nature machine intelligence

Article

https://doi.org/10.1038/s42256-024-00886-8

Learning integral operators vianeural
integral equations

Received: 19 November 2023

Accepted: 16 July 2024

Published online: 29 August 2024

% Check for updates

Emanuele Zappala® ', Antonio Henrique de Oliveira Fonseca?,
Josue Ortega Caro®, Andrew Henry Moberly*, Michael James Higley®,
Jessica Cardin® & David van Dijk ® 3789101

Nonlinear operators with long-distance spatiotemporal dependencies

are fundamental in modelling complex systems across sciences; yet,
learning these non-local operators remains challenging in machine
learning. Integral equations, which model such non-local systems, have
wide-ranging applicationsin physics, chemistry, biology and engineering.
We introduce the neural integral equation, a method for learning unknown
integral operators from data using an integral equation solver. To improve
scalability and model capacity, we also present the attentional neural
integral equation, which replaces the integral with self-attention. Both
models are grounded in the theory of second-kind integral equations, where
theindeterminate appears both inside and outside the integral operator. We
provide a theoretical analysis showing how self-attention can approximate
integral operators under mild regularity assumptions, further deepening
previously reported connections between transformers and integration, as
well as deriving corresponding approximation results for integral operators.
Through numerical benchmarks on synthetic and real-world data, including
Lotka-Volterra, Navier-Stokes and Burgers’ equations, as well as brain
dynamics and integral equations, we showcase the models’ capabilities and
their ability to derive interpretable dynamics embeddings. Our experiments
demonstrate that attentional neural integral equations outperform existing
methods, especially for longer time intervals and higher-dimensional
problems. Our work addresses a critical gap in machine learning for
non-local operators and offers a powerful tool for studying unknown
complex systems with long-range dependencies.

Integral equations (IEs) are functional equations where the indetermi-
nate function appears under the sign of integration’. The theory of IEs
hasalonghistoryin pure and applied mathematics, dating back to the
1800s, anditis thought to have started with Fourier’s theorem?”. Another
early application of IEs was found in the Dirichlet’s problem (a partial
differential equation (PDE)), which was originally solved through its
integral formulation. Subsequent studies, carried out by Fredholm,
Volterra, Hilbert and Schmidt, have significantly contributed to the

establishment of this theory. IEs appear in many applications ranging
from physics and chemistry to biology and engineering®?, for instance,
inpotential theory, diffraction and inverse problems such as scattering
in quantum mechanics®™*. Neural field equations, which model brain
activity, canbe described using IEs and integro-differential equations
(IDEs), due to their highly non-local nature’. IEs are related to the theory
of ordinary differential equations (ODEs) and PDEs; however, they
possess unique properties. Although ODEs and PDEs describe local

A full list of affiliations appears at the end of the paper. [</e-mail: emanuelezappala@isu.edu

Nature Machine Intelligence | Volume 6 | September 2024 | 1046-1062

1046

http://www.nature.com/natmachintell
https://doi.org/10.1038/s42256-024-00886-8
http://orcid.org/0000-0002-9684-9441
http://orcid.org/0000-0003-3911-9925
http://crossmark.crossref.org/dialog/?doi=10.1038/s42256-024-00886-8&domain=pdf
mailto:emanuelezappala@isu.edu

Article

https://doi.org/10.1038/s42256-024-00886-8

behaviour, IEs model global (long-distance) spatiotemporal relations.
Moreover, ODEs and PDEs have IE forms that, in certain circumstances,
canbe solved more effectively and efficiently due to the better stability
properties of IE solvers compared with ODE and PDE solvers®”. Another
work® provides an example of a PDE system that is solved with high
accuracy through an IE method.

Learning non-local operators for dynamics with long-distance
relationsisanopen problemin deep learning. Inthis Article, we intro-
duce and address the problem of learning non-local dynamics from
data through IEs. Namely, we introduce the neural integral equation
(NIE) and the attentional neural integral equation (ANIE). Our setup is
that of an operator learning problem, where we learn the integral
operator that generates dynamics that fit the given data. Often, one
has observations of adynamical system without knowing its analytical
form. Our approach permits modelling the system purely from the
observations. This model, via the learned integral operator, can be
used to generate dynamics, as well as be used to infer the spatiotem-
poralrelationsthat generated the data. The innovation of our proposed
method liesinthe fact that we formulate the operator learning problem
associated to dynamicsin the form of an optimization problem for the
solutions of an IE obtained through an IE solver. Unlike other operator
learning methods that learn dynamics as amapping between function
spaces for fixed time points, thatis,asamapping 7 : [[,A4; — HJ.BA,
where A;and 3B; are function spaces each representing a time coordi-
nate, NIE and ANIE allow to continuously learn dynamics with arbitrary
time resolution. Our solver outputs solutions through an iterative
procedure?, which converges to asolution of the IE.

Our contributions

In this Article, we introduce NIE and ANIE, which are neural-
network-based methods for learning dynamics, in the form of IEs, from
data. Our architectures allow modelling dynamics with long-distance
spatiotemporal relations typical of non-local functional equations. Our
main contributions are as follows:

« Weintroduce amethod for learning dynamics from data as solu-
tions of IEs of the second kind through an IE solver.

« Weimplementafully differentiable IE solverin PyTorch, available
via GitHub at https://github.com/emazap7/ANIE.

« Weimplementahighly scalable version of the solver where integra-
tionis done with a self-attention mechanism.

« We derive theoretical results on convergence of the solver and
approximation capabilities of our models.

« Ourmodel provides explainable dynamics and meaningful embed-
dings of these dynamics.

+ Finally, we use our method to model and interpret non-local
dynamics from brain activity recordings.

Background and related work

IEs in numerical analysis

Duetotheir wide range of applications, the theory of IEs has attracted
the attention of mathematicians, physicists and engineers for along
time. Detailed accounts on IEs can be found elsewhere**'°. Along with
their theoretical properties, much attention has been devoted to the
development of efficient IE solvers, focusing on rapidly obtaining highly
accurate solutions of certain PDE systems®’. In fact, it is known that IE
solvers yield more accurate solutions than differential solvers for a
variety of ODEs and PDEs. The methodology introduced in this work
learns a neural integral operator through a numerical IE solver and it,
therefore, differs from typical IE solvers where an integral operator
needs to be given and fixed.

Operator learning
IE solvers are used to solve given equations through some iterative
procedure, as done with other work>"', Moreover, machine learning

approaches to solve given types of IE have been implemented' .
In such cases, the IE is known, and we seek its solution. However, in
practice, we often do not have access to the analytical form of the
equationand we only have datasampled from a system. Insuch cases,
we want to model the system by learning an operator that can repro-
duce the system. This is the setting of operator learning problems,
and several approaches to operator learning, including using deep
learning, have been presented’ %, Typical operator learning problems
are formulated on finite grids (finite difference methods) that approxi-
mate the domain of functions. In this case, recovering the continuous
limitisavery challenging problem, and irregularly sampled data can
completely alter the evaluation of the learned operator. Operator
learning for IEs has not been considered thus far, and it constitutes the
mainnovelty of the present Article. Thisis entailed in the formulation
of the operator learning problem through an IE solver. The conveni-
ence of this approach lies in the capability of the solver to continu-
ously sample the domain of integration, as well as the capabilities of
IEs to model very complex dynamics, due to their highly non-local
behaviour. A similar approach for IDEs has been followed in another
work”. However, in the present work, our implementation does not
include differential solvers, and the reformulation of such dynamical
problems in terms of IEs has great benefits in terms of solver speed
and stability. Moreover, our version of an IE solver that approximates
integrals via self-attention allows for higher-dimensional integrals
than those considered in ref. 29.

Learning continuous dynamics

Modelling continuous dynamics from discretely sampled data is
afundamental task in data science. Methods for continuous mod-
elling include those based on ODEs**?*'. Although ODEs are useful
for modelling temporal dynamics, they are fundamentally local
equationsthatneither modelspatial norlong-range temporalrelations.
Auxiliary tools®, such as recurrent neural networks (RNNs), have
been employed to include non-locality. We point out that RNNs can
be seen as performing a temporal integration (in discrete steps), to
codify some degree of non-local (temporal) dependence in the
dynamics. In this work, we introduce a framework that provides a
more general and formal solution to this non-local integration
problem. Moreover, the dynamics are not sequentially produced
withrespect to time, as done by ODE solvers, but are processed in
parallel, thereby providing increased efficiency, as we will experi-
mentally demonstrate.

Integration viaself-attention

The self-attention mechanism and transformers, introduced else-
where®’, were applied to machine translation tasks. Owing to their initial
success, they have since been used in many other domains, including
operator learning for dynamics?-*, Interestingly, the self-attention
mechanism can be interpreted as the Nystrom method for approxi-
mating integrals®*. Making use of this connection, we approximate
theintegral kernel of our model using self-attention, allowing efficient
integration over higher dimensions.

NIEs
AnlE (Urysohn type) takes the general form given by

B

y(O) = fi0) + f Gy(s). £, 5)ds, M

a(t)

where variable sis the local time used for integration for each ¢, which
is the global time. Due to their fundamentally non-local behaviour,
IEs have been used to model physical and biological phenomena,
such as brain dynamics, virus spreading and plasma physics®*°. The
case considered in this Article, where the indeterminate function y(¢)
appears both under the sign of integration and outside it, is termed

Nature Machine Intelligence | Volume 6 | September 2024 | 1046-1062

1047

http://www.nature.com/natmachintell
https://github.com/emazap7/ANIE

Article

https://doi.org/10.1038/s42256-024-00886-8

Initialization IE solver Loss Explain dynamics
k++ until convergence
yO =f(x, t) /—\ L= ”yda(a - ymode[”%

k+1
4

P

= / Gyly*, x, t)dxdt

Attention

(Spatio)temporal integration

Optimization

Model fit Embed dynamics

X2
X
t

Attention (ANIE)

Monte Carlo (NIE)

=7

® Viaa

™ Yimodel

Fig.1| Diagrammatic representation of the model. The solver s initialized
withf, also called the free function. This initialization is often the first time point
of the dynamics. To solve the IE and find the solutiony, aniterative procedure is
carried outin which ateach solver step k, the integral of G4(y*, x, t) is computed
and used as the solution y*!in the next step. Integration is done either with
Monte Carlo (via torchquad) or with self-attention, representing NIE and ANIE,

respectively. The solver integration steps are repeated until convergence of y*

to the IE solution. This solution is then compared with the input data to compute
aloss that—via backpropagation—is used to find 8 that minimizes the error. The
resulting integral operator represents the IE that models the data. Top right: an
example of attention weights for calcium imaging dynamics is presented. Bottom
right: an example of the dynamical embedding of the Navier-Stokes dataset
coloured by velocity is shown.

an equation of the second kind, as opposed to the first kind where
the indeterminate function appears only in the integral operator. IEs
of the second kind are more stable than of the first kind for reasons
rooted in functional analysis (see the ‘Existence and uniqueness of
solutions’ section).

We introduce NIEs, a deep neural network model based on IEs.
NIEs are IEs as defined by equation (1), where G is a neural network,
parameterized by 6, and indicated by G,. Training an NIE consists of
optimizing G,insuch away that the corresponding solutionyto equa-
tion (1) fits the given data. At each step of training, we perform two
fundamental procedures. Thefirstoneis to solve the IE determined by
Gy, and the second one is to optimize for Gyin such away that solving the
correspondingIE produces afunction that fits agiven dataset. Details
onthesolver procedure and the training are given in the ‘IEs’ section.

IEs, in contrast to ODEs and PDEs, are non-local equations’ since
to evaluate theintegral operator fﬁgg Gy(+,t,5)ds : A — Aonafunc-
tiony, we need the value of y over the full integration domain. In fact,
toevaluate theright-hand side of equation (1) at an arbitrary time point
t, the function y(s) between a(t) and B(¢) is needed. Here a and 8 are
arbitrary functions and common choices include a(t) =a and §(¢t) =b
(called Fredholm equations) or a(¢) = 0 and S(¢) = ¢ (called Volterra
equations). Consequently, solving anIE requires aniterative procedure,
based on the notion of Picard iterations (successive approximation
method), where the solutionis obtained as a sequence of approxima-
tions that converge to the solution. Details on the solverimplemented
in this Article are given in the ‘Generalities on solving IEs’ section, as
well as the theory on which it is based and the proofs regarding the
convergence of our algorithms to asolution of the given IE (see Theo-
rem4.1and Corollary 4.2). We also refer to another work® for an elemen-
tary and computationally drivenintroductionto the theory behind the
methods that motivate this procedure; amore detailed accountis also
provided elsewhere".

Interestingly, utilizing NIEs to model ODEs allows to bypass the use
of ODE solvers, as the one introduced in other work®®*. The conveni-
encein thisapproachis that the IE solver is more stable than the ODE
solver®. ODE solver instabilities, induced by equation stiffness, have
been previously considered®*”. The IE solver presented in this work,
thus, does not suffer from these problems, and is also considerably
faster.

Itis often useful to consider amore specific form for IEs, where the
function Gfactorsinthe productof akernel Kand agenerally nonlinear
function Fas G(y, ¢, s) = K(¢, s)F(y). Here Kis matrix valued, and it carries

the dependence ontime (both tands), whereas Fdepends only on the
indeterminate functiony. Therefore, the form of this IE is

B(0)

y(©) =fO) + / K(t, $)F(y(s))ds.)

a(t)

NIEs in this form comprise two neural networks, namely, Kand F.
We observe that in IEs, the initial condition is embedded in the
equation itself, and it is not an arbitrary value to be specified as an
extra condition. To solve the IE, we implement a solver that per-
forms an iterative procedure to obtain a solution (see the ‘IEs’ sec-
tion). During the iterations, Monte Carlo sampling is performed to
evaluate the integrals. This procedure allows our deep learning
model to be independent of the temporal grid points, thereby
resulting in a continuous model, since the model internally uses
randomly sampled points to generate the successive iterations, as
opposed to using fixed grid points. The general algorithm for train-
ing the NIE is given in Algorithm 1, and a diagrammatic overview of
it is shown in Fig. 1. Figure 2 shows a visualization of the general
solving procedure.

Algorithm1: NIE method training step: integration is performed using

the torchquad module with the Monte Carlo method.

Require:y,(t) >initialization

Ensure: y(t) > solution to IE with initial y,(¢)
1 y%>t) =y, (0) > initial solution guess
2: While iter < maxiter and error > tolerance do

3: Evaluate: y'*ti(¢) = fiyl,) + f g((g G(t,s,yi(s))ds
4: Setsolutiontobe: ry' + (1 -r)y™
5: Newerror:error = metric(y™, y)

6: End while

7: Output of solver: y(t)

8: Compute loss with respect to observations: loss(y(t), obs)
9: Gradient descent step

Space, time and higher-dimensional integration

IEs can have multiple space dimensions in addition to time. Such
equations are formulated as

HO)
y(X,t) = f(x,t) + [/ G(y(x',s),X, X', t,s)dx’ds, 3)
CHFA

Nature Machine Intelligence | Volume 6 | September 2024 | 1046-1062

1048

http://www.nature.com/natmachintell

Article

https://doi.org/10.1038/s42256-024-00886-8

)

Error
(1Y o = Y1

/\ t 012345
Solver steps, k
yfol / Gy (y*, t, s)ds
Fig.2|Diagrammatic representation of the IE solver procedure. The solver is
initialized with the free functiony® := f. The integral operator is applied to y°, and
anew guessy'is obtained. Thisis repeated until convergence to asolution. The
left panel shows the solution as a function of solver steps. The right panel shows
the error of the solution as a function of solver steps.

where Q c R" is a domain in R” and y : Q x/— R™ for some
interval / c R. More commonly, in the literature, one finds a simpler
case of higher-dimensional IEs, where the integral component

Lﬁ‘f) Jo GY(X',8),X, X', t,5)dX'ds is obtained as a sum of terms with
only partial integrations. Such an equation takes the form

B(O)
G (y(X', 0),x, X', t)dx’.

y(X,t) =f(x,t) + /
(9]
“4)

a(t)

Gu(Y(X,5). X, £,5)ds + /

These equations are the integral counterpart of PDEs, similar to the
relation between one-dimensional IEs and ODEs, and they are called
partialintegral equations (PIEs). With slight abuse of notation, we will
still refer to equation (3) as a PIE, as we will, in practice, use such an
approach to model PDEs in the case of Burgers’ equation and Navier-
Stokes equation.

Attentional NIEs

Training of NIE requires an integration step at each time point, incur-
ring a potentially high computational cost. This integration step is
implemented using the torchquad package®, a high-performance
numerical Monte Carlointegration method, resulting in the fast integra-
tion and high scalability of NIE. For example, solving ODEs using NIE is
significantly faster thanusing traditional ODE solvers (Supplementary
Tablel). However, several limitations are associated with the torchquad
integration method. Infact, torchquad requires substantially increasing
numbers of sampled points with increasing numbers of dimensions. To
use NIE for solving PDEs and (P)IEs, we require efficient spatial integra-
tionin high dimensions.

Toaddress these challenges, we have employed an approach to NIE
where theintegral operatoris based on aself-attention mechanism. In
fact, self-attention can be viewed as an approximation of an integra-
tion procedure®**, where the product of queries and keys coincides
with the notion of akernel, as the one discussed in the ‘NIEs’ section. In
another work?, the parallelism between self-attention and integration
of kernels was further explored to interpret transformers as Galerkin
projections in operator learning tasks.

We have replaced the analytical integral /{jgg G(t,s,y(s))ds in
equation (1) withaself-attention procedure. The resulting model, which
we call ANIE, follows the same principle of iterative IE solving presented
inthe ‘NIEs’ sectionbut where the neural networks Kand Fare replaced
by attention matrices. It can be shown (see the ‘Generalities on solving
IEs’ section) that the successive approximation methodis still applica-
ble in this case to obtain a solution for the corresponding
equation. Following the comparison between integration and
self-attention, we observe that K is decomposed in the product of
queriesandkeys, as described elsewhere?. The interval of integration
[a(t), B(6)] is determined, in the attentional approximation, by
means of the mask. In particular, if there is no mask, we have a

Fredholm IE, whereas the causal attention mask*® corresponds to a
Volterratype of IE.

Aniterative procedure similar to the one discussed in Algorithm1
isimplemented tosolve the corresponding IE (see the ‘Generalities on
solving IEs’ and ‘Implementation of ANIE’ sections). During iterations,
we uniformly sample points from the spatiotemporal domain, and the
corresponding integral operator does not depend on the grid points
of the dataset. Our experiments on the Burgers’ dataset in the Experi-
ments section show that our modelis stable with respect to the change
in spatiotemporal stamps since the model internally uses randomly
sampled points to generate successive iterations, rather than fixed
grid points. A detailed description of the integration procedure, along
with solver steps and training for ANIE, is givenin the Implementation
of ANIE’section. Moreover, Theorem 4.1, Corollary 4.2 and Remark 4.3
show that the solver procedure converges to a solution under certain
mild assumptions.

Algorithm 2 summarizes the solving and training procedures for
ANIE. A detailed description of the meaning of 2tt is foundin the ‘Imple-
mentation of ANIE” section. Theoretical considerations on Fredholm
generalized equations with general operators, integral operator
approximation through self-attention and existence of the solutions
for these equations are giveninthe ‘Existence and uniqueness of solu-
tions’section. Supplementary Fig.1gives a diagrammatic representa-
tion of the integration procedure implemented in this Article, and
Supplementary Fig. 2 gives a schematic of the solver procedure with
space and time.

Algorithm2:. ANIE method training step:integration hereis replaced
by atransformer employing self-attention.
Require:y,(x, t)

Ensure:y(X, t) > solution to IE with initial y,(x, £)
Ly%(x, £) :=yo(X,) > initial solution guess
2:while iter < maxiter and error > tolerance do)

3: Concatenate space and time tokens to yi(x, £): ¥ (X,) =
concat(yi(x, t),s, t) A ‘
4: Evaluate with self-attention: y*1(t) = (y', t) + Att(¥'(x, 1)
5: Setsolutiontobery'+(1-r)y™
6: Newerror:error = metric(y™, y)
7:end while
8: Output of solver: y(x, t)
9: Compute loss with respect to observations: loss(y(x,), obs)
10: Gradient descent step

> initialization

Experiments

Modelling PDEs with IEs: Burgers’ and Navier-Stokes
equations

PDEs canbereformulated as IEs in several circumstances, and dynam-
ics generated by differential operators can, therefore, be modelled
through an ANIE as aPIE, where integration is performed in space and
time. We consider two well-known types of PDE, namely, the Burgers’
equation and the Navier-Stokes equation. Since NIE is implemented
only fortimeintegration, we use only ANIE in these experiments, which
allows for efficient space and time integration. We observe that our
implementation of Algorithm 2 applied to the case of the Navier-Stokes
equation closely parallels the IE method employed in another work?,
with the main difference that we learn the Green’s function through
gradient descent, since no knowledge of the underlying Navier-Stokes
equationsis assumed.

For the Burgers’ equation, we focus on the ability of ANIE to con-
tinuously model both space and time and we therefore perform an
interpolation task, where the model outputs time points that are not
includedinthe training test, as well as for unseeninitial conditions. This
isincontrast to other work®* where a ‘static’ Burgers’ equation was con-
sideredinwhichthelearned operator maps theinitial condition (¢ = 0)
tothefinaltime (¢=1), thereby treating time as adiscrete two-point set.

Nature Machine Intelligence | Volume 6 | September 2024 | 1046-1062

1049

http://www.nature.com/natmachintell

Article

https://doi.org/10.1038/s42256-024-00886-8

Table 1| Benchmark on the Navier-Stokes and Burgers' equations

Navier-Stokes Burgers’
t=3 t=5 t=10 t=20 t=10 t=15 t=25
s=256 s=512 s=256 s=512 s=256 s=512

LST™M 0.1384 0.2337 0.1422 0.2465 - - - - - -
ResNet = = = = 0.0295 0.0309 0.0280 0.0232 0.0194 0.0204
ConviDLSTM - - - - 0.0132 0.0133 0.0132 0.0136 0.0124 0.0134
Conv2DLSTM 0.4935 0.4393 0.3931 0.2999 = = = = = =
FNO1D - - - - 0.0088 0.088 0.0087 0.087 0.083 0.086
Galerkin = = = = 0.525 NA 0.521 NA 0.518 NA
FNO2D 0.2795 0.2724 NA NA - - - - - -
FNO3D NA NA 0.1751 0.701 = = = = = =
ViT 0.1093 0.877 0.2473 0.2367 0.430 0.423 0.423 0.422 0.422 0.424
ViTsmall 0.926 0.702 0.677 0.655 0.429 0.429 0.426 0.427 0.417 0.424
ViTparallel 0.2901 0.2660 0.2475 0.2368 0.433 0.702 0.573 0.861 0.435 0.700
ViT3D 0.360 0.365 0.433 0.406 = = = = = =
ANIE (this work) 0.0194 0.0220 0.0193 0.0117 0.0024 0.0026 0.0024 0.0024 0.0022 0.0023

We evaluate the models on predicting dynamics of different lengths (t=3, 5, 10, 20) for unseen initial conditions. The models that use a single time point are ANIE (this work), FNO2D, ViT®,
ViTsmall®' and ViTparallel®> models, whereas the convolutional LSTM, FNO3D and ViT3D use more time points (2, 10 and 2, respectively) to predict the rest of the dynamics. ANIE even
outperforms models that use more data points for initialization. Right, benchmark on the Burgers’ equation with different time intervals t=10, 15, 25 and space resolutions s=256, 512, where a
time interpolation task is performed. The symbol =" indicates models that were not suitable for certain experiments (for example, wrong dimensionality), whereas ‘NA’ indicates models that did

not converge or did not fit in memory.

Inour approach, we continuously model the system over atime interval
and randomly sample points duringiterations to performthe quadra-
ture of the temporal integrals. In this experiment, the Galerkin model”
was not included for the higher-spatial-dimension setting because
the amount of memory required exceeded what was available to us
during the experiments. The results arereportedin Table 1 (right), and
an example of the learned dynamics s given in Supplementary Fig. 4.

For the Navier-Stokes equation, we consider an extrapolation
task where we evaluate the model on unseen initial conditions. Previ-
ous works have shown high performance in the predicting dynamics
of Navier-Stokes from new initial conditions, but they require several
frames (thatis, several time points) to be fed into the model to achieve
such performance. We see that since ANIE learns the full dynamics from
arbitrarily chosen initial conditions, we achieve good performance
evenwhenasingleinitial conditionis used toinitialize the system. We
train FNO2D, ViT, ViTsmall and ViTparallel withinitialization on asingle
time point, whereas convolutional long short-term memory (LSTM),
FNO3D and ViT3D are trained with 2,2 and 10 times for initialization,
respectively. The results are given in Table 1 (Ieft). We note that ANIE
evenoutperforms models that use more data points for initialization.
FNO2D did not converge for higher number of points, and therefore,
results for time points ¢ =10 and ¢t = 20 have not been reported, whereas
for FNO3D, we have conducted the experiments only fort=10and ¢ = 20
since using fewer points for the time dimension would have effectively
reduced FNO3D to FNO2D. Example predictions of dynamics with ANIE
are shown in Fig. 3, where the convergence of the solver to a solution
isrepresented.

Modelling brain dynamics using ANIE

Brain activity can be modelled as a spatiotemporal dynamical sys-
tem*.. Although most connections between neurons are localized in
space, there are numerous interactions that are long range*’. As such,
brain dynamics can be modelled using IEs’ that —unlike PDEs—allow
for non-local interactions. Since ANIE allows the efficient learning of
integral operators from data, we demonstrate the ability of ANIE to
learn non-local brain dynamics from functional magnetic resonance
imaging (fMRI) recordings.

To obtain fMRI data that has an arbitrary time duration as well as
unlimited trials, we make use of neurolib*, an fMRI simulation package.
The data provided by this tool permit for more extensive comparison
and statistical power. neurolib simulates whole-brain activity using
a system of delay differential equations, which are non-local equa-
tions, thereby allowing the testing of ANIE’s ability to model non-local
systems. Here we show the performance of ANIE and other models in
modelling data generated by neurolib. Details about data generation
and preprocessing canbe found inthe ‘fMRI data generation’section.

The generated fMRI data comprises neural activity for 80 nodes
localized across the cortex. The first half of the datais used for training
and the second halfis used for testing. For training, the dataare divided
into segments of 20 time points, where the first time point is used as
the initial condition, and the loss is computed over all the 20 points.
Assuch, themodels are trained as aninitial condition problem. During
inference, the models are given points from the test set as new initial
conditions and asked to extrapolate for the following 19 points. The
mean error per point for 200 new initial conditionsis shownin Extended
Data Fig. 1 and summarized in Extended Data Table 1. Extended Data
Fig. 2 shows the data and model per fMRI recording node over time.
We show that ANIE has better performance than other benchmarked
methods for medium-time-step (¢ =10) and long-time-step (¢ = 20)
predictions, demonstrating its ability to model non-local dynamics.
For shorter and more localized dynamics (¢ =5), FNO1D shows better
performance, which can be explained by the fact that FNO1D outputs
the average of the initial points provided as the prediction for the first
five time steps. The DeepONet + UNET model (Extended Data Table 1)
isimplemented similar to that in another work*:.

Interpretable dynamics

Inaddition to modelling and generating new dynamics, itis useful to get
aninsightinto the underlying process that generates the dynamics. For
example, in neuroscience, a major goal is to understand how specific
brain activity patterns give rise to cognition, learning and behaviour.
Toexploretheinterpretability of ANIE, we carry out two experiments.
For the first experiment, we augment the spacetime integration domain
with a Classify (CLS) token*, such that each dynamics is projected into

Nature Machine Intelligence | Volume 6 | September 2024 | 1046-1062

1050

http://www.nature.com/natmachintell

Article

https://doi.org/10.1038/s42256-024-00886-8

Time

Solver steps

e
e pe0se

Root mean
squared error

1.413e-1

sep? u pooee?
e . . l ﬁ n n ‘ ‘ n n e
—

o L 1AANL L0/

Fig. 3| Example dynamics of the (2+1)-dimensional Navier-Stokes system,
where the model s initialized only with the first frame of the dynamics.
Ground-truth data are given at the bottom. Along with the final prediction
(step 7), the subsequent solver guesses are shown. The error during the

solution generation are reported on the right. The figure also shows that
the solver converges when producing the final output (compare with
Supplementary Fig. 5).

asingle vector. This vector can then be related to specific properties
of the dynamics. Specifically, we embed these vectors for different
Navier-Stokes dynamics and find that the resulting manifold (projected
using principal component analysis (PCA)) has a highly non-random
structure. Thisisin contrast to the projection of the raw data (Extended
DataFig. 3). To further explore the resulting dynamics manifold, we
colour it by the velocities of the dynamics, a property that was not
explicitly seen by the model during training. We find that the manifold
highly correlates with velocity, whereas the embedding of the raw data
has no such correlation. To quantify this, we compute the k-nearest
neighbor (kNN) regression error on the embeddings with respect to
the velocities and find that the embedding obtained from ANIE has
lower error (Extended Data Table 2).

For the second experiment, we inspect the attention weights of
the model when predicting brain dynamics (calcium imaging; see the
‘Calciumimaging dataset’ section) to infer which cortical locidrive neu-
ronal dynamics. Extended Data Fig. 4 shows that the motor and visual
cortices arethe areas of the brain with the highest attention values. We
note that the attention plots are not directly correlated with the brain
activity inputs, suggesting that they point to new information about
the data. To validate this, we compare the performance of predicting
the visual stimulus, which was not explicitly provided to the model,
fromeither theraw data or the attention values using akNN regressor
(k=3) (see the ‘Calcium imaging dataset’ section). In Extended Data
Table 3, we show that the attention weights significantly (p = 0.035)

outperformtheraw data, thereby demonstrating that ANIE can provide
insights into the modelled dynamics.

Further experiments

Inthe ‘Additional experiments’ section, we include several more experi-
ments regarding the training speed of ANIE, showcasing that it is sig-
nificantly faster than ODE-solver-based models, and hyperparameter
sensitivity of the model (Supplementary Fig. 3) and modelling of IE
dynamics (Extended Data Fig. 5 and Extended Data Table 4), along
with further tables and figures on the experiments in the ‘Modelling
PDEswithIEs: Burgers’and Navier-Stokes equations’,‘Modelling brain
dynamics using ANIE” and ‘Interpretable dynamics’ sections. In the
‘Solver convergence’ section, we have explored the convergence of
the solver to fixed points of the corresponding IE, and Supplementary
Fig. 6 shows the dependence of the model with respect to increased
solver steps.

Methods

We give here a detailed account of the implementation of the NIE and
ANIE models (one-dimensional (1D) and (n +1)-dimensional IEs, respec-
tively). More specifically, we provide a more thorough description of
Algorithms1and 2 forsolving the IEs associated with neural networks
G (feed-forward) and 2t (transformer), and contextualize these algo-
rithms in the optimization procedure that learns the neural
networks.

Nature Machine Intelligence | Volume 6 | September 2024 | 1046-1062

1051

http://www.nature.com/natmachintell

Article

https://doi.org/10.1038/s42256-024-00886-8

Implementation of NIE

We only consider the case of equation (1), as the case where the func-
tion G splits in the product of a kernel K and the (possibly) nonlinear
function Fis substantially identical. We observe that the main com-
ponents of the training of NIEs are two. An optimization step that
targets G, and a solver procedure to obtain a solution associated with
the IEindividuated by G, or more precisely, the integral operator that
G defines. Therefore, we want to solve equation (1) for a fixed neural
network G, determine how far this solution is from fitting the dataand
optimize Ginsuchaway that at the next step, we obtainasolution that
moreaccurately fits the data. At the end of the training, we have aneural
network G that defines an integral operator and, in turn, an IE, whose
associated solution(s) approximates the given data.

To fix the notation, let us call X as the dataset for training. This
contains several instances of n-dimensional curves with respect to
time. In other words, we consider X = {X;},_, , where Nis the number of
instances and X; = {x,...,x,}, where each x; € R is a g-dimensional
vector, and the sequence of x! refers to a discretization of the time
interval where the curves are defined. For simplicity, we assume that
time points are takenin [0, 1]. The neural network G defining the inte-
gral operator will be denoted by G,, to explicitly indicate the depend-
ence of Gonits parameters. The objective of the training is to optimize
finsuchawaythat the corresponding G, defines an IE whose solutions
y{(t) corresponding to differentinitializations pass through the discre-
tized curves x'(¢).

Let us now consider one training step n, where the neural network
Gy, has weights obtained from the previous training steps (or randomly
initialized if thisis the first step). We need to solve the IE

B(6)

y=flo)+ Gg,(y. t,5)ds ©)
]

a(
associated with the integral operator ff((g Gy, (yt,s)ds corresponding
to the weights 8, at training step n.

For simplicity, we consider a batch size of 1 so that our train-
ing curve is given by {X,,..., X,,}, where we suppress the superscript
i because there is only one curve. Then, we select the first vector x,,
and use this toinitialize a full curve with repeated instances of this. In
other words, we define f(¢) = x, for all times t. We now apply the IE solver
procedure, andset the zero-order solution to the IE to be y°(¢) = f(t) = X,
We now apply the integral operator determined by G,computing

B(6)

20 =f(H) + / Go, (Y0, £, 5)ds.
3]

a(

Observe that at this stage, we can perform the integration over the
interval [a(¢), B(¢)] for eachtimet, sincey®is given for all times t. We then
sety'=ry°+(1-r)z', where risasmoothing factorand 0 < r <1, which
is set beforehand. The functiony'(¢) is now the new approximation for
the solution of the IE given in equation (5). We can now compute the
global errorbetweeny®andy’, whichwe denote by m(y°, y"). This error
isinternal to the solver and does not refer to how well the model fits
the data. It refers to how far the solver is from converging. We iterate
this procedure. Let us assume that this has been done k times. Then,
we have a function that approximates a solution of the IE at the kth
iteration, denoted by y*(¢). We compute

B(o)

X =ft) + f Ge, (X, 1. 5)ds,
0

a(.

where, as before, we can evaluate the integral over the intervals
[a(0), B(t)] because the function y(¢) is defined over the full time length
of the dynamics.

This iterative procedure converges to a solution of the IE for the
integral operator defined through Gy, (ref.11). To optimize the parameters

00of G, werequire gradients on theinput of G, when applying the neural
network, we compute the loss between the solution y obtained through
theiterative solution and the data, and we then backpropagate.

Implementation of ANIE

We now consider ANIE, which is an IE model where the integral is
approximated via self-attention. As the iterative solver procedure to
obtainasolution of the IE determined by the integral operator is con-
ceptually the same as in the case of NIE given above, we mostly focus
on the details relative to the use of self-attention in this setting. First,
we consider an IE with space and time, which takes the form of
equation (9). Our dataset now consists of instances of agiven dynamics
X = {X;};.y» Where Nisthe number of instances in the dataset, and each
X; = {xglv___ﬂsd'j}isafamilyofq-dimensionalvectors (wheregisthe dimen-
sion of the dynamics), indexed by the spatial and temporalindicess,,...,
syandjcorresponding to a discretization (for example, amesh) of the
spatiotemporal domain Q x [0, T]. Observe that the dimension of the
spatial domain Q here is assumed to be d, thereby implying that each
x depends on d indices. Therefore, one can think of each dynamics
instancein the dataset asbeingatemporal sequence of spatial meshes,
forexample, asequence of images when d = 2. We will assume that the
number of time points in such a sequence is equal to m;and the total
number of space points is equal to m,; we set m = m;m,,.

For the sake of simplicity, we assume that the attention
model approximating the integral operator consists of a single
self-attention layer. Let 2tt denote a self-attention layer, and assume
that att : Rmx(@+d+D) __, pmx(@+d+l) Qbserve that the attention layer
maps sequences of length m of (g + d + 1)-dimensional vectors to
sequences of the same type. We, therefore, think of 2tt : x* — Y asa
mapping between two function spaces X and ¥, whose elements are
functions y(x, t) in a discretized form, where x e Qand t € [a, b]. As
discussed in other work***, the self-attention mechanism can be
thought of as an approximation of an integral operator where given a
discretized functiony(x, t), %tt(y(x, t)) is another discretized function
obtained through anapproximation of anintegration over the variables
xand¢. Thistheoretical motivation, and the computational complexity
of performing the Monte Carlo integration in higher dimensions, led
us to consider an IE solver where instead of learning a simple neural
network Gasinthe setting of NIE, we learn theintegral operatorin the
form of its attentional approximation 9tt.

Asforthe detailed description of NIE given above, we assume that
thebatchsizeisequaltol,andthedatasetis X = {X;},_ With X; = {x{ "
foradiscretization of aspatiotemporal domain Q x [0, T], as described
earlier. Let 2tto denote the transformer with parameters 8 obtained at
epochnofthetraining session. Here, if n = 0, it simply means that 2tt,
israndomly initialized. We want toinspect epoch n + 1. The IE we solve
ateach trainingepoch takes the form

y = f(X,t) + Atty(y, X,), (6)

where #tty(y,x, t) is an approximation of an integral operator fOT Ja
G(y, x, X', t,s)dx'ds for some G. The solver is initialized through the free
functionfix, t), which plays the role of thefirst ‘guess’ for the IE solution.
Observe that since fis evaluated on the full discretization of Q x [0, T],
then the length m of the sequence of vectors that approximates f(x, t)
equatesthe product ofthe number of space pointss, for eachdimension
andtimepointt,. Thesolver, therefore, createsits first approximation by
settingy°(x, t) =f(x, t). Then, for thefirstiteration of the solver, we create
the new sequence y° by concatenating to eachy and the spatiotemporal
mcoordinates (X, t,). Now, y consists of asequence of m = m;m,vectors
(one per spacetime point), which also possess spacetime encoding
(through concatenation). Supplementary Fig.1shows aschematic of the
integration procedure through a transformer. Then, we set

VX, £) = fix,) + Atty(¥°),

Nature Machine Intelligence | Volume 6 | September 2024 | 1046-1062

1052

http://www.nature.com/natmachintell

Article

https://doi.org/10.1038/s42256-024-00886-8

where the dependence of y' on spacetime coordinates x and tindicates
that we have one vector ' per spacetime coordinate. If gis the dimension
of the dynamics (that is, the number of channels per spacetime point),
then the sequence y* consists of vectors of dimension g + d +1, where d
isthe number of space dimensions. This happens because y'is the output
ofatransformer of asequence obtained by a sequence of g-dimensional
vectors concatenated with a (d + 1)-dimensional sequence. The two
simplest options are either to discard the last d + 1 dimensions of the
vectorsoraddanadditionallinear layer that projects fromqg + d +1dimen-
sions to g. As tests have not shown a significant difference between the
two approaches, we have adopted the former. Consequently, we obtain
theone-dimensional sequencez!(x, t). Last, wesety'(x, t) = ry® + (1 - r)z!,
where risasmoothingfactorthatisahyperparameter of the solver.One,
therefore, computes the error m(y°, y") between the initial step and the
second one to quantify the degree of change in the new approximation,
where m(s, *) is aglobal error metric fixed throughout.

Now, we iterate the same procedure and assuming that the approx-
imationy’to the equation has been obtained, we then concatenate the
spacetime coordinates to obtain y' and set

YHUX, £) = fX, 0) + Attg (¥,

whichwe use to obtainz’* (by deleting the last d + 1dimensions). Then,
wesety™=ry'+ (1- r)z"'and compute the global error m(y’, y'*). Sup-
plementary Fig. 2 shows a solver step integration in detail.

Inpractice, the number of iterations for the solveris a fixed hyper-
parameter that we have set between 3 and 5 in our experiments. This
has been sufficient to achieve good results, as well as to learn amodel
thatis stable under the solving procedure described above. Since the
solver is fully implemented in PyTorch and the model that approxi-
mates the integral operator isatransformer, we can simply backpropa-
gate through the solver at each epoch, after we have solved for y and
compared the solution with the given data {X;},_,.

We complete this subsection with amore concrete description of
the motivations for approximating integration through the mechanism
of self-attention. Very similar perspectives have appeared in other
sources”**, but we provide a formulation of such considerations that
more easily fit the perspectives of integral operators for IEs used in this
Article. This also serves as a more explicit description of 2tt found in
Algorithm 2.

We consider an n-dimensional dynamics y(x, £) depending on
spacex € Q (for some domain Q) and time ¢ € [0, 1]. The queries, keys
and values of self-attention can be considered as maps
Yy : R x QO x[0,1] — R4, where d is the latent dimension of the
self-attention, and W= Q, Kand Vfor queries, keys and values, respec-
tively. Then, (for W= Q, K, V), we have

¥ lyixiel

Wiylxjel = | ¢, lyix|e]

Wi yixe]

where [y|x|¢] indicates the concatenation of the terms in the bracket.
Let us now consider the ‘traditional’ quadratic self-attention. Similar
considerations also apply for the linear attention used in the experi-
ments, mutatis mutandis. The product between queries and keys gives

|- vty) (- gty)| = (v 9).

i

where T indicates transposition and ¢ indicates the columns of the
transposed matrix. Then, if z is the output of the self-attention layer

(observe that this consists of (z;);, where i indicates a spatiotemporal
point andjindicates thejth dimension of the n-dimensional dynamics).
Then, we have

@), =3 (v l)vi~ [

7 x[0,1]

K(y,x,t,y', X',)F(y',x',t)dx'dt,

where the prime symbols indicate the variables we are summing on
(thisiswhythe are ‘beingintegrated’intheintegral), andy is evaluated
atxand twhereasy’isevaluated at x’and ¢'.

Additional experiments

Benchmark of (A)NIE training speed. Neural ordinary differential
equations (NODEs) can be slow and have poor scalability*®. As such, sev-
eral methods have beenintroduced toimprove their performance** .
Despite these improvements, a NODE is still significantly slower than
discrete methods such as LSTMs. We hypothesize that an (A)NIE has sig-
nificantly better scalability than aNODE, comparable with fast but dis-
crete LSTMs, despite being a continuous model. To test this, we compare
NIE and ANIE with the latest optimized version of (latent) NODE*' and to
LSTM onthree different dynamical systems: Lotka-Volterraequations,
Lorenz system and IE-generated two-dimensional (2D) spirals (see the
‘Artificial dataset generation’ section for the data generation details).
Duringtraining, models were initialized with the first half of the dataand
were tasked to predict the second half. The training speeds are reported
inSupplementary Table 1. Although all the models achieve comparable
(good) fitsto the data, we find that ANIE outperforms all the modelsin
twoout of the three datasets in terms of speed. Furthermore, ANIE has
better MSE compared with all the other models.

Hyperparameter sensitivity benchmark. For most deep learning
models, including NODEs, finding numerically stable solutions usu-
ally requires an extensive hyperparameter search. Since IE solvers are
known to be more stable than ODE solvers, we hypothesize that (A)NIE
is less sensitive to hyperparameter changes. To test this, we quantify
the model fit, for the Lotka-Volterra dynamical system, as a function
of two different hyperparameters: learning rate and L2 norm weight
regularization. We perform this experiment for three different models:
LSTM, latent NODE and ANIE. As shown in Supplementary Fig. 3, we
find that ANIE generally has a lower validation error as well as more
consistenterrors across hyperparameter values, compared with LSTM
and NODE, thereby validating our hypothesis.

Modelling 2D IE spirals. To further test the ability of ANIEin modelling
non-local systems, we benchmark ANIE, NODE and LSTM on a dataset of
2D spirals generated by IEs. These data consist of 500 2D curves of 100
time points each. The datawere splitin halffor training and testing. Dur-
ing training, the first 20 points were given as the initial condition and
the models were tasked to predict the full 100-point dynamics. Details
on the data generation are described in the ‘Artificial dataset genera-
tion’section. For ANIE, the initializationis given viathe free functionf,
which assumes the values of the first 20 points and sets the remaining
80 points to be equal to the value of the 20th point. For NODEs, the
initialization is given as the RNN on the first 20 points, which outputs
adistribution corresponding to the first time point (details on latent
ODE experiments are provided elsewhere®°). For the LSTM, we input
the data in segments of 20 points to predict the consecutive point of
the sequence. The processis repeated with the output of the previous
step until all the points of the curve are predicted. During inference, we
testthe models’ performance on never-before-seeninitial conditions.
Extended Data Table 4 shows the correlation between the ground-truth
curve and the model predictions. Extended Data Fig. 5 shows the cor-
relation coefficients for the 500 curves. Insummary, ANIE significantly
outperforms the other tested methods in predicting IE-generated
non-local dynamics.

Nature Machine Intelligence | Volume 6 | September 2024 | 1046-1062

1053

http://www.nature.com/natmachintell

Article

https://doi.org/10.1038/s42256-024-00886-8

Solver convergence. We now consider the convergence of the solver
toasolutionof anlE foratrained model. Our experiment here consid-
ers amodel that has been trained with anumber of iterations, and we
explore whether the solveriterations converge to asolutionat theend
of the training. These results show that the model learns to converge
toasolution of equation (7) within theiterations that are fixed during
training. They show that a fixed point for IE is obtained when output-
ting a prediction.

Supplementary Fig.5and Fig. 3 show the convergence error (that
is, the value ||y,.; — ¥,ll), and the guesses produced by the solver dur-
ing inference (that is, y, for n corresponding to the iteration index),
respectively.

IEs
IEs are equations where the unknown function appears under the sign
ofiintegral. These equations can be given, in general, as

Ay = f+ T(y), 7)

where Tis an integral operator, for example, as in equations (1) and
(3), and fis a known term of the equation. In fact, this functional
equations have been studied for classes of compact operators Tthatare
not necessarily in the form of integral operators®™. We can distinguish
two fundamental kinds of equation from the form given in equation
(7), which have been extensively studied throughout the years. When
A=0,wesay thatthe correspondingIEis of the firstkind, whereas when
A#0,wesay thatitis of the second kind.

In this Article, we formulate our methods based on equations of
the second kind for the following important theoretical considera-
tions, which apply to the case where Tis bounded over aninfinite space
(such as the space of functions as we consider in this Article). First, an
equation of the first kind can easily have no solution, as the range of a
bounded operator Tonaninfinite space is not the whole space™. There-
fore, for choices of f, there is no y such that 7(y) = -f, and therefore,
equation (7) has no solutions. The otherissueis intrinsic to the nature
of the equation of the first kind, and does not relate to the existence
of solutions. In fact, any compact injective operator T (on an infinite
space) does notadmit abounded leftinverse®. In practice, this means
thatif equation (7) hasaunique solution for f, then varying fby asmall
amount canresult in very significant variations in the corresponding
solutiony. This is clearly a potential issue when dealing with a deep
learning model that aims at learning operator Tfrom the data. Infact,
observations fromwhich Tislearned might be noisy, which might result
invery considerable perturbations of the solutiony and, consequently,
considerable perturbations onthe operator Tthat the model converges
to. Since equations of the second kind are much more stable, we have
formulated all the theory in this setting, and implemented our solver
forsuchequations. Theissuesrelating to the existence and uniqueness
ofthe solution for these equations are discussed in the ‘Existence and
uniqueness of solutions’ section.

The theories of IEs and IDEs are tightly related, and it is often
the case to reduce problems in IEs to problems in IDEs and vice
versa, both in practical and theoretical situations. IEs are also
related to differential equations, and it is possible to reformulate
problems in ODEs in the language of IEs or IDEs. In certain cases,
IEs can also be converted to differential equation problems, even
though this is not always possible®**. In fact, the theory of IEs is not
equivalent to that of differential equations. The most intuitive way
of understanding this is by considering the local nature of differ-
ential equations, as opposed to the non-local origin of IEs. By the
non-locality of IEs, it is meant that each spatiotemporal point in an
IE depends on an integration over the full domain of the solution
functiony. In the case of differential equations, each local point
depends only on the contiguous points through the local definition
of the differential operators.

IE (1D). We first discuss IEs where the integral operator only involves
atemporal integration (thatis, 1D), as discussed in the ‘IEs’ section. In
analogy with the case of differential equations, this case can be con-
sidered as the one corresponding to ODEs.

These IEs are given by an equation of type

B0

YO = fit) + f Gy, t,)ds, ®)
6

a(

where fis the free term, which does not depend on y, whereas the
unknown function y appears both on the left- and right-hand sides
under the sign of the integral. The term fﬁgg G(y, t,s)ds is an integral
operator ¢(D) — e(D)fromthe space of integrable functions ¢(D)over
some domain of R, into itself. We observe that the variables tand s
appearingin Garebothin D, and they areinterpreted as time variables.
We refer to them as global and local times, respectively, following the
convention used in another work”. The functions a and 8 determine
theextremes of integration for each (global) time ¢. Common choices
for a and Binclude a(¢) = 0 and S(¢) = t (Volterra equations) or a(t) =a
and f(¢t) = b (Fredholm equations).

The fundamental questioninthe theory of IEsis whether solutions
existand are unique. It turns out that under relatively mild assumptions
on the regularity of G, IEs admit unique solutions’. Furthermore, the
proofsinanotherwork*show the close relation between IEs and IDEs, as
the existence of uniqueness problems for IDEs are shown to be equiva-
lent to analogous problems for IEs. Then, the fixed-point theorems of
Schauder and Tychonoffare used to prove the results.

IEs (n+1D). We now discuss the case of IEs where the integral operator
involvesintegration over amultidimensional domain of R”. Thisis the
IE version of PDEs, and they are commonly referred to as PIEs when
integration separately occurs on different components. We will con-
sider equations where the multidimensional integral is obtained
through multipleintegrations. An equation of this type takes the form

B0
y(x,) = f(x, t)+[/G(y, X, X', t,8)dx'ds,)
(]
0

where Q c R"isadomaininR”and y : Q x R — R™. Here m does not
necessarily coincide with n.

PIEs and higher-dimensional IEs have been studied in some
restricted form since the 1800s, as they have been employed to for-
mulate the laws of electromagnetism before the unified version of
Maxwell’s equations was published. In addition, early work on the
Dirichlet’s problem found the IE approach proficuous, and it is well
known that several problems in scattering theory (molecular, atomic
and nuclear) are formulated in terms of (P)IEs. In fact, the Schrodinger
equation canberecastas anIE*. Bound-state problems have also been
treated with the IE formalism*.

Generalities on solving IEs. The most striking difference between the
procedure of solving an IE and an ODE is that for an IE to evaluate at a
single time point, one needs to know the solution for all the time points.
This is clearly an issue, since solving for one point requires that we
already know a solution for all the points. To better elucidate this point,
we consider a simple comparison between the solution procedure of
anODEequationoftypey = f(y, t)andanlEoftypey = f(¢) + fg G(y, t,s)ds

Let us assume that we are solving an ODE of type y(¢) = Ay, t) and
thaty is known at time points ¢, ¢,,..., t,;. Then, one can obtainy at ¢,
by means of the Euler method by using the known value at ¢,_, by taking
smallenough steps Atforward in time. In general, therefore, one starts
by the initial condition y,and determines the solution y at the points
t,,..., t, by taking small steps and representing the derivative as Af/At
for small intervals At. Of course, more sophisticated methods are

Nature Machine Intelligence | Volume 6 | September 2024 | 1046-1062

1054

http://www.nature.com/natmachintell

Article

https://doi.org/10.1038/s42256-024-00886-8

possible for the numerical solution of the ODE, but they essentially
produce the next time point from the previous one in asequential way.
Let us now consider an analogous FredholmIE to the ODE given above.
Thisisasimple equationofthetypey = f(t) + fi) G(y, t,s)ds. Suppose we
knowy attime points¢,,..., ;. Todetermine y(¢,), we need tocompute
fity) + fﬁ) G(y, t, s)ds, which requires us to know y over the full interval
[0,1], as Gis integrated over [0, 1]. It is obvious that knowing a single
time point fory (orasequence of values) does not suffice anymore. In
aVolterratype of equation, theintegralwould be between [0, ¢,] (Where
the unknown value ¢ is included), which does not really change the
essence of the issue.

Although several methods can be employed to solve IEs, most (if
notall) of them are based on the concept of iteration over some initial
guess for the solution of the IE. Iterating on the initial guess produces a
sequence of functions that then converges to a solution of the IE. More
specifically, one can consider the von Neumann series of the integral
operator, as discussed below. Infact, let us consider equation (7), which
canberewrittenas

-y =/,

where we assume, for a moment, that T'is a linear operator. Observe
thatifwecanfindtheinverseof 1 — T,thenweobtainyas (1 — T)~!(f).
This can be done by writing the von Neumann series for (1 — 7)™ =
Yeeo T¥. This expression makes sense whenever the series ;.) T¥
converges in the operator norm, which is guaranteed in important
casessuchaswhen 3;° | 71¥ converges (for example, when || 7| <1),
whereas milder conditions onthe convergence of the series exist, too.
Insuchasituation, whenthe von Neumannseries is meaningful, we can
then obtainy by iteratively applying 7*to f. The nonlinear case is han-
dled in a similar iterative procedure, which is called the method of
successive approximations or Picard’siterations”. Itis, in fact, straight-
forward that under mild conditions, the method will output asolution
of the IE. Conditions under which such succession is guaranteed to
converge can be found elsewhere”. A particularly well-known case is
when the integrand of the integral operator is contractive (that is,
Lipschitzwitha constant between 0 and 1) withrespectto the variable
y. We give a proof of such an approach for our setting; similar results
areavailable in other work”.

Theorem4.1. Let € > O befixed, and suppose that T is Lipschitz with con-
stantk < 1. Then, wecanfindy € Xsuchthat || T(y) + f- y| <€, independent
of the choice of f.

Proof. Letussety,:=fandy,.,=f+ T(y,) and consider the term ||y; - y,||.
We have

131 =Yo I=N T(Yo) Il -

Foranarbitraryn >1, we have

I Va1 =Yn 1= T(Yn) = T(Yn-0) IS KN Y = Y1 I -

Therefore, applying the same procedure toy,~y,.1= T(V,-)) = T(V,0)
until we reach y, - y,, we obtain the inequality

| Yos1 =Yn IS K1 TCYo0) |l -
Since k<1, the term k|| T(),)|| is eventually smaller than € for all

n=v for some choice of v. Defining y:=y, for such v gives the
following;:

T +f =y 1=l Pysr =y lI< €.

The following now follows easily.

Corollary 4.2. Consider the same hypotheses as above. Then, equation
(7) admits a solution. In particular, if the integrand G in equation (8) is
contractivewithrespecttoywith constantksuchthatk - (b — a) <1(where
[a, b] is the co-domain of « and p), the iterative method in Algorithm 1
convergesto asolution of the equation.

Proof. From the proof of Theorem 4.1, it follows that the sequencey,
is a Cauchy sequence. Since X is Banach, theny, converges toy € X. By
continuity of T,y is a solution to equation (7). For the second part of the
statement, observe that when G is contractive withrespecttoy, then we
can apply Theorem 4.1 to show that the sequence generated following
Algorithm 1is Cauchy, and we can proceed as in thefirst part of the proof.

Remark4.3. Observethattheresultin Corollary 4.2 applies to Algorithm
2, too, under the assumptions that the transformer architecture is con-
tractive with respect to the input sequencey. Also, a statement that
refers to higher-dimensional IEs can be obtained (and proved) similar
to the second part of the statement of Corollary 4.2, using the measure
of Q x [a, b]instead of thevalue (b - a).

In practice, the method of successive approximations is imple-
mented as follows. The initial guess for the IE is simply given by the free
functionf(thatis, T°(f)), which is used to initialize the iterative proce-
dure. Then, we apply T to y°:= T°(f) to obtain a new solution
z':=f(t) + T'(y°). We sety' := ry° + (1 - r)z'and apply T*to the solution y*
and repeat. Here ris a smoothing factor that determines the amount
of contribution from the new approximation to consider at each step.
As the iterations grow, the fractions of the contributions due to the
smoothing factor rtend to 1. Observe that when we sum ry’ + (1 - r)y™!
withr=0, we obtain the terms of the von Neumann series up to degree
iapplied to f: 3, T(f). The smoothing factor generally shows good
empirical regularization for IE solvers, and we have setr = 1/2 through-
out our experiments, even though we have not seen any concrete dif-
ference between different values of r. This procedure is shownin Fig. 2.

Inanother work", computations on the error bounds for the itera-
tive procedure described above when the integrand function G splits
intothe product of akernel (see above) and alinear function Fare given.
Also, adetailed description of the Nystrom approximation for the com-
putation of the erroris given. We describe a concrete realization of the
iterative procedure discussed above in the ‘IEs’section, along with the
learning steps for the training of our model. Moreover, we additionally
observe that the procedure described above does not depend on T
being anintegral operator or ageneral operator, and therefore, apply-
ing thismethodology to the case where we have a transformer instead
of Tisstillmeaningful, in the assumption that Tis such that theiterated
series of approximations is convergent.

Depending on the specific IE that one is solving (for example,
Fredholm or Volterra, 1D or (n + 1)-dimensional), the actual numeri-
cal procedure for finding a numerical solution can vary. For instance,
several studies have showcased suchawide variety of specific methods
for the solution of certain types of equation®~%"!, Such variations on
the same theme of iterative procedure depend on finding the most
efficient way of converging toasolution, finding the best error bounds,
improving stability of the solver and substantially depending on the
form of the integral operator. As our method is applied without the
actual knowledge of the shape of the integral operator, but it actually
aimsatinferring (thatis, learning) the integral operator from data, we
implement an iterative procedure that is fixed and depends only ona
hyperparameter smoothing factor. Thisis described in detail in the next
section. However, we point out that since the integrand, and therefore
the integral operator itself, is learned during the training, one can
assume that the model will optimize withrespect to the procedureina
way thatouriterationsareinasense ‘optimal’ withrespectto the target.

Thus far, our considerations on the implementation of IE solvers
seemto point to afundamental computationalissue, since they entail
a more sophisticated solving procedure than that of ODEs or PDEs.

Nature Machine Intelligence | Volume 6 | September 2024 | 1046-1062

1055

http://www.nature.com/natmachintell

Article

https://doi.org/10.1038/s42256-024-00886-8

However, in various situations, even solving ODEs and PDEs through IE
solvers presents significant advantages that are not necessarily obvi-
ous from the above discussions. The first advantage is that IE solvers
are significantly more stable than ODE and PDE solvers, as shown in
other work®”*, This, in particular, provides a solution to the issue of
underflowing during the training of NODEs that does not consist of a
regularization, but of a complete change in perspective. In addition,
even though one needs to iterate to solve an IE, in general, the num-
ber of iterations is not particularly high. In fact, in our experiments,
the total number of iterations turned out to be sufficient to be fixed
between 4 and 6. However, when solving, for instance, an ODE, one
needs to sequentially go through each time step. These can be in the
order of100 (as that insome of our experiments). Onthe contrary, our
IE solver processes the full time interval in parallel for each iteration.
This results in a much faster algorithm compared with differential
solvers, as shownin our experiments.

Existence and uniqueness of solutions. The solver procedure
described in the previous subsection, of course, assumes that there
existsasolutiontostart with. As mentioned at the beginning of the sec-
tion, we treat equations of the second kind in this Article also because
the existence conditions are better behaved than for the equations of
the first kind. We now give some theoretical considerations in this
regard. We will also discuss when these solutions are uniquely deter-
mined. Existence and uniqueness are two fundamental parts of the
well posedness of IEs, the other being the continuity of solutions with
respect to theinitial data.

Aconcise and relatively self-contained reference for the existence
and uniqueness of solutions for (linear) Fredholm IEsis provided else-
where®. Infact, itis shown thatifa Fredholm equation has aHermitian
kernel, thenthe IE has a unique solution whenever Ais not an eigenvalue
of the integral operator. For real coefficients, which is the case we are
interested in, one can simply reduce the case to symmetric kernels,
which are kernels for which K(t, s) = K(s, t) for all £ and s. In this
Article, since we have assumed A =1, the condition becomes equivalent
to saying that there is no function z such that ff) K(t,$)z(s)ds = z(t)
forallt.

For more general (linear) integral operators (bounded onaHilbert
space), asimilar result holds. In fact, from ref. 53, we know that a gen-
eralized Fredholm IE admits solutions ifand only if the free functioniis
orthogonal to each solution of the associated homogeneous adjoint
equation. The latter admitsthe zero function as a solution (therefore,
the solution set is not empty), and is obtained from equation (7) by
deleting f, and by taking the adjoint of T and the complex conjugate
of'y.In the real case, the conjugate of y is y itself. Moreover, unique-
ness is guaranteed if the associated homogeneous equation has only
trivial solutions. In the case of nonlinear integral operators, several
existence and uniqueness conditions along with specific formulations
canbefoundintheliterature**”. Generally speaking, such conditions
are assumed on the integrand functions that determine the integral
operator, in such a way that contractive theorems (such as Schauder
and Tychonoff) can be applied.

Observe that such formulations of the existence and uniqueness
based on the contractive properties of the operator T are particularly
interestinginthe case where the integral operatoris replaced by agen-
eral neural network (between function spaces), which is not necessarily
obtained through integration. In practice, when Tis a general neural
network thatis possibly nonlinear onall the entries, except with respect
to the functiony, T can be approximated by an IE using the following
reasoning. It is known that Hilbert-Schmidt operators on the Hilbert
space of square integrable functions are approximated by integral
operators™. It is reasonable to assume that neural network operators
aresufficiently well behaved to be considered Hilbert-Schmidt opera-
tors. They, hence, approximate someintegral operator, and the training
process, therefore, learns an IE.

More generally, for nonlinear IEs of the Urysohn or Hammerstein
type, the existence and uniqueness problems are well known under
much milder conditions, namely, when the operator is completely
continuous®>®. In this situation, it is sufficient for the operator to have
anon-zero topological index to guarantee that the corresponding IE
admits a solution, and to study the problem of uniqueness, one can
determine the value of the topological index in a bounded subset of
the Banach space in consideration, since this is directly related to the
number of fixed points of the given IE.

The previous discussion, however, does not directly apply to the
case when T is a transformer. Such equations can still be considered
generalized Fredholm equations, and conditions on nonlinear opera-
tors T being approximated by integral operators can be found in the
literature, but the extent to which such equations are equivalent to
IEs is a fascinating question, which will not be explicitly considered
inthis Article.

Informatively, we mentionthat the general theory ensures the exist-
ence and uniqueness of solutions under some (mild) assumptions. Of
course, inprinciple, one should impose constraints to ensure that such
assumptions are satisfied and that the results would apply. However,
in our experiments, we have observed good stability and good conver-
gence withoutimposing any additional constraints. This does not apply
in general, but we hypothesized that during optimization, the model
converges towards operators whose associated IE is well behaved, to
avoid regimes of poor stability due to the lack of solutions or the lack of
uniqueness of solutions. For different datasets, such behaviour might
not be satisfied, and extra care in this regard might be needed.

Initial condition for IEs. NIE does not learn adynamical system via the
derivative of afunctiony, asis the case for ODEs and IDEs. Therefore,
we do not need to specify aninitial condition in the solver during train-
ing and evaluation. In fact, the initial condition for IEs is encoded in
the equationitself. Forinstance, taking ¢ = 0 in a Volterra or Fredholm
equation uniquely fixes y(x, 0) for all x.

Therefore, we can specify a condition for IEs by constraining the
free functionfly, t). Hereafter, we will make use of this paradigm several
times. There are twoimmediate ways one could impose constraints on
the free function. The simplestistofix avaluey,andletf(y,) be fixed
tobey,forall¢. Alternatively, one could choose anarbitrary functionf
and keep this function fixed. In practice, the latter is conceptually more
meaningful. For instance, in theoretical physics, when transforming
the Schrodinger equation into an IE, on the right-hand side, one can
choose an arbitrary function g(y, ¢), which corresponds to the wave
function of free particles, that is, without potential V. Applications of
this procedure are found below in the experiments.

Approximation capabilities
In this section, we consider the capabilities of our models to approxi-
mate (nonlinear) integral operators and IEs.

NIE. We consider two settings, where theintegral operatoris modelled
by a single-hidden-layer feed-forward neural network of arbitrary
width, or by an arbitrarily deep neural network.

We want to show that when we restrict ourselves to single-
hidden-layer feed-forward neural networks of arbitrary depth for our
function G,in equation (1), we can approximate awide class of IEs over
asuitable subset of the space of functions. In the case of deep neural
networks, we will argue that the NIE architecture can approximate any
‘regular enough’ integral operator, where regularity will be described
below. We restrict our considerations to the case of function spaces
where the domain is R, since the higher-dimensional case is easily
adapted from this discussion. We will, therefore, use y instead of y to
indicate the elements of the domain of the integral operators.

Let 7: C([0, 1]) — C([0, 1]) be anintegral operator on the space of
continuous functions, defined as y — T(y)(®) := fggg G(y(s),t,s)ds for

Nature Machine Intelligence | Volume 6 | September 2024 | 1046-1062

1056

http://www.nature.com/natmachintell

Article

https://doi.org/10.1038/s42256-024-00886-8

continuous functions a and g: [01] — [0, 1] and continuous
G : Rx[0,1] x [0,1] — R.Infact, inthe following, we could consider G
as being Borel measurable, instead of imposing the more restrictive
condition of being continuous. However, sincein applications, continu-
ity is generally required, we impose this more restrictive condition.
Moreover, our discussion easily extends to the case when the definition
intervals are [a, b] instead of [0, 1] with simple modifications, and a
similar approach also extends to higher-dimensional integrals. We
assumethat Tis such that the correspondingIE of the second kind, that
is, equation (1), admitsasolution y* : [0,1] — Rin C([0, 1]). Since y*is
continuous, there exists a compact K = [k, k], for k>0, such that
¥*([0, 1]) c K. Let us now consider a neighbourhood Uy of y* in the
compact-open topology such that for all y € Uy, we have the property
Y([0,1]) c K. This could be, for instance, the space of functions y map-
ping[0, 1]intothe open (-k, k) = K°. We can, therefore, restrict Gto the
domain K x [0,1] x [0, 1], and we will still indicate this restriction by G
andthe correspondingintegral operator by T (defined over the neigh-
bourhood U,), for notational simplicity.

Foranarbitrarily chosen e > 0, we want to show that we can approx-
imate T(y) with error at most € in the metricinduced by C([0, 1]) on Uy
through an NIE integral operator To(y)(¢) := f50 Gy(y(s). t.5)ds. Tothis
purpose, let us set Q= supg,;; |8 —a(®)|, and observe that by
applying the universal approximation theorem for single-hidden-
layer feed-forward neural networks® to the function
G: Kx[0,1]x[0,1] — R , we can find a single-hidden-layer neural
network Gy : Kx[0,1] x [0,1] — R such that for all tand s € [0, 1], we
have |G()(s), t, 5) — G,(¥(3), t, 5)| < €/Q. With such a G, for all functions
y € Uy, we have for any fixed t*in [0, 1],

B(E*)
“ TN - f Go(Y(s).¢*,5)ds
a(t+)
B
</
a(t+)

< |B(r") — a(t*)le/Q.

G(Y(S).",5) = Go(¥(9).t",5)|ds

Therefore, uniformly, in the variable ¢, we have

B()
”T(y)(t)— f Go(Y(s),t,8)ds|| < €.
a(t)

But this means that d(T(y), T,(y)) < € with the metric d on U, induced
by that of C([0, 1]).

We observe that although this approximation does not hold in
complete generality, itis valid for aclass of integral operators of impor-
tance, since we are usually interested in operators whose correspond-
ing IE admits continuous solutions, and we areinterested in modelling
the operator in the neighbourhood of a solution. Moreover, under
mild assumptions (see the ‘Existence and uniqueness of solutions’
section), the dependence of the solution on the initial datais continu-
ous, and therefore, the solutions to the equation for perturbed flie in
aneighbourhood of a solution y* obtained for f. So, our results apply
insuchimportant cases. Last, we point out that throughout the previ-
ousreasoning, we have implicitly assumed that numerical integration
is performed with infinite precision. Of course, this is not the case in
practice, but since we canreduce the numerical errorintheintegration
procedure by arbitrarily choosing dense enough samples forachoice
of theintegration scheme, the error due to numerical integration can
berendered small enough so that the previous inequalities hold.

We now consider the case where we allow deep neural networks®.
In this case, we argue that for any IE of the second kind as in equation
(1) where we set T(y)(¢) := fﬁﬁg G(y(s),t,8)ds for aLebesgue integral
function G, we can approximate theintegral operator Twith arbitrary
precision. As aconsequence, thereis an NIE model that realizes any IE
as in equation (1) with arbitrary accuracy. We can proceed as for the

case of single-hidden-layer neural networks above, with the main dif-
ference that when applying a theorem from another work®, we do not
needtorestrict ourselvesto aneighbourhood U, of asolution y* of the
IE,and the neuralintegral operator fﬁgg Go(y(s), t, s)dsuniformly approxi-
mates T with respect to ¢ for any y € C([0, 1]). Observe that to use the
datafromref. 65, we need to pre-compose G and G, by a characteristic

function o, ;;, which does not affect the result.

ANIE. We give some comments on the approximation properties of
ANIE with respect to generalized Fredholm equations. For simplicity,
we consider the case where the integration is performed only over time,
even though the same reasoning can be extended to spatiotemporal
domains. Let T: C([0, 1]) — C([0, 1]) denote aFredholmintegral opera-
tor defined through the assignment 7(y)(¢) = f:) G(y(0),t,y(s),s)ds .
Observe that this integral form is more general than that considered
inequation (1), and it follows the interpretation of integrationin terms
of self-attention (see the Implementation of ANIE’ section, where the
integration approximation used in this Article is givenin more detail).
Let us assume that the IE y = f* + T(y) admits a unique continuous
solution y* € C¥([0, 11), and that G is regular enough so that the
equation admits a unique solutionin C([0, 1]) for given functions fina
neighbourhood of f*in the compact-open topology. Observe that such
well-posedness conditions are usually relatively mild (see, for instance,
the ‘Existence and uniqueness of solutions’ section), and this is the
main situation of interestin applications. Then, there existsacompact
K =[-k, k] such that y*([0,1]) c Kand we can choose a neighbourhood
Uy ofy*inthe compact-opentopology of C([0, 1]) such thaty([0, 1]) c K
forally € Uy. Infact, one can simply choose Uy := {y € C([0, 1]) | [y([O, 1])|
< k}.Under suchahypothesis, there are numerical integration schemes
that can approximate the integral f}) G(y(0),t,y(s),s)ds for any fixed
choice of twith arbitrary precision, on choosing anumber of points for
evaluation that is sufficiently large. For instance, for any fixed ¢, the
error for trapezoidal rules is bound by a term that goes to zero as n
grows, where nisthe number of points chosenin [0, 1] for approximat-
ing the integral®®. This term is the modulus of continuity as follows:

max
|s1—s;]<1/n

w (U/n) := |Gy, £,y(51), 51) = GY(D), £,¥(52),52)|-
Foreachchoice of n, there existsacompact K, := [k, k,] such thaty*maps
intoK,, and GrestrictedtoK, x [0,1] x K, x[0,1]hasw,(1/n) <1/nforallt e K,.
In this situation, we can choose a neighbourhood of y*, Uy such that
w,(1/n) <1/nforallt € K, for each choice of y € Uy, and this numerical
integration approximates the value of T(y)(¢) with arbitrarily high
accuracy.

Weindicate our numerical integration scheme using the formula

1 n

T = / G(y(0), £, Y(5),9)ds =), w(OGY(O), £, ¥(S), 5

0 i=0

where s;indicates the ith grid point of {t;} c [0, 1]. We can, therefore,
obtain the evaluation of 7(y) at the grid points ¢;as

1 n
(@) = f GOY(t), 1, ¥(5),8)ds ~ Y, wi(t)GY (L), 4, ¥(5), 51),
0 i=0

by choosing t to be one of the grid points.

From our regularity assumptions on the derivatives, we can uni-
formly bound the error onevaluating 7(y) at the points ¢;such that for
sufficiently dense grids, the evaluation error is smaller thane/2 for any
choice of e > 0, whenevaluating on functionsyinaneighbourhood of y*.

Let us now consider a permutation of the input of T(y) for some
o € X,,. This means that we permute the grid points {¢;} as {t,;}. The
approximated integration above gives

TN = Z Wi (L)) G(Y (L)), Loy Y(Sai)s Sai) = Z wi(tg)G(Y(ty), ty, Y(Si), i)

Nature Machine Intelligence | Volume 6 | September 2024 | 1046-1062

1057

http://www.nature.com/natmachintell

Article

https://doi.org/10.1038/s42256-024-00886-8

where the second equality follows from the fact that we are summing
over allthe permuted indices i. This means that our approximation of
theintegration, evaluated ongrid points, is permutation equivariant.
Using results from ref. 67, we are able to find a transformer
architecture and a weight configuration, which we denote by 7, such
that|| E;':o wi&)GY (&), 6, (5.) = T (Y, < €/2,asa function of the
t;values. As a consequence, we obtain the approximation

ITN@® = 7Y, <

() - Z%) wi)Gy (), 4, Y(5:), $)

p

+

ZE) wit)G(Y (), 4, Y(s7),) — T(Y())

P
< €/2+€/2=¢,

for any choice of yin aneighbourhood of y*.

Dependence of the model oniteration steps

Here we explore the dependence of model extrapolation on the initial
condition for the Navier-Stokes dataset with respect to the number
of iterations of the solver. The results are reported in Supplementary
Table 2 and Supplementary Table 3, where the mean squared error
and standard deviations are reported. Supplementary Fig. 6 shows
theresultsreportedin Supplementary Table 2. We perform our experi-
ments with two different models, one with a much higher number of
parameters than the other. We see that for asmaller model, theimpact
of the number of solver steps becomes much more pronounced. This
indicates that although a very large model is able to compensate the
effect of the solver steps and reduce the differencein testing quality, a
smaller model can greatly benefit from a higher number of iterations.
We notice, in particular, that an ANIE model with asingle layer performs
aswell asan ANIE model with four layers and lower number of iterations.
Inallthe cases, ahigher number of solver steps gives better evaluations
thansingle-iteration models with statistical significance (P < 0.0001).

Computational cost
We now give more details regarding the computational cost of our
models.

The theoretical order of the computation for NIE per iteration is
in the order of N x T, where N is the number of Monte Carlo sampling
points and T is the number of time points used in the solver. This has
to be multiplied by the number of iterations, which, for example, has
been taken to be threein the experiments on training speed.

For ANIE, we have performed our experiments using a linear ver-
sion of self-attention, which requires a linear computational cost in
the number of spacetime points used (this changes depending on the
resolution of the dataset). So, for a spacetime grid Q, c Q consisting
of n space points, and a grid T,, c / consisting of m time points, the
computational costisinthe order of n x mtimes the number of solver
iterations. The iterations for ANIE varied between three and seven
throughout the experiments. We observe that quadratic attention
would result in a computational cost of the order of (nm)? x r, where r
isthe number of iterations of the solver.

Artificial dataset generation

Lotka-Volterra system. Lotka-Volterraequationsare a classic system
of nonlinear differential equations that model theinteraction between
two populations. The equations are given by

dx

5 = ©y - By

dy

w = o-w

where aand § define the populationinteractionterms,and fand yare
theintrinsic populationgrowth for population.xandy. To generate our

dataset, 100 values of a, 8, 6 and y have been randomly generated and
the corresponding system has been solved with afixed initial condition.
Our code was adapted from https://scipy-cookbook.readthedocs.io/
items/LoktaVolterraTutorial.html.

Lorenz system. The Lorenz system is a three-dimensional system of
ODEs for modelling atmospheric convection. Furthermore, this system
is known to be chaotic, which means that small variations in initial
conditions can significantly affect the final trajectory. The system is
givenby

=0(y-x
=x(p-2)-Yy.

=x)-fz

We have sampled 100 random initial conditions, and have solved
the system with the same fixed parameters. Our code was adapted from
https://github.com/gboeing/lorenz-system.

IE spirals. The 2D IE spirals have been obtained by solving an IE with
the following form:

[cos2m(t—s) —sin2mn(t—s)
y@®) = / [tanh(2my(s))dx + z,
0

—sin2m(t —s) —cos2mn(t—s)
[cos(t)]
+ ,
cos(t + 1)

where z, was sampled from a uniform distribution.

The equationhasbeennumerically solved through our solver (with
analytical functions instead of neural networks) for different known
functions fcorresponding to different choices of z,,.

fMRI data generation. The simulated fMRI data were generated using
neurolib®. This tool encompasses code to generate fMRI data for the
resting state with a given structural connectivity matrix and a delay
matrix. The code can be found at https://github.com/neurolib-dev/
neurolib/blob/master/examples/example-0-aln-minimal.ipynb. We
used this code to generate 100,000 time points of data for 80 voxels
correspondingto regions of the cortex.

The generated data are normalized via computing the z score of
the logarithm of the whole data. These data are then downsampled in
time by a factor of 10, thereby resulting in 10,000 time points. In our
tests, we use the first 5,000 points, where the first 2,500 points are
used for training and the remaining points are reserved for testing.
During batching, each point is taken as the initial condition of a curve
oflength 20 points.

Calciumimaging dataset

C57BL/6) mice were kept onal2 hlight/dark cycle, provided withfood
and water ad libitum and individually housed following headpost
implants. Imaging experiments were performed during the light
phase of the cycle. For mesoscopic imaging, brain-wide expression
of jJRCaMP1b was achieved via postnatal sinus injection, as described
elsewhere®®®,

Briefly, PO-P1 litters were removed from their home cage and
placed on a heating pad. Pups were kept on ice for 5 min to induce
anaesthesia via hypothermia and then maintained on ametal plate sur-
rounded by ice for the duration of injection. Pups were injected bilater-
ally with 4 pl of AAV9-hsyn-NES-jRCaMP1b (2.5 x 10 gc ml ™, Addgene).
Mice also received an injection of AAV9-hsyn-ACh3.0 to express the
genetically encoded cholinergic sensor ACh3.0 (ref. 70). Once the entire
litter wasinjected, pups were returned to their home cage.

Nature Machine Intelligence | Volume 6 | September 2024 | 1046-1062

1058

http://www.nature.com/natmachintell
https://scipy-cookbook.readthedocs.io/items/LoktaVolterraTutorial.html
https://scipy-cookbook.readthedocs.io/items/LoktaVolterraTutorial.html
https://github.com/gboeing/lorenz-system
https://github.com/neurolib-dev/neurolib/blob/master/examples/example-0-aln-minimal.ipynb
https://github.com/neurolib-dev/neurolib/blob/master/examples/example-0-aln-minimal.ipynb

Article

https://doi.org/10.1038/s42256-024-00886-8

Surgical procedures were performed on sinus-injected animals
once they reached adulthood (>P50). Mice were anaesthetized using
12% isoflurane and maintained at 37 °C for the duration of the sur-
gery. For mesoscopicimaging, the skin and fascia above the skull were
removed from the nasal bone to the posterior of the intraparietal bone
and laterally between the temporal muscles. The surface of the skull was
thoroughly cleaned with saline and the edges of the incision secured
to the skull with Vetbond. A custom titanium headpost for head fixa-
tion was secured to the posterior of the nasal bone with transparent
dental cement (Metabond, Parkell), and a thin layer of dental cement
was applied to the entire dorsal surface of the skull. Next, a layer of
cyanoacrylate (Maxi-Cure, Bob Smith Industries) was used to cover
the skull and left to cure for 30 min at room temperature to provide a
smooth surface for transcranial imaging.

Mesoscopic calciumimaging was performed using a Zeiss Axiozoom
with a x1, 0.25-numerical-aperture objective with a 56 mm working dis-
tance (Zeiss). Epifluorescent excitation was provided by an LED bank
(SPECTRA X Light Engine, Lumencor) using two output wavelengths:
395/25 nm (isosbestic for ACh3.0, ref. 71) and 575/25 nm (jRCaMP1b). Emit-
ted light passed through a dual-camera image splitter (TwinCam, Cairn
Research) and then through either a 525/50 nm (ACh3.0) or 630/75 nm
(jRCaMP1b) emissionfilter (Chroma) before it reached two sCMOS cam-
eras (Orca-Flash V3, Hamamatsu). Images were acquired at 512 x 512 pixel
resolution after 4x pixel binning. Each channelwas acquired at10 Hzwith
20 ms exposure using HCImage software (Hamamatsu).

For visual stimulation, sinusoidal drifting gratings (2 Hz,
0.04 cycles per degree) were generated using custom-written functions
based onthe Psychtoolboxin MATLAB and presented on an LCD moni-
tor at a distance of 20 cm from the right eye. Stimuli were presented
for2 switha5sinterstimulusinterval.

Imaging frames were grouped by the excitation wavelength (395,
470 and 575 nm) and downsampled from 512 x 512 to 256 x 256 pix-
els. Detrending was applied using a low-pass filter (N=100, f. .ot =
0.001Hz). Time traces were obtained using (AF/F);= (F;,— F o)/ F i o)
where F; is the fluorescence of pixel i and F; , is the corresponding
low-passfiltered signal.

Haemodynamic artefacts were removed using a linear regres-
sion accounting for spatiotemporal dependencies between
neighbouring pixels. We used the isosbestic excitation of ACh3.0
(395 nm) co-expressed in these mice as the means of measuring
activity-independent fluctuations in fluorescence associated with
haemodynamic signals. Briefly, given two p x 1 random signals y, and
¥, corresponding to AF/F of p pixels for two excitation wavelengths
‘green’and ‘UV’, we consider the following linear model:

Nh=x+z+n, (10)

Yy =Az+E 11
where x and z are mutually uncorrelated p x 1 random signals corre-
spondingto p pixels of the neuronal and haemodynamic signals, respec-
tively. nand are white Gaussian p x 1 noise signals and A is an unknown
p x p real invertible matrix. We estimate the neuronal signal as the
optimal linear estimator for x (in the sense of the minimum mean
squared error):

f=H<h), 12)
Y2
H=Y>"", (13)
XYy
where y = (j’l) is given by stacking y, on top of y,, ¥, = E[yy"] is the
2

autocorrelation matrix of yand ¥, = E[xy'] is the cross-correlation

matrix between x and y. The matrix Y, is directly estimated from the
observations, and the matrix } ,, is estimated as

gz

N J1Y2 \)2 Y2 N2

s-ar-(3 (z—oéf)_lzle)To],)

where o] and o7 are the noise variances of nand &, respectively, and /is
the p x p identity matrix. The noise variances o and o7 are evaluated
according to the median of the singular values of the corresponding
correlationmatrices 3| and 3 . This analysis is usually performed in
patches where the size of the patch p is determined by the amount of
time samples available and estimated parameters. Inthe present study,
we used p =9. The final activity traces were obtained by z scoring the
corrected AF/F signals per pixel. The dimensionality of the resulting
video is then reduced via PCA to ten components, which represents
~80% of data variance.

Burgers’ equations
The Burgers’equationis a quasilinear parabolic PDE that takes the form
Pu
ox2’

ou ou

= 1
ot ox (15)

where x is a spatial dimension, whereas tindicates time and v is a dif-
fusion coefficient called viscosity”. A very interesting behaviour of
the solutions of the Burgers’ equation is evident in the presence of
shock waves.

Our dataset is generated using the MATLAB code used in ref. 19,
which can be found at https://github.com/zongyi-li/fourier_neural_
operator/tree/master/data_generation/burgers. The solutionis given
on a spatial mesh of 1,024 and 400 time points are generated from a
randominitial condition. We use 1,000 curves for training and test on
200 unseen curves, where the interval spans one-fourth of the original
time used for testing.

Navier-Stokes equations

The Navier-Stokes equations are PDEs that arise in fluid mechanics,
where they are used to describe the motion of viscous fluids. They
are derived from the conservation laws (for momentum and mass)
for Newtonian fluids subject to an external force with the addition of
pressure and friction forces, where the unknown functionindicates the
velocity vector of the fluid”>”*. Their expression is given by the system

0 al,l,' 6p
Zu —L = VAU — = + fi(X, D), 1
atu, + Ej u; o, VAu; ax, +fi(x, 0 (16)
. aui
=S = 17
divu Ei ax; 17)

where A is the Laplacian operator, fis the external force and u is the
unknown velocity function. We experiment on the same dataset for
v=1e-3 (ref. 19), which is available at https://github.com/zongyi-li/
fourier_neural_operator/tree/master/data_generation/navier_stokes.
They solved theviscous, incompressible 2D Navier-Stokes equation for
vorticity ontheunittorus, and with periodic boundary conditions. The
initial time pointis sampled from a Gaussian distribution. The forcing
termis a linear combination of sine and cosine functions depending
only onspace and independent of time. The numerical method for the
solution of the equation is pseudospectral, for the vorticity-stream-
functionformulation. The solver scheme follows these steps: (1) solving
the Poissonequation, (2) vorticity is differentiated and (3) the nonlinear
termis added. A Crank-Nicholson update is used to advance time.
Details are provided elsewhere'.

Nature Machine Intelligence | Volume 6 | September 2024 | 1046-1062

1059

http://www.nature.com/natmachintell
https://github.com/zongyi-li/fourier_neural_operator/tree/master/data_generation/burgers
https://github.com/zongyi-li/fourier_neural_operator/tree/master/data_generation/burgers
https://github.com/zongyi-li/fourier_neural_operator/tree/master/data_generation/navier_stokes
https://github.com/zongyi-li/fourier_neural_operator/tree/master/data_generation/navier_stokes

Article

https://doi.org/10.1038/s42256-024-00886-8

We use 4,000 instances for training and 1,000 for testing. In our
tasks, we utilize a single time point to initialize our model (ANIE) and
obtain the full dynamics from a single frame. For comparison, we use
the minimal number of time points allowed for the other models for
comparison. Thisis notalways possible, for instance, FNO3D cannotbe
applied onasingle time point or few time points, as the time convolu-
tion needs several time points to produce significant results. Despite
this significant advantage given to FNO3D, ANIE (this work) still per-
forms better on the prediction of 10 and 20 time points.

Additional details on experiments and computational
resources

The number of parameters for the models used in the experiments are
given in Supplementary Tables 4 and 5. In all the cases, the optimizer
‘Adam’ has been employed. Experiments have been run on a 16 GB
NVIDIA A100 GPU.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Methods for reproducing the synthetic databases are available via
GitHub at https://github.com/emazap7/ANIE. The datasets are avail-
able via Figshare at https://figshare.com/articles/dataset/IE_spi-
rals/25606242 (ref. 75) for the IE spirals, https://figshare.com/articles/
dataset/Burgers_lk_t400/25606149 (ref. 76) for Burgers’ data, https://
figshare.com/articles/dataset/Navier_Stokes_Dataset_mat/25606152
(ref. 77) for Navier-Stokes data and https://figshare.com/articles/
dataset/fMRI_data/25606272 (ref. 78) for the simulated fMRI data.
Lotka-Volterra and Lorenz system datasets can be generated using
the information at https://github.com/emazap7/ANIE. The calcium
imaging datasetis not available under an open-source license. We have
included a detailed account of the techniques used in refs. 68,69 (see
the ‘Existence and uniqueness of solutions’ section), including how to
obtain the dataset. Source data are provided with this paper.

Code availability

All codes are available via GitHub at https://github.com/emazap7/
ANIE (ref. 79), including detailed installation descriptions. Jupyter
notebooks for training and testing of the models for the main experi-
ments are also provided. Pre-trained models are directly accessible,
andinstructions on how to runthe notebooks are added in the form of
comments throughout the notebooks. The main codes for the models,
along with the experiments, are found in the ‘IE_source’ directory.

References

1. Stech, H. W. et al. Integral and Functional Differential
Equations Vol. 67 (CRC Press, 1981).

2. Groetsch, C. W. Integral equations of the first kind, inverse
problems and regularization: a crash course. In Journal of Physics:
Conference Series 73, 012001 (IOP Publishing, 2007).

3. Wazwaz, A.-M. Linear and Nonlinear Integral Equations Vol. 639
(Springer, 201M).

4. Lakshmikantham, V. Theory of Integro-Differential Equations
Vol.1(CRC Press, 1995).

5. Amari, S. Dynamics of pattern formation in lateral-inhibition type
neural fields. Biol. Cybern. 27, 77-87 (1977).

6. Rokhlin, V. Rapid solution of integral equations of classical
potential theory. J. Comput. Phys. 60, 187-207 (1985).

7. Rokhlin, V. Rapid solution of integral equations of scattering
theory in two dimensions. J. Comput. Phys. 86, 414-439 (1990).

8. Greengard, L. & Kropinski, M. C. An integral equation approach to
the incompressible Navier-Stokes equations in two dimensions.
SIAM J. Sci. Comput. 20, 318-336 (1998).

10.

M.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

Zemyan, S. M. The Classical Theory of Integral Equations:

A Concise Treatment (Springer Science & Business Media, 2012).
Bocher, M. An Introduction to the Study of Integral Equations
(Univ. Press, 1926).

Delves, L. M. & Mohamed, J. L. Computational Methods for Integral
Equations (CUP Archive, 1988).

Guan, Y., Fang, T., Zhang, D. & Jin, C. Solving Fredholm integral
equations using deep learning. Int. J. Appl. Comput. Math. 8, 87
(2022).

Que, Q. Integral Equations For Machine Learning Problems.

PhD thesis, The Ohio State Univ. (2016).

Keller, A. & Dahm, K. Integral equations and machine learning.
Math. Comput. Simul. 161, 2-12 (2019).

Guo, R. et al. Solving combined field integral equation with deep
neural network for 2-D conducting object. IEEE Antennas Wireless
Propag. Lett. 20, 538-542 (2021).

Effati, S. & Buzhabadi, R. A neural network approach for solving
Fredholm integral equations of the second kind. Neural Comput.
Appl. 21, 843-852 (2012).

Kovachki, N. et al. Neural operator: learning maps between
function spaces. J. Mach. Learn. Res. 24, 1-97 (2023).

Lu, L., Jin, P, Pang, G., Zhang, Z. & Karniadakis, G. E. Learning
nonlinear operators via DeepONet based on the universal
approximation theorem of operators. Nat. Mach. Intell. 3, 218-229
(2021).

Li, Z. et al. Fourier neural operator for parametric partial
differential equations. In International Conference on Learning
Representations (2021).

Li, Z. et al. Neural operator: graph kernel network for partial
differential equations. In International Conference on Learning
Representations, Workshop on Integration of Deep Neural Models
and Differential Equations (2020).

Cao, S. Choose a transformer: Fourier or Galerkin. Adv. Neural Inf.
Process. Syst. 34, 24924-24940 (2021).

Hao, Z. et al. GNOT: a general neural operator transformer

for operator learning. In International Conference on Machine
Learning 12556-12569 (PMLR, 2023).

Maier, A., Kostler, H., Heisig, M., Krauss, P. & Yang, S. H. Known
operator learning and hybrid machine learning in medical
imaging—a review of the past, the present and the future. Progr.
Biomed. Eng. 4, 022002 (2022).

Kovachki, N. B., Lanthaler, S. & Stuart, A. M. Operator

learning: algorithms and analysis. Preprint at https://arxiv.org/
abs/2402.15715 (2024).

Poli, M. et al. Transform once: efficient operator learning in
frequency domain. Adv. Neural Inf. Process. Syst. 35, 7947-7959
(2022).

Bartolucci, F. et al. Representation equivalent neural operators:
a framework for alias-free operator learning. Adv. Neural Inf.
Process. Syst. 36, 69661-69672 (2024).

Ovadia, O. et al. Real-time inference and extrapolation via a
diffusion-inspired temporal transformer operator (DIiTTO). Preprint
at https://arxiv.org/abs/2307.09072 (2023).

Oommen, V., Shukla, K., Goswami, S., Dingreville, R. &
Karniadakis, G. E. Learning two-phase microstructure evolution
using neural operators and autoencoder architectures. npj
Comput. Mater. 8,190 (2022).

Zappala, E. et al. Neural integro-differential equations. Proc. AAAI
Conf. Artif. Intell. 37, 11104-11112 (2023).

Chen, R. T. Q., Rubanova, Y., Bettencourt, J. & Duvenaud, D. K.
Neural ordinary differential equations. Adv. Neural Inf. Process.
Syst. 31(2018).

Chen, R. T. Q., Amos, B. & Nickel, M. Learning neural event
functions for ordinary differential equations. In International
Conference on Learning Representations (2021).

Nature Machine Intelligence | Volume 6 | September 2024 | 1046-1062

1060

http://www.nature.com/natmachintell
https://github.com/emazap7/ANIE
https://figshare.com/articles/dataset/IE_spirals/25606242
https://figshare.com/articles/dataset/IE_spirals/25606242
https://figshare.com/articles/dataset/Burgers_1k_t400/25606149
https://figshare.com/articles/dataset/Burgers_1k_t400/25606149
https://figshare.com/articles/dataset/Navier_Stokes_Dataset_mat/25606152
https://figshare.com/articles/dataset/Navier_Stokes_Dataset_mat/25606152
https://figshare.com/articles/dataset/fMRI_data/25606272
https://figshare.com/articles/dataset/fMRI_data/25606272
https://github.com/emazap7/ANIE
https://github.com/emazap7/ANIE
https://github.com/emazap7/ANIE
https://arxiv.org/abs/2402.15715
https://arxiv.org/abs/2402.15715
https://arxiv.org/abs/2307.09072

Article

https://doi.org/10.1038/s42256-024-00886-8

32.

33.

34.

35.

36.

37.

38.

30.

40.

41.

42.

43.

44,

45,

46.

47.

48.

49.

50.

51.

52.

Vaswani, A. et al. Attention is all you need. Adv. Neural Inf. Process.
Syst. 30 (2017).

Geneva, N. & Zabaras, N. Transformers for modeling physical
systems. Neural Netw. 146, 272-289 (2022).

Xiong, Y. et al. Nystromformer: a Nystrom-based algorithm for
approximating self-attention. Proc. AAAI Conf. Artif. Intell. 35,
14138 (2021).

Kushnir, D. & Rokhlin, V. A highly accurate solver for stiff ordinary
differential equations. SIAM J. Sci. Comput. 34, A1296-A1315 (2012).
Ghosh, A., Behl, H., Dupont, E., Torr, P. & Namboodiri, V. Steer:
simple temporal regularization for neural ODE. Adv. Neural Inf.
Process. Syst. 33,14831-14843 (2020).

Finlay, C., Jacobsen, J., Nurbekyan, L. & Oberman, A. How to train
your neural ODE: the world of Jacobian and kinetic regularization.
In International Conference on Machine Learning 3154-3164
(PMLR, 2020).

Godmez, P., Toftevaag, H. H. & Meoni, G. torchquad: numerical
integration in arbitrary dimensions with PyTorch. J. Open Source
Softw. 6, 3439 (2021).

Tsai, Y.-H. H., Bai, S., Yamada, M., Morency, L.-P. & Salakhutdinov,
R. Transformer dissection: a unified understanding of
transformer’s attention via the lens of kernel. In Conference on
Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP) 4344-4353 (2019).

Yang, X., Zhang, H., Qi, G. & Cai, J. Causal attention for
vision-language tasks. In Proc. IEEE/CVF Conference on Computer
Vision and Pattern Recognition 9847-9857 (2021).

Vyas, S., Golub, M. D., Sussillo, D. & Shenoy, K. V. Computation
through neural population dynamics. Annu. Rev. Neurosci. 43,
249 (2020).

Ercsey-Ravasz, M. et al. A predictive network model of cerebral
cortical connectivity based on a distance rule. Neuron 80,
184-197 (2013).

Cakan, C., Jajcay, N. & Obermayer, K. neurolib: a simulation
framework for whole-brain neural mass modeling. Cogn. Comput.
15, 1132-1152 (2021).

Diab, W. & Al-Kobaisi, M. U-DeepONet: U-Net enhanced deep
operator network for geologic carbon sequestration. Preprint at
https://arxiv.org/abs/2311.15288 (2023).

Devlin, J., Chang, M.-W.,, Lee, K. & Toutanova, K. BERT: pre-training
of deep bidirectional transformers for language understanding.
Preprint at https://arxiv.org/abs/1810.04805?amp=1(2018).

Kelly, J., Bettencourt, J., Johnson, M. J. & Duvenaud, D. K. Learning
differential equations that are easy to solve. Adv. Neural Inf.
Process. Syst. 33, 4370-4380 (2020).

Kidger, P., Chen, R. T. Q. & Lyons, T. ‘Hey, that’s not an ODE': faster
ODE adjoints with 12 lines of code. J. Mach. Learn. Res. 5443-5452
(2021).

Daulbaey, T. et al. Interpolation technique to speed up gradients
propagation in neural ODEs. Adv. Neural Inf. Process. Syst. 33,
16689-16700 (2020).

Poli, M., Massaroli, S., Yamashita, A., Asama, H. & Park, J.
Hypersolvers: toward fast continuous-depth models. Adv. Neural
Inf. Process. Syst. 33, 21105-21117 (2020).

Pal, A., Ma, Y., Shah, V. & Rackauckas, C. V. Opening the blackbox:
accelerating neural differential equations by regularizing internal
solver heuristics. In International Conference on Machine Learning
8325-8335 (PMLR, 2021).

Rubanova, Y., Chen, R. T. Q. & Duvenaud, D. K. Latent ordinary
differential equations for irregularly-sampled time series. Adv.
Neural Inf. Process. Syst. 32 (2019).

Brascamp, H. J. The Fredholm theory of integral equations for
special types of compact operators on a separable Hilbert space.
Compos. Math. 21, 59-80 (1969).

53.

54.

56.

56.

57.

58.

50.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

7.

72.

73.

74.

75.

76.

77.

Moretti, V. Spectral Theory and Quantum Mechanics: With an
Introduction to the Algebraic Formulation (Springer Science &
Business Media, 2013).

Grigoriev, Y. N., Ibragimov, N. H., Kovalev, V. F. & Meleshko, S. V.
Symmetries of Integro-Differential Equations: With Applications in
Mechanics and Plasma Physics Vol. 806 (Springer, 2010).
Tobocman, W. & Foldy, L. L. Integral equations for the Schrodinger
wave function. Am. J. Phys. 27, 483-490 (1959).

Salpeter, E. E. & Bethe, H. A. A relativistic equation for bound-state
problems. Phys. Rev. 84, 1232 (1951).

Davis, H. T. Introduction to Nonlinear Differential and Integral
Equations (US Atomic Energy Commission, 1960).

Boréwko, Ma. tgorzata, Rzysko, W., Sokotowski, S. & Staszewski, T.
Integral equations theory for two-dimensional systems involving
nanoparticles. Mol. Phys. 115, 1065-1073 (2017).

Li, Xian-Fang & Rong, Er-Qian Solution of a class of
two-dimensional integral equations. J. Comput. Appl. Math. 145,
335-343(2002).

Kazemi, M., Mottaghi Golshan, H., Ezzati, R. & Sadatrasoul, M.
New approach to solve two-dimensional Fredholm integral
equations. J. Comput. Appl. Math. 354, 66-79 (2019).

Parand, K., Yari, H. & Delkhosh, M. Solving two-dimensional
integral equations of the second kind on non-rectangular
domains with error estimate. Eng. Comput. 36, 725-739 (2020).
Krasnosel'skii, Y. P. Topological Methods in the Theory of Nonlinear
Integral Equations (Pergamon Press, 1964).

Krasnosel'skii, M. A. & Zabreiko, P. P. Geometrical Methods of
Nonlinear Analysis (Springer-Verlag, 1984).

Hornik, K., Stinchcombe, M. & White, H. Multilayer feedforward
networks are universal approximators. Neural Netw. 2, 359-366
(1989).

Lu, Z., Pu, H., Wang, F., Hu, Z. & Wang, L. The expressive power of
neural networks: a view from the width. Adv. Neural Inf. Process.
Syst. 30 (2017).

Davis, P. J. & Rabinowitz, P. Methods of Numerical Integration
(Courier Corporation, 2007).

Yun, C., Bhojanapalli, S., Rawat, A. S., Reddi, S. J. & Kumar, S. Are
transformers universal approximators of sequence-to-sequence
functions? International Conference on Learning Representations
(2020).

Barson, D. et al. Simultaneous mesoscopic and two-photon
imaging of neuronal activity in cortical circuits. Nat. Methods 17,
107-113 (2020).

Hamodi, A. S., Sabino, A. M., Fitzgerald, N. D., Moschou, D. &
Crair, M. C. Transverse sinus injections drive robust whole-brain
expression of transgenes. eLife 9, e53639 (2020).

Jing, M. et al. A genetically encoded fluorescent acetylcholine
indicator for in vitro and in vivo studies. Nat. Biotechnol. 36,
726-737 (2018).

Lohani, S. et al. Spatiotemporally heterogeneous coordination of
cholinergic and neocortical activity. Nat. Neurosci. 25, 17706-1713
(2022).

Benton, E. R. & Platzman, G. W. A table of solutions of the
one-dimensional Burgers equation. Quart. Appl. Math. 30,
195-212 (1972).

Chorin, A. J. Numerical solution of the Navier-Stokes

equations. Math. Comput. 22, 745-762 (1968).

Fefferman, C. L. Existence and smoothness of the Navier-Stokes
equation. Millennium Prize Prob. 57, 67 (2000).

Zappala, E. IE_spirals. Figshare https://doi.org/10.6084/
m9.figshare.25606242.v1(2024).

Zappala, E. Burgers_1k_t400. Figshare https://doi.org/10.6084/
m9.figshare.25606149.v1 (2024).

Zappala, E. Navier_Stokes_Dataset.mat. Figshare https://doi.org/
10.6084/m9.figshare.25606152.v1 (2024).

Nature Machine Intelligence | Volume 6 | September 2024 | 1046-1062

1061

http://www.nature.com/natmachintell
https://arxiv.org/abs/2311.15288
https://arxiv.org/abs/1810.04805?amp=1
https://doi.org/10.6084/m9.figshare.25606242.v1
https://doi.org/10.6084/m9.figshare.25606242.v1
https://doi.org/10.6084/m9.figshare.25606149.v1
https://doi.org/10.6084/m9.figshare.25606149.v1
https://doi.org/10.6084/m9.figshare.25606152.v1
https://doi.org/10.6084/m9.figshare.25606152.v1

Article

https://doi.org/10.1038/s42256-024-00886-8

78. Zappala, E. fMRI_data. Figshare https://doi.org/10.6084/
m9.figshare.25606272.v1(2024).

Zappala, E. emazap7/ANIE: neural integral equations.

Zenodo https://zenodo.org/doi/10.5281/zenodo.12738336

(2024).

Dosovitskiy, A. et al. An image is worth 16x16 words: Transformers
for image recognition at scale. International Conference on
Learning Representations (2021).

81. Lee, S, Lee, S. & Song, B.C. Improving vision transformers to learn
small-size dataset from scratch. IEEE Access 10, 123212-123224
(2022).

Touvron, H. et al. Three things everyone should know about vision
transformers. In Computer Vision—-ECCV 2022: 17th European
Conference 497-515 (Springer, 2022).

79.

80.

82.

Acknowledgements

D.v.D. acknowledges support from the National Institutes of Health
R35 1R35GM143072-01 and RO1 3R01AI157488-03S51. A.H.d.O.F.
acknowledges the CAPES-Yale Graduate Scholars Program. J.O.C.
acknowledges support from the Wu Tsai Institute Postdoctoral
Fellowship. We also acknowledge the following grants: ROIMH099045
and DP1EY033975 to M.J.H., ROIMH113852 to M.J.H. and J.C., EYO31133
to A.H.M., EY026878 to the Yale Vision Core and a Simons Foundation
SFARI Research Grant (to J.C. and M.J.H.).

Author contributions

E.Z. conceived the algorithmic framework, obtained the theoretical
results and contributed to the numerical experiments. A.H.d.O.F.

and J.O.C. contributed to the numerical experiments. A.H.M., M.J.H.
and J.C. provided the calcium imaging data. D.v.D. led the study and
conceived the algorithmic framework. E.Z., A.H.d.O.F., J.O.C. and D.v.D.
contributed to writing the article.

Competinginterests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at
https://doi.org/10.1038/s42256-024-00886-8.

Supplementary information The online version contains supplementary
material available at https://doi.org/10.1038/s42256-024-00886-8.

Correspondence and requests for materials should be addressed to
Emanuele Zappala.

Peer review information Nature Machine Intelligence thanks Sebastian
Mizera, and the other, anonymous, reviewer(s) for their contribution to
the peer review of this work.

Reprints and permissions information is available at
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2024

'Department of Mathematics and Statistics (Idaho State University), and Yale School of Medicine (Yale University), New Haven, CT, USA.
%Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA. *Wu Tsai Institute, Yale University, New Haven, CT, USA. “Department of
Neuroscience, Yale University, New Haven, CT, USA. *Department of Neuroscience and Department of Biomedical Engineering, Yale University,

New Haven, CT, USA. ®Department of Neuroscience and Department of Psychiatry, Yale university, New Haven, CT, USA. "Department of Computer
Science, Yale University, New Haven, CT, USA. 8Department of Internal Medicine (Cardiology), Yale School of Medicine, New Haven, CT, USA.
SCardiovascular Research Center, Yale School of Medicine, New Haven, CT, USA. Interdepartmental Program in Computational Biology & Bioinformatics,

Yale University, New Haven, CT, USA. "Yale Institute for Foundations of Data Science, New Haven, CT, USA.

e-mail: emanuelezappala@isu.edu

Nature Machine Intelligence | Volume 6 | September 2024 | 1046-1062

1062

http://www.nature.com/natmachintell
https://doi.org/10.6084/m9.figshare.25606272.v1
https://doi.org/10.6084/m9.figshare.25606272.v1
https://zenodo.org/doi/10.5281/zenodo.12738336
https://doi.org/10.1038/s42256-024-00886-8
https://doi.org/10.1038/s42256-024-00886-8
https://doi.org/10.1038/s42256-024-00886-8
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:emanuelezappala@isu.edu

Article https://doi.org/10.1038/s42256-024-00886-8

16 mean +/- std e NODE
8 % A LSTM
L 4 { 3 % % 3 ﬁ i i‘} %ﬁ% v ResNet
5 $ ¢ L5
P o] Mhaead AL e asl | fon
UJ. T s o .L! Dy g &% 75 & = § §
4 14 g s ;I;IEIE i 8 @ & @ §a 58 08 § ViT
< o5 F# * s ° a DeepOnet-UNET
025 ¥%s 5 ¢ o DeepOnet-AE
ANIE (ours
01257771 T T T T T T T T T T T T T T T T - (ours)
12 3 45 6 7 8 91011 1213 141516 17 18 19 20
Time
Extended Data Fig. 1| fMRI brain dynamics error per time point. longer dynamics, which encompass a higher non-local component. Datais
Quantification, using absolute error per time point, of model fits to simulated represented as mean + standard deviation. The statistics is based onn=19
fMRIdataset. Models were run during inference on initial conditions not seen predictions.

during training. ANIE has the best performance (lowest error) in predicting

Nature Machine Intelligence

http://www.nature.com/natmachintell

Article https://doi.org/10.1038/s42256-024-00886-8

Ground Truth

NODE LSTM ResNet ViT FNO
—

Time

Extended Data Fig. 2| Example fMRI data and predictions. Example dynamics of fMRI data and corresponding model prediction. For each image, time is
represented on the X axis, and cortical locations (80 nodes) are represented on the y axis.

fMRI Signal Location

Nature Machine Intelligence

http://www.nature.com/natmachintell

Article https://doi.org/10.1038/s42256-024-00886-8
ANIE latent space Original dynamics

A o i s VAN

o HRAAGLGAAL
i AN 1
g AANAANLY
ARLLARLLNA
L LA A

Extended Data Fig. 3| Embedding of Navier-Stokes dynamics. Embedding of A correspond to lower velocity dynamics, and embedding smoothly transitions
Navier-Stokes dynamics using ANIE (Panel 1), PCA (Panel 2), and sampledynamics ~ toward higher velocities from left to right. Such structure is lost when directly
from the embedding spaces (Panel 3). We see that the leftmost dynamics in Panel embedding using other methods (for example the reported PCA plot).

Nature Machine Intelligence

http://www.nature.com/natmachintell

Article https://doi.org/10.1038/s42256-024-00886-8

R2:0.421 R2: 0.505 R2:0.712 R2: 0.624

R2: 0.370 R2: 0.493 R2: 0.620 R2: 0.292 R2:0.701 R2: 0.775

Data

\r

Prediction

Attention

ES=

R2: 0.807 R2:0.873 R2: 0.865 R2: 0.751

R2: 0.585 R2: 0.577

A fa

R2: 0.640 R2: 0.837

Data

Prediction

Attention

. v

£

0.820

R2:0.777 R2: 0.654 R2: 0.562 R2: 0.564 R2: 0.402 R2: 0.505 R2: 0.570 R2:0.711 R2:0.776 R2:

Data

Prediction

Attention

¥
-

R2:0.479 R2: 0.439 R2:0.513 R2: 0.537 R2:0.371 R2: 0.222 R2:0.119 R2:0.277 R2:0.477 R2: 0.262

Data

Prediction

Attention

R2: 0.236

R2: 0.540

R2: 0.686

R2: 0.554 R2: 0.562 R2:0.707 R2: 0.653

._::‘ y 2 s
3 iy
iy 2

35 B
= 3 5 g > Skt ail &

Extended Data Fig. 4 | Brain attention. Example dynamics for the calcium imaging dataset and their respective attention plots. We see that the attention weights do
notdirectly reflect the input intensity and show activity for the motor and visual cortices.

Data

r

Prediction

Attention

Sl
11

Nature Machine Intelligence

http://www.nature.com/natmachintell

Article https://doi.org/10.1038/s42256-024-00886-8

1.0

¢ 0.5

0.0 I I 1 I
NODE ANIE LSTM FNO ViT

Extended Data Fig. 5| 2D IE Spirals. Quantification, using R-squared, of model fits to 2D IE spiral dataset. Models were run during inference on initial conditions not
seen during training. ANIE has the best performance (highest R-squared) in predicting the dynamics. Datais represented as mean + standard deviation. The statistics is
based onn=500 predictions.

Nature Machine Intelligence

http://www.nature.com/natmachintell

Article https://doi.org/10.1038/s42256-024-00886-8

R2:0.888 R2: 0.969 R2:0.995 R2:0.994 R2:0.995 R2:0.997 R2:0.998 R2:0.997 R2:0.997 R2:0.996

| VViva/s

Data

B
B
NN
NN
NN

t10 t19
R2: 0.990 R2: 0.986 R2: 0.985 R2:0.987 R2: 0.993 R2: 0.984 R2: 0.989 R2:0.991 R2:0.983 R2: 0.984

Data

L Vi’ %
CELVuvnRS

Extended Data Fig. 6 | Example of Navier-Stokes Prediction. Example dynamics of Navier-Stokes system. Ground truth data (top) and prediction using ANIE
(bottom) are shown. Prediction was generated using an initial condition that was not seen during training. R2 values quantify the model fit.

ANIE

Time

Nature Machine Intelligence

http://www.nature.com/natmachintell

Article https://doi.org/10.1038/s42256-024-00886-8

Extended Data Table 1| Benchmark on fMRI brain dynamics

t=25 t =10 t =20
NODE 0.98 £ 0.07831 1.759 £ 0.1407 2.361 £ 0.2227
LSTM 2.004 & 0.1856 2.182 +0.195 2.47 4+ 0.1993
Residual Network 2.396 & 0.1705 2.535 4 0.1706 2.742+0.2
FNO1D 0.4735 + 0.04857 | 1.5110 £ 0.13570 | 2.7320 + 0.31410
ViT 1.543 £ 0.1235 1.6650 £ 0.1091 | 2.0350 £ 0.1497
DeepOnet+AE 2.436 & 0.5546 2.774 £1.018 6.405 & 2.062
DeepOnet+UNET 2.692 & 0.5066 3.065 & 0.962 3.024 & 0.665
ANIE (ours) 0.7974 & 0.08118 1.086 £0.112 1.242 +0.1256

Benchmark on predicting fMRI brain dynamics. We report the mean squared errors per extrapolated dynamics of different lengths (t =5, 10, 20) on new initial conditions. All models use a
single data point as initial condition, while the LSTM model uses 2 time points. We see that as the dynamics gets more non-local (that is longer time intervals) only ANIE can correctly predict it,
as shown by lower mean squared errorhile.

Nature Machine Intelligence

http://www.nature.com/natmachintell

Article https://doi.org/10.1038/s42256-024-00886-8

Extended Data Table 2 | Embedding Experiment

PCA | UMAP | ISTM | ViT [ANIE (ours) |
[9.91£2.30 [7.27£1.75 | 8.83+1.55 | 11.04+235 | 6.52+1.31 |

Benchmark on embedding experiment. We perform KNN regression with k =5 on embeddings of Navier-Stokes dynamics correlating the velocity of the dynamics and the embedding. All
values are mean squared errors and are multiplied by a factor of 107,

Nature Machine Intelligence

http://www.nature.com/natmachintell

Article https://doi.org/10.1038/s42256-024-00886-8

Extended Data Table 3 | Visual Stimuli Experiment

PCA [ViT [ConvLSTM [ANIE (ours) |
[0.6763 £ 0.02100 | 0.6231 & 0.07581 | 0.6263 % 0.06008 | 0.6944 £ 0.02982 |

Performance in R? of a KNN Regressor in regressing the contrast of visual stimuli from the learned latent representation. Results presented as (mean + std, N=1600 frames, cross-validation=10).

Nature Machine Intelligence

http://www.nature.com/natmachintell

Article https://doi.org/10.1038/s42256-024-00886-8

Extended Data Table 4 | 2D IE Spirals

NODE | LSTM | ViT \ FNO [ANIE (ours) |
[0.1778 £0.06932 | 0.3410 = 0.1132 | 0.1668 = 0.1624 | 0.2882 £ 0.08609 | 0.7366 £ 0.1440 |

Benchmark on 2D IE spirals. R2 values of model fits are provided for ANIE, NODE, LSTM, ViT and FNO. ANIE has the best performance.

Nature Machine Intelligence

http://www.nature.com/natmachintell

natureresearch

Last updated by author(s): 6/24/2023

Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
n/a | Confirmed

|Z| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

|Z| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

& The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

X] A description of all covariates tested
X, A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

O 0 0ddoofd

IZI For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

IZI For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

OOX

IXI Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection All data was collected using commercial software from HCImage (v4.5.1.3 Hamamatsu), Spinview (v1.25.0.52 Flir) and Spike 2 (v9.02
Cambridge Electronic Design)

Data analysis Data was analyzed using MATLAB (v2019b, Mathworks) and GraphPad Prism (v9.0.1 Graphpad Software). All MATLAB scripts used are
available upon request.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets

- A list of figures that have associated raw data
- A description of any restrictions on data availability

The full datasets generated and analyzed in this study are available from the corresponding authors on reasonable request.

>
Q
o
c
=
@
—
@D
w
D
&)
el
>
—
D
O
]
=
S
Q
wv
c
3
QU
3
<

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

IZI Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size was chosen as standard in field.

Data exclusions No data were excluded from the study.

Replication Most analysis was based on within-animal comparisons and findings were replicated in all animals.
Randomization Randomization not required.

Blinding Blinding not required.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

n/a | Involved in the study n/a | Involved in the study
Antibodies IZ' I:I ChiIP-seq
Eukaryotic cell lines IZI D Flow cytometry
Palaeontology and archaeology IZ' I:I MRI-based neuroimaging

Animals and other organisms
Human research participants
Clinical data

Dual use research of concern

XX X C]X XX
Ooooxdoo

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Adult male and female c57Bl/6 mice.
Wild animals Did not involve wild animals.
Field-collected samples Did not involve field-collected samples.

Ethics oversight Ethical oversight provided by Yale IACUC.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

>
Q
o
=
=
®
—
0
wv
D
£
el
=
—
(D
©
O
=
)
Q@
w
=
3
3
QU
3
<

	Learning integral operators via neural integral equations

	Our contributions

	Background and related work

	IEs in numerical analysis

	Operator learning

	Learning continuous dynamics

	Integration via self-attention

	NIEs

	Space, time and higher-dimensional integration

	Attentional NIEs

	Experiments

	Modelling PDEs with IEs: Burgers’ and Navier–Stokes equations

	Modelling brain dynamics using ANIE

	Interpretable dynamics

	Further experiments

	Methods

	Implementation of NIE

	Implementation of ANIE

	Additional experiments

	Benchmark of (A)NIE training speed
	Hyperparameter sensitivity benchmark
	Modelling 2D IE spirals
	Solver convergence

	IEs

	IE (1D)
	IEs (n + 1D)
	Generalities on solving IEs
	Existence and uniqueness of solutions
	Initial condition for IEs

	Approximation capabilities

	NIE
	ANIE

	Dependence of the model on iteration steps

	Computational cost

	Artificial dataset generation

	Lotka–Volterra system
	Lorenz system
	IE spirals
	fMRI data generation

	Calcium imaging dataset

	Burgers’ equations

	Navier–Stokes equations

	Additional details on experiments and computational resources

	Reporting summary

	Acknowledgements

	Fig. 1 Diagrammatic representation of the model.
	Fig. 2 Diagrammatic representation of the IE solver procedure.
	Fig. 3 Example dynamics of the (2+1)-dimensional Navier–Stokes system, where the model is initialized only with the first frame of the dynamics.
	Extended Data Fig. 1 fMRI brain dynamics error per time point.
	Extended Data Fig. 2 Example fMRI data and predictions.
	Extended Data Fig. 3 Embedding of Navier-Stokes dynamics.
	Extended Data Fig. 4 Brain attention.
	Extended Data Fig. 5 2D IE Spirals.
	Extended Data Fig. 6 Example of Navier-Stokes Prediction.
	Table 1 Benchmark on the Navier–Stokes and Burgers’ equations.
	Extended Data Table 1 Benchmark on fMRI brain dynamics.
	Extended Data Table 2 Embedding Experiment.
	Extended Data Table 3 Visual Stimuli Experiment.
	Extended Data Table 4 2D IE Spirals.

