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Antigen peptides that are presented by a major histocompatibility complex 
(MHC) and recognized by a T cell receptor (TCR) have an essential role in 
immunotherapy. Although substantial progress has been made in predicting 
MHC presentation, accurately predicting the binding interactions between 
antigen peptides, MHCs and TCRs remains a major computational challenge. 
In this paper, we propose a unified deep framework (called UniPMT) for 
peptide, MHC and TCR binding prediction to predict the binding between the 
peptide and the CDR3 of TCR β in general, presented by class I MHCs. UniPMT 
is comprehensively validated by a series of experiments and achieved 
state-of-the-art performance in the peptide–MHC–TCR, peptide–MHC and 
peptide–TCR binding prediction tasks with up to 15% improvements in area 
under the precision–recall curve taking the peptide–MHC–TCR binding 
prediction task as an example. In practical applications, UniPMT shows 
strong predictive power, correlates well with T cell clonal expansion and 
outperforms existing methods in neoantigen-specific binding prediction 
with up to 17.62% improvements in area under the precision–recall curve on 
experimentally validated datasets. Moreover, UniPMT provides interpretable 
insights into the identification of key binding sites and the quantification 
of peptide–MHC–TCR binding probabilities. In summary, UniPMT shows 
great potential to serve as a useful tool for antigen peptide discovery, disease 
immunotherapy and neoantigen vaccine design.

Antigenic peptides presented by the major histocompatibility com-
plex (MHC) can induce immune responses by being recognized by 
T cell receptors (TCRs), which carry the CD8 antigen on the surface 
of T cells1. Investigating the binding mechanisms among peptides, 
MHCs and TCRs is of great importance for cancer immunology, 
autoimmunity antigen discovery and vaccine design2. However, 
due to the intrinsic complexity of such binding mechanisms, the 
experimental detection and determination of the binding among 

peptides, MHCs and TCRs are time-consuming and expensive3.  
To solve these problems, computational methods have been devel-
oped in recent years.

In peptide–MHC–TCR (P–M–T) binding, the interaction between 
the peptide and MHC plays an important role. There are two main 
computational methods for the prediction of peptide–MHC (P–M) 
binding: scoring-based methods and learning-based methods. 
Scoring-based methods utilize multiple statistical scoring functions 
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Results
UniPMT overview
UniPMT is a multitask learning framework using GNNs to predict the 
TCR binding specificity of pathogenic peptides presented by class I 
MHCs. UniPMT innovatively integrates three key biological relation-
ships—P–M–T, P–M and P–T—into a cohesive framework, utilizing the 
synergistic potential of these relationships18. As shown in Fig. 1, Uni-
PMT comprises a structured approach beginning with graph construc-
tion, where biological entities (evolutionary scale modeling (ESM)19 is 
applied to learn the initial embedding of P and T, and the TEIM method is 
applied to obtain the pseudo-sequence of M) are represented as nodes 
and their interactions are represented as edges. This is followed by 
graph learning via GraphSAGE20, which learns robust node embeddings. 
Finally, UniPMT uses a DMF-based learning framework16 to unify bind-
ing prediction tasks for P–M–T, P–M and P–T interactions, harnessing a 
comprehensive and integrated learning strategy. Following differential 
training, the prediction output was generated comparatively. UniPMT 
outputs a scalar value as the binding probability between 0 and 1, where 
higher scores represent higher binding probabilities. Unlike existing 
works that focus only on one binding prediction task, our proposed 
UniPMT performs the P–M–T, P–M and P–T binding prediction tasks in 
a unified manner. With the multitask learning strategy and the elabo-
rately designed model structure, UniPMT achieves state-of-the-art 
performance on all three binding prediction tasks.

Performance on P–M–T binding prediction
In this section, we investigate the performance of UniPMT on P–M–T 
binding prediction on the dataset in pMTnet, including 29,342 positive 
training pairs and 551 positive testing pairs (we keep those pairs with 
class I MHC pseudo-sequence available). More details of the dataset 
and data splitting are summarized in the ‘Data processing’ section. 
We compare our proposed method with pMTnet, TEIM and PanPep, 
where TEIM and PanPep are retrained on the dataset. We summarize 
the results of UniPMT and the baselines in Fig. 2a,b, where the results of 
pMTnet are derived from the predictions of the original work15. In gen-
eral, UniPMT achieves an average of 96% in the area under the receiver 
operating characteristic curve (ROC-AUC) and 72% in PR-AUC, which 
outperforms baselines by at least 4% in ROC-AUC and 15% in PR-AUC. 
Achieving this improvement is possible because our multitask learn-
ing strategy—as the P–M–T binding prediction task—relies on all three 
types of binding information.

We further compare our UniPMT with pMTnet, TEIM and Pan-
Pep on the neoantigen P–M–T testing set, which is generated from 
the original P–M–T testing set by restricting the negative T to known 
neoantigen-specific Ts and not shuffling P–M in negative sampling. 
The P–M–T training set remains the same. More details of the dataset 
and data splitting are summarized in the ‘Data processing’ section. We 
present the results of UniPMT and the baselines in Table 1. In general, 
UniPMT achieves 72.14% in ROC-AUC and 28.36% in PR-AUC, which 
outperforms all baselines by at least 8.86% in ROC-AUC and 5.58% in 
PR-AUC. We observe that the performance on the neoantigen dataset is 
lower than the previously reported P–M–T binding prediction results, 
which is consistent across all baselines. This can be attributed to two 
main reasons. (1) Fixing P–M and shuffling T increases the difficulty of 
prediction by removing the influence of easier P–M binding patterns. 
(2) The neoantigen dataset is relatively small, which might result in 
weaker learning of this specific subset during model training.

Performance on P–M binding prediction
In this section, we investigate the performance of UniPMT on P–M 
binding prediction. We compare UniPMT with CapsNet-MHC7, Deep-
AttentionPan10, Anthem4 and DeepSeqPan21 on the Immune Epitope 
Database (IEDB) dataset (MHC class I binding prediction)22, where 
Anthem and DeepSeqPan can only be evaluated on a specific allele. We 
keep those pairs with class I MHC pseudo-sequence available, resulting 

to calculate the binding probability of the input sequences4,5. 
Learning-based methods learn representations for input sequences 
via deep neural networks such as attention networks, long short-term 
memory networks and transformers to model interactions between 
peptides and MHCs6–12. To achieve effective peptide–TCR (P–T) bind-
ing prediction, computational tools such as TEIM3, TCR-AI13 and Pan-
Pep14 have been proposed. These methods apply machine learning 
techniques to predict the interaction between a CDR3 sequence (one 
of the core binding regions) and a peptide sequence. Instead of pre-
dicting the pairwise binding possibility, such as P–M and P–T, there 
are works that take the peptide, MHC and TCR sequences as the input, 
and directly predict the binding possibility of P–M–T. For example, 
pMTnet15 uses the transfer learning technique to train a model, which 
can predict the TCR binding specificity of peptides presented by a 
specific class I MHC.

With the accumulation of data and the development of the afore-
mentioned deep learning techniques, the predictive performance of 
P–M–T, P–M and P–T has improved. However, in cancer immunotherapy 
and other related immune therapies, there is still an urgent need to 
further improve the binding prediction accuracy, especially for the 
P–M–T binding prediction. Existing approaches typically focus on only 
one of the three interaction types (P–M–T, P–M or P–T), resulting in the 
incomplete utilization of available multifaceted binding information. 
For example, in P–T binding prediction, the P–M binding information is 
usually neglected. We claim that the binding mechanisms among pep-
tides, MHCs and TCRs are mutually related, and the accurate binding 
prediction of P–M–T, P–M and P–T may boost the overall performance. 
Simultaneously, effective learning of these three tasks can mitigate, 
to some extent, the scarcity of existing datasets, which is a notable 
challenge in this field.

In this work, we introduce UniPMT, a unique unified multitask 
learning model using heterogeneous graph neural networks (GNNs) 
for predicting the TCR binding specificity of pathogenic peptides 
presented by class I MHCs. Our model provides an example of unifica-
tion on three critical levels. First, at the data level, we collect a unified 
dataset that enables the integration of diverse nodes (P, M and T) and 
edge types (P–M–T, P–M and P–T), thereby reflecting a comprehensive 
manner for synthesis. Second, at the framework level, UniPMT uses a 
heterogeneous GNN, providing a unified and cohesive structure that 
effectively captures the intricate interactions among peptides, MHCs 
and TCRs. This framework underscores our integrated approach to 
model complex biological interactions. Finally, at the training level, 
UniPMT adopts a multitask training strategy, utilizing both deep 
matrix factorization (DMF)16 and contrastive learning17 to facilitate a 
cross-featured learning process. This tripartite approach to unifica-
tion in UniPMT not only highlights the versatility and sophistication 
of our model but also sets a precedent in the realm of immunological 
prediction models.

We systematically validate the performance of UniPMT using 
P–M–T, P–M and P–T validation datasets and demonstrate its advances 
over previous works. The proposed UniPMT consistently achieves 
state-of-the-art performance in P–M–T, P–M and P–T binding pre-
diction tasks, where the promising improvement on P–M–T is 15% in 
area under the precision–recall curve (PR-AUC). At the same time, we 
demonstrate its feasibility in clinical applications, such as the predic-
tion of neoantigen-specific TCR binding, T cell cloning and prediction 
of potential P–M–T binding triplets. These applications, especially 
potential P–M–T binding triplet prediction, have an irreplaceable 
role in special clinical immunotherapy application scenarios, such as 
TCR-gene-engineered T cells, in situations where tumour-infiltrating 
lymphocytes are difficult to sort. In general, UniPMT focuses on the 
long-standing problem of P–M–T binding prediction, revealing bio-
logical insights on antigen presentation and immune stimulation, 
which can serve as a basis for constructing biomarkers to predict the 
immunotherapeutic response.
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in 156,844 pairs. We randomly split the dataset into five folds and take 
one of the five folds for testing and the remaining four folds for train-
ing. More details on the dataset and data splitting are demonstrated in 
the ‘Data processing’ section. We show the averaged results of UniPMT 
and the baselines in Fig. 2c,f. UniPMT achieves 93.55% (s.d., 0.27) in 
ROC-AUC and 84.35% (s.d., 0.79) in PR-AUC, DeepAttentionPan achieves 
93.38% (s.d., 0.17%) in ROC-AUC and 84.19% (s.d., 0.52%) in PR-AUC and 
CapsNet-MHC achieves 92.85% (s.d., 0.32%) in ROC-AUC and 83.21% 
(s.d., 0.57%) in PR-AUC. In general, UniPMT outperforms state-of-the-art 
baselines by at least 0.17% in ROC-AUC and 0.16% in PR-AUC. We further 
take the seven alleles with more than 1,000 pairs in the test dataset 
for analysis (taking one of the five folds as an example), and UniPMT 
achieves the best performance on four out of the seven alleles in both 
ROC-AUC and PR-AUC. The results demonstrate that our proposed 
model achieves promising results in the P–M binding prediction task.

Performance on P–T binding prediction
In this section, we investigate the performance of UniPMT in P–T bind-
ing prediction. We investigate UniPMT under two settings: the general 
setting and the zero-shot setting. All baselines are retrained on our 
datasets.

For the general setting, we use the dataset in TEIM, which contains 
a total of 19,692 positive P–T pairs. Unlike TEIM, we randomly split the 
dataset into five folds, where a P in one fold also occurs in the remain-
ing four folds in general. We follow the same strategy for five times 
more negative P–T pair generation and validation as that of TEIM. 
The baselines we compare include NetTCR 2.2 (ref. 23), TEIM, TCR-AI, 
ImRex24, NetTCR 2.0 (ref. 25) and DeepTCR26. We summarize the results 
of UniPMT and the baselines in Fig. 2g,h. In general, UniPMT achieves 
an average of 78% in ROC-AUC and 63% in PR-AUC, which outperforms 
the baselines by at least 5% in ROC-AUC and 18% in PR-AUC. In addition 
to the privilege of our proposed model design, we owe this promising 

result to the P–M and P–M–T information that UniPMT further cap-
tured, which implicitly boosts the learning of P–T binding prediction.

For the zero-shot setting, we use the dataset in PanPep, which 
contains a total of 32,080 positive P–T pairs, including 31,223 pairs 
in the training set and 857 pairs in the testing set. Unlike PanPep, we 
generated the same number of negative P–T pairs via random shuffling 
instead of using a control set. More details of the dataset and data split-
ting are summarized in the ‘Data processing’ section. We compare our 
proposed method with NetTCR 2.2, TEIM, ImRex, NetTCR 2.0, DLpTCR 
and PanPep. We present the results of UniPMT with the baselines in 
Fig. 2i,j. In general, UniPMT achieves an average of 62% in ROC-AUC 
and 84% in PR-AUC, which outperforms the baselines by at least 2% in 
ROC-AUC and 20% in PR-AUC.

Ablation study
To demonstrate the superiority of our multitask learning strategy, we 
generate three variants of our UniPMT named P–M–T only, P–M only 
and P–T only. P–M–T only denotes that we only consider the P–M–T 
edges when generating the input graph and only learn the P–M–T bind-
ing prediction task. The other two variants are similarly defined. We 
evaluate all three variants together with our UniPMT on the P–M–T data-
set, P–M dataset and P–T zero-shot dataset. The results of UniPMT and 
its three variants are summarized in Table 2. We observe the following. 
(1) For the P–M–T binding prediction, all three types of edge provide 
valuable information for the target task. P–M–T and P–T information 
show greater importance than the P–M information, which aligns with 
the biological understanding that the P–T and the overall P–M–T inter-
actions are more directly relevant to the final binding outcome. P–T 
edges are valued most for the P–M–T binding prediction task. This 
may be because the P–T learning in UniPMT is derived from P–M–T 
learning, which considers all M possibilities and captures more gener-
alized P–M–T binding patterns. In addition, the P–T dataset is labelled 
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Fig. 1 | UniPMT framework. The P–M–T, P–M and P–T relationships are first 
represented as a graph, where the initial embedding of P and T is learned via 
ESM19, and that of M is its pseudo-sequence3. Then, a GNN is applied to learn the 

embeddings of each input node. Finally, a DMF-based learning strategy is applied 
to unify the binding prediction tasks for P–M–T, P–M and P–T. w and y denote the 
weights and prediction scores, respectively.
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(both positive and negative samples), providing more accurate binding 
signals. (2) For the P–M binding prediction, P–M edges are valued the 
most, and the P–M-only variant even achieves on-par performance with 
the full model. This is because the P–M binding prediction in UniPMT 
is taken as a sub-step for the P–M–T and P–T predictions, making the 
P–M edges offer a positive influence on both P–M–T and P–T predic-
tions. However, there is no direct inverse influence from the P–M–T 
and P–T edges to the P–M binding prediction. This conforms to the 
results in the ‘Performance on P–M binding prediction’ section, where 

our proposed UniPMT achieves limited improvements compared with 
models based on learning P–M information only. The P–M–T-only and 
P–T-only variants achieve similar results, which may be because they 
contain a similar amount of valuable information (either direct P–M 
binding information from P–M–T edges or hidden P–M information 
from P–T edges) for P–M binding prediction. (3) For the zero-shot P–T 
binding prediction, the P–T pairs in the training and testing sets are 
mutually exclusive. This is why the P–T-only variant achieves inferior 
results. The P–M-only and P–M–T-only variants involve the labelled P–M 
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Fig. 2 | Results of UniPMT compared with the baselines on P–M–T, P–M and P–T 
binding prediction tasks. a,b, ROC-AUC (a) and PR-AUC (b) of UniPMT and the 
baselines on the P–M–T dataset. c,d, ROC-AUC (c) and PR-AUC (d) of UniPMT and 
the baselines on the P–M dataset (shown as mean values ± s.d.). e,f, ROC-AUC (e) 

and PR-AUC (f) of UniPMT and the baselines on the P–M dataset and among the 
seven alleles with more than 1,000 pairs in the testing set. g,h, ROC-AUC (g) and 
PR-AUC (h) of UniPMT and the baselines on the P–T TEIM dataset. i,j, ROC-AUC (i) 
and PR-AUC (j) of UniPMT and the baselines on the P–T zero-shot dataset.
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edges that may contain hidden information relating to the P–T binding 
prediction in the testing set, thereby achieving better performance.

Clinical applications of P–M–T binding prediction
Adoptive cell transfer shows great potential as a cancer immuno-
therapy approach, whereas its effect largely relies on the selective 
expansion of tumour-specific T cells within the graft27,28. The critical 
factor in optimizing adoptive-cell-transfer-based immunotherapy 
is the precise identification of T cells that recognize and respond to 
specific neoantigens29,30. We collected 312 P–M–T binding triplets from 
our base dataset, where the neoantigens, their presenting MHCs and 
binding TCRs were experimentally validated. Following the ‘Perfor-
mance on P–M–T binding prediction’ section, ten times more nega-
tive triplets were generated by random shuffling. We test whether 
the immune-responsive T cells were correctly identified by UniPMT 
and compare its results with PanPep, pMTnet and TEIM. As shown in 
Fig. 3a,b, our UniPMT achieves the best performance with ROC-AUC of 
94.29% and PR-AUC of 72.15% for immune-responsive T cell identifica-
tion of neoantigens, which is 2.91% and 17.62% better than the previous 
best results, respectively. These results demonstrate the superiority of 
our model in yielding important implications for both cancer vaccines 
and associated immunotherapies.

Indicative result on clonal expansion of T cells
As TCRs exhibiting higher binding affinities are more likely to undergo 
clonal expansion, the predicted binding scores by UniPMT may indicate 
the expansion ratio of T cells. To demonstrate the indicative role of 
our model in the diverse expansion of global T cell clones, we analyse 
a single-cell dataset derived from a healthy donor without any known 
viral infection, containing profiles of CD8 antigen T cells that are spe-
cific for 44 distinct P–M complexes31. For each T cell in this dataset, 
we predict its binding score to the 44 P–M complexes and compute 
the Spearman correlation coefficient with the clonal expansion ratio. 
The same correlation analysis is also performed using the original 
unique molecular identifier (UMI) count. As illustrated in Fig. 3c,d, the 
predicted binding scores show a positive correlation with the clonal 
expansion ratio of T cells (with a correlation score of 0.2553). By con-
trast, the correlation between UMI count and clonal expansion is con-
siderably weaker (with a correlation score of –0.07), suggesting that 
the UMI-based indicator is not suitable for qualitatively reflecting the 
clonal expansion of T cells. These results suggest that UniPMT can be a 
clonally expanded indicator in a qualitative manner to a certain extent.

Crucial sites analysis in P–M–T binding
To show the interpretability of our embedding learning module, we 
predict the key binding sites of CDR3 β and the peptide in P–M–T 
binding according to the importance of each amino acid. The impor-
tance of each amino acid is computed by the difference between 
the initial sequence embedding and the sequence embedding after 
alanine substitution32,33 (replaces an amino acid with alanine (A) and 
examines the variant’s binding energy between P–M and TCR β by 
structural simulation). We take 1QRN and 2PYE as two examples, and 
summarize the binding energy distribution before and after the ala-
nine substitution of 1QRN in Fig. 4a. The ‘base’ denotes the binding 
energy of the original model of 1QRN based on its three-dimensional 
(3D) complex structure. R3, L6 and Q13 are the predicted key sites, 
and R3A, L6A and Q13A denote their corresponding binding energy 
distribution after alanine substitution. G9 is a randomly selected 
site from the remaining sites, and G9A denotes its corresponding 
binding energy distribution after alanine substitution. As shown 
in Fig. 4a, variants on the predicted key binding sites show a much 
higher binding energy difference to the base than that of the predicted 
unimportant binding sites.

In addition to the binding energy analysis, we also analyse the 
distance between the atomic hydrogen bonds and α carbon atoms in 
the detailed structural diagram. As shown in Fig. 4b(i), we examine 
the hydrogen bond and α carbon atom distance between the pep-
tide and CDR3 β before and after the alanine substitution on 1QRN. 
The enlarged view in Fig. 4b(ii) shows the interactions of R95, L98, 
Q106 and G101 (corresponding to sites R3, L6, Q13 and G9, respec-
tively) with the peptide before alanine substitution. Figure 4b(iii) 
shows the interactions of position R95 (R95A), L98 (L98A), Q106 
(Q106A) and G9 (G9A) with the peptide after alanine substitution. 
Taking R95A as an example, we find that the closest hydrogen-bond 
distance between TCR-R95 and peptide-Y5 changed from 2.1 to 5.0. 
For L98A, the distance between the α carbon atom of TCR-L98 and 
the peptide-Y8 shows a slight change from 6.5 to 6.4. However, the 
interaction distance between the hydrogen atoms becomes much 
larger (from 2.0, 3.6 and 4.2 to 3.0, 4.6 and 4.4, respectively), which 
may lead to better binding. As a control, the distance between the α 
carbon atoms is slightly reduced (from 5.6 to 5.4) for G9A, and the 
interaction distance changes between the hydrogen atoms before 
and after substitution is also relatively small (from 3.9, 4.6 and 4.6 
to 2.3, 3.2 and 3.1, respectively), leading to a slight change in binding 
energy (from –62.5582 to –65.3066). The above analysis showcases 
the critical role of our embedding learning module in the prediction 
of key sites in P–M–T binding. Similar results can be witnessed on 2PYE 
(Supplementary Section 1).

P–M–T binding discovery
In T cell therapy, the P–M–T binding prediction is especially important 
for tumour-infiltrating lymphocytes that are not well enriched and 
cannot be screened for antigen-specificity binding experiments. In 
this section, we evaluate the ability of our model on potential P–M–T 
binding triplet prediction. For the validated neoantigen dataset in the 
Cancer Antigens Database34, we selected neoantigen peptides that 
intersected with our dataset and obtained a total of 43 peptides. We 
enumerate all possible P–M–T triplets according to the MHCs and TCRs 
in our collected base dataset. For all possible P–M–T triplets, we predict 
their corresponding P–M–T, P–M and P–T binding scores, and keep 
those with valid predicted scores (larger than 0.5) on P–M–T, P–M and 
P–T binding only, resulting in 139,348 potential pairs ranked according 
to their predicted P–M–T binding scores. We take the predicted peptide 
and the potential CDR3 as the model and calculate the binding energy 
between the peptide-HLA and TCR β to check whether the binding 
energy is positively correlated with the predicted P–M–T score. For an 
accurate energy calculation, we select 15 sequences that are similar to 
the template molecules in the Protein Data Bank library for modelling 

Table 1 | AUCs on the neoantigen-specific P–M–T testing set

Model ROC-AUC PR-AUC

PanPep 0.1094 0.0623

pMTnet 0.6020 0.2278

TEIM 0.6328 0.1556

Our work 0.7214 0.2836

Table 2 | ROC-AUC and PR-AUC of UniPMT and their variants 
on the P–M–T, P–M and P–T datasets

P–M–T P–M P–T zero-shot

ROC-AUC PR-AUC ROC-AUC PR-AUC ROC-AUC PR-AUC

UniPMT 95.89 72.36 93.54 84.73 61.59 83.91

P–M–T only 75.78 33.72 58.35 34.75 58.83 82.85

P–M only 44.35 7.72 93.49 84.68 59.88 83.87

P–T only 95.83 62.34 57.91 36.50 44.74 76.44

The highest/second-highest performances in each column are shown in bold/underlined 
formatting, respectively.
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and performing energy optimization comparisons. As shown in Fig. 4c, 
the correlation between the rank of the 15 selected sequences and 
their structure-based binding energy is 0.796, demonstrating that our 
predicted binding score can serve as a good indicator for estimating 
the binding energy of P–M–T triplets. Figure 4d–f shows the detailed 
binding information of three examples from different ranking intervals 
out of the 15 selected sequences.

Discussion
Owing to the broad clinical applications of recognizing the TCR binding 
specificity of pathogenic peptides presented by class I MHCs, there is 
an urgent need for effective P–M–T binding prediction. We propose 
UniPMT, a universal framework for a robust P–M–T binding prediction 
model for various settings, including P–M–T, P–M and P–T binding 
predictions. The advantage of UniPMT lies in its holistic approach, 
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integrating distinct datasets and learning tasks within a single model. 
This integration allows for a comprehensive understanding and predic-
tion of the binding phenomena, enhancing the applicability of the model 
in immunotherapy prediction, and revealing deep biological insights.

Although UniPMT outperformed other methods in the prediction 
of P–M–T, P–M and P–T binding predictions, several aspects can be 
further improved. (1) UniPMT relies on heterogeneous GNN training, 
where the performance can be further improved when more training 
data are available. (2) UniPMT considers the interaction of the CDR3 
β chain of TCR with the peptide only, which is the same as most of the 
previous studies14,15. However, catch bonds in other chains may also 
play an important role in the TCR prediction of neoantigens. There-
fore, considering more information, such as the α chain, is expected 
to further improve the model’s performance. (3) With the increasing 
3D crystal structure data, further embedding the 3D data of peptides, 
MHCs and TCRs may also help with the P–M–T binding prediction.

Methods
Data processing
Base dataset processing: we collect a base dataset, in which the P–M 
binding dataset is obtained from BigMHC35; the P–T binding dataset is 
obtained from PanPep, DLpTCR36 and NetTCR37; and the P–M–T bind-
ing dataset is obtained from ERGO38 and pMTnet. To further expand 
the number of P–T pairs, we downloaded the TCR-full-v3 dataset from 
the IEDB database22, and amalgamate all peptides and TCRs involved 
in the dataset. Following data collection, we uniformly preprocess all 
datasets to ensure the consistent formatting of peptides, MHC and TCR. 
We remove duplications and anomalies, such as garbled characters and 
incomplete MHC subtypes. We compile all datasets to obtain three edge 
datasets, namely, P–M–T, P–M and P–T, saved as three separate files. 
On the basis of the compiled edge dataset, peptides, MHCs and TCRs 
are uniformly processed as follows:

•	 Extract and deduplicate all peptides involved in P–M–T, P–M 
and P–T, encoding them as p1,p2…,pkp.

•	 Extract and deduplicate all MHC subtypes involved in P–M–T 
and P–M, encoding them as m1,m2…,mkm.

•	 Extract and deduplicate all TCR β sequences involved in P–M–T 
and P–T, encoding them as t1, t2…, tkt.

The above process ensures the creation of a comprehensive and 
well-structured dataset for subsequent analysis. The created dataset 
contains 291,632 peptides, 208 MHCs, 144,053 TCRs, 593,109 P–M–T 
edges, 70,112 P–M edges and 155,479 P–T edges. The statistics of the 
generated dataset are listed in Supplementary Table 1.

P–M–T dataset processing: we obtain the dataset from pMTnet, 
which contains 30,801 triplets in the P–M–T training set and 619 triplets 
in the P–M–T testing set. Following pMTnet, we keep those triplets 
with class I MHC pseudo-sequence available, resulting in 29,342 posi-
tive triplets in the P–M–T training set and 551 positive triplets in the 
P–M–T testing set (186 out of 219 Ps are unseen in the training set). For 
each positive triplet in the P–M–T training set, ten times more negative 
triplets were generated by random shuffle (the P of a positive triplet is 
fixed, and we randomly select an M and T among all Ms and Ts) to obtain 
the overall P–M–T training set. The manner of generating the P–M–T 
testing set is the same as that for generating the P–M–T training set. Our 
model requires not only the P–M–T triplets but also the corresponding 
P–M and P–T pairs. To obtain the corresponding P–M training set, we 
search for the P–M pairs in our collected base dataset, where their Ps 
are within the P–M–T training set and omit those pairs in which their 
Ms only exist in the P–M–T testing set (2,060 pairs). To obtain the P–T 
training set, we search for the P–T pairs in our collected base dataset, 
where Ps are within the P–M–T training set and omit those pairs in 
which Ts only exist in the P–M–T testing set (33,995 pairs, including 
33,959 positive pairs and 36 negative pairs, and 33,959 negative pairs 
are generated via random shuffling). Note that this negative sampling 

strategy, which fixes P as M and T are randomly selected, may generate 
negative samples that are relatively easier to predict. For instance, 
if a P–M pair is readily predicted as non-binding, the corresponding 
P–M–T triplet might be directly classified as negative. However, this 
does not affect the fairness of our evaluation, since both our model 
and baselines encounter the same set of negative samples generated 
through this strategy. The statistics of the P–M–T dataset we use and 
the number of positive interactions in the P–M–T training set for Ts 
in the P–M–T testing set are shown in Supplementary Tables 2 and 4.

P–M–T neoantigen dataset processing: the P–M–T training set and 
its corresponding P–M and P–T training sets are the same as the above 
processed P–M–T dataset. We obtained the P–M–T neoantigen testing 
set (12 positive and 96 negative pairs via random shuffling) by restrict-
ing the Ts to neoantigen-specific Ts and not shuffling the P–M pairs in 
the negative set. Specifically, we identified 12 neoantigen triplets from 
the original P–M–T testing set, forming the positive sample set. From 
the neoantigen-specific Ts present in the P–M–T dataset, we identified 
36 unique Ts with the available embeddings. For each positive sample, 
we fixed Ps and Ms as all possible Ts are shuffled to generate the nega-
tive samples, ensuring that the generated negative P–M–T triplets did 
not overlap with any positive pairs.

P–M IEDB dataset processing: same as CapsNet-MHC, we retrieve 
the sequence-level binding data of P–M from IEDB (MHC class I binding 
prediction)22. The P–M dataset named BD2013 is downloaded from 
http://tools.iedb.org/main/datasets/, where both immunogenicity 
prediction and antigen presentation data are involved. On the basis of 
the dataset that contains 186,684 pairs, the description of HLA alleles 
belonging to HLA-I was retained, and we kept those pairs with class 
I MHC pseudo-sequence available. In the end, the dataset contains 
156,844 pairs, and we randomly select 80% data (125,475 pairs) for 
training and the remaining for testing (31,369 pairs, where 2,357 out 
of 14,608 Ps are unseen in the training set). Notice that we retain the 
P–M pairs in which the peptide length is nine for training and test-
ing DeepSepPan and Anthem. Our model requires not only the P–M 
pairs but also the corresponding P–M–T and P–T pairs. To obtain the 
corresponding P–M–T training set, we search for the P–M–T pairs in 
our collected base dataset in which both peptide and MHC are within 
the P–M training set and omit those pairs in which Ps or Ms only exist 
in the P–M–T testing set, resulting in 45,227 positive pairs. The same 
number of negative pairs were generated via random shuffling (the P 
of a positive pair is fixed, and we randomly select an M among all Ms). 
To obtain the corresponding P–T training set, we search for the P–T 
pairs in our collected base dataset in which their Ps are within the P–M 
training set and omit those pairs in which Ps only exist in the P–M test-
ing set (117,699 pairs). The statistics of the P–M IEDB dataset and the 
seven alleles with more than 1,000 test pairs used for further analysis 
are summarized in Supplementary Tables 2 and 3.

P–T zero-shot dataset processing: we obtain the dataset from 
PanPep. The zero-shot dataset contains 699 unique peptides, 29,467 
unique TCRs and 32,080 related P–T binding pairs, including 31,223 
pairs in the P–T training set and 857 pairs in the P–T testing set (all 543 
Ps are unseen in the training set and 410 out of 543 Ts are unseen in the 
training set). Unlike PanPep, which selects the negative samples from 
a control set, for each positive pair in the P–T training set, we generate 
the same number of negative samples via random shuffling (the P of a 
positive pair is fixed, and we randomly select a T among all Ts) to obtain 
the overall training set. The manner of generating the testing set is the 
same as that for generating the training set. Our model requires not 
only the P–T pairs but also the corresponding P–M–T and P–M pairs. To 
obtain the P–M–T training set, we search for the P–M–T triplets in our 
base dataset that both peptides and TCRs are within the P–T training set 
(25,929 positive pairs and the same number of negative pairs generated 
via random shuffling). To obtain the P–M training set, we search for the 
P–M pairs in our base dataset in which the peptide is within the P–T 
training set (1,641 pairs). The statistics of the P–T zero-shot dataset we 
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use and the number of positive interactions for Ts in the P–T zero-shot 
training set are shown in Supplementary Tables 2 and 5.

P–T TEIM dataset processing: we obtain the dataset from TEIM, 
which contains a total of 19,692 positive P–T pairs. For the zero-shot 
setting, we split the dataset into five folds with no overlapping of Ps 
between different folds. Following TEIM, five times more negative 
samples were generated through random shuffling (the P of a posi-
tive pair is fixed, and we randomly select a T among all Ts) to obtain 
the overall training and testing dataset. For the general setting, we 
randomly split the dataset into five folds, and different folds may 
contain the same P. Our model requires not only the P–T training set 
but also the corresponding P–M–T and P–T training sets. To obtain the 
P–M–T set, we search for the P–M–T triplets in our base dataset that 
both peptides and TCRs are within the P–T set (12,397 positive pairs 
and the same number of negative pairs as those generated via random 
shuffling). To obtain the P–M set, we search for the P–M pairs in our 
base dataset in which Ps exist in the P–T set (1,633 pairs). The P–M–T 
and P–T training sets are then adjusted to guarantee that only pairs in 
which Ps are within the training set are kept according to the fivefold 
cross-validation. The statistics of the P–T TEIM dataset we use and the 
number of positive interactions for Ts in the P–T TEIM dataset are shown 
in Supplementary Tables 2 and 6.

Evaluation methods
P–T TEIM evaluation: same as TEIM, we adopt a cluster-based strategy 
for fivefold cross-validation splitting, where the similarity between 
sequences in training and validation datasets is guaranteed to be less 
than a threshold. The similarity of two TCR (or peptide) sequences si 

and sj is computed as SW(si ,s j)

√SW(si ,si)SW(s j ,s j)
, where SW denotes the Smith–

Waterman alignment score calculated from the SSW library39. We chose 
the similarity thresholds of 0.5 for the sequence-level dataset and 0.8 
for the residue-level dataset, which is the same as that for TEIM.

Structure-based model evaluation: we take the 3D complex struc-
tures of 2PYE and 1QRN as the two test models, where the model of 
peptide and HLA was taken as one molecule and the model of TCR β 
chain was taken as the other. On the basis of the consistent-valence 
forcefield, the 3D structures of peptide-HLA and TCR β were optimized 
via the steepest descent method (convergence criterion, 0.1 kcal mol–1; 
8,000 steps) and conjugate gradient method (convergence criterion, 
0.05 kcal mol–1; 10,000 steps), respectively. The TCR β mutants were 
optimized using the same method. We calculate the binding energy of 
the predicted P–M–T triplets between their peptide-HLA and TCR β.  
When selecting the predicted P–M–T triplets for validation, we estab-
lished the following principles. (1) From the random sampling perspec-
tive, we aimed to cover the ranges of 1–10, 10–100 and 100–1,000.  
(2) To ensure the accuracy of structural modelling, we selected P–M–T 
triplets that have strong template complex molecules for peptide, MHC 
and TCR in the Protein Data Bank database. (3) To minimize the errors 
arising from the homology modelling process, we use a unified tem-
plate for the selected triplets. On the basis of the above fundamental 
principles, we selected 15 triplets from the predictions of UniPMT and 
used 7RTR (Protein Data Bank ID: 7RTR) as the homologous modelling 
template (7RTR serves as the optimal structural template for 12 out of 
the 15 triplets). The frameworks of TCR β are determined by BLASTp 
(https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_
TYPE=BlastSearch&LINK_LOC=blasthome). The 3D structure of 
the complex between TCR β and peptide-HLA is modelled using 
SWISS-MODEL to calculate their binding energy. All computational 
methods were used with InsightII 2000 and performed on a Sun work-
station, and PyMOL was used for visualization.

Model architecture
In this section, we introduce UniPMT, a multifaceted learning model 
using GNNs to predict the TCR binding specificity of pathogenic 

peptides presented by class I MHCs. Our model innovatively integrates 
three key biological relationships, namely, P–M–T, P–M and P–T, into a 
cohesive framework, capitalizing on the synergistic potential of these 
relationships. UniPMT comprises a structured approach beginning 
with graph construction, where biological entities are represented as 
nodes and their interactions as edges. This is followed by graph learn-
ing via GraphSAGE, which learns robust node embeddings. Finally, 
the model uses a DMF-based learning framework to unify the binding 
prediction tasks for P–M–T, P–M and P–T interactions, harnessing a 
comprehensive and integrated learning strategy. UniPMT outputs a 
continuous binding score between 0 and 1, reflecting the binding prob-
ability. Higher binding scores will have higher binding probabilities 
(clonally expand) for each P–M–T, P–M and P–T pair.

Graph construction. We represent the complex interplay of P–T, P–M 
and P–M–T interactions in UniPMT as a heterogeneous graph 𝒢𝒢(𝒢𝒢, 𝒢). 
The node set 𝒢𝒢  is defined as

𝒢𝒢 = 𝒱pi} ∪ {mj} ∪ {tk}, (1)

where pi, mj and tk represent peptides, TCRs and MHCs, respectively. 
The edge set 𝒢 comprises

𝒢 = 𝒱(pi,m j)|binding exists } ∪ 𝒱(p j, tk)|binding exists }

∪𝒱(pi,m j, tk)|binding exists },
(2)

This structure effectively encapsulates the intricate molecular inter-
actions essential for understanding the binding dynamics in immu-
nology. We use a GraphSAGE-based GNN model20 for learning node 
embeddings, capturing the intricate relationships and properties of 
the p, m and t nodes:

h(l+1)ni
= ReLU (W(l) × mean ({h(l)n j

|n j ∈ neighbours (ni)})) , (3)

where h(l+1)ni
 is the updated embedding of node ni at layer l + 1.

Multitask learning. Our UniPMT model provides an example of an 
end-to-end multitask learning framework, simultaneously addressing 
the P–M–T, P–M and P–T binding prediction tasks.

P–M binding prediction task learning: for this task, we first gener-
ate a vector representation vpm by inputting the embeddings of P and 
M nodes into a neural network (for example, a multilayer perceptron), 
denoted as fpm:

vpm = fpm(hp,hm). (4)

To get the P–M binding probability, we map vpm to a scalar value in the 
range [0, 1]. We use a linear mapping layer w to transform vpm into a 
scalar, followed by a sigmoid function:

Ppm = σ(w × vpm), (5)

where σ denotes the sigmoid function. This probability is then used for 
cross-entropy loss minimization with respect to the actual binary label. 
We optimize the models of the P–M binding prediction task through 
cross-entropy loss:

ℒpm = − 1
Npm

Npm
∑
i=1

y(i)pmlog [P
(i)
pm] + (1 − y(i)pm) log [1 − P(i)pm] , (6)

where ℒpm represents the cross-entropy loss for the P–M binding pre-
diction task. The summation iterates over all Npm samples in your data-
set. For each sample i, y(i)pm is the true label (0 or 1 for a binary 
classification task) and P(i)pm is the predicted probability that the ith 
sample belongs to the positive class. The loss is computed as a sum of 
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the negative log-likelihood of the true labels, effectively penalizing 
predictions that diverge from the actual labels.

P–M–T binding prediction task learning: for the P–M–T binding 
prediction task, we first reuse the representation vpm learned in the 
P–M binding prediction task. To learn the M–T representation vmt, we 
use a similar approach using a neural network fmt:

vmt = fmt(hm,ht). (7)

This process ensures that both vpm and vmt are learned in a consistent 
and comparable manner. We assess the binding affinity between vpm and 
vmt using a DMF-based approach16. The DMF approach is particularly 
well suited for modelling the P–M–T binding interactions. DMF can 
learn refined latent variables vpm and vmt from high-dimensional sparse 
data, capturing the intricate associations between P–M and M–T. More-
over, DMF offers flexibility in modelling the interactions between these 
latent variables, aligning with the biological mechanisms of P–M–T 
binding. Specifically, our approach models the P–M–T binding score as 
the interaction between vpm and vmt. First, it performs an element-wise 
product between the two embeddings called bilinear interaction40. 
Then, a neural network is used to model the nonlinear interactions 
between vpm and vmt and output the binding score. Finally, we map the 
score into the binding probability through a sigmoid function:

Ppmt = σ( fDMF(vpm ⊙ vmt)), (8)

where vpm is parameter-efficiently shared from the P–M binding predic-
tion task, ⊙ represents the element-wise product of two embeddings 
and fDMF is a multilayer perceptron.

Given the general absence of negative labels in the P–M–T data, 
we implement negative sampling to generate negative instances. Fur-
thermore, we adopt the information noise contrastive estimation 
learning approach to optimize the learning process, enhancing the 
model’s ability to distinguish between positive and artificially gener-
ated negative samples.

To optimize the P–M–T binding prediction model, we use the infor-
mation noise contrastive estimation learning loss17, which is designed 
to distinguish between positive and negative samples. The loss function 
is defined as follows:

ℒpmt = − 1
Npmt

Npmt
∑
i=1
log[

exp (P(i)pmt/τ)

exp (P(i)pmt/τ) +∑K
j=1 exp (P

(i, j)
pmt/τ)

] , (9)

where ℒpmt represents the information noise contrastive estimation 
learning loss for the P–M–T binding prediction task, Npmt is the number 
of positive samples in the dataset, P(i)pmt denotes the binding probability 
of the ith positive sample obtained by applying the sigmoid function 
to the output of fDMF with the concatenated embeddings v(i)pm and v(i)mt, 
P(i, j)pmt represents the binding probability of the ith positive sample’s vpm 
embedding concatenated with the jth negative sample’s vmt embedding, 
K is the number of negative samples for each positive sample and τ is a 
temperature hyperparameter that controls the distribution 
concentration.

The numerator of the fraction inside the log represents the expo-
nential of the binding probability for the positive sample, whereas the 
denominator is the sum of the exponentials of the binding probabilities 
for the positive sample and K negative samples. By minimizing this loss, 
the model learns to assign higher probabilities to positive samples 
compared with negative samples, effectively distinguishing between 
them. The negative samples are generated using negative sampling 
techniques, where for each positive sample, K negative samples are 
randomly selected from the dataset. This process helps the model 
learn to differentiate between true P–M–T interactions and artificially 
generated negative instances.

P–T binding prediction task learning: for the P–T binding predic-
tion task, following the aggregation of results across all possible MHCs, 
we use cross-entropy loss to optimize the model. The loss function is 
defined as follows:

ℒpt = − 1
Npt

Npt
∑
i=1

(y(i)pt log [P
(i)
pt ] + (1 − y(i)pt ) log [1 − P(i)pt ]) , (10)

where ℒpt represents the cross-entropy loss for the P–T binding predic-
tion task, Npt is the number of samples in the dataset, y(i)pt is the true label 
of the ith sample (0 or 1) and P(i)pt  is the aggregated binding probability 
of the ith sample, calculated as

P(i)pt =
1
M

M
∑
j=1

P(i)pmjt, (11)

where M is the number of MHCs considered, and P(i)pmjt is the binding 
probability of the ith sample with respect to the jth MHC.

Integration of three tasks: finally, we integrate the three losses to 
simultaneously optimize the three tasks. The losses from each task are 
combined to form a unified learning objective. Specifically, the total 
loss ℒ is computed as a weighted sum of the individual task losses ℒpm, 
ℒpmt and ℒpt:

ℒ = λpm ℒpm + λpt ℒpt + λpmt ℒpmt, (12)

where λpm, λpmt and λpt are the weighting factors that balance the con-
tribution of each task to the overall learning process. This multitask 
framework ensures that each task benefits from the shared learning, 
leading to a more robust and generalizable model.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data and the model weights of UniPMT are available via Zenodo 
(https://zenodo.org/records/14630611)41. The raw data were down-
loaded from public databases or peer-reviewed publications. Source 
data are provided with this paper.

Code availability
The source code of UniPMT is available via Zenodo (https://zenodo.org/
records/14625792)42 and via GitHub (https://github.com/ethanmock/
UniPMT).
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