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Sliding-attention transformer neural 
architecture for predicting T cell receptor–
antigen–human leucocyte antigen binding
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Chenglong Xie4, Xiujuan Zhang4, Shengqing Li4, Chengjuan Zhang5, 
Kangdong Liu    6, Lili Zhu1, Xiaoyong Hu    3  , Shiliang Li    7  , Jie Zhang    2  , 
Kai Zhang    8   & Honglin Li    1,7,9 

Neoantigens are promising targets for immunotherapy by eliciting 
immune response and removing cancer cells with high specificity, low 
toxicity and ease of personalization. However, identifying effective 
neoantigens remains difficult because of the complex interactions among 
T cell receptors, antigens and human leucocyte antigen sequences. In 
this study, we integrate important physical and biological priors with the 
Transformer model and propose the physics-inspired sliding transformer 
(PISTE). In PISTE, the conventional, data-driven attention mechanism is 
replaced with physics-driven dynamics that steers the positioning of amino 
acid residues along the gradient field of their interactions. This allows 
navigating the intricate landscape of biosequence interactions intelligently, 
leading to improved accuracy in T cell receptor–antigen–human leucocyte 
antigen binding prediction and robust generalization to rare sequences. 
Furthermore, PISTE effectively recovers residue-level contact relationships 
even in the absence of three-dimensional structure training data. We 
applied PISTE in a multitude of immunogenic tumour types to pinpoint 
neoantigens and discern neoantigen-reactive T cells. In a prospective study 
of prostate cancer, 75% of the patients elicited immune responses through 
PISTE-predicted neoantigens.

Neoantigen-based cancer immunotherapy has drawn considerable 
interest and witnessed excellent therapeutic effects in various types 
of tumour1–10. Neoantigens are mainly tumour-specific short peptides 
(epitopes) generated by somatic mutations in cancer11,12. These antigens 
are first presented on the surface of tumour cells by binding with human 
leucocyte antigens (HLA) in the form of a peptide–HLA complex (pHLA), 
which can then be recognized by T cell receptors (TCRs) to elicit antitu-
mour immune responses13–16. Neoantigens exhibit potent immunogenic-
ity as they are absent from normal tissues and they are not subject to 
thymic selection or host central tolerance. Thus, neoantigens serve as 
a valuable source of targets for T cell-based cancer immunotherapy17.

Among the substantial quantity of mutant peptides, only a limited 
fraction may trigger robust, antitumour immune responses17, and there-
fore, the accurate identification of immunogenic neoantigens becomes 
crucial. It is believed that the binding affinity between antigens and 
HLAs, and the ‘immunological synapse’ between the pHLA complex 
and the corresponding TCR are critical determinants of T cell reactiv-
ity18. In the literature, enormous efforts have been devoted towards 
predictive algorithms to identify such biomolecular interactions2,15,19–21. 
Early methods focused on the binding between intracellular peptides 
and HLA-I molecules22, including NetMHCpan23, MHCflurry24, EDGE25, 
MHCnuggets26 and BigMHC27. However, peptide–HLA binding is only 
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for each peptide as an indicator of the level of immunogenicity, which 
is used for a personalized ranking of these peptides. Finally, candidate 
peptides are synthesized and assessed through T cell assays in vitro 
to verify the immunogenicity of the neoantigen. More details of the 
pipeline is provided in the Methods.

Figure 1b illustrates the workflow of PISTE to estimate the molecu-
lar interactions at both residue and sequence levels. The network 
consists of three main modules. First, the sequences of antigen, HLA 
and TCR are input into the sequence encoder module. Then, the 
sliding-attention module is used to infer their interactions. Specifi-
cally, we first use sliding attention to infer the interaction between 
the antigen and HLA to obtain the HLA–antigen representation (phase 
1), then use sliding attention to characterize the interaction between 
the HLA–antigen unit and the TCR (phase 2), and then build a global 
description of the ternary interaction. Finally, all the three sequences 
are passed to the alignment-based pooling module to convert them to 
a fixed length (equal to that of the HLA pseudo-sequence) to predict 
their binding status.

Evaluation of the predictive performance of PISTE
We compared PISTE with eight state-of-the-art computational models 
for TCR–antigen–HLA binding prediction, including IMRex30, NetTCR29, 
ERGO-AE31, ERGO-LSTM31, pMTnet36, PanPep34, TEIM35 and TEINet32. 
Three evaluation metrics are adopted: area under the receiver oper-
ating characteristic curve (AUROC), area under the precision–recall 
curve (AUPR) and positive predictive value at top-n (PPVn), where n 
represents the number of true binders in the data26.

Experimental results are reported across different categories.  
(1) Two external test sets: test set I with 489 binding TCR–peptide–HLA 
triples36, and test set II with 425 binding triples from peer-reviewed 
publications (see the ‘Dataset’ section, Supplementary Table 1 and 
Supplementary Notes 3–5 for details). (2) Two classification scenar-
ios: third-order TCR–peptide–HLA binding (pMTnet and PISTE) and 
second-order TCR–peptide binding (the remaining seven methods). 
When comparing PISTE with the numerous second-order models, 
we transformed its results to the second-order version by following 
the settings of pMTnet36 (Supplementary Note 6). (3) Three negative 
sampling schemes for generating negative training/test data: random 
shuffling, unified peptide and reference TCR (see the ‘Dataset’ section).

Figure 2a shows the results of random-shuffling negative sampling, 
and Extended Data Fig. 1a,b shows the results for unified peptide and 
reference-TCR negative sampling schemes, as summarized below. (a) 
Random shuffling: for third-order classification, PISTE achieved an 
AUROC of 0.917 on test set I and 0.783 on test set II, which improved 
over other competing methods by 17–22%. In AUPR, PISTE got 0.362 
and 0.252 on the two test sets, which outperformed other competing 
methods by 11%. For second-order classification, PISTE outperformed 
all the competing methods under all the metrics by 10–20%. (b) Uni-
fied peptide: for third-order classification, PISTE improved over com-
peting methods by 1–13% on both test sets across all the metrics. For 
second-order classification, PISTE outperformed competing methods 
by 10–26% across all the metrics on both test sets. (c) Reference TCR: for 
third-order classification, PISTE improved over competing methods by 
8–23% for all the metrics on both test sets; on second-order classifica-
tion, improvements up to 14% were observed against all the competi-
tors. More results are available in Supplementary Note 8.

We also applied PISTE to visualize the distribution of biose-
quences involved in different binding outcomes. Specifically, we 
examined the interactions between TCRs and three viral pHLAs: 
HLA-A02:01/COVID-19 S 269 (YLQPRTFLL)41, HLA-B07:02/CMV pp65 
(TPRVTGGGAM)42 and HLA-A03:01/CMV IE1 (KLGGALQAK)43. From 
PISTE, we extracted the TCR embeddings specific to each pHLA, and 
visualized them with t-distributed stochastic neighbour embedding 
(t-SNE) (Fig. 2b). In this figure, the top panel exhibits a notable dis-
tinction between YLQ-positive and YLQ-negative TCRs, with three 

the first step towards tumour-specific immune responses17. To fulfil the 
complete process, TCR–antigen binding recognition should be further 
considered28, for which examples include NetTCR29, IMRex30, ERGO31, 
TEINet32, AEPCAM33, PanPep34 and TEIM-Res35. In pMTnet36, peptide–
HLA binding and TCR–pHLA binding were both considered, leading 
to state-of-the-art results in TCR–peptide–HLA binding prediction. 
Recently, Transformers—state-of-the-art deep learning architecture 
for sequence learning—were applied37 to predict peptide and HLA 
(that is, pHLA) binding.

Despite these progresses, accurate modelling and prediction of 
T cell-related immune responses remains challenging for a few reasons. 
First, except pMTnet36, current methods mainly consider pairwise 
interactions like peptide–HLA23–27 or peptide–TCR binding29–35,38,39, 
whereas TCR–antigen–HLA interactions are less studied due to the 
complex interaction landscape and vast molecular diversities (Sup-
plementary Note 1). Second, advanced artificial intelligence models 
can be difficult to interpret. Even state-of-the-art sequence models like 
Transformer40 still lack in providing physically consistent estimation 
of token-level interacting relations (Supplementary Note 2). Although 
TEIM-Res35 offers valuable insights into TCR–epitope interactions, it 
faces challenges of scarce three-dimensional (3D) structure training 
data and high experimental costs. Third, biosequence variability and 
long-tail distribution make it difficult for artificial intelligence mod-
els to accurately predict interactions with new sequences, despite 
advances in meta-learning and zero-shot learning34,35.

As summarized in a previous study30, appropriate sequence fea-
ture engineering methods and rigorous benchmark standards are cru-
cial to create and validate TCR–epitope predictive models. Therefore, 
to resolve the multifaceted challenges outlined above, we propose a 
physics-inspired sliding transformer (PISTE) model, an innovative net-
work that resolves the limitation of Transformers in TCR–antigen–HLA 
binding prediction under comprehensive evaluation scenarios. PISTE 
is characterized by the embedding of essential physical and biological 
priors in Transformer. Specifically, the conventional, data-driven atten-
tion is replaced by a physics-driven dynamics that steers the position-
ing of the residues based on the gradients of their interactions, as if 
biosequences were ‘sliding’ against each other in search for the most 
stable binding configuration. Such a dynamic attention allows the 
effective navigation of the intricate interaction landscape of multiple 
biosequences at the residue level, simultaneously acquiring physically 
consistent and interpretable representations for binding prediction.

The PISTE model has several advantages. (1) It improves the perfor-
mance of TCR–antigen–HLA binding prediction against state-of-the-art 
models across various benchmark datasets, evaluation metrics and 
negative sampling schemes. (2) It recovers pairwise residue relations 
even without any structural training data, thereby being both interpret-
able and data efficient in biomedical applications. (3) It can be applied 
to unseen biosequences due to sliding attention that captures intrin-
sic binding mechanisms. Overall, PISTE demonstrates considerable 
potential in exploring biosequence interactions for identifying and 
screening clinically relevant immunotherapeutic responses, includ-
ing the identification of clonal T cells and tumour neoantigens. In a 
prospective study of prostate cancer, we observed neoantigen-induced 
specific T cell responses in 75% of the participants (six out of eight) 
based on the screening results of PISTE, showing its usefulness in immu-
nological studies (for example, immunogenic neoantigen prediction 
and prioritization).

Results
Neoantigen screening and prioritization with PISTE
The pipeline of using PISTE for neoantigen screening and prioritization 
is shown in Fig. 1a. First, the amino acid sequences of all the possible 
TCR–antigen–HLA triples for an individual are obtained and fed to 
PISTE, and the binding score (affinity) for each triple is predicted. Then, 
the predicted scores are used to compute the number of binding TCRs 
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conspicuous enrichments of positive bindings suggesting the pres-
ence of cross-reactivity in TCR–pHLA recognition44. The middle and 
bottom panels reveal different distributions for positive/negative 
TCRs for specific pHLAs.

PISTE uncovers meaningful patterns of residue interaction
Besides predicting the sequence-level binding status accurately, PISTE 
can also generate physically meaningful attention scores (equation (4)) 
that shed light on residue-level interactions. The attention matrix can 
be used to identify interacting residue pairs and study their distribu-
tions from various angles like residue type, location and bond type, to 
obtain useful insights (Supplementary Note 9).

We showed that the PISTE attention matrix aligns well with 3D crys-
tal structures, despite the fact that PISTE did not utilize any structural 
data during training. Here we collected 86 binding TCR–antigen–HLA 

triples and their 3D structures from the Protein Data Bank (PDB) data-
set45 (Supplementary Note 10 and Supplementary Table 5), and specifi-
cally examined the TCR–antigen and HLA–antigen contact relations 
(more details in Supplementary Notes 12 and 13). Both types of matrix 
were averaged across the 86 binding triples to provide a convenient 
summary and visualization for assessing their consistency.

Figure 3 reports the ground-truth residue contact matrices along-
side the PISTE attention maps. Figure 3a shows the 11 × 34 antigen–HLA 
residue contact relations revealed by 3D structures (blue) and the 
PISTE attention map (orange). They have a correlation score of 0.75 
(Fig. 3b). Figure 3c shows the real and estimated 11 × 30 TCR–antigen 
residue interactions, and a correlation score of 0.916 was observed. 
Supplementary Fig. 10 shows the averaged 30 × 34 attention matrix 
for TCR–HLA interaction, for which the correlation is 0.758. These 
evidences substantiated the capacity of PISTE to discern complex 
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Fig. 1 | PISTE for TCR–antigen–HLA binding prediction and personalized 
neoantigen screening. a, Pipeline for peptide selection. First, TCR–antigen–HLA 
sequence triples of an individual are obtained and fed to a well-trained PISTE 
model to predict the binding status for each; then, the antigens are prioritized 
by the number of binding TCRs (as immunogenicity ranking); finally, candidate 
peptides are synthesized and assessed through T cell assays in vitro to verify 

the immunogenicity of the neoantigens. b, Neural architecture of PISTE, which 
has three basic modules: the sequence encoder module extracts subsequence 
features from the TCR, antigen and HLA sequences; the sliding-attention module 
recovers their residue-level interactions; the alignment-based pooling module 
generates a fixed-length representation for all the input sequences to predict their 
binding status. 1D conv, 1-dimensional convolution. Created with BioRender.com.
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patterns of residue interactions (Supplementary Notes 14–16). This is 
useful in practice considering that no crystal structures were needed 
for training PISTE, which saved tremendous experimental cost.

Mutation effects support predicted TCR–pHLA binding
We used PISTE as a tool to unveil the impact of mutations on the bind-
ing outcome by virtual mutagenesis of antigens and TCRs. Residue 
mutations were simulated with zero-vector scanning, by replacing 
the numerical embedding of the residue at a specified position with 
a zero vector36.

We performed zero-vector scanning on the CDR3 and antigens 
of 77 TCR–pHLAs, whose 3D crystal structures were retrieved from 
the PDB database45 and were anticipated to be functional. Subse-
quently, we quantified the changes in the binding scores predicted 
by PISTE after sequence mutations. Our statistical analysis revealed 
that mutations occurring at positions 2, 4, 8 and 9/10 of the peptide 
exerted a higher impact on the binding score (Fig. 4a). After dividing 
CDR3 into six equally sized segments, we observed that the mutations 
of the residues located in the middle segments of CDR3 (segments 
3 and 4) induced a greater impact on the predicted binding status 
compared with the remaining segments (Fig. 4b), the former being 
more prone to forming close contacts with peptides and HLA (Fig. 4c; 
t-test, P < 0.0001).

Through residue-type mutation analysis, we found that mutations 
of arginine (R), tyrosine (Y), proline (P), methionine (M) and aspartic 
acid (D) on the antigen exhibited higher impact on the binding pre-
diction (Fig. 4d). However, lysine (K), valine (V) and tryptophan (W) 
residues in the CDR3 loop region led to the biggest perturbations 
of the predicted binding score after mutation scan (Fig. 4e). These 
residues typically have elongated or aromatic heterocyclic side chains, 
which contribute to hydrogen bonding and hydrophobic interactions 
at the TCR–pHLA binding interface. These interactions are indispen-
sable for maintaining the structural integrity and functional efficacy 
of the complex. This analysis is only pertinent to the PDB database.  
A similar mutation scan on the PDB data with pMTnet36 is discussed in 
Supplementary Note 17.

Applications of PISTE to antigen-based immunological study
To verify the potential clinical utility of PISTE, we performed a series 
of immunological investigations: (1) analysis of antigen-driven T cell 
clonal expansion, (2) discovery of immunogenic neoantigens residing 
within tumour microenvironments and (3) validation of personalized 
neoantigen-driven T cell immune responses.

Detection of antigen-specific T cell clonality. When TCRs engage 
with an antigen–HLA (pHLA) complex, a cascade of clonal expansion is 
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initiated to orchestrate the immune response, in which T lymphocytes 
displaying superior affinity for a specific antigen exhibit an increased 
predilection for clonal amplification46. Here we investigated whether 
the PISTE model can qualitatively confirm the impact of this interac-
tion on T cell behaviour.

We used the 10x Genomics Chromium single-cell TCR sequencing 
data of 44 pHLAs from four healthy donors (Supplementary Note 18). 
We used PISTE to predict the binding affinities (scores) between indi-
vidual T cells and one or more of the detected pHLAs, and recorded the 
highest score for each TCR. We then calculated the Spearman correla-
tion between these binding scores and the rate of expansion for T cell 
clones. As shown in Fig. 5a, a positive correlation is observed between 
the clone proportion of T cells and the predicted binding scores. This 
finding aligns with expectations, that is, TCRs exhibiting elevated 

binding scores are considerably more prone to undergo clonal amplifi-
cation. Moreover, we demonstrated the enrichment of extended T cell 
clonotypes with a high binding affinity to pHLA through odds ratio tests 
(Fig. 5b and Supplementary Note 19; odds ratio > 1 for all the donors).

Identification of immunogenic neoantigens within tumours. Incor-
porating genome sequencing analysis technology, we applied PISTE to 
cancer cohorts of skin cutaneous melanoma (SKCM)47 and glioblastoma 
(GBM)48 (Supplementary Tables 6 and 7) to confirm the usefulness of 
PISTE in characterizing immunogenic neoantigens in the tumour micro-
environment and determining the clinical efficacy in tumour patients.

We investigated the disparities in TCR–peptide–HLA bind-
ing characteristics between neoantigens from mutated proteins 
and their wild-type counterparts. On the basis of the predicted 
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Fig. 3 | Comparison of the ground-truth residue contact relationships 
with PISTE predictions, averaged over 86 TCR–antigen–HLA complexes 
from the PDB dataset. a, HLA–antigen residue contact relation based on the 
crystal structures (blue) and PISTE predictions (orange), both averaged over 86 
complexes. b, Scatter plot of the true and predicted residue contact scores in 
which each point corresponds to an HLA–antigen residue pair, both averaged 
over 86 complexes. The line and shading represent linear regression and 95% 

confidence intervals, respectively. c, TCR–antigen residue contact relation based 
on the crystal structures (blue) and PISTE attention (orange). d, Scatter plot of 
the true and predicted residue contact scores, in which each point corresponds 
to a TCR–antigen residue pair. The line and shading represent linear regression 
and 95% confidence intervals, respectively. Note that PISTE did not utilize any 3D 
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HLA–antigen–TCR binding scores from PISTE, we found that neo-
antigens showed greater immunogenicity than wild-type antigens 
in patients with SKCM and GBM (Supplementary Note 21 and Sup-
plementary Fig. 15b–d).

A comprehensive understanding of tumour neoantigens is vital 
for assessing the efficacy of immune therapy in patients. Prior research 
has recognized tumour mutation load (TML) and neoantigen load 
(NAL) as predictive biomarkers for clinical advantages in solid tumour 
patients49–52. Here we explored the potential of the immunogenic 
NAL (INAL) predicted by PISTE as a biomarker on the SKCM and GBM 
cohorts. INAL is delineated as the number of antigens capable of bind-
ing with TCR(s), whereas the corresponding wild-type antigens do not 
induce any TCR interaction; we used the PISTE model to determine 
the HLA–antigen–TCR binding events. As presented in Fig. 5c–e, INAL 
is correlated with both immunotherapeutic response and the overall 
survival rate in SKCM and GBM patients (response for SKCM, P = 0.031; 
survival rate for SKCM, P = 0.00037; survival rate for GBM, P = 0.11). 
In contrast, if we only considered the TML or NAL, the predictions 
of the immune response and the survival rate probability became 
worse (Fig. 5c–e, two left columns). These results demonstrated the 
prognostic value of PISTE-predicted immunogenic neoantigen burden 
compared with tumour mutation burden and neoantigen burden as 
biomarkers. Nonetheless, the limited sample size of the GBM cohort 
impedes the attainment of a statistically significant correlation. Further 
validation should be conducted with a larger cohort.

Validation of individualized neoantigen-induced T cell immunity. 
Identifying individualized immunogenic neoepitopes is the primary 
hurdle in translating clinical studies into neoantigen-based cancer 
immunotherapy53. In this study, we showed how PISTE could be used to 
identify personalized neoantigens in prostate cancer patients. We also 
validated the immune response elicited by these neoantigens through 
cellular-level experiments (Fig. 6).

We assembled and uniformly analysed the sequencing data from 
eight prostate cancer patients undergoing surgical therapy (see the 
‘Sequencing data processing and immunogenic neoantigen selection’ 
section). Patient characteristics are shown in Supplementary Table 8. 
Then, we utilized PISTE to predict the TCR–neoantigen–HLA binding and 
subsequently used the binding results to prioritize neoantigens. For each 
patient, we synthesized the top three to four neoantigens in the person-
alized ranking list and evaluated the T cell immune response (Methods 
and Supplementary Table 9 list the detailed processing information).

The in vitro identification results revealed that 6 out of 8 (75%) 
patients exhibited responses inducing IFN-γ secretion of T cells with 
regard to at least one neoantigen peptide as selected by the PISTE 
model (Fig. 6b). The cells from the remaining two patients (PCA01 
and PCA02) exhibited no discernible reactivity towards the individual 
peptide. Raw data are shown in Supplementary Table 10. In addition 
to assessing the immune response by enzyme-linked immunoassay 
(ELISA), we further explored the recognition of positive peptides by 
CD8+ T cell subsets using flow cytometry. Testing was carried out on 
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impact on the predicted binding scores. b, Mutant residues in the central regions 
of the six equal-sized segments of CDR3 tend to elicit greater perturbations 
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residue types within the peptide. e, Impact of mutations in different residue 
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patients PCA03 and PCA06, both having sufficient peripheral blood 
mononuclear cells (PBMCs). The results revealed that peptide (A0301, 
A0302, A0602 and A0604) stimulation led to the activation of spe-
cific CD8+ T cells, and CD8+ T cells exhibited reactive amplification 

(Supplementary Fig. 16b–c). Meanwhile, we observed that all four 
peptides (A0301, A0302, A0602 and A0604) stimulated CD8+ T cells 
to produce IFN-γ (Fig. 6c). This also proved that the peptides screened 
in ELISA experiments have high reliability.
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Fig. 5 | Utilizing PISTE for the differentiation of neoantigen-reactive T cells 
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predicted by PISTE in the 10x Genomics Chromium single-cell immune profiling 
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for HLA–antigens. c, Association of TML, NAL and INAL (predicted by PISTE) 
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points, the 25th and 75th percentiles as the lower and upper quartiles, and 1.5 
times the interquartile range as whiskers. d,e, Association of TML, NAL and INAL 
with overall survival of SKCM (d) and GBM (e) on immunotherapies. Patients were 
split by the median of TML/NAL/INAL in each cohort. The P value for the log-rank 
test (two sided) was also shown.

http://www.nature.com/natmachintell


Nature Machine Intelligence | Volume 6 | October 2024 | 1216–1230 1223

Article https://doi.org/10.1038/s42256-024-00901-y

In general, the overall success rate of our antigen identifica-
tion showed a slight improvement compared with the previous best 
practices21,25. The results demonstrated that PISTE is a useful predictive 
tool to facilitate the identification and screening of cancer neoantigens. 

It is important to note that cell-level biology experiments were primar-
ily used to provide the evidence of immunogenicity of selected pep-
tides, rather than to claim that these peptides are definitive candidates 
for cancer vaccines or immunotherapies (Supplementary Note 22).
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Fig. 6 | Validation of neoantigen-stimulated T cell responses from prostate 
cancer patients. a, Schematic of the validation experiment. Somatic mutations 
were identified by the WES of surgically resected prostate tissues and matched 
normal cells (PBMCs), and their expression was confirmed by tumour RNA-
seq. Candidate immunogenic peptides were selected and validated based 
on the statistics of binding prediction by PISTE. b, In vitro detection of T cell 
responses for PBMCs stimulated with individual neoantigens by IFN-γ ELISA. 
c, IFN-γ production on CD8+ T cells against selected peptides was detected by 

flow cytometry for patient PCA03 and patient PCA06. Percentages shown in 
the density plots are frequencies of reactive IFN-γ+ cells as a proportion of all 
the CD8+ T cells. P value was determined via one-way analysis of variance with 
Dunnett’s multiple comparisons test. n = 3 repeated technical measurements; 
error bars show the standard error of the mean. The dashed line indicates the 
baseline for the identification of positive reactions (Methods). SSC-H, side 
scatter height. Panel a created with BioRender.com.
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Discussion
The PISTE model integrates important physical and biological priors 
to refine the attention mechanism of Transformers. This includes 
dynamically updating the positional encoding to simulate residues 
moving along the gradient of their interactions, and considering resi-
due type, position and bond type when inferring their interactions. 
Therefore, PISTE inherits the flexibility of conventional data-driven 
attention mechanisms and the regularity derived from physical 
principles. However, PISTE does not integrate physical laws to the 
same extent as physics-inspired neural networks—universal function 
approximators capable of incorporating any physical law represented 
by partial differential equations into the learning process (Supple-
mentary Note 23)54.

PISTE showed promising results in TCR–antigen–HLA binding 
prediction, a key step to identify immunogenic neoantigens. It is data 
efficient and can faithfully recover residue-level interactions even with-
out using structural training data. Besides, sliding attention captures 
intrinsic binding mechanisms and therefore allows an accurate predic-
tion to be extended to innovative sequences, which is particularly use-
ful to neoantigen identification. Antigen-based immunological studies 
showed that PISTE can effectively discern clonal T cells and identify 
immunogenic neoantigens, making it a valuable tool for personalized 
antigen screening.

There are several directions for our future research. (1) Integrat-
ing sequence-specific evolutionary information with state-of-the-art 
language models for sequence representation learning. (2) Enhancing 
PISTE to predict the binding of antigens presented by HLA class II to 
TCRs. (3) Validating the predicted neoantigens in immunotherapy 
across an expanded panorama of cancer types and patient cohorts 
with the synergistic utilization of PISTE and genomic technologies.

Methods
Dataset
The limitation of positive TCR–pHLA binding data often motivates 
data aggregation from multiple sources to build a more substantial 
dataset for training and evaluation36,55. We collected positive binding 
triples for training from three publicly available datasets: McPAS-TCR56, 
VDJdb57 and pMTnet36 (Supplementary Table 1). Through data curation, 
we retained only those triples specific to Homo sapiens, HLA class I 
and TCRs that feature only the CDR3 β-chain, as these are critical for 
determining antigen binding specificity. We also excluded records 
in VDJdb57 with 0 confidence score. After data preprocessing (Sup-
plementary Note 5), 32,508 unique TCR–antigen–HLA binding triples 
were obtained for 607 antigens presented by 65 HLA-I molecules and 
29,687 TCRs.

We acquired two independent external data for testing with strict 
quality control and standardized preprocessing: (1) 489 experimen-
tally validated TCR–antigen–HLA binding triples from pMTnet36, 
collected from 25 published works subject to systematic validation 
by those prior studies (Supplementary Table 1); (2) 425 binding triples 
from a series of studies of melanoma, lung cancer, head and neck 
squamous cell cancer, lymphoma and GBM (Supplementary Table 1). 
These sources detected T cell activation via specific pHLA58,59. Among 
them, 72% were based on peptide–HLA multimers, 8% were obtained 
through surface plasmon resonance and the remaining 20% were 
based on in vitro functional assays (CD137/4-1BB flow cytometry, IFN-γ 
ELISpot and IFN-γ ELISA). All the CDR3β sequences were acquired 
through a TCR sequencing assay. The data were subject to strict 
quality control by unifying the naming conventions and eliminating 
sequences that are incomplete or contain non-standard amino acids 
(Supplementary Note 5).

To rigorously evaluate the generalization capacity of different 
models on new sequences, we excluded all the test triples whose 
antigen–HLA pairs were previously encountered in the training data-
set. Additionally, we explored several negative sampling schemes 

recommended in systematic studies28,30,32,60, including the following. 
(1) Randomly shuffled sequence triples in the positive data as negative 
samples31,33,35,36. (2) Unified epitope negative sampling in which the 
epitopes are sampled by their frequency distributions in the positive 
dataset32. (3) Reference TCR negative sampling in which each epitope is 
combined with TCRs sampled uniformly from a reference TCR dataset 
collected from healthy donors61,62 in which all the TCRs were exposed to 
all the tested pHLA multimers and no binding signals were detected34,63. 
In our experiments, we generated negative samples that are ten times 
larger than the positive ones.

PISTE
In the Transformer model40, the combination of positional encod-
ing and semantic embedding leads to attention scores that no  
longer provide meaningful estimations of token relationships64, par-
ticularly when dealing with two or more interacting sequences (Sup-
plementary Note 2).

To solve this problem, we propose PISTE. Our intuition is that resi-
dues typically move along the cumulative forces acting on them due to 
their interactions before reaching a stable conformation. Leveraging 
this insight, we use the attention map in a Transformer as a conceptu-
ally appealing alternative to quantify pairwise residue interactions, 
which then serves as the driving force to update residue positions in an 
iterative and coherent manner. This strategy combines the flexibility 
of the Transformer with the consistency of physical priors, leading to 
useful features for predicting biosequence interaction.

The network is shown in Fig. 1 and the three basic building blocks 
are discussed below.

Sequence encoder module. We use one-dimensional (1D) convolu-
tion to encode the local and shift-invariant features from TCR, pep-
tide and HLA sequences to capture useful and transferable sequence 
information from short amino acid segments. Three convolutional 
layers are adopted with a kernel size of 1 × 3, a stride of 1 and skip con-
nections. Using PyTorch’s nn.embedding function, we randomly initial-
ized 64-dimensional vectors to represent 21 amino acid types. These 
embeddings are updated through backpropagation during training.

Sliding-attention module. Sliding attention is a physics-inspired 
dynamic process that steers the positioning of the residues along the 
gradient field of their interactions. In this process, the attention (or 
interaction) between two residues takes into account both their spatial 
proximity and featural correlations. Then, a series of mode-seeking 
iterations are used to iteratively ‘drag’ the residues in one sequence 
towards those of another sequence based on the magnitude of residue 
interactions (attention). This process allows two or more sequences 
to virtually ‘slide’ against each other in search of potentially the most 
stable binding configuration.

Sliding attention is defined for two sequences U = {u1, u2…um} 
and V = {v1, v2…vn}, where ui is the ith residue in U and vj the jth resi-
due in V. We treat V as the reference sequence and U as the sliding 
sequence. Two concurrent attention views for U and V are computed 
as follows.

Spatial attention. We use an m × n proximity matrix S whose ijth 
entry signifies the spatial closeness between ui and vj. Here Sij is param-
eterized by the relative distance between residues ui and vj. For the 
reference sequence V, its residue positions QV = [q1 q2…qn] are constant 
integers from 1 to n to signify the linear chain structure of the sequence. 
For the sliding sequence U, its residue positions are a series of real 
variables PU = [p1 p2…pm] that are fully optimizable to recover the spatial 
relations between the residues in U and V. A Gaussian function 𝕘𝕘 is used 
to estimate Sij as

Sij = 𝕘𝕘𝕘pi,qj) = exp (
−|pi − qj|2

2h2 ) . (1)
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Featural attention. We adopt an m × n affinity matrix A whose ijth 
entry reflects the tendency of two residues ui and vj to interact based 
on their respective embedding vectors by a function 𝕗𝕗 :

Aij = 𝕗𝕗𝕘x(ui),x(vj)) = exp(
[ESx(ui)]

⊤[ERx(vj)]
√d

) . (2)

Here x(⋅) is a function that converts a discrete residue type to a 
d-dimensional vector. The exponentiated inner product is used to 
estimate the non-negative affinity between two residues, where ES and 
ER represent the learnable transform matrices for the sliding sequence 
and reference sequence, respectively.

We combine the two attention views and use the non-negative, 
multiplicative term Wij = Aij ⋅ Sij as a comprehensive indicator of whether 
residue ui and vj are likely to interact, that is, they have to be both spa-
tially close and exhibit a high affinity to form a strong contact. We 
further use a 1/0 mask function 𝕄𝕄 to refine Aij values by 𝕄𝕄𝕘Aij) = Mij 𝔻 Aij 
to emphasize the residue pairs forming hydrogen bonds, ionic bonds 
or hydrophobic interactions (Supplementary Note 11).

Using these definitions, we can establish an iterative process to 
systematically update the positioning of residues (ui) in the sliding 
sequence U based on their interactions with the reference sequence V.  
The residue ui location (pi, for i = 1, 2…m) are updated as follows:

p(t+1)i =
∑n

j=1 𝕄𝕄(Aij⋅S
(t)
ij )⋅qj

∑n
j=1 𝕄𝕄(Aij⋅S

(t)
ij )

,

s.t. S(t)ij = exp ( −|p
(t)
i −qj |2

2h2
) .

(3)

Here the superscript t is the number of iterations. Considering that Aij 
is only dependent of the semantic embedding of the residues and is a 
constant with respect to the residue locations p(t)i , and that S(t)ij  is a 
Gaussian kernel evaluated on the distance between a pair of residues, 
equation (3) is very similar to the mean shift mode seeking65, for which 
it has been shown that one such iteration is actually a move (of the 
residue location p(t)i ) along the gradient of an underlying density func-
tion 𝔻𝔻𝕘𝔻) with adaptive step size. In our context, this ‘density function’ 
is the accumulated magnitude of the interactions that the residue ui 
receives when it is located at position p(t)i , as 𝔻𝔻𝕘p(t)i ) = ∑n

j=1𝕄𝕄(Aij 𝔻 S(t)ij ).
It is noteworthy that the positional shift in residue ui due to equa-

tion (3) is along the direction of accumulated attractions that residue 

ui receives at location p(t)i , by noting p(t+1)i − p(t)i =
∑n

j=1 𝕄𝕄(Aij⋅S
(t)
ij )⋅(qj−p

(t)
i )

∑n
j=1 𝕄𝕄(Aij⋅S

(t)
ij )

;  

here 𝕄𝕄(Aij 𝔻 S(t)ij )  conceptually signifies the magnitude of attraction 

between residue ui and vj at step t, and (qj − p(t)i ) signifies the direction 
of attraction pointing from ui to vj at step t. The bandwidth h in equation 
(1) controls the size of the receptive field: a larger h allows ui to be 
attracted to more distant residues in the reference sequence V.

As the iteration continues, residue ui moves along the reference 
sequence V until reaching a local maximum of the interaction den-
sity or moves for a pre-defined number of steps (two–five steps). The 
mode-seeking iteration in equation (3) allows injecting useful physical 
prior by incrementally adjusting a residue’s position to increase its 
interaction, or attention, with residues from a counterpart sequence. 
Compared with learnable positional vectors40 that are merely updated 
thorough gradient, our positional variables are structurally con-
strained and physically more interpretable.

At the end of the sliding process, the m × n hybrid attention matrix

W = 𝕄𝕄𝕘A⊙ S) , (4)

will serve as a comprehensive estimation of residue-level interactions. 
Note that W is unnormalized. Depending on whether it is normalized 
by rows or columns, we can update the representations for both U and 
V in the form of cross-attention as

X̃U ← D−1W WXVEV + XU, (5)

X̃V ← D−1W⊤W⊤XUEU + XV. (6)

Here DW and DW⊤ are row-wise and column-wise degree matrices for 
normalization, XU = [x(u1) x(u2)…x(um)] and XV = [x(v1) x(v2)…x(vn)] are 
residue embedding matrices for U and V, and EV and EU are linear matri-
ces to turn XV and XU into ‘values’, respectively. In equation (5), U is the 
query and sequence V is the key; in equation (6), V is the query and U is 
the key. One can also use the additive version of W in equation (4) as 
W = 𝕄𝕄𝕘A + S), which gives a denser attention matrix than the Hadamard 
product. Finally, no self-attention is used within each sequence before 
cross-attention.

The sliding attention for two sequences is summarized in Algo-
rithm 1 and illustrated in Supplementary Fig. 2b. A comparison with 
standard cross-attention is shown in Supplementary Fig. 3.

Algorithm 1: Sliding attention for two sequences.
Input: Sliding sequence U: embedding XU, position PU;

    Reference sequence V: embedding XV, position QV;
    Learnable parameters: ES, ER, EU, EV ∈ ℝd×d;
    Hyper-parameters: mask 𝕄𝕄, bandwidth h, steps T.

Output: updated residue embedding X̃U, X̃V .
    // initialize variables
1:  Initialize XU and XV by random vectors.
2:  Set QV as consecutive integers from 1 to n.
3:  Initialize PU by m evenly spaced numbers in [1:n].
    // compute featural attention A
4:   A← exp (X⊤

UE
⊤
S ERXV/√d)—equation (2).

    // update spatial attention S, residue position PU

5:   for t = 1 to T do
6:     S← Gaussian (PU,QV,h)—equation (1)
7:     W← 𝕄𝕄𝕘S⊙ A)—equation (4).
8:     PU ← D−1W WQV—equation (3)
9:  end for
    // converged attention matrix W
10:  S ← Gaussian(PU, QV, h)—equation (1).
11:   W← 𝕄𝕄𝕘S⊙ A)—equation (4).
    // update representations of U and V
12:   X̃U ← D−1W WXVEV + XU—equation (5).
13:  X̃V ← 𝕘DW⊤ )−1W⊤XUEU + XV—equation (6).
14:  return X̃U, X̃V .

The attention matrix in equation (4) (or its additive version) can be 
naturally used to approximate residue-level contact relations between 
U and V. The nonlinear nature of W allows capturing complex patterns 
of residue sequences that may curl up in three dimensions, despite the 
1D positional variables in sliding attention. We can further augment 
the sliding attention by extending the 1D positional variables to higher 
dimensions, enforcing a smoothness constraint to the shift of neigh-
bouring residues, and considering intrasequence residue interactions. 
These will be studied in our future research.

Alignment-based pooling module. We propose a systematic way to 
turn variable-sized biosequences into fixed-length representations, 
to avoid arbitrary token shift in sequence cutting or padding. Here we 
exploit a biological prior that HLA sequences have a stable 3D substruc-
ture66. In particular, the α-1 and α-2 domains in the α chain of an HLA 
molecule are connected by a short peptide in the shape of a β sheet, form-
ing a groove that is the key to antigen binding. This allows defining the 
HLA pseudo-sequence, that is, the part of HLA sequence that is in close 
contact with the peptide (within 4.0 Å of the peptide), which consists 
of 34 amino acid residues or positions along the entire HLA molecule23.

The HLA pseudo-sequence was used in several studies of HLA–pep-
tide and pHLA–TCR interactions36,37,67. Since the pseudo-sequence has a 
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fixed length, we use it as a skeleton so that both TCRs and antigens can 
be projected onto it to convert to fixed-length sequences. The align-
ment is based on the attention matrix in equation (4), which precisely 
specifies the residue interactions between the two sequences.

To project the representation matrix X of a sequence onto a skel-
eton sequence X0 (HLA pseudo-sequence), we use the attention matrix 
W between X0 and X as a bridge and left multiply it with X:

X̃→X0 = D−1W 𝔻W 𝔻 X. (7)

Here W is the attention matrix (4) by treating X0 as the reference 
sequence and X as the sliding sequence, and DW is the row-wise degree 
matrix of W. The normalized attention matrix D−1W W  serves as a proba-
bilistic alignment matrix that maps residues from X to those of X0, 
effectively reshaping X to the same size of the skeleton sequence X0 
based on their residue interactions specified by W.

Loss function for imbalanced classification. Predicting TCR–anti-
gen–HLA binding requires identifying a small number of truly binding 
triples from a large repertoire, that is, the positive and negative classes 
are highly imbalanced. Therefore, we used the following focal loss68:

ℒ𝕘pi) = {
−α𝕘1 − pi)

γ log𝕘pi) if yi = 1

−𝕘1 − α)pγi log𝕘1 − pi) otherwise.
(8)

Here i is the sample index, yi is the class label and pi is the estimated 
probability for the ith sample to be positive.

Sliding transformer for TCR–antigen–HLA binding prediction. The 
workflow of PISTE for TCR–antigen–HLA binding prediction is as fol-
lows (Supplementary Fig. 2a).

1.   �Use HLA as the reference, and let peptide slide against it 
through the sliding-attention module. This allows updating the 
HLA and peptide representations (pHLA).

2.   �Use the pHLA complex as the reference, and let TCR slide along 
it through the sliding-attention module. This allows simulta-
neously updating the representations for the TCR and pHLA 
complex.

3.   �Project TCR and peptide representations onto HLA 
pseudo-sequence by alignment-based pooling.

4.   �The representations of TCR, HLA and peptide are passed to a 
feed-forward layer to make predictions.

These four steps are connected in an end-to-end framework to 
allow for simultaneous variable optimization. The order of the four 
steps is biologically meaningful, that is, the peptide–HLA interaction 
is modelled first before the interaction between the pHLA complex and 
TCRs. PISTE predicts ternary TCR–antigen–HLA binding, rather than 
binary (peptide–HLA or peptide–TCR), by using only ternary binding 
status as the labels. However, if the peptide–HLA binding status was 
also known, it could be incorporated in training as well.

Performance evaluation metrics
The performance was evaluated by AUROC, AUPR and PPVn.

In AUROC (TPR versus FPR for a series of threshold values), the 
true-positive rate (TPR) and false-positive rate (FPR) are computed as

TPR = TP
TP + FN , FPR = FP

TN + FP .

Here TP denotes true positive; FN, false negative; TN, true negative; 
and FP, false positive.

In AUPR, the precision and recall are computed by

Precision = TP
TP + FP , Recall = TP

TP + FN .

PPVn is the fraction of the top-ranked n prediction triples that are 
true positives, defined as

PPVn = TPn
TPn + FPn

.

PPVn is widely used in immunogenicity prediction studies23,24,27. Here 
n is chosen as the number of true binders in the data, as per ref. 26.

Experiment settings
In training the PISTE, we used the ADAM optimizer with a mini-batch size 
of 1,024 sequences (triples) and a learning rate of 0.001 with 200 epochs. 
Each residue type has a dimension d = 64 and is randomly initialized. In 
the loss function in equation (8), α = 0.75 and γ = 2. Hyper-parameters 
were chosen as follows. The bandwidth h in equation (1) was fixed as 
h = 1. The number of iterations t for sliding attention was chosen from  
{2, 3, 4, 5}, and the best t was determined as the one that leads to the high-
est evaluation metric (average of AUROC and AUPR) on the validation 
set, which was chosen as 20% of the training data (the remaining 80% 
was used for training the model). The codes were written with PyTorch 
1.7 and run on a PC with NVIDIA RTX A6000 GPU and 3.70 GHz CPU.

Patient specimen collection
This study was reviewed and approved by the Institutional Review 
Board of Shanghai Sixth People’s Hospital (declaration 2023-KY-155K). 
Informed consent was obtained from all the patients and the study 
strictly adhered to all the institutional ethical regulations. The tumour 
tissues and peripheral blood samples from eight patients with primary 
prostate cancer were attained following surgery at the Shanghai Sixth 
People’s Hospital (see the detailed clinical characteristics listed in Sup-
plementary Table 8). No patients had undergone immunotherapy treat-
ment before surgery. Samples were snap frozen by immediate immersion 
in liquid nitrogen and stored at –80 °C for next-generation sequencing by 
the Shanghai Applied Protein Technology. PBMCs were prepared from 
fresh whole blood by Ficoll–Paque density gradient centrifugation and 
in 90% foetal bovine serum + 10% dimethyl sulfoxide (DMSO).

WES and RNA-seq
DNA extraction was executed from both peripheral blood and tumour 
tissue samples using the QIAamp DNA MiniKit (Qiagen). Quantification 
of DNA concentrations was carried out using the Qubit 2.0 fluorometer 
(Invitrogen). The DNA underwent fragmentation into segments meas-
uring 180–280 bp in length, using a Covaris instrument. The prepara-
tion of the sequencing libraries and capture of exons were conducted 
in strict accordance with the manufacturer’s protocol, utilizing the 
Agilent SureSelect Human All Exon V5/V6 Kit. The captured exons were 
amplified linearly by polymerase chain reaction and then checked by 
quantitative polymerase chain reaction. The sequencing procedure 
was executed on two lanes of the Illumina HiSeq 4000 v. 2 (Pair End 
150 bp) platform, strictly adhering to the manufacturer’s guidelines 
and recommendations set forth by Illumina.

The extraction of RNA from fresh tissues was carried out by utiliz-
ing a combination of TRIzol reagent and the RNeasy MinElute Cleanup 
Kit (Invitrogen). The assessment of RNA quality was conducted using a 
fragment analyser (Agilent Technologies). The TruSeq Stranded Total 
RNA kit (Illumina) was used for the preparation of sequencing libraries, 
which were subsequently subjected to 150 bp paired-end sequencing 
on a HiSeq 4000 sequencer (Illumina).

Finally, we obtained whole-exome sequencing (WES) and tran-
scriptome sequencing data of the tumour tissue and exome sequencing 
data of match normal sample for each patient.

Sequencing data processing and immunogenic neoantigen 
selection
WES information processing. On successful completion of sample 
sequencing, we leveraged OptiType v. 1.3.5 (ref. 69) to determine the 
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genotypes of patients’ HLA alleles. Meanwhile, we utilized a general 
mutation calling pipeline to detect somatic variations in the genome70. 
Trimmomatic v. 0.39 (ref. 71) was used for the WES data quality con-
trol. The processed WES data of the tumour and matched blood (as 
a source of normal germ-line DNA) from each patient were aligned to 
the reference human genome (hg38) utilizing the Burrows–Wheeler 
alignment tool v. 0.7.17 (ref. 72). Preprocessing was carried out fol-
lowing the GATK (v. 4.2.0) Best Practices Workflow73 before variant 
calling. To perform single-nucleotide variant and insertion/deletion 
mutation calls, MuTect2 (GATK v. 4.2.0)74, VarScan v. 2.3 (ref. 75) and 
Strelka2 v. 2.9.2 (ref. 76) were utilized. To eliminate false-positive muta-
tions, all the mutations detected with allelic fractions of less than 0.05 
or coverage of less than 10× were excluded. Then, all the mutations 
were annotated by leveraging Ensembl Variant Effect Predictor77. The 
Quantitative Biomedical Research Center (QBRC) neoantigen calling 
pipeline was subsequently used to retrieve HLA-I-binding neoantigens 
of 8–11-mer length from the mutation data70, and the corresponding 
wild-type sequences of neoantigens were also recorded. A median of 
2,617 HLA–peptide complexes per sample were used to combine with 
TCRs into TCR–antigen–HLA triples and then run through PISTE.

RNA information processing. RNA sequencing (RNA-seq) data 
were aligned to the reference transcriptome (hg38) using Kallisto  
v. 0.46.0 (ref. 78) to determine the abundance of gene expression levels, 
quantified as transcripts per kilobase million (TPM).

TCR repertoire data. To enhance the diversity and coverage of the 
patient TCR repertoire, the TCR data for each patient were sourced 
from two distinct origins. One portion comprised TCR sequences 
acquired through the analysis of the patient’s WES and RNA-seq data 
using the MiXCR v. 3.0.13 algorithm79. The other segment was drawn 
from publicly accessible TCR sequencing data documented in the 
literature pertaining to prostate cancer patients80.

Input to PISTE. The pHLA (with mutant neoantigen or wild-type anti-
gen) and TCR sequences obtained from each patient were then combined 
to generate all the possible TCR–antigen–HLA triples. These triples were 
fed into the PISTE model for predicting the binding status for each triple.

Peptides ranking. Meticulous screening procedures were taken to 
select candidates from among thousands of neoantigens. First, we cat-
egorized all the predicted binding TCR–antigen–HLA triples from our 
model by antigen. This categorization allowed us to assess the potential 
immunogenicity level of each antigen by counting the number of TCRs 
binding to it. Here we focused on mutated neoantigens that bind with 
at least 100 TCRs and whose wild-type counterparts do not bind with 
any TCR. Additionally, considering that a single gene mutation could 
produce multiple antigens, we excluded those genes (and thus all the 
mutated neoantigens they produced) whose expression levels were 
under 5 TPM (ref. 81). After refining our candidate list, we ranked the 
genes by their expression levels and assessed each gene sequentially 
from the top of this list. For each gene, we selected the neoantigen 
with the highest number of binding TCRs as the ‘optimal peptide’. We 
continued this process until we had selected three to four optimal 
peptides for a patient, typically requiring probing of two to four highly 
expressed genes per patient.

Peptide synthesis
Lyophilized peptides for neoantigens were manufactured at ≥95% purity 
from GenScript. The peptides were verified by high-performance liquid 
chromatography and stored at –80 °C for testing the T cell reactivity.

Expansion of T cells specific to neoantigens
PBMCs obtained from patients were used to assess the T cell response to 
candidate neoantigens in an ex vivo setting. For in vitro pre-stimulation 
of antigen-specific T cells, PBMCs were thawed and cultured in RPMI 
1640 medium (Thermo Fisher, cat. no. A1049101-01) supplemented 
with 10% foetal bovine serum and 1% penicillin–streptomycin (Thermo 
Fisher). The cells were stimulated in 96-well cell culture plates at 1.5 × 105 

cells per well pulsed with individual neoantigen (2.5 μg ml–1) in the pres-
ence of interleukin-2 (20 U ml–1; T&L Biotechnology). Interleukin-2 and 
peptide were added on days 3, 6 and 8, with the same concentration 
as before. Here phytohemagglutinin (PHA; 10 μg ml–1) was used as the 
positive control and DMSO and unrelated peptide as negative controls. 
Cells were harvested after 10 days post-stimulation; quantification of 
peptide-specific T cell immune response intensity was conducted with 
the IFN-γ ELISA and flow cytometry assay.

T cell response analysis by IFN-γ ELISA assay
IFN-γ secretion of T cells was measured by ELISA using human IFN-γ ELISA 
kit (Multi Sciences, cat. no. EK180-96). Briefly, 5 × 104 pre-stimulated 
PBMCs in RPMI 1640 containing 10% foetal bovine serum and 1% penicil-
lin–streptomycin were added to each well of a 96-well plate with a total 
volume of 150 μl. The cells were subjected to re-stimulation using a 
peptide concentration of 2.5 μg ml–1 at 37 °C with 5% CO2 for a duration 
of 24 h; PHA (10 μg ml–1) was used as a positive control and DMSO and 
unrelated peptide as the negative controls. The concentration of IFN-γ 
secretion was measured with the EnVision plate reader (PerkinElmer). 
A positive response was determined when the secretion of IFN-γ greater 
than 15.63 pg ml–1 and greater than twice the negative control (DMSO 
and unrelated peptide), according to standard criteria8,82.

T cell response analysis by flow cytometry
For ex vivo intracellular cytokine detection, PBMCs were re-stimulated 
with 5 μg ml–1 peptide or 50 ng ml–1 PMA (YEASEN) and 1 μg ml–1 ionomy-
cin (YEASEN) in complete RPMI 1640 (Thermo Fisher, cat. no. A1049101-
01) with 10 μg ml–1 brefeldin A (MKBio) at 37 °C overnight. Subsequently, 
cells were harvested and resuspended in phosphate-buffered saline 
(Gibco). After treatment, cells were stained for 30 min at room tempera-
ture with a Zombie Aqua Fixable Viability kit (BioLegend, cat. no. 423101), 
anti-CD3 (clone HIT3a, PerCP, BioLegend, cat. no. 300325) and anti-CD8 
(clone SK1, APC, BioLegend, cat. no. 344721). After washing, cells were 
fixed and permeabilized (Foxp3/Transcription Factor Staining Buffer Set, 
Thermo Fisher, cat. no. 00-5523-00). Intracellular cytokines were stained 
with anti-IFN-γ (clone 4S.B3, PE, BioLegend, cat. no. 502508) for 30 min 
at room temperature. Cells were washed with the fluorescence-activated 
cell sorting buffer and collected using a ACEA NovoCyte flow cytometer.

To assess the formation of specific CD8+ T cells following antigen 
peptide stimulation, we conducted activation induction markers exper-
iment. Cells were collected after 10 days of pre-stimulation, and then 
re-stimulated with antigen peptides. Following overnight incubation, 
cells were harvested and stained with the Zombie Aqua Fixable Viability 
kit at room temperature for 30 min. Subsequently, the cells were stained 
with anti-CD3 (PerCP, clone HIT3a, PerCP, BioLegend, cat. no. 300325), 
anti-CD8 (clone SK1, FITC, BioLegend, cat. no. 344703), anti-CD137 
(clone 4B4-1, APC, BioLegend, cat. no. 309809) and anti-CD69 (clone 
FN50, PE, BioLegend, cat. no. 310905) antibodies. The dilution of all the 
antibodies was 1:100. After incubation at room temperature for 30 min, 
cells were resuspended in the fluorescence-activated cell sorting buffer 
and analysed using ACEA NovoCyte flow cytometer.

The gating strategy is shown in Supplementary Fig. 16a. Density 
maps were drawn for each cell group using ACEA NovoExpress v. 1.6. 
CD8+ T cell activation is identified when the proliferation percentage 
of the IFN-γ+ CD8+ population (or the double-positive rate of CD69 and 
CD137) following antigen peptide stimulation is 20% higher than that of 
the control group (DMSO). Meanwhile, we also quantified the propor-
tion of CD8+ T cells in CD3+ T cells after antigen peptide stimulation.

Graphical and statistical analyses
Plots and analyses were generated using matplotlib and seaborn  
package in Python v. 3.8; survival package and survminer package in 
R v. 4.2.2; and GraphPad Prism software v. 8. A two-sided t-test was 
used to compare the continuous variables between two groups. To 
accommodate multiple comparisons, a standard one-way analysis 
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of variance with Dunnett’s test was used. To investigate the existence 
of a positive ordinal association between the INAL and efficacy of 
immune therapy, we utilized the Jonckheere–Terpstra test. Survival 
curves were generated through the Kaplan–Meier method, whereas 
the log-rank test was used to assess the presence of significant differ-
ences between two survival curves. P values of <0.05 were considered 
to be statistically significant.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The datasets used for training and testing the algorithm are available 
via GitHub at https://github.com/Armilius/PISTE and via Code Ocean at 
https://doi.org/10.24433/CO.3216167.v2 (ref. 83). The raw binding data 
were integrated from McPAS-TCR56 (http://friedmanlab.weizmann.
ac.il/McPAS-TCR), VDJdb57 (https://vdjdb.cdr3.net) and pMTnet36 
(https://github.com/tianshilu/pMTnet). The reference TCRs from 
587 healthy volunteers61 are available at https://datadryad.org/stash/
dataset/doi:10.5061/dryad.t47g3. The collected 3D crystal complexes 
are available via PDB45 (https://www.rcsb.org) and their accession 
numbers are provided in Supplementary Table 5. The 10x Genom-
ics cohort is available at https://www.10xgenomics.com/products/
single-cell-immune-profiling. The data used to analyse the alterations 
of T cell clones after antigen stimulation are downloaded from https://
www.nature.com/articles/s41586-018-0792-9 (ref. 84). The public 
sequencing data from the SKCM47 and GBM48 cohorts are available 
at the Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra) 
under the following accession numbers: PRJNA307199, PRJNA343789, 
PRJNA312948 and PRJNA482620. The reference human genome (hg38) 
is available at https://gatk.broadinstitute.org/hc/en-us/articles/ 
360035890811-Resource-bundle. The reference human transcriptome 
(hg38) is available at https://useast.ensembl.org/Homo_sapiens/
Info/Index. The raw sequencing data of the eight prostate cancer 
patients reported in this paper have been deposited in the Genome 
Sequence Archive85 in the National Genomics Data Center86, China 
National Center for Bioinformation/Beijing Institute of Genomics, 
Chinese Academy of Sciences (https://ngdc.cncb.ac.cn/gsa-human), 
and can be obtained with the access number ‘HRA005868’. These 
data are under controlled access by human privacy regulations and 
are only available for research purposes. Access to the data requires 
approval from the Data Access Committee of the GSA-human database. 
Researchers who meet the access criteria can obtain data access. For 
more information, please refer to https://ngdc.cncb.ac.cn/gsa-human/
document/GSA-Human_Request_Guide_for_Users_us.pdf. The pro-
cessed TCR-seq, peptide-seq and HLA data from the PCAs are archived 
at https://github.com/Armilius/PISTE and https://doi.org/10.24433/
CO.3216167.v2 (ref. 83).

Code availability
The code package is freely available via GitHub at https://github.
com/Armilius/PISTE and via Code Ocean at https://doi.org/10.24433/
CO.3216167.v2 (ref. 83) with the MIT licence.
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Extended Data Fig. 1 | Predictive performance of PISTE using unified-peptide 
negative sampling and reference-TCR negative sampling methods. All testing 
triples whose Antigen-HLA pairs were observed in the training data are removed 
from the test-sets. (a) The AUROC, AUPR and PPVn for PISTE and competing 

models using the unified-peptide negative sampling schemes. (b) The AUROC, 
AUPR and PPVn for PISTE and competing models using the reference-TCR 
negative sampling schemes. The red baseline represents a random classifier.
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