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Dimensions underlying the representational 
alignment of deep neural networks  
with humans

Florian P. Mahner    1,2,7  , Lukas Muttenthaler1,3,4,7, Umut Güçlü2 & 
Martin N. Hebart    1,5,6

Determining the similarities and differences between humans and artificial 
intelligence (AI) is an important goal in both computational cognitive 
neuroscience and machine learning, promising a deeper understanding of 
human cognition and safer, more reliable AI systems. Much previous work 
comparing representations in humans and AI has relied on global, scalar 
measures to quantify their alignment. However, without explicit hypotheses, 
these measures only inform us about the degree of alignment, not the 
factors that determine it. To address this challenge, we propose a generic 
framework to compare human and AI representations, based on identifying 
latent representational dimensions underlying the same behaviour in both 
domains. Applying this framework to humans and a deep neural network 
(DNN) model of natural images revealed a low-dimensional DNN embedding 
of both visual and semantic dimensions. In contrast to humans, DNNs 
exhibited a clear dominance of visual over semantic properties, indicating 
divergent strategies for representing images. Although in silico experiments 
showed seemingly consistent interpretability of DNN dimensions, a direct 
comparison between human and DNN representations revealed substantial 
differences in how they process images. By making representations directly 
comparable, our results reveal important challenges for representational 
alignment and offer a means for improving their comparability.

Deep neural networks (DNNs) have achieved impressive performance, 
matching or surpassing human performance in various perceptual 
and cognitive benchmarks, including image classification1,2, speech 
recognition3,4 and strategic gameplay5,6. In addition to their excellent 
performance as machine learning models, DNNs have drawn atten-
tion in the field of computational cognitive neuroscience for their 
notable parallels to cognitive and neural systems in humans and ani-
mal models7–11. These similarities, observed through different types of 
behaviour or patterns of brain activity, have sparked a growing interest 
in determining both factors underlying these similarities and differ-
ences between human and DNN representations. From the machine 
learning perspective, understanding where DNNs exhibit a limited  

alignment with humans can support the development of better and 
more robust artificial intelligence (AI) systems. From the perspective 
of computational cognitive neuroscience, DNNs with stronger human 
alignment promise to be better candidate computational models of 
human cognition and behaviour12–15.

Much previous research on the alignment of human and artificial 
visual systems has compared behavioural strategies (for example, 
classification) in both systems and has revealed important limita-
tions in the generalization performance of DNNs16–20. Other work has 
focused on directly comparing cognitive and neural representations 
in humans to those in DNNs, using methods such as representational 
similarity analysis (RSA21) or linear regression22–25. This quantification  
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underlying human and DNN representations of images. To achieve this 
aim, we treated the neural network analogously to a human partici-
pant carrying out a cognitive behavioural experiment and then derived 
representational embeddings using a recent variational embedding 
technique37 from both human similarity judgements and a DNN on the 
same behavioural task (Methods). This approach ensured direct com-
parability between human and DNN representations. As a behavioural 
task, we chose a triplet odd-one-out similarity task, where from a set of 
three object images i, j and k, participants have to select the most dis-
similar object (Fig. 1a; Supplementary Section D provides an analysis 
of the role of task instructions on triplet choice behaviour). In this task, 
the perceived similarity between two images i and j is defined as the 
probability of choosing these images to belong together across varying 
contexts imposed by a third object image k. By virtue of providing mini-
mal context, the odd-one-out task highlights the information sufficient 
to capture the similarity between object images i and j across diverse 
contexts. In addition, it approximates human categorization behaviour 
for arbitrary visual and semantic categories, even for fairly diverse sets 
of objects36–38. Thus, by focusing on the building blocks of categorization 
that underlies diverse behaviours, this task is ideally suited for compar-
ing object representations between humans and DNNs.

For human behaviour, we used a set of 4.7 million publicly available 
odd-one-out judgements39 over 1,854 diverse object images, derived 
from the THINGS object concept and image database40. For the DNN, 
we collected similarity judgements for 24,102 images of the same 
objects used for humans (1,854 objects with 13 examples per object). 
We used a larger set of object images since the DNN was less limited by 
constraints in dataset size than humans. This allowed us to obtain more 
precise estimates of their representation. To derive DNN representa-
tions, we chose a pretrained VGG-16 model41, given its common use in 
the computational cognitive neurosciences. Specifically, this network 
has been shown to exhibit good correspondence to both human behav-
iour17 and measured neural activity9,27,42 and performs well at predicting 
human similarity judgements24,25,30,43–45. VGG-16 was trained on the 
1,000-class ImageNet dataset46, which contains a diverse range of image 
categories, such as animals, everyday objects and scenes. However, 
for completeness, we additionally ran similar analyses for a broader 
range of neural network architectures (Supplementary Section A). We 
focused on penultimate layer activations as they are the closest to the 
behavioural output, and they also showed closest representational 
correspondence to humans (Supplementary Section B). For the DNN, 
we generated a dataset of behavioural odd-one-out choices for the 

of alignment has led to a direct comparison of numerous DNNs across 
diverse visual tasks26–29, highlighting the role of factors such as architec-
ture, training data or learning objective in determining the similarity 
to humans25,26,29,30.

Despite the appeal of summary statistics, such as correlation 
coefficients or explained variance, for comparing the representational 
alignment of DNNs with humans, they only quantify the degree of 
representational or behavioural alignment. However, without explicit 
hypotheses about potential causes for misalignment, such scalar meas-
ures are limited in their explanatory scope of which properties deter-
mine this degree of alignment, that is, which representational factors 
underlie the similarities and differences between humans and DNNs. 
Although diverse methods for interpreting DNN activations have been 
developed at various levels of analysis, ranging from single units to 
entire layers31–35, a direct comparability to human representations has 
remained a key challenge.

Inspired by recent work in cognitive sciences that has revealed core 
visual and semantic representational dimensions underlying human 
similarity judgements of object images36, here we propose a framework 
to systematically analyse and compare the dimensions that shape 
representations in humans and DNNs. In this work, we apply this frame-
work to human visual similarity judgements and representations in a 
DNN trained to classify natural images. Our approach reveals numer-
ous interpretable DNN dimensions that appear to reflect both visual 
and semantic image properties and that appear to be well aligned to 
humans. In contrast to humans, who showed a dominance of semantic 
over visual dimensions, DNNs exhibited a striking visual bias, demon-
strating that downstream semantic behaviour is driven more strongly 
by different, primarily visual, strategies. Although psychophysical 
experiments on DNN dimensions underscored their global interpret-
ability, a direct comparison with human dimensions revealed that DNN 
representations, in fact, only approximate human representations but 
lack the consistency expected from property-specific visual and seman-
tic dimensions. Together, our results reveal key factors underlying the 
representational alignment and misalignment between humans and 
DNNs, shed light on potentially divergent representational strategies, 
and highlight the potential of this approach to identify the factors 
underlying the similarities and differences between humans and DNNs.

Results
To improve the comparability of human and DNN representations, we 
aimed to identify the similarities and differences in core dimensions 
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Fig. 1 | Computational framework that captures core DNN object 
representations in analogy to humans by simulating behavioural decisions 
in an odd-one-out task. a, The triplet odd-one-out task in which a human 
participant or a DNN is presented with a set of three images and is asked to select 
the image that is the most different from the others. b, Sampling approach 
of odd-one-out decisions from DNN representations. First, a dot-product 
similarity space is constructed from the DNN features. Next, for a given triplet 
of objects, the most similar pair in this similarity space is identified, making the 
remaining object the odd one out. For humans, this sampling approach is based 

on observed behaviour, which is used as a measure of their internal cognitive 
representations. c, Illustration of the computational modelling approach to learn 
a lower-dimensional object representation for human participants and the DNN, 
optimized to predict behavioural choices made in the triplet task. d, Schematic of 
the interpretability pipeline that allows for the prediction of object embeddings 
from pretrained DNN features. The displayed images ginger, granola and iron are 
sourced from publicly available datasets and are licensed under a public domain 
license76. Images in a and c reproduced with permission from ref. 76, Springer 
Nature Limited.
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24,102 object images (Fig. 1b). To this end, we first extracted the DNN 
layer activations for all the images. Next, for a given triplet of activa-
tions zi, zj and zk, we computed the dot product between each pair as a 
measure of similarity, then identified the most similar pair of images 
in this triplet and designated the remaining third image as the odd 
one out. Given the excessively large number of possible triplets for all 
24,102 images, we approximated the full set of object choices from a 
random subset of 20 million triplets47.

From both sets of available triplet choices, we next generated two 
representational embeddings, one for humans and one for the DNN, 
where each embedding was optimized to predict the odd-one-out 
choices in humans and DNNs, respectively. In these embeddings, each 
object is described through a set of dimensions that represent interpret-
able object properties. To obtain these dimensions and for comparability 
to previous work in humans36–38, we imposed sparsity and non-negativity 
constraints on the optimization, which support their interpretability and 
provide cognitively plausible criteria for dimensions36,39,48–51. Sparsity 
constrained the embedding to consist of fewer dimensions, motivated 
by the observation that real-world objects are typically characterized by 
only a few properties. Non-negativity encouraged a parts-based descrip-
tion, where dimensions cannot cancel each other out. Thus, a dimen-
sion’s weight indicated its relevance in predicting an object’s similarity 
to other objects. During training, each randomly initialized embedding 
was optimized using a recent variational embedding technique37 (see 
the ‘Embedding optimization and pruning’ section). The optimization 
resulted in two stable, low-dimensional embeddings, with 70 reproduc-
ible dimensions for DNN embedding and 68 for human embedding. The 
DNN embedding captured 84.03% of the total variance in image-to-image 
similarity, whereas the human embedding captured 82.85% of the total 
variance and 91.20% of the explainable variance given the empirical 
noise ceiling of the dataset.

DNN dimensions reflect diverse image properties
Having identified stable, low-dimensional embeddings that are predic-
tive of triplet odd-one-out judgements, we first assessed the interpret-
ability of each identified DNN dimension by visualizing object images 
with large numeric weights. In addition to this qualitative assessment, 
we validated these observations for the DNN by asking 12 (6 female and 
6 male) human participants to provide labels for each dimension sepa-
rately (see the ‘Labelling dimensions and construction of word clouds’ 
section). Similar to the core semantic and visual dimensions underlying 
odd-one-out judgements in humans described previously36,37,39, the DNN 
embedding yielded many interpretable dimensions, which appeared 
to reflect both semantic and visual properties of objects. The semantic 
dimensions included taxonomic membership (for example, related 
to food, technology and home) and other knowledge-related proper-
ties (for example, softness), whereas the visual dimensions reflected 
visual-perceptual attributes (for example, round, green and stringy), 
with some dimensions reflecting a composite of semantic and visual 
properties (for example, green and organic) (Fig. 2a). Of note, the DNN 
dimensions also revealed a sensitivity to basic shapes, including round-
ness, boxiness and tube shape. This suggests that in line with earlier 
studies52,53, DNNs indeed learn to represent basic shape properties, an 
aspect that might not be apparent in their overt behaviour54.

Despite the apparent similarities, there were, however, strik-
ing differences found between humans and the DNN. First, overall, 
DNN dimensions were less interpretable than human dimensions, as 
confirmed by the evaluation of all dimensions by two independent 
raters (Supplementary Section C). This indicates a global difference 
in how the DNN assigns images as being conceptually similar to each 
other. Second, although human dimensions were clearly dominated by 
semantic properties, many DNN dimensions were more visual percep-
tual in nature or reflected a mixture of visual and semantic information. 
We quantified this observation by asking the same two independent 
experts to rate human and DNN dimensions according to whether 

they were primarily visual perceptual, semantic, reflected a mixture of 
both or were unclear (Fig. 2b). To confirm that the results were not an 
arbitrary byproduct of the chosen DNN architecture, we provided the 
raters with four additional DNNs for which we had computed additional 
representational embeddings. The results revealed a clear dominance 
of semantic dimensions in humans, with only a small number of mixed 
dimensions. By contrast, for DNNs, we found a consistently larger 
proportion of dimensions that were dominated by visual information 
or that reflected a mixture of both visual and semantic information 
(Fig. 2c and Supplementary Fig. 1b for all DNNs). This visual bias is 
also present across intermediate representations of VGG-16 and even 
stronger in early to late convolutional layers (Supplementary Fig. 2). 
This demonstrates a clear difference in the relative weight that humans 
and DNNs assign to visual and semantic information, respectively. We 
independently validated these findings using semantic text embedding 
and observed a similar pattern of visual bias (Supplementary Section E 
indicates that the results were not solely a product of human rater bias).

Linking DNN dimensions to their interpretability
Despite the overall differences in human and DNN representational 
dimensions, the DNN also contained many dimensions that appeared 
to be interpretable and comparable to those found in humans. Next, we 
aimed at testing to what degree these interpretable dimensions truly 
reflected specific visual or semantic properties, or whether they only 
superficially appeared to show this correspondence. To this end, we 
experimentally and causally manipulated images and observed the 
impact on dimension scores. Beyond general interpretability, these 
analyses further establish which visual properties in each image drive 
individual dimensions and, thus, determine image representations.

Image manipulation requires a direct mapping from input 
images to the embedding dimensions. However, the embedding 
dimensions were derived using a sampling-based optimization based 
on odd-one-out choices inferred from penultimate DNN features. 
Consequently, this approach does not directly map these features 
to the learned embedding. To establish this mapping, we applied 
ℓ2-regularized linear regression to link the DNN’s penultimate layer 
activations to the learned embedding. This mapping then enables 
the prediction of embedding dimensions from the penultimate fea-
ture activations in response to novel or manipulated images (Fig. 1d). 
Penultimate layer activations were indeed highly predictive of each 
embedding dimension, with all dimensions exceeding an R2 of 75%, 
and the majority exceeding 85%. Thus, this allowed us to accurately 
predict the dimension values for novel images.

Having established an end-to-end mapping between the input 
image and individual object dimensions, we next used three approaches 
to both probe the consistency of the interpretation and identify 
dimension-specific image properties. First, to identify image regions 
relevant for each individual dimension, we used Grad-CAM55, an estab-
lished technique for providing visual explanations. Grad-CAM generates 
heat maps that highlight the image regions that are the most influen-
tial for model predictions. Unlike the typical use of Grad-CAM, which 
focuses on generating visual explanations for model classifications 
(for example, dog versus cat), we used Grad-CAM to reveal which image 
regions drive the dimensions in the DNN embedding. The results of this 
analysis are illustrated with example images in Fig. 3. Object dimensions 
were indeed driven by different image regions that contain relevant 
information, in line with the dimension’s interpretation derived from 
human ratings and suggesting that the representations captured by the 
DNN’s penultimate layer allow us to distinguish between different parts 
of the image that carry different functional importance.

As the second image explanation approach, to highlight which 
image properties drive a dimension, we used a generative image model 
to create novel images optimized for maximizing the values of a given 
dimension31,56,57. Unlike conventional activation maximization targeting 
a single DNN unit or a cluster of units, our approach aimed to selectively 
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amplify activation in dimensions of the DNN embedding across the 
entire DNN layer, using a pretrained generative adversarial neural net-
work (StyleGAN-XL58). To achieve this, we applied our linear end-to-end 
mapping to predict the embedding dimensions from the penultimate 
activations in response to the images generated by StyleGAN-XL. The 
results of this procedure are shown in Fig. 4b. The approach success-
fully generated images with high numerical values in the dimensions 
of our DNN embedding. Indeed, the properties highlighted by these 
generated images appear to align with human-assigned labels for 
each specific dimension, again suggesting that the DNN embedding 
contained conceptually meaningful and coherent object properties 
similar to those found in humans.

As the third image explanation approach, given that different 
visual properties naturally co-occur across images, and to unravel their 
respective contribution, we causally manipulated individual image 
properties and observed the effect on the predicted DNN dimensions. 
We exemplify this approach with manipulations in colour, object shape 
and background (Supplementary Section F), largely confirming our 
predictions, showing specific activation decreases or increases in 
dimensions that appeared to be representing these properties.

Factors driving human and DNN similarities and differences
The previous results have confirmed the overall consistency and 
interpretation of the DNN’s visual and semantic dimensions based on 

common interpretability techniques. However, a direct comparison 
with human image representations is crucial for identifying which 
representational dimensions align well and which do not. Traditional 
RSA provides a global metric of representational alignment, revealing a 
moderate correlation (Pearson’s r = 0.55) between the representational 
similarity matrices (RSMs) of humans and the DNN (Fig. 5a). Although 
this indicates some degree of alignment in the object image representa-
tions, it does not clarify the factors driving this alignment. To address 
this challenge, we directly compared pairs of dimensions from both 
embeddings, pinpointing which dimensions contributed the most to 
the overall alignment and which dimensions were less well aligned.

For each human dimension, we identified the most strongly 
correlated DNN dimension, once without replacement (unique) and 
once with replacement, and sorted the dimensions based on their 
fit (Fig. 5b). This revealed a close alignment, with Pearson’s reaching 
up to r = 0.80 for a select few dimensions, which gradually declined 
across other representational dimensions. To determine whether the 
global representational similarity was driven by just a few well-aligned 
dimensions or required a broader spectrum of dimensions, we assessed 
the number of dimensions needed to explain human similarity judge-
ments. The analysis revealed that 40 dimensions were required to 
capture 95% of the variance in representational similarity with the 
human RSM (Fig. 5c). Although this number is much smaller than the 
original 4,096-dimensional VGG-16 layer, these results demonstrate 
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Fig. 2 | Representational embeddings inferred from human and DNN 
behaviour. a, Visualization of example dimensions from human- and DNN-
derived representational embeddings, with a selection of dimensions that 
had been rated as semantic, mixed visual–semantic and visual, alongside their 
dimension labels obtained from human judgements. Note that the displayed 
images reflect only images with a public domain license and not the full image 
set76. b, Rating procedure for each dimension, which was based on visualizing 
the top k images according to their numeric weights. Human participants 

labelled each of the human and DNN dimensions as predominantly semantic, 
visual, mixed visual–semantic or unclear (unclear ratings are not shown; 7.35% 
of all dimensions are for humans and 8.57%, for VGG-16). c, Relative importance 
of dimensions labelled as visual and semantic, where VGG-16 exhibited a 
dominance of visual and mixed dimensions relative to humans that showed a 
clear dominance of semantic dimensions. Images in a and b reproduced with 
permission from ref. 76, Springer Nature Limited.
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that the global representational similarity is not solely driven by a small 
number of well-aligned dimensions.

Given the imperfect alignment of DNN and human dimensions, 
we explored the similarities and differences in the stimuli represented 
by these dimensions. For each dimension, we identified which images 
were the most representative of both humans and the DNN. Crucially, 
to highlight the discrepancies between the two domains, we then 
identified which images exhibited strong dimension values for humans 
but weak values for the DNN, and vice versa (Fig. 5d–f). Although the 
results indicated similar visual and semantic representations in the 
most representative images, they also exposed clear divergences in 
dimension meanings. For instance, in an animal-related dimension, 
humans consistently represented animals even for images in which 
the DNN exhibited very low dimension values. Conversely, the DNN 
dimension strongly represented objects that were not animals, such 
as natural objects, cages or mesh (Fig. 5d). Similarly, a string-related 
dimension maintained a string-like representation in humans but 
included other objects in the DNN that were not string like, potentially 
reflecting properties related to thin, curvy objects or specific image 
properties (Fig. 5f).

Relevance of object dimensions for categorization behaviour
Since internal representations do not necessarily translate into behav-
iour, we next addressed whether this misalignment would translate 
to downstream behavioural choices. To this end, we used a jackknife 
resampling procedure to determine the relevance of individual dimen-
sions for odd-one-out choices. For each triplet, we iteratively pruned 
dimensions in both human and DNN embeddings and observed changes 
in the predicted probabilities of selecting the odd one out, yielding 
an importance score for each dimension for the odd-one-out choice 
(Fig. 6a). The results of this analysis showed that although humans and 

DNNs often aligned in their representations and choices, a sizable frac-
tion of choices exhibited the same behaviour despite strong differences 
in representations (Fig. 6b). For behavioural choices, the semantic bias 
in humans was enhanced, as evidenced by an even stronger importance 
of semantic relative to visual or mixed dimensions in humans compared 
with DNNs. Individual triplet choices were affected not only by semantic 
dimensions but also by visual dimensions (Fig. 6c–f). Together, these 
results demonstrate that the differences in how humans and DNNs 
represent object images not only translate into behavioural choices 
but are also further amplified in their categorization behaviour.

Discussion
A key challenge in understanding the similarities and differences in 
humans and AI lies in establishing ways to make these two domains 
directly comparable. Overcoming this challenge would allow us to 
identify strategies to make AI more human like17 and for using AI as an 
effective model of human perception and cognition. In this work, we 
propose a framework to identify interpretable factors that determine 
the similarities and differences between human and AI representations. 
In this framework, these factors can be identified by using the same 
experiment to probe behaviour in humans and AI systems and applying 
the same computational strategy to natural and artificial responses 
to infer their respective interpretable embeddings. We applied this 
approach to human similarity judgements and representations of DNNs 
trained on natural images with varying objectives, with a primary focus 
on an image classification model. This allowed for a direct, meaning-
ful comparison of the representations underlying human similarity 
judgements with the representations of the image classification model.

Our results revealed that the DNN contained representations that 
appeared to be similar to those found in humans, ranging from visual 
(for example, ‘white’, ‘circular/round’ and ‘transparent’) to semantic 
properties (for example, ‘food related’ and ‘fire related’). However, a 
direct comparison with humans showed largely different strategies 
for arriving at these representations. Although human representa-
tions were dominated by semantic dimensions, the DNN exhibited a 
pronounced bias towards visual or mixed visual–semantic dimensions. 
In addition, a direct comparison of seemingly aligned dimensions 
revealed that DNNs only approximated the semantic representations 
found in humans. These different strategies were also reflected in 
their behaviour, where similar behavioural outcomes were based on 
different embedding dimensions. Thus, despite seemingly well-aligned 
human and DNN representations at a global level, deriving dimensions 
underlying the representational similarities provided a more complete 
and more fine-grained picture of this alignment, revealing the nature 
of the representational strategies that humans and DNNs use12,14,59.

Although approaches like RSA21,60 are particularly useful for com-
paring one or multiple representational spaces, they typically provide 
only a summary statistic of the degree of alignment and require explicit 
hypotheses and model comparisons to determine what it is about the 
representational space that drives human alignment. By contrast, 
other approaches have focused specifically on the interpretability of 
DNN representations31,32,34,35,61–63, but either provide very specific local 
measures about DNN units or have limited direct comparability with 
human representations, as the same interpretability methods can 
typically not be applied to understand human mental representations. 
Our framework combines the strengths of the comparability gained 
from RSA and existing interpretability methods to understand image 
representations in DNNs. We applied common interpretability methods 
to show that our approach allows for detailed experimental testing and 
causal probing of DNN representations and behaviour across diverse 
images. Yet, only the direct comparison with human representations 
revealed the diverging representational strategies of humans and DNNs 
and, thus, the limitations of the visualization techniques we used64.

Our results are consistent with previous work indicating that DNNs 
make use of strategies that deviate from those used in humans65,66. 
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blue regions) and differences (orange and green regions) between three highly 
correlating human and DNN dimensions. The pink circles denote the intersection 
of the red and blue regions, that is, where the same image scores highly in both 
dimensions. For this figure, we filtered the embedding by images from the public 
domain76. For three images without a public domain version, visually similar 
replacements were used. Images in d–f reproduced with permission from ref. 76, 
Springer Nature Limited.
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in our embedding. We show the top ten images that score the highest in the 

dimension and the corresponding top ten generated images. For this figure, we 
filtered the embedding by images available in the public domain76. Images in 
a and b reproduced with permission from ref. 76, Springer Nature Limited.
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Beyond previously discovered biases, here we found a visual bias in 
DNNs that diverges from a semantic bias in humans for similarity 
judgements. In particular, even the highest layers in DNNs retained 
strong visual biases for solving the tasks they had been trained on, 
including image classification or linking images with text, both of 
which can be described as semantic tasks with different degrees of rich-
ness. This visual strategy may, of course, reflect how our visual system 
solves core object recognition67. Indeed, it is an open question to what 
extent human core object recognition relies on a similar visual bias68 
and whether this bias is also found in the anterior ventral–temporal 
cortex69, which is known to be involved in high-level object processing70 
However, even if humans used a primarily visual strategy for solving 
core object recognition, our findings would demonstrate a significant 
limitation of DNNs in capturing human mental representations as 
measured with similarity judgements, despite similar representational 
geometries71.

Interestingly, CLIP, a more predictive model of human cortical 
visual processing26,29, retained a visual bias despite training on semantic 
image descriptions, showing that the classification objective alone 
is not sufficient for explaining visual bias in DNNs. At the same time, 

the visual bias in CLIP was smaller (Supplementary Fig. 1b), indicating 
that better models of high-level visual processing may also be models 
with a larger semantic bias and pointing towards potential strategies 
for improving their alignment with humans, which may involve multi-
modal pretraining or larger, more diverse datasets29. Future work would 
benefit from a systematic comparison of different DNNs to identify 
what factors determine visual bias and their alignment with human 
brain and behavioural data.

Although these results indicate that studying core dimensions of 
DNN representations can improve our understanding of the factors 
required to identify better models of human mental representations, 
it has also been demonstrated recently that aligning DNNs with human 
representations can improve DNN robustness and performance at 
out-of-distribution tasks28,72. This work highlights that identifying 
visual bias may be useful not only for understanding representational 
and behavioural differences between humans and DNNs but also for 
guiding future work determining the gaps in human–AI alignment and 
identifying adjustments in architecture and training needed to reduce 
this bias59. Further work is needed to clarify the role of task instructions 
in human–AI alignment across diverse tasks and instructions73.
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Fig. 6 | Overt behavioural choices in humans and the DNN. a, Overview of 
the approach. For one triplet, we computed the original predicted softmax 
probability based on the entire representational embedding for each object 
image in the triplet. We then iteratively pruned individual dimensions from the 
representational embedding and stored the resulting change in the predicted 
softmax probability—relative to that of the full embedding—as a relevance score 
for that dimension. b, We calculated the relevance scores for a random sample 
of 10 million triplets and identified the most relevant dimension for each triplet. 
We then labelled the 10 million most relevant dimensions according to human-
labelled visual properties as semantic, mixed visual–semantic, visual or unclear. 

Semantic dimensions are the most relevant for human behavioural choices, 
whereas for VGG-16, visual and mixed visual–semantic properties are more 
relevant. c–f, We rank the sorted changes in softmax probability to find triplets 
in which human and the DNN maximally diverge. Each panel shows a triplet 
with the behavioural choice made by humans and the DNN. We visualized the 
most relevant dimension for that triplet alongside the distribution of relevance 
scores. Each dimension is assigned its human-annotated label. For this figure, we 
filtered the embedding by images from the public domain76. Images in a and c–f 
reproduced with permission from ref. 76, Springer Nature Limited.
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The framework introduced in this work can be expanded in several 
ways. Future work could use this approach to explore what factors 
make DNNs similar or different from one another. A comprehensive 
analysis of various DNN architectures, objectives or datasets25,26,28 
could uncover the factors underlying representational alignment, 
and extension to other stimuli, tasks and domains, including brain 
recordings. Together, this framework promises a more comprehensive 
understanding of the relationship between human and AI representa-
tions, providing the potential to identify better candidate models of 
human cognition and behaviour and more human-aligned artificial 
cognitive systems.

Methods
Triplet odd-one-out task
In the triplet odd-one-out task, participants are presented with three 
objects and must choose the one that is least similar to the others, that 
is, the odd one out. We define a dataset 𝒟𝒟 𝒟𝒟 {({is, js, ks}, {as,bs})}

n
s=1, where 

n is the total number of triplets and {is, js, ks} is a set of three unique 
objects, with {as, bs} being the pair among them determined as the most 
similar. We used a dataset of human responses36 to learn an embedding 
of human object concepts. In addition, we simulated the triplet choices 
from a DNN. For the DNN, we simulated these choices by computing 
the dot product of the penultimate layer activation zi ∈ ℝ+ after apply-
ing the rectified linear unit function, where Sij 𝒟 z⊤i zj. The most similar 
pair {as, bs} was then identified by the largest dot product:

{as,bs} 𝒟 argmax
(xs ,ys)∈{(is , js),(is ,ks),(js ,ks)}

{z⊤xszys } . (1)

Using this approach, we sampled the triplet odd-one-out choices for 
a total of 20 million triplets for the DNN.

Embedding optimization and pruning
Optimization. Let W ∈ ℝm×p denote a randomly initialized embedding 
matrix, where p = 150 is the initial embedding dimensionality. To learn 
interpretable concept embeddings, we used variational interpretable 
concept embeddings (VICE), an approximate Bayesian inference 
approach37. VICE performs mean-field variational inference to approxi-
mate the posterior distribution p(W|𝒟𝒟𝒟 with a variational distribution, 
qθ(W), where qθ ∈ 𝒬𝒬.

VICE imposes sparsity on the embeddings using a spike-and-slab 
Gaussian mixture before updating the variational parameters θ. This 
prior encourages shrinkage towards zero, with the spike approximat-
ing a Dirac delta function at zero (responsible for sparsity) and the 
slab modelled as a wide Gaussian distribution (determining non-zero 
values). Therefore, it is a sparsity-inducing prior and can be interpreted 
as a Bayesian version of the elastic net74. The optimization objective 
minimizes the Kullback–Leibler divergence between the posterior and 
approximate distributions:

argmin
θ

𝔼𝔼qθ(W) [
1
n log [qθ(W𝒟 − logp(W𝒟 𝒟]

− 1
n

n
∑
s=1

logp [({as,bs}|{is, js, ks},W)]] ,
(2)

where the left term represents the complexity loss and the right term 
is the data log-likelihood.

Pruning. Since the variational parameters are composed of two matri-
ces, one for the mean and one for the variance, that is, θ = {μ, σ}, we can 
use the mean representation μi as the final embedding for an object i. 
Imposing sparsity and positivity constraints improves the interpretabil-
ity of our embeddings, ensuring that each dimension meaningfully 
represents distinct object properties. Although sparsity is guaranteed 
via the spike-and-slab prior, we enforced non-negativity by applying a 

rectified linear unit function to our final embedding matrix, thereby 
guaranteeing that W ∈ ℝm×p

+ . Note that this is done both during optimi-
zation and at inference time. We used the same procedure as in ref. 37 
for determining the optimal number of dimensions. Specifically, we 
initialized our model with p = 150 dimensions and reduced the dimen-
sionality iteratively by pruning dimensions based on their probability 
of exceeding a threshold set for sparsity:

Prune if Pr(wij > 0𝒟 < 0.05 for fewer than five objects , (3)

where wij is the weight associated with object i and dimension j. Training 
stopped either when the number of dimensions remained unchanged 
for 500 epochs or when the embedding was optimized for a maximum 
of 1,000 epochs.

Embedding reproducibility and selection
We assessed reproducibility across 32 model runs with different seeds 
using a split-half reliability test. We chose the split-half reliability test 
for its effectiveness in evaluating the consistency of our model’s per-
formance across different subsets of data, ensuring robustness. We 
partitioned the objects into two disjoint sets using odd and even masks. 
For each model run and every dimension in an embedding, we identi-
fied the dimension that is the most highly correlated among all the 
other models by using an odd mask. Using the even mask, we correlated 
this highest match with the corresponding dimension. This process 
generated a sampling distribution of Pearson’s r coefficients for all 
the model seeds. We subsequently Fisher z transformed the Pearson’s 
r sampling distribution. The average z-transformed reliability score 
for each model run was obtained by taking the mean of these z scores. 
Inverting this average provides an average Pearson’s r reliability score 
(Supplementary Section G). For our final model and all subsequent 
analyses, we selected the embedding with the highest average repro-
ducibility across all dimensions.

Labelling dimensions and construction of word clouds
We assigned labels to the human embedding by pairing each dimension 
with its highest correlating counterpart from ref. 36. These dimensions 
were derived from the same behavioural data, but using a non-Bayesian 
variant of our method. We then used the human-generated labels that 
were previously collected for these dimensions, without allowing for 
repeats.

For the DNN, we labelled dimensions using human judgements. 
This allowed us to capture a broad and nuanced understanding of each 
dimension’s characteristics. To collect human judgements, we asked 
12 laboratory participants (6 male, 6 female; mean age, 29.08 years; 
s.d., 3.09 years; range, 25–35 years) to label each DNN dimension. 
Participants were presented with a 5 × 6 grid of images, with each row 
representing a decreasing percentile of importance for that specific 
dimension. The top row contained the most important images, and 
the following rows included images within the 8th, 16th, 24th and 
32nd percentiles. Participants were asked to provide up to five labels 
that they thought best described each dimension. Word clouds show-
ing the provided object labels were weighted by the frequencies of 
occurrence, and the top six labels were visualized. Due to computer 
crashes during data acquisition, three participants had incomplete 
data (32%, 80% and 93%).

Study participation was voluntary, and participants were not 
remunerated for their participation. This study was conducted in 
accordance with the Declaration of Helsinki and was approved by the 
local ethics committee of the Medical Faculty of the University Medical 
Center Leipzig (157/20-ek).

Dimension ratings
Two independent experts rated the dimensions according to two 
questions. The first question asked whether the dimensions were 

http://www.nature.com/natmachintell


Nature Machine Intelligence | Volume 7 | June 2025 | 848–859 856

Article https://doi.org/10.1038/s42256-025-01041-7

primarily visual perceptual, semantic conceptual, a mix of both or 
whether their nature was unclear. For the second question, they 
rated the dimensions according to whether they reflected a single 
concept, several concepts or were not interpretable. Overall, both 
raters agreed agreed 81.86% of the time for question 1 and 90.00% 
of the time for question 2. Response ambiguity was resolved by a 
third rater (Supplementary Sections A–C). All raters were part of the 
laboratory but were blind to whether the dimensions were model or 
human generated.

Convolutional embeddings
We additionally learned embeddings from early (convolutional  
block 1), middle (convolutional block 3) and late (convolution block 
5) convolutional layers of VGG-16. For this, we applied global average 
pooling to the spatial dimensions of the feature maps and then sampled 
triplets from the averaged one-dimensional representations.

Dimension value maximization
To visualize the learned object dimensions, we used an activation 
maximization technique with a pretrained StyleGAN-XL generator 𝒢𝒢 
(ref. 58). Our approach combines sampling with gradient-based opti-
mization to generate images that maximize specific dimension values 
in our embedding space.

Initial sampling. We started by sampling a set of N = 100,000 concat-
enated noise vectors vi ∈ ℝd , where d is the dimensionality of the 
StyleGAN-XL latent space. For each noise vector, we generated an image 
xi 𝒟 𝒢𝒢(vi𝒟 and predicted its embedding ŷi ∈ ℝp using our pipeline, where 
p is the number of dimensions in our embedding space.

For a given dimension j, we selected the top k images that yielded 
the highest values for ̂yij, the jth component of ̂yi. These images served 
as starting points for our optimization process.

Gradient-based optimization. To refine these initial images, we per-
formed gradient-based optimization in the latent space of StyleGAN-XL. 
Our objective function ℒAM balances two goals: increasing the absolute 
value of the embedding for dimension j and concentrating probability 
mass towards dimension j. Formally, we define ℒAM as

ℒAM(vi𝒟 𝒟 −α ̂yij − β log [p ( ̂yij|zi)] , (4)

where zi 𝒟 f(𝒢𝒢𝒢vi𝒟𝒟 denotes the penultimate features extracted from the 
generated image using the pretrained VGG-16 classifier f. The term on 
the left, referred to as the dimension size reward, contributes to increas-
ing the absolute value ̂yij for the object dimension j. The term on the 
right, referred to as the dimension specificity reward, concentrates 
probability mass towards a dimension without necessarily increasing 
its absolute value. The balance between these two objectives is con-
trolled by the scalars α and β. The objective ℒAM was minimized using 
vanilla stochastic gradient descent. Importantly, only the latent code 
vector vi was updated, and keeping the parameters of 𝒢𝒢, the VGG-16 
classifier f and the embedding model fixed.

This optimization process was performed for each of the top k 
images selected in the initial sampling phase. The resulting optimized 
images provide visual representations that maximally activate specific 
dimensions in our learned embedding space, offering insights into the 
semantic content captured by each dimension.

Highlighting image properties
To highlight the image regions driving individual DNN dimensions, 
we used Grad-CAM. For each image, we performed a forward pass to 
obtain an image embedding and computed gradients using a backward 
pass. We next aggregated the gradients across all the feature maps in 
that layer to compute an average gradient, yielding a two-dimensional 
dimension importance map.

RSA analyses
We used RSA to compare the structure of our learned embeddings with 
human judgements and DNN features. This analysis was conducted 
in three stages: human RSA, DNN RSA, and a comparative analysis 
between human and DNN representations.

Human RSA. We reconstructed a similarity matrix from our learned 
embedding. Given a set of objects 𝒪𝒪 𝒟 o1,… ,om, we computed the simi-
larity Sij between each pair of objects (oi, oj) using the softmax 
function:

Sij 𝒟
1

|𝒪𝒪 𝒪 {oi,o j}|
∑

k∈𝒪𝒪𝒪{oi ,o j}

exp (y⊤i yj)

exp (y⊤i yj) + exp (y⊤i yk) + exp (y⊤j yk)
, (5)

where yi is the embedding of object oi, and the softmax function returns 
the probability of oi being more similar to ok than oj. To evaluate the 
explained variance, we used a subset of 48 objects for which a fully sam-
pled similarity matrix and associated noise ceilings were available from 
previous work36. We then computed the Pearson correlation between 
our predicted RSM and the ground-truth RSM for these 48 objects.

DNN RSA. We followed a similar procedure, reconstructing the RSM 
from our learned embedding of the DNN features. We then correlated 
this reconstructed RSM with the ground-truth RSM derived from the 
original DNN features used to sample our behavioural judgements.

Comparative analysis. To compare human and DNN representations, 
we conducted two analyses. First, we performed a pairwise comparison 
by matching each human dimension with its most correlated DNN 
dimension. This was done both with and without replacement, allow-
ing us to assess the degree of alignment between human and DNN 
representational spaces. Second, we performed a cumulative RSA to 
determine the number of DNN dimensions needed to accurately reflect 
the patterns in the human similarity matrix. We took the same ranking 
of DNN dimensions used for the pairwise RSA, starting with the highest 
correlating dimension. We then progressively added one DNN dimen-
sion at a time to a growing subset. After each addition, we reconstructed 
the RSM from this subset and correlated both the human RSM and the 
cumulative DNN RSM. This step-by-step process allowed us to observe 
how the inclusion of each additional DNN dimension contributed to 
explaining the variance in the human RSM.

Data availability
The images used in this study are obtained from the THINGS object 
concept and image database39, available via the OSF repository at 
https://osf.io/jum2f. All the result files pertaining to this study are made 
publicly available via a separate OSF repository at https://osf.io/nva43/.

Code availability
A Python implementation of all the experiments presented in this 
paper is publicly available via GitHub at https://github.com/florian-
mahner/object-dimensions/ and via Zenodo at https://doi.org/10.5281/
zenodo.14731440 (ref. 75).
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