Generative deep learning models offer a fundamentally new approach for simulating stochastic processes in turbulent flows.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout

EDWARD KINSMAN / SCIENCE PHOTO LIBRARY.
References
Li, T., Biferale, L., Bonaccorso, F., Scarpolini, M. A. & Buzzicotti, M. Nat. Mach. Intell. 6, 393–403 (2024).
Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N. & Ganguli, S. In Proc. 32nd International Conference on Machine Learning Vol. 37, 2256–2265 (PMLR, 2015).
Toschi, F. & Bodenschatz, E. Annu. Rev. Fluid Mech. 41, 375–404 (2009).
Vinuesa, R. & Brunton, S. L. Nat. Comput. Sci. 2, 358–366 (2022).
Tennie, F., Laizet, S., Lloyd, S. & Magri, L. Nat. Rev. Physics 7, 220–230 (2025).
Gourianov, N., Givi, P., Jaksch, D. & Pope, S. B. Sci. Adv. 11, 5990 (2025).
Du, P., Parikh, M. H., Fan, X., Liu, X.-Y. & Wang, J.-X. Nat. Commun. 15, 10416 (2024).
Valencia, M. L., Pfaff, T. & Thuerey, N. Learning distributions of complex fluid simulations with diffusion graph networks. In 13th International Conference on Learning Representations (OpenReview, 2025).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Rights and permissions
About this article
Cite this article
Guastoni, L., Vinuesa, R. A new perspective on the simulation of stochastic problems in fluid mechanics with diffusion models. Nat Mach Intell 7, 816–817 (2025). https://doi.org/10.1038/s42256-025-01060-4
Published:
Issue date:
DOI: https://doi.org/10.1038/s42256-025-01060-4