Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Foundation models in healthcare require rethinking reliability

A new class of AI models, called foundation models, has entered healthcare. Foundation models violate several basic principles of the standard machine learning paradigm for assessing reliability, making it necessary to rethink what guarantees are required to establish warranted trust in them.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Grote, T., Genin, K. & Sullivan, E. Philos. Compass 19, e12974 (2024).

    Article  Google Scholar 

  2. Von Luxburg, U. & Schölkopf, B. In Handbook of the History of Logic (eds Gabbay, D. M. et al.) Vol. 10, Ch. 16 (Elsevier North-Holland, 2011).

  3. Finlayson, S. G. et al. New Engl. J. Med 385, 283–286 (2021).

    Article  Google Scholar 

  4. Garcea, F., Serra, A., Lamberti, F. & Morra, L. Comput. Biol. Med. 152, 106391 (2023).

    Article  Google Scholar 

  5. Moor, M. et al. Nature 616, 259–265 (2023).

    Article  Google Scholar 

  6. Schaeffer, R., Miranda, B., & Koyejo, S. In Advances in Neural Information Processing Systems 36 (NeurIPS, 2023).

  7. Ruffolo, J. A. & Madani, A. Nat. Biotech. 42, 200–202 (2024).

    Article  Google Scholar 

  8. Jiang, L. Y. et al. Nature 619, 357–362 (2023).

    Article  Google Scholar 

  9. Acosta, J. N., Falcone, G. J., Rajpurkar, P. & Topol, E. J. Nat. Med. 28, 1773–1784 (2022).

    Article  Google Scholar 

  10. Bommasani, R. et al. Preprint at https://doi.org/10.48550/arXiv.2108.07258 (2021).

  11. DeGrave, A. J., Janizek, J. D. & Lee, S. I. Nat. Mach. Intell. 3, 610–619 (2021).

    Article  Google Scholar 

  12. Kompa, B., Snoek, J. & Beam, A. L. npj Digit. Med. 4, 4 (2021).

    Article  Google Scholar 

  13. Hager, P. et al. Nat. Med. 30, 2613–2622 (2024).

    Article  Google Scholar 

  14. Wornow, M. et al. npj Digit. Med. 6, 135 (2023).

    Article  Google Scholar 

  15. Singhal, K. et al. Nature 620, 172–180 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

T.G., T.F. and P.B. all acknowledge support by the German Science Foundation (BE5601/8-1 and the Excellence Cluster 2064 ‘Machine Learning — New Perspectives for Science’, project number 390727645), and the Carl Zeiss Foundation in the project ‘Certification and Foundations of Safe Machine Learning Systems in Healthcare’. In addition, P.B. also acknowledges support by the Hertie Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Grote.

Ethics declarations

Competing interests

The authors declare no conflict of interest

Peer review

Peer review information

Nature Machine Intelligence thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grote, T., Freiesleben, T. & Berens, P. Foundation models in healthcare require rethinking reliability. Nat Mach Intell 6, 1421–1423 (2024). https://doi.org/10.1038/s42256-024-00924-5

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s42256-024-00924-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing