t, the
error for trapezoidal rules is bound by a term that goes to zero as n
grows, where n is the number of points chosen in [0, 1] for approximat-
ing the integral66. This term is the modulus of continuity as follows:

ωt(1/n) ∶= max
|s1−s2 |<1/n

||G(y(t), t,y(s1), s1) − G(y(t), t,y(s2), s2)||.

For each choice of n, there exists a compact Kn ≔ [−kn, kn] such that y* maps
into Kn, and G restricted to Kn × [0, 1] × Kn × [0, 1] has ωt(1/n) < 1/n for all t ∈ Kn.
In this situation, we can choose a neighbourhood of y∗,UKn such that
ωt(1/n) < 1/n for all t ∈ Kn for each choice of y ∈ UKn, and this numerical
integration approximates the value of T(y)(t) with arbitrarily high
accuracy.

We indicate our numerical integration scheme using the formula

T(y)(t) = ∫
1

0
G(y(t), t,y(s), s)ds ≈

n
∑
i=0
wi(t)G(y(t), t,y(si), si),

where si indicates the ith grid point of {ti} ⊂ [0, 1]. We can, therefore,
obtain the evaluation of T(y) at the grid points tj as

T(y)(tj) = ∫
1

0
G(y(tj), tj,y(s), s)ds ≈

n
∑
i=0
wi(tj)G(y(tj), tj,y(si), si),

by choosing t to be one of the grid points.
From our regularity assumptions on the derivatives, we can uni-

formly bound the error on evaluating T(y) at the points tj such that for
sufficiently dense grids, the evaluation error is smaller than ϵ/2 for any
choice of ϵ > 0, when evaluating on functions y in a neighbourhood of y*.

Let us now consider a permutation of the input of T(y) for some
σ ∈ Σn. This means that we permute the grid points {ti} as {tσi}. The
approximated integration above gives

T(y)(ti) ≈ ∑
i
wσi(tσj)G(y(tσj), tσj,y(sσi), sσi) = ∑

i
wi(tσj)G(y(tσj), tσj,y(si), si),

http://www.nature.com/natmachintell

Nature Machine Intelligence | Volume 6 | September 2024 | 1046–1062 1058

Article https://doi.org/10.1038/s42256-024-00886-8

where the second equality follows from the fact that we are summing
over all the permuted indices i. This means that our approximation of
the integration, evaluated on grid points, is permutation equivariant.
Using results from ref. 67, we are able to find a transformer
architecture and a weight configuration, which we denote by 𝒯𝒯 , such
that ∥ ∑n

i=0 wi(tj)G(y(tj), tj,y(si), si) − 𝒯𝒯𝒯 y(tj))∥p < ϵ/2, as a function of the
tj values. As a consequence, we obtain the approximation

‖T(y)(t) − 𝒯𝒯𝒯 y(t))‖p ≤
‖
‖‖T(y)(tj) −

n
∑
i=0
wi(tj)G(y(tj), tj,y(si), si)

‖
‖‖p

+
‖
‖‖
n
∑
i=0
wi(tj)G(y(tj), tj,y(si), si) − 𝒯𝒯𝒯 y(tj))

‖
‖‖p

< ϵ/2 + ϵ/2 = ϵ,

for any choice of y in a neighbourhood of y*.

Dependence of the model on iteration steps
Here we explore the dependence of model extrapolation on the initial
condition for the Navier–Stokes dataset with respect to the number
of iterations of the solver. The results are reported in Supplementary
Table 2 and Supplementary Table 3, where the mean squared error
and standard deviations are reported. Supplementary Fig. 6 shows
the results reported in Supplementary Table 2. We perform our experi-
ments with two different models, one with a much higher number of
parameters than the other. We see that for a smaller model, the impact
of the number of solver steps becomes much more pronounced. This
indicates that although a very large model is able to compensate the
effect of the solver steps and reduce the difference in testing quality, a
smaller model can greatly benefit from a higher number of iterations.
We notice, in particular, that an ANIE model with a single layer performs
as well as an ANIE model with four layers and lower number of iterations.
In all the cases, a higher number of solver steps gives better evaluations
than single-iteration models with statistical significance (P < 0.0001).

Computational cost
We now give more details regarding the computational cost of our
models.

The theoretical order of the computation for NIE per iteration is
in the order of N × T, where N is the number of Monte Carlo sampling
points and T is the number of time points used in the solver. This has
to be multiplied by the number of iterations, which, for example, has
been taken to be three in the experiments on training speed.

For ANIE, we have performed our experiments using a linear ver-
sion of self-attention, which requires a linear computational cost in
the number of spacetime points used (this changes depending on the
resolution of the dataset). So, for a spacetime grid Ωn ⊂ Ω consisting
of n space points, and a grid Tm ⊂ I consisting of m time points, the
computational cost is in the order of n × m times the number of solver
iterations. The iterations for ANIE varied between three and seven
throughout the experiments. We observe that quadratic attention
would result in a computational cost of the order of (nm)2 × r, where r
is the number of iterations of the solver.

Artificial dataset generation
Lotka–Volterra system. Lotka–Volterra equations are a classic system
of nonlinear differential equations that model the interaction between
two populations. The equations are given by

dx
dt

= αxy − βy

dy
dt

= δxy − γy
,

where α and δ define the population interaction terms, and β and γ are
the intrinsic population growth for population x and y. To generate our

dataset, 100 values of α, β, δ and γ have been randomly generated and
the corresponding system has been solved with a fixed initial condition.
Our code was adapted from https://scipy-cookbook.readthedocs.io/
items/LoktaVolterraTutorial.html.

Lorenz system. The Lorenz system is a three-dimensional system of
ODEs for modelling atmospheric convection. Furthermore, this system
is known to be chaotic, which means that small variations in initial
conditions can significantly affect the final trajectory. The system is
given by

dx
dt

= σ(y − x)

dy
dt

= x(ρ − z) − y

dz
dt

= xy − βz

.

We have sampled 100 random initial conditions, and have solved
the system with the same fixed parameters. Our code was adapted from
https://github.com/gboeing/lorenz-system.

IE spirals. The 2D IE spirals have been obtained by solving an IE with
the following form:

y(t) = ∫
t

0
[

cos 2π(t − s) − sin 2π(t − s)

− sin 2π(t − s) − cos 2π(t − s)
] tanh(2πy(s))dx + z0

+[
cos(t)

cos(t + π)
] ,

where z0 was sampled from a uniform distribution.
The equation has been numerically solved through our solver (with

analytical functions instead of neural networks) for different known
functions f corresponding to different choices of z0.

fMRI data generation. The simulated fMRI data were generated using
neurolib43. This tool encompasses code to generate fMRI data for the
resting state with a given structural connectivity matrix and a delay
matrix. The code can be found at https://github.com/neurolib-dev/
neurolib/blob/master/examples/example-0-aln-minimal.ipynb. We
used this code to generate 100,000 time points of data for 80 voxels
corresponding to regions of the cortex.

The generated data are normalized via computing the z score of
the logarithm of the whole data. These data are then downsampled in
time by a factor of 10, thereby resulting in 10,000 time points. In our
tests, we use the first 5,000 points, where the first 2,500 points are
used for training and the remaining points are reserved for testing.
During batching, each point is taken as the initial condition of a curve
of length 20 points.

Calcium imaging dataset
C57BL/6J mice were kept on a 12 h light/dark cycle, provided with food
and water ad libitum and individually housed following headpost
implants. Imaging experiments were performed during the light
phase of the cycle. For mesoscopic imaging, brain-wide expression
of jRCaMP1b was achieved via postnatal sinus injection, as described
elsewhere68,69.

Briefly, P0–P1 litters were removed from their home cage and
placed on a heating pad. Pups were kept on ice for 5 min to induce
anaesthesia via hypothermia and then maintained on a metal plate sur-
rounded by ice for the duration of injection. Pups were injected bilater-
ally with 4 µl of AAV9-hsyn-NES-jRCaMP1b (2.5 × 1013 gc ml–1, Addgene).
Mice also received an injection of AAV9-hsyn-ACh3.0 to express the
genetically encoded cholinergic sensor ACh3.0 (ref. 70). Once the entire
litter was injected, pups were returned to their home cage.

http://www.nature.com/natmachintell
https://scipy-cookbook.readthedocs.io/items/LoktaVolterraTutorial.html
https://scipy-cookbook.readthedocs.io/items/LoktaVolterraTutorial.html
https://github.com/gboeing/lorenz-system
https://github.com/neurolib-dev/neurolib/blob/master/examples/example-0-aln-minimal.ipynb
https://github.com/neurolib-dev/neurolib/blob/master/examples/example-0-aln-minimal.ipynb

Nature Machine Intelligence | Volume 6 | September 2024 | 1046–1062 1059

Article https://doi.org/10.1038/s42256-024-00886-8

Surgical procedures were performed on sinus-injected animals
once they reached adulthood (>P50). Mice were anaesthetized using
12% isoflurane and maintained at 37 °C for the duration of the sur-
gery. For mesoscopic imaging, the skin and fascia above the skull were
removed from the nasal bone to the posterior of the intraparietal bone
and laterally between the temporal muscles. The surface of the skull was
thoroughly cleaned with saline and the edges of the incision secured
to the skull with Vetbond. A custom titanium headpost for head fixa-
tion was secured to the posterior of the nasal bone with transparent
dental cement (Metabond, Parkell), and a thin layer of dental cement
was applied to the entire dorsal surface of the skull. Next, a layer of
cyanoacrylate (Maxi-Cure, Bob Smith Industries) was used to cover
the skull and left to cure for 30 min at room temperature to provide a
smooth surface for transcranial imaging.

Mesoscopic calcium imaging was performed using a Zeiss Axiozoom
with a ×1, 0.25-numerical-aperture objective with a 56 mm working dis-
tance (Zeiss). Epifluorescent excitation was provided by an LED bank
(SPECTRA X Light Engine, Lumencor) using two output wavelengths:
395/25 nm (isosbestic for ACh3.0, ref. 71) and 575/25 nm (jRCaMP1b). Emit-
ted light passed through a dual-camera image splitter (TwinCam, Cairn
Research) and then through either a 525/50 nm (ACh3.0) or 630/75 nm
(jRCaMP1b) emission filter (Chroma) before it reached two sCMOS cam-
eras (Orca-Flash V3, Hamamatsu). Images were acquired at 512 × 512 pixel
resolution after 4× pixel binning. Each channel was acquired at 10 Hz with
20 ms exposure using HCImage software (Hamamatsu).

For visual stimulation, sinusoidal drifting gratings (2 Hz,
0.04 cycles per degree) were generated using custom-written functions
based on the Psychtoolbox in MATLAB and presented on an LCD moni-
tor at a distance of 20 cm from the right eye. Stimuli were presented
for 2 s with a 5 s interstimulus interval.

Imaging frames were grouped by the excitation wavelength (395,
470 and 575 nm) and downsampled from 512 × 512 to 256 × 256 pix-
els. Detrending was applied using a low-pass filter (N = 100, fcutoff = 
0.001 Hz). Time traces were obtained using (ΔF/F)i = (Fi − F(i, o))/F(i, o),
where Fi is the fluorescence of pixel i and F(i, o) is the corresponding
low-pass filtered signal.

Haemodynamic artefacts were removed using a linear regres-
sion accounting for spatiotemporal dependencies between
neighbouring pixels. We used the isosbestic excitation of ACh3.0
(395 nm) co-expressed in these mice as the means of measuring
activity-independent fluctuations in fluorescence associated with
haemodynamic signals. Briefly, given two p × 1 random signals y1 and
y2 corresponding to ΔF/F of p pixels for two excitation wavelengths
‘green’ and ‘UV’, we consider the following linear model:

y1 = x + z + η, (10)

y2 = Az + ξ, (11)

where x and z are mutually uncorrelated p × 1 random signals corre-
sponding to p pixels of the neuronal and haemodynamic signals, respec-
tively. η and ξ are white Gaussian p × 1 noise signals and A is an unknown
p × p real invertible matrix. We estimate the neuronal signal as the
optimal linear estimator for x (in the sense of the minimum mean
squared error):

̂x = H (
y1
y2
) , (12)

H = ∑
xy
∑
y

−1
, (13)

where y = (y1y2
) is given by stacking y1 on top of y2, ∑y = E[yyT] is the

autocorrelation matrix of y and ∑xy = E[xyT] is the cross-correlation

matrix between x and y. The matrix ∑y is directly estimated from the
observations, and the matrix ∑xy is estimated as

∑
xy
=
⎛
⎜⎜
⎝
∑
y1
−σ2ηI − (∑

y1 y2
(∑
y2
−σ2ξ I)

−1

∑
y2

−1
∑
y1 y2

T
)

T

0
⎞
⎟⎟
⎠
, (14)

where σ2η and σ2ξ are the noise variances of η and ξ, respectively, and I is
the p × p identity matrix. The noise variances σ2η and σ2ξ are evaluated
according to the median of the singular values of the corresponding
correlation matrices ∑y1 and ∑y2. This analysis is usually performed in
patches where the size of the patch p is determined by the amount of
time samples available and estimated parameters. In the present study,
we used p = 9. The final activity traces were obtained by z scoring the
corrected ΔF/F signals per pixel. The dimensionality of the resulting
video is then reduced via PCA to ten components, which represents
~80% of data variance.

Burgers’ equations
The Burgers’ equation is a quasilinear parabolic PDE that takes the form

∂u
∂t

+ u∂u
∂x

= ν∂
2u

∂x2
, (15)

where x is a spatial dimension, whereas t indicates time and ν is a dif-
fusion coefficient called viscosity72. A very interesting behaviour of
the solutions of the Burgers’ equation is evident in the presence of
shock waves.

Our dataset is generated using the MATLAB code used in ref. 19,
which can be found at https://github.com/zongyi-li/fourier_neural_
operator/tree/master/data_generation/burgers. The solution is given
on a spatial mesh of 1,024 and 400 time points are generated from a
random initial condition. We use 1,000 curves for training and test on
200 unseen curves, where the interval spans one-fourth of the original
time used for testing.

Navier–Stokes equations
The Navier–Stokes equations are PDEs that arise in fluid mechanics,
where they are used to describe the motion of viscous fluids. They
are derived from the conservation laws (for momentum and mass)
for Newtonian fluids subject to an external force with the addition of
pressure and friction forces, where the unknown function indicates the
velocity vector of the fluid73,74. Their expression is given by the system

∂
∂t
ui +∑

j
uj

∂ui
∂xj

= νΔui −
∂p
∂xi

+ fi(x, t), (16)

divu = ∑
i

∂ui
∂xi

, (17)

where Δ is the Laplacian operator, f is the external force and u is the
unknown velocity function. We experiment on the same dataset for
ν = 1e−3 (ref. 19), which is available at https://github.com/zongyi-li/
fourier_neural_operator/tree/master/data_generation/navier_stokes.
They solved the viscous, incompressible 2D Navier–Stokes equation for
vorticity on the unit torus, and with periodic boundary conditions. The
initial time point is sampled from a Gaussian distribution. The forcing
term is a linear combination of sine and cosine functions depending
only on space and independent of time. The numerical method for the
solution of the equation is pseudospectral, for the vorticity–stream-
function formulation. The solver scheme follows these steps: (1) solving
the Poisson equation, (2) vorticity is differentiated and (3) the nonlinear
term is added. A Crank–Nicholson update is used to advance time.
Details are provided elsewhere19.

http://www.nature.com/natmachintell
https://github.com/zongyi-li/fourier_neural_operator/tree/master/data_generation/burgers
https://github.com/zongyi-li/fourier_neural_operator/tree/master/data_generation/burgers
https://github.com/zongyi-li/fourier_neural_operator/tree/master/data_generation/navier_stokes
https://github.com/zongyi-li/fourier_neural_operator/tree/master/data_generation/navier_stokes

Nature Machine Intelligence | Volume 6 | September 2024 | 1046–1062 1060

Article https://doi.org/10.1038/s42256-024-00886-8

We use 4,000 instances for training and 1,000 for testing. In our
tasks, we utilize a single time point to initialize our model (ANIE) and
obtain the full dynamics from a single frame. For comparison, we use
the minimal number of time points allowed for the other models for
comparison. This is not always possible, for instance, FNO3D cannot be
applied on a single time point or few time points, as the time convolu-
tion needs several time points to produce significant results. Despite
this significant advantage given to FNO3D, ANIE (this work) still per-
forms better on the prediction of 10 and 20 time points.

Additional details on experiments and computational
resources
The number of parameters for the models used in the experiments are
given in Supplementary Tables 4 and 5. In all the cases, the optimizer
‘Adam’ has been employed. Experiments have been run on a 16 GB
NVIDIA A100 GPU.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Methods for reproducing the synthetic databases are available via
GitHub at https://github.com/emazap7/ANIE. The datasets are avail-
able via Figshare at https://figshare.com/articles/dataset/IE_spi-
rals/25606242 (ref. 75) for the IE spirals, https://figshare.com/articles/
dataset/Burgers_1k_t400/25606149 (ref. 76) for Burgers’ data, https://
figshare.com/articles/dataset/Navier_Stokes_Dataset_mat/25606152
(ref. 77) for Navier–Stokes data and https://figshare.com/articles/
dataset/fMRI_data/25606272 (ref. 78) for the simulated fMRI data.
Lotka–Volterra and Lorenz system datasets can be generated using
the information at https://github.com/emazap7/ANIE. The calcium
imaging dataset is not available under an open-source license. We have
included a detailed account of the techniques used in refs. 68,69 (see
the ‘Existence and uniqueness of solutions’ section), including how to
obtain the dataset. Source data are provided with this paper.

Code availability
All codes are available via GitHub at https://github.com/emazap7/
ANIE (ref. 79), including detailed installation descriptions. Jupyter
notebooks for training and testing of the models for the main experi-
ments are also provided. Pre-trained models are directly accessible,
and instructions on how to run the notebooks are added in the form of
comments throughout the notebooks. The main codes for the models,
along with the experiments, are found in the ‘IE_source’ directory.

References
1.	 Stech, H. W. et al. Integral and Functional Differential

Equations Vol. 67 (CRC Press, 1981).
2.	 Groetsch, C. W. Integral equations of the first kind, inverse

problems and regularization: a crash course. In Journal of Physics:
Conference Series 73, 012001 (IOP Publishing, 2007).

3.	 Wazwaz, A.-M. Linear and Nonlinear Integral Equations Vol. 639
(Springer, 2011).

4.	 Lakshmikantham, V. Theory of Integro-Differential Equations
Vol. 1 (CRC Press, 1995).

5.	 Amari, S. Dynamics of pattern formation in lateral-inhibition type
neural fields. Biol. Cybern. 27, 77–87 (1977).

6.	 Rokhlin, V. Rapid solution of integral equations of classical
potential theory. J. Comput. Phys. 60, 187–207 (1985).

7.	 Rokhlin, V. Rapid solution of integral equations of scattering
theory in two dimensions. J. Comput. Phys. 86, 414–439 (1990).

8.	 Greengard, L. & Kropinski, M. C. An integral equation approach to
the incompressible Navier–Stokes equations in two dimensions.
SIAM J. Sci. Comput. 20, 318–336 (1998).

9.	 Zemyan, S. M. The Classical Theory of Integral Equations:
A Concise Treatment (Springer Science & Business Media, 2012).

10.	 Bôcher, M. An Introduction to the Study of Integral Equations
(Univ. Press, 1926).

11.	 Delves, L. M. & Mohamed, J. L. Computational Methods for Integral
Equations (CUP Archive, 1988).

12.	 Guan, Y., Fang, T., Zhang, D. & Jin, C. Solving Fredholm integral
equations using deep learning. Int. J. Appl. Comput. Math. 8, 87
(2022).

13.	 Que, Q. Integral Equations For Machine Learning Problems.
PhD thesis, The Ohio State Univ. (2016).

14.	 Keller, A. & Dahm, K. Integral equations and machine learning.
Math. Comput. Simul. 161, 2–12 (2019).

15.	 Guo, R. et al. Solving combined field integral equation with deep
neural network for 2-D conducting object. IEEE Antennas Wireless
Propag. Lett. 20, 538–542 (2021).

16.	 Effati, S. & Buzhabadi, R. A neural network approach for solving
Fredholm integral equations of the second kind. Neural Comput.
Appl. 21, 843–852 (2012).

17.	 Kovachki, N. et al. Neural operator: learning maps between
function spaces. J. Mach. Learn. Res. 24, 1–97 (2023).

18.	 Lu, L., Jin, P., Pang, G., Zhang, Z. & Karniadakis, G. E. Learning
nonlinear operators via DeepONet based on the universal
approximation theorem of operators. Nat. Mach. Intell. 3, 218–229
(2021).

19.	 Li, Z. et al. Fourier neural operator for parametric partial
differential equations. In International Conference on Learning
Representations (2021).

20.	 Li, Z. et al. Neural operator: graph kernel network for partial
differential equations. In International Conference on Learning
Representations, Workshop on Integration of Deep Neural Models
and Differential Equations (2020).

21.	 Cao, S. Choose a transformer: Fourier or Galerkin. Adv. Neural Inf.
Process. Syst. 34, 24924–24940 (2021).

22.	 Hao, Z. et al. GNOT: a general neural operator transformer
for operator learning. In International Conference on Machine
Learning 12556–12569 (PMLR, 2023).

23.	 Maier, A., Köstler, H., Heisig, M., Krauss, P. & Yang, S. H. Known
operator learning and hybrid machine learning in medical
imaging—a review of the past, the present and the future. Progr.
Biomed. Eng. 4, 022002 (2022).

24.	 Kovachki, N. B., Lanthaler, S. & Stuart, A. M. Operator
learning: algorithms and analysis. Preprint at https://arxiv.org/
abs/2402.15715 (2024).

25.	 Poli, M. et al. Transform once: efficient operator learning in
frequency domain. Adv. Neural Inf. Process. Syst. 35, 7947–7959
(2022).

26.	 Bartolucci, F. et al. Representation equivalent neural operators:
a framework for alias-free operator learning. Adv. Neural Inf.
Process. Syst. 36, 69661–69672 (2024).

27.	 Ovadia, O. et al. Real-time inference and extrapolation via a
diffusion-inspired temporal transformer operator (DiTTO). Preprint
at https://arxiv.org/abs/2307.09072 (2023).

28.	 Oommen, V., Shukla, K., Goswami, S., Dingreville, R. &
Karniadakis, G. E. Learning two-phase microstructure evolution
using neural operators and autoencoder architectures. npj
Comput. Mater. 8, 190 (2022).

29.	 Zappala, E. et al. Neural integro-differential equations. Proc. AAAI
Conf. Artif. Intell. 37, 11104–11112 (2023).

30.	 Chen, R. T. Q., Rubanova, Y., Bettencourt, J. & Duvenaud, D. K.
Neural ordinary differential equations. Adv. Neural Inf. Process.
Syst. 31 (2018).

31.	 Chen, R. T. Q., Amos, B. & Nickel, M. Learning neural event
functions for ordinary differential equations. In International
Conference on Learning Representations (2021).

http://www.nature.com/natmachintell
https://github.com/emazap7/ANIE
https://figshare.com/articles/dataset/IE_spirals/25606242
https://figshare.com/articles/dataset/IE_spirals/25606242
https://figshare.com/articles/dataset/Burgers_1k_t400/25606149
https://figshare.com/articles/dataset/Burgers_1k_t400/25606149
https://figshare.com/articles/dataset/Navier_Stokes_Dataset_mat/25606152
https://figshare.com/articles/dataset/Navier_Stokes_Dataset_mat/25606152
https://figshare.com/articles/dataset/fMRI_data/25606272
https://figshare.com/articles/dataset/fMRI_data/25606272
https://github.com/emazap7/ANIE
https://github.com/emazap7/ANIE
https://github.com/emazap7/ANIE
https://arxiv.org/abs/2402.15715
https://arxiv.org/abs/2402.15715
https://arxiv.org/abs/2307.09072

Nature Machine Intelligence | Volume 6 | September 2024 | 1046–1062 1061

Article https://doi.org/10.1038/s42256-024-00886-8

32.	 Vaswani, A. et al. Attention is all you need. Adv. Neural Inf. Process.
Syst. 30 (2017).

33.	 Geneva, N. & Zabaras, N. Transformers for modeling physical
systems. Neural Netw. 146, 272–289 (2022).

34.	 Xiong, Y. et al. Nyströmformer: a Nyström-based algorithm for
approximating self-attention. Proc. AAAI Conf. Artif. Intell. 35,
14138 (2021).

35.	 Kushnir, D. & Rokhlin, V. A highly accurate solver for stiff ordinary
differential equations. SIAM J. Sci. Comput. 34, A1296–A1315 (2012).

36.	 Ghosh, A., Behl, H., Dupont, E., Torr, P. & Namboodiri, V. Steer:
simple temporal regularization for neural ODE. Adv. Neural Inf.
Process. Syst. 33, 14831–14843 (2020).

37.	 Finlay, C., Jacobsen, J., Nurbekyan, L. & Oberman, A. How to train
your neural ODE: the world of Jacobian and kinetic regularization.
In International Conference on Machine Learning 3154–3164
(PMLR, 2020).

38.	 Gómez, P., Toftevaag, H. H. & Meoni, G. torchquad: numerical
integration in arbitrary dimensions with PyTorch. J. Open Source
Softw. 6, 3439 (2021).

39.	 Tsai, Y.-H. H., Bai, S., Yamada, M., Morency, L.-P. & Salakhutdinov,
R. Transformer dissection: a unified understanding of
transformer’s attention via the lens of kernel. In Conference on
Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP) 4344–4353 (2019).

40.	 Yang, X., Zhang, H., Qi, G. & Cai, J. Causal attention for
vision-language tasks. In Proc. IEEE/CVF Conference on Computer
Vision and Pattern Recognition 9847–9857 (2021).

41.	 Vyas, S., Golub, M. D., Sussillo, D. & Shenoy, K. V. Computation
through neural population dynamics. Annu. Rev. Neurosci. 43,
249 (2020).

42.	 Ercsey-Ravasz, M. et al. A predictive network model of cerebral
cortical connectivity based on a distance rule. Neuron 80,
184–197 (2013).

43.	 Cakan, C., Jajcay, N. & Obermayer, K. neurolib: a simulation
framework for whole-brain neural mass modeling. Cogn. Comput.
15, 1132–1152 (2021).

44.	 Diab, W. & Al-Kobaisi, M. U-DeepONet: U-Net enhanced deep
operator network for geologic carbon sequestration. Preprint at
https://arxiv.org/abs/2311.15288 (2023).

45.	 Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. BERT: pre-training
of deep bidirectional transformers for language understanding.
Preprint at https://arxiv.org/abs/1810.04805?amp=1 (2018).

46.	 Kelly, J., Bettencourt, J., Johnson, M. J. & Duvenaud, D. K. Learning
differential equations that are easy to solve. Adv. Neural Inf.
Process. Syst. 33, 4370–4380 (2020).

47.	 Kidger, P., Chen, R. T. Q. & Lyons, T. ‘Hey, that’s not an ODE’: faster
ODE adjoints with 12 lines of code. J. Mach. Learn. Res. 5443–5452
(2021).

48.	 Daulbaev, T. et al. Interpolation technique to speed up gradients
propagation in neural ODEs. Adv. Neural Inf. Process. Syst. 33,
16689–16700 (2020).

49.	 Poli, M., Massaroli, S., Yamashita, A., Asama, H. & Park, J.
Hypersolvers: toward fast continuous-depth models. Adv. Neural
Inf. Process. Syst. 33, 21105–21117 (2020).

50.	 Pal, A., Ma, Y., Shah, V. & Rackauckas, C. V. Opening the blackbox:
accelerating neural differential equations by regularizing internal
solver heuristics. In International Conference on Machine Learning
8325–8335 (PMLR, 2021).

51.	 Rubanova, Y., Chen, R. T. Q. & Duvenaud, D. K. Latent ordinary
differential equations for irregularly-sampled time series. Adv.
Neural Inf. Process. Syst. 32 (2019).

52.	 Brascamp, H. J. The Fredholm theory of integral equations for
special types of compact operators on a separable Hilbert space.
Compos. Math. 21, 59–80 (1969).

53.	 Moretti, V. Spectral Theory and Quantum Mechanics: With an
Introduction to the Algebraic Formulation (Springer Science &
Business Media, 2013).

54.	 Grigoriev, Y. N., Ibragimov, N. H., Kovalev, V. F. & Meleshko, S. V.
Symmetries of Integro-Differential Equations: With Applications in
Mechanics and Plasma Physics Vol. 806 (Springer, 2010).

55.	 Tobocman, W. & Foldy, L. L. Integral equations for the Schrödinger
wave function. Am. J. Phys. 27, 483–490 (1959).

56.	 Salpeter, E. E. & Bethe, H. A. A relativistic equation for bound-state
problems. Phys. Rev. 84, 1232 (1951).

57.	 Davis, H. T. Introduction to Nonlinear Differential and Integral
Equations (US Atomic Energy Commission, 1960).

58.	 Borówko, Ma. łgorzata, Rżysko, W., Sokołowski, S. & Staszewski, T.
Integral equations theory for two-dimensional systems involving
nanoparticles. Mol. Phys. 115, 1065–1073 (2017).

59.	 Li, Xian-Fang & Rong, Er-Qian Solution of a class of
two-dimensional integral equations. J. Comput. Appl. Math. 145,
335–343 (2002).

60.	 Kazemi, M., Mottaghi Golshan, H., Ezzati, R. & Sadatrasoul, M.
New approach to solve two-dimensional Fredholm integral
equations. J. Comput. Appl. Math. 354, 66–79 (2019).

61.	 Parand, K., Yari, H. & Delkhosh, M. Solving two-dimensional
integral equations of the second kind on non-rectangular
domains with error estimate. Eng. Comput. 36, 725–739 (2020).

62.	 Krasnosel’skii, Y. P. Topological Methods in the Theory of Nonlinear
Integral Equations (Pergamon Press, 1964).

63.	 Krasnosel’skii, M. A. & Zabreiko, P. P. Geometrical Methods of
Nonlinear Analysis (Springer-Verlag, 1984).

64.	 Hornik, K., Stinchcombe, M. & White, H. Multilayer feedforward
networks are universal approximators. Neural Netw. 2, 359–366
(1989).

65.	 Lu, Z., Pu, H., Wang, F., Hu, Z. & Wang, L. The expressive power of
neural networks: a view from the width. Adv. Neural Inf. Process.
Syst. 30 (2017).

66.	 Davis, P. J. & Rabinowitz, P. Methods of Numerical Integration
(Courier Corporation, 2007).

67.	 Yun, C., Bhojanapalli, S., Rawat, A. S., Reddi, S. J. & Kumar, S. Are
transformers universal approximators of sequence-to-sequence
functions? International Conference on Learning Representations
(2020).

68.	 Barson, D. et al. Simultaneous mesoscopic and two-photon
imaging of neuronal activity in cortical circuits. Nat. Methods 17,
107–113 (2020).

69.	 Hamodi, A. S., Sabino, A. M., Fitzgerald, N. D., Moschou, D. &
Crair, M. C. Transverse sinus injections drive robust whole-brain
expression of transgenes. eLife 9, e53639 (2020).

70.	 Jing, M. et al. A genetically encoded fluorescent acetylcholine
indicator for in vitro and in vivo studies. Nat. Biotechnol. 36,
726–737 (2018).

71.	 Lohani, S. et al. Spatiotemporally heterogeneous coordination of
cholinergic and neocortical activity. Nat. Neurosci. 25, 1706–1713
(2022).

72.	 Benton, E. R. & Platzman, G. W. A table of solutions of the
one-dimensional Burgers equation. Quart. Appl. Math. 30,
195–212 (1972).

73.	 Chorin, A. J. Numerical solution of the Navier-Stokes
equations. Math. Comput. 22, 745–762 (1968).

74.	 Fefferman, C. L. Existence and smoothness of the Navier-Stokes
equation. Millennium Prize Prob. 57, 67 (2000).

75.	 Zappala, E. IE_spirals. Figshare https://doi.org/10.6084/
m9.figshare.25606242.v1 (2024).

76.	 Zappala, E. Burgers_1k_t400. Figshare https://doi.org/10.6084/
m9.figshare.25606149.v1 (2024).

77.	 Zappala, E. Navier_Stokes_Dataset.mat. Figshare https://doi.org/
10.6084/m9.figshare.25606152.v1 (2024).

http://www.nature.com/natmachintell
https://arxiv.org/abs/2311.15288
https://arxiv.org/abs/1810.04805?amp=1
https://doi.org/10.6084/m9.figshare.25606242.v1
https://doi.org/10.6084/m9.figshare.25606242.v1
https://doi.org/10.6084/m9.figshare.25606149.v1
https://doi.org/10.6084/m9.figshare.25606149.v1
https://doi.org/10.6084/m9.figshare.25606152.v1
https://doi.org/10.6084/m9.figshare.25606152.v1

Nature Machine Intelligence | Volume 6 | September 2024 | 1046–1062 1062

Article https://doi.org/10.1038/s42256-024-00886-8

78.	 Zappala, E. fMRI_data. Figshare https://doi.org/10.6084/
m9.figshare.25606272.v1 (2024).

79.	 Zappala, E. emazap7/ANIE: neural integral equations.
Zenodo https://zenodo.org/doi/10.5281/zenodo.12738336
(2024).

80.	 Dosovitskiy, A. et al. An image is worth 16 × 16 words: Transformers
for image recognition at scale. International Conference on
Learning Representations (2021).

81.	 Lee, S., Lee, S. & Song, B.C. Improving vision transformers to learn
small-size dataset from scratch. IEEE Access 10, 123212–123224
(2022).

82.	 Touvron, H. et al. Three things everyone should know about vision
transformers. In Computer Vision–ECCV 2022: 17th European
Conference 497–515 (Springer, 2022).

Acknowledgements
D.v.D. acknowledges support from the National Institutes of Health
R35 1R35GM143072-01 and R01 3R01AI157488-03S1. A.H.d.O.F.
acknowledges the CAPES-Yale Graduate Scholars Program. J.O.C.
acknowledges support from the Wu Tsai Institute Postdoctoral
Fellowship. We also acknowledge the following grants: R01MH099045
and DP1EY033975 to M.J.H., R01MH113852 to M.J.H. and J.C., EY031133
to A.H.M., EY026878 to the Yale Vision Core and a Simons Foundation
SFARI Research Grant (to J.C. and M.J.H.).

Author contributions
E.Z. conceived the algorithmic framework, obtained the theoretical
results and contributed to the numerical experiments. A.H.d.O.F.
and J.O.C. contributed to the numerical experiments. A.H.M., M.J.H.
and J.C. provided the calcium imaging data. D.v.D. led the study and
conceived the algorithmic framework. E.Z., A.H.d.O.F., J.O.C. and D.v.D.
contributed to writing the article.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at
https://doi.org/10.1038/s42256-024-00886-8.

Supplementary information The online version contains supplementary
material available at https://doi.org/10.1038/s42256-024-00886-8.

Correspondence and requests for materials should be addressed to
Emanuele Zappala.

Peer review information Nature Machine Intelligence thanks Sebastian
Mizera, and the other, anonymous, reviewer(s) for their contribution to
the peer review of this work.

Reprints and permissions information is available at
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2024

1Department of Mathematics and Statistics (Idaho State University), and Yale School of Medicine (Yale University), New Haven, CT, USA.
2Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA. 3Wu Tsai Institute, Yale University, New Haven, CT, USA. 4Department of
Neuroscience, Yale University, New Haven, CT, USA. 5Department of Neuroscience and Department of Biomedical Engineering, Yale University,
New Haven, CT, USA. 6Department of Neuroscience and Department of Psychiatry, Yale university, New Haven, CT, USA. 7Department of Computer
Science, Yale University, New Haven, CT, USA. 8Department of Internal Medicine (Cardiology), Yale School of Medicine, New Haven, CT, USA.
9Cardiovascular Research Center, Yale School of Medicine, New Haven, CT, USA. 10Interdepartmental Program in Computational Biology & Bioinformatics,
Yale University, New Haven, CT, USA. 11Yale Institute for Foundations of Data Science, New Haven, CT, USA.  e-mail: emanuelezappala@isu.edu

http://www.nature.com/natmachintell
https://doi.org/10.6084/m9.figshare.25606272.v1
https://doi.org/10.6084/m9.figshare.25606272.v1
https://zenodo.org/doi/10.5281/zenodo.12738336
https://doi.org/10.1038/s42256-024-00886-8
https://doi.org/10.1038/s42256-024-00886-8
https://doi.org/10.1038/s42256-024-00886-8
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:emanuelezappala@isu.edu

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-024-00886-8

Extended Data Fig. 1 | fMRI brain dynamics error per time point.
Quantification, using absolute error per time point, of model fits to simulated
fMRI dataset. Models were run during inference on initial conditions not seen
during training. ANIE has the best performance (lowest error) in predicting

longer dynamics, which encompass a higher non-local component. Data is
represented as mean ± standard deviation. The statistics is based on n = 19
predictions.

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-024-00886-8

Extended Data Fig. 2 | Example fMRI data and predictions. Example dynamics of fMRI data and corresponding model prediction. For each image, time is
represented on the x⃗ axis, and cortical locations (80 nodes) are represented on the y⃗ axis.

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-024-00886-8

Extended Data Fig. 3 | Embedding of Navier-Stokes dynamics. Embedding of
Navier-Stokes dynamics using ANIE (Panel 1), PCA (Panel 2), and sample dynamics
from the embedding spaces (Panel 3). We see that the leftmost dynamics in Panel

A correspond to lower velocity dynamics, and embedding smoothly transitions
toward higher velocities from left to right. Such structure is lost when directly
embedding using other methods (for example the reported PCA plot).

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-024-00886-8

Extended Data Fig. 4 | Brain attention. Example dynamics for the calcium imaging dataset and their respective attention plots. We see that the attention weights do
not directly reflect the input intensity and show activity for the motor and visual cortices.

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-024-00886-8

Extended Data Fig. 5 | 2D IE Spirals. Quantification, using R-squared, of model fits to 2D IE spiral dataset. Models were run during inference on initial conditions not
seen during training. ANIE has the best performance (highest R-squared) in predicting the dynamics. Data is represented as mean ± standard deviation. The statistics is
based on n = 500 predictions.

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-024-00886-8

Extended Data Fig. 6 | Example of Navier-Stokes Prediction. Example dynamics of Navier-Stokes system. Ground truth data (top) and prediction using ANIE
(bottom) are shown. Prediction was generated using an initial condition that was not seen during training. R2 values quantify the model fit.

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-024-00886-8

Extended Data Table 1 | Benchmark on fMRI brain dynamics

Benchmark on predicting fMRI brain dynamics. We report the mean squared errors per extrapolated dynamics of different lengths (t = 5, 10, 20) on new initial conditions. All models use a
single data point as initial condition, while the LSTM model uses 2 time points. We see that as the dynamics gets more non-local (that is longer time intervals) only ANIE can correctly predict it,
as shown by lower mean squared errorhile.

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-024-00886-8

Extended Data Table 2 | Embedding Experiment

Benchmark on embedding experiment. We perform KNN regression with k = 5 on embeddings of Navier-Stokes dynamics correlating the velocity of the dynamics and the embedding. All
values are mean squared errors and are multiplied by a factor of 10−4.

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-024-00886-8

Extended Data Table 3 | Visual Stimuli Experiment

Performance in R2 of a KNN Regressor in regressing the contrast of visual stimuli from the learned latent representation. Results presented as (mean ± std, N=1600 frames, cross-validation=10).

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-024-00886-8

Extended Data Table 4 | 2D IE Spirals

Benchmark on 2D IE spirals. R2 values of model fits are provided for ANIE, NODE, LSTM, ViT and FNO. ANIE has the best performance.

http://www.nature.com/natmachintell

	Learning integral operators via neural integral equations

	Our contributions

	Background and related work

	IEs in numerical analysis

	Operator learning

	Learning continuous dynamics

	Integration via self-attention

	NIEs

	Space, time and higher-dimensional integration

	Attentional NIEs

	Experiments

	Modelling PDEs with IEs: Burgers’ and Navier–Stokes equations

	Modelling brain dynamics using ANIE

	Interpretable dynamics

	Further experiments

	Methods

	Implementation of NIE

	Implementation of ANIE

	Additional experiments

	Benchmark of (A)NIE training speed
	Hyperparameter sensitivity benchmark
	Modelling 2D IE spirals
	Solver convergence

	IEs

	IE (1D)
	IEs (n + 1D)
	Generalities on solving IEs
	Existence and uniqueness of solutions
	Initial condition for IEs

	Approximation capabilities

	NIE
	ANIE

	Dependence of the model on iteration steps

	Computational cost

	Artificial dataset generation

	Lotka–Volterra system
	Lorenz system
	IE spirals
	fMRI data generation

	Calcium imaging dataset

	Burgers’ equations

	Navier–Stokes equations

	Additional details on experiments and computational resources

	Reporting summary

	Acknowledgements

	Fig. 1 Diagrammatic representation of the model.
	Fig. 2 Diagrammatic representation of the IE solver procedure.
	Fig. 3 Example dynamics of the (2+1)-dimensional Navier–Stokes system, where the model is initialized only with the first frame of the dynamics.
	Extended Data Fig. 1 fMRI brain dynamics error per time point.
	Extended Data Fig. 2 Example fMRI data and predictions.
	Extended Data Fig. 3 Embedding of Navier-Stokes dynamics.
	Extended Data Fig. 4 Brain attention.
	Extended Data Fig. 5 2D IE Spirals.
	Extended Data Fig. 6 Example of Navier-Stokes Prediction.
	Table 1 Benchmark on the Navier–Stokes and Burgers’ equations.
	Extended Data Table 1 Benchmark on fMRI brain dynamics.
	Extended Data Table 2 Embedding Experiment.
	Extended Data Table 3 Visual Stimuli Experiment.
	Extended Data Table 4 2D IE Spirals.

