Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Fluid dynamics

A new perspective on the simulation of stochastic problems in fluid mechanics with diffusion models

Generative deep learning models offer a fundamentally new approach for simulating stochastic processes in turbulent flows.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flow of hot air rising from a candle.

EDWARD KINSMAN / SCIENCE PHOTO LIBRARY.

References

  1. Li, T., Biferale, L., Bonaccorso, F., Scarpolini, M. A. & Buzzicotti, M. Nat. Mach. Intell. 6, 393–403 (2024).

    Article  Google Scholar 

  2. Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N. & Ganguli, S. In Proc. 32nd International Conference on Machine Learning Vol. 37, 2256–2265 (PMLR, 2015).

  3. Toschi, F. & Bodenschatz, E. Annu. Rev. Fluid Mech. 41, 375–404 (2009).

    Article  Google Scholar 

  4. Vinuesa, R. & Brunton, S. L. Nat. Comput. Sci. 2, 358–366 (2022).

    Article  Google Scholar 

  5. Tennie, F., Laizet, S., Lloyd, S. & Magri, L. Nat. Rev. Physics 7, 220–230 (2025).

    Article  Google Scholar 

  6. Gourianov, N., Givi, P., Jaksch, D. & Pope, S. B. Sci. Adv. 11, 5990 (2025).

    Article  Google Scholar 

  7. Du, P., Parikh, M. H., Fan, X., Liu, X.-Y. & Wang, J.-X. Nat. Commun. 15, 10416 (2024).

    Article  Google Scholar 

  8. Valencia, M. L., Pfaff, T. & Thuerey, N. Learning distributions of complex fluid simulations with diffusion graph networks. In 13th International Conference on Learning Representations (OpenReview, 2025).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Vinuesa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guastoni, L., Vinuesa, R. A new perspective on the simulation of stochastic problems in fluid mechanics with diffusion models. Nat Mach Intell 7, 816–817 (2025). https://doi.org/10.1038/s42256-025-01060-4

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s42256-025-01060-4

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics