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Visual motion perception is a key function for agents interacting with their
environment. Although recent advances in optical flow estimation using
deep neural networks have surpassed human-level accuracy, anotable

disparity remains. In addition to limitations in luminance-based first-order
motion perception, humans can perceive motions in higher-order features—
anability lacking in conventional optical flow models that rely on intensity
conservation law. To address this, we propose a dual-pathway model that
mimics the cortical VI-MT motion processing pathway. It uses a trainable
motion energy sensor bank and arecurrent graph network to process
luminance-based motion and incorporates an additional sensing pathway
with nonlinear preprocessing using a multilayer 3D CNN block to capture
higher-order motion signals. We hypothesize that higher-order mechanisms
are critical for estimating robust object motion in natural environments
that contain complex optical fluctuations, for example, highlights on

glossy surfaces. By training on motion datasets with varying material
properties of moving objects, our dual-pathway model naturally developed
the capacity to perceive multi-order motion as humans do. The resulting
model effectively aligns with biological systems while generalizing both
luminance-based and higher-order motion phenomenain natural scenes.

Creating machines that perceive the world as humans do poses a sub-
stantial interdisciplinary challenge bridging cognitive science and
engineering. From the former perspective, developing human-aligned
computational models advances our understanding of brain func-
tions and the mechanisms underlying perception'™. On the latter
side, such models, which accurately simulate human perception in
diversereal-world scenarios, would enhance the reliability and utility
of human-centred technologies.

Recent advances in machine learning by deep neural networks
(DNNs) have led machine vision to surpass humans in performing
many vision tasks*”. In visual motion estimation®, state-of-the-art
(SOTA) computer vision (CV) models are more accurate than humans
atestimating optical flow in naturalimages’; however, they are not yet
sufficiently human-aligned, being unable to predict human perception
in many aspects. Computer vision models are often unstable under
certain experimental conditions®’. They do not reproduce human
visualillusions nor fully capture biases inherentin human perception’.

Recent attempts tointegrate insights from cognitive science with
deep learning techniques'*?> demonstrate the DNNs’ potential to
align with the biological visual motion processing, but they cannot
accurately compute the detailed image motion, unlike humans and
SOTA CVmodels.

Here, to contribute both to biological vision science and com-
puter vision, we propose a DNN model showing human-like perceptual
responses across broad aspects of motion phenomena, while main-
taining high motion estimation capabilities comparable to SOTA CV
models.

Our model features atwo-stage processing that simulates the cor-
tical system of primates™'. The first stage mimics the primary visual
cortex (V1), featuring neurons with multiscale spatiotemporal filters
thatextractlocal motion energy. Unlike past models, the filter tunings
are learnable to fit natural optic flow computation. The second stage,
which mimics the middle temporal cortex (MT), addresses motion
integration and segregation. We introduce the concept of motion
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graphmodelling dynamic scenes, enabling flexible connections across
local motion elements for global motion integration and segregation.
As the motion graph implicitly encodes object interconnections in a
graph topology, training-free graph cuts” can be seamlessly applied
for object-level segmentation.

The early version of our model, reported partially in ref. 16, fea-
tured asingle-channel motion sensing pathway in the first stage and was
trained to estimate the ground truth flow across various video datasets.
The modelsuccessfully replicated awide range of findings on biologi-
cal visual motion processing for low-level, luminance-based motion
(first-order motion); however, asit is solely based on luminance-based
motion sensing, it cannot explain higher-level human motion per-
ception involving spatiotemporal pattern preprocessing, such as
second-order motion"%,

Second-order motion, also termed non-Fourier motion, features
high-level spatiotemporal features, including spatial or temporal con-
trast modulations. Such motion perception is observed across many
species, including macaques”, flies?® and humans'®%, yet it remains
undetectable by most CV models®. This limitation stems from CV
models’ reliance on flow estimation algorithms based on the intensity
conservation law??, which estimates pixel shifts by matching intensity
distributions before and after the movement.

Werevised the model’s structure and training scheme to encom-
pass both first- and second-order motion perception. As human
vision studies suggest separate processing mechanisms for first-
and second-order motions*°, we introduced a secondary sens-
ing pathway with a naive three-dimensional convolutional neural
network (3D CNN) preceding the motion energy sensing stage>?°.
The 3D CNN is designed to perform nonlinear preprocessing to
extract spatiotemporal textures, following the filter-rectify-filter
model of second-order motion processing”. Given the computa-
tional power of neural networks, the modified model is expected to
detect second-order motion after training on an adequate number
of artificial, second-order motion stimuli; however, such training
is unrealistic in natural environments, where pure second-order
motions are rarely observed. The critical scientific question is how
and why the biological visual system naturally acquires the ability
to perceive second-order motion.

We hypothesized that second-order motion perception aids
the estimation of the motion of objects exhibiting different material
properties. Natural non-Lambertian optical effects, such as specular
reflections and transparent refractions, can alter the light path of
an object. This generates complex and dynamic optical turbulence
on the surface of the moving object, introducing serious first-order
motion noise in the image motion flow. For such non-diffuse materi-
als, detecting first-order motion alone will not provide an accurate
estimation of object motion, but the additional use of second-order
motion—such as the movements of dynamic luminance noise—would
be able to improve the object motion estimation. As a proof of con-
cept that detecting second-order motion correlates with estimat-
ing non-Lambertian objects’ motion, we created two versions of a
motion dataset. One contained purely Lambertian (matte) objects,
and the other non-Lambertian objects experienced optical turbulence
imparted by non-diffuse materials. We trained different models on both
datasets and found that, given an appropriate structure and training
environment, the model naturally developed the ability to perceive
second-order motion comparable to human capabilities. We also show
that our human-aligned visual motion model, with the ability to process
both first- and second-order motions, can robustly estimate object
motion under noisy natural environments.

The contributions of our study can be summarized as follows:

« To model human visual motion processing by trainable motion
energy sensing and agraph network, with the dual-channel design
for the detection of both first- and second-order motions.

» To show the model’s ability to reproduce past scientific findings
related to motion perception while providing high-density optical
flow estimationand segmentation comparable with SOTA CV models.

« To demonstrate the conceptual feasibility of a hypothesis that
second-order motion perception may have evolved for reliable
estimation of motion of non-Lambertian objects despite the pres-
ence of optical noise.

Results

In the next section we present the processing pipeline of the
dual-channel two-stage motion model. We then demonstrate how the
modelintegrates local motionsin various scenarios. Finally, we extend
the model’s scope to higher-order motions, exploring the relationship
between material properties and the ability of second-order motion
perception. Demonstrations of our project are available at https://
kucognitiveinformaticslab.github.io/motion-model-website/.

The two-stage processing model

Our prototype model features two-stage motion processing that com-
bines classical motion energy sensorsin stage I with modern DNNs in
stage . Stage I captures local motion energy, simulating the function
of V1, whereas stage ll globally integrates local motions, simulating the
primary function of the middle temporal cortex. Thered route in Fig. 1a
is for sensing first-order motion. Specifically, we built 256 trainable
motion energy units, each with a quadrature 2D Gabor spatial filter
and a quadrature temporal filter. These captured the spatiotemporal
motionenergies of input videos withina multiscale wavelet space. The
key implementation difference from past motion energy models™"is
thatwe embedded computationinthe deep learning framework, with
each motion energy neuron’s parameters, such as preferred moving
speed and direction, being trainable to fit the task. In Fig. 1b we demon-
strate the speed-directiondistribution and filter receptive field of the
trained motion energy neurons. These neurons, activated by stimuli
with the preferred spatiotemporal frequency, have their activation
patterns decoded into perceptual responses (Fig. 1b(iii)). The activa-
tion patterns of stage I resemble mammalian neuronrecordingsinthe
Vlcortex withrespect to spatiotemporal receptive field and direction
tuning (Fig. 1b(ii),(iv)). Moreover, incorporating motion energy sensors
allows the model to replicate human-aligned perception of various
motion illusions, such as reverse phi and missing fundamental illu-
sions, which are not captured by CV models estimating dense optical
flow based on correspondence tracking'®.

Stagelis connected to stage I, which constructs a fully connected
graphonlocalmotion energy, treating each spatial locationasanode,
with all nodes interconnected. We use a self-attention mechanism to
define the topological structure of the graph, by which motions are
recurrently integrated to generate interpretations of global motion
and address aperture problems (Fig. 1a, right). A shared trainable
decoderis used to visualize the optical flow fields from stages [ and II.
The entire model is trained under supervision to estimate pixel-wise
object motions in naturalistic datasets?*°,

The first-order motion energy channel can capture first-order
motionsonly. Weadded an alternative channel to extractinformation
on higher-order motion; this is depicted by the grey route in Fig. 1a.
This channel employs trainable multilayer 3D convolutions that extract
nonlinear spatiotemporal features before the motion energy computa-
tions. This dual-channel design was inspired by earlier vision studies
of separate processing designs> >,

Refer to the ‘Model structure’ and ‘Training strategy’ sections in
the Methods for more technical details on the model.

Motion graph-based scene integration

Thissection focuses on how stage Il of our modelintegrates first-order
motion signals to solve the aperture problem® by switching off the
connection from the higher-order channel in stage I.
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Fig.1| Overview of the two-stage motion perception system. a, Stage | mimics
the V1function by detecting local motion, whereas stage Il uses a graph network
for recurrent motion integration and segregation, mimicking the middle
temporal cortex. Stage  employs dual channels to process both first- and higher-
order motion. The first-order channel captures Fourier-based motion in motion
energy units (red route), and the higher-order channel uses normative 3D CNN
layers to extract advanced features (grey route). Natural videos are used to train
the entire model for motion flow estimation. b, lllustration of motion energy

units in stage I after training. b(i), Distribution of preferred moving directions
and speeds. b(ii), Spatiotemporal receptive field of one motion energy unit,
characterized by a pair of Gabor kernel and exponentially decayed sinusoidal
kernel. The neuron’s receptive field is from ref. 91. b(iii), Ademo showing how a
rightward-moving grating activates specific motion energy units and decodes to
aperceptual response. b(iv), Direction tuning curves of a specific motion energy
unit to grating and plaid stimuli. RF, receptive field.

Figure 2a (left) displays the responses of 256 units to both drift-
ing Gabor and plaid stimuli*. Analysis revealed three distinct groups
of units on the basis of their partial correlations with the Gabor and
plaid stimuli. Component cells responded to the direction of a Gabor
component. Pattern cells responded to the integrated (coherent)
direction of plaid motion. Unclassified cells showed no definitive pref-
erence for either response, as shown on the right of Fig. 2a. Typically,
component cellsdominate in V1, whereas pattern cells, equipped with
motionintegration capabilities, are more commonin the middle tem-
poral cortex®’. Our model mirrors this biological distribution, as more
componentcellsareinstage land more pattern and unclassified cells
in stage Il. Figure 2b shows a global motion of drifting Gabors, where
each local patch exhibits a different local direction and speed but is
collectively consistent with unified 2D motion downward. Humans
perceive coherent downward motion by integrating local motions
across space and orientation®. In agreement with human perception,
stage | of our model computes local motion whereas stage Il responds
to global motion.

Figure 2cillustrates how the model adapts to spatial patterns when
integrating motions. When a diamond moves along a circular path
(scenario A), where stage Iwould detect local orthogonal movements
oftheline segments, stage llintegrates the local motions into a coher-
entglobal motion (seethe left side of Fig. 2c). Inscenario B, despite the
corners of the diamond being occluded by stationary rounded squares,
the modelintegrates the local motions of the line segmentsinto asingle
coherent motion. The heat map of the stage Il connections shows that
the line segments remain linked, as if the model properly considers

the spatial relationships between occluders and edge segments. This
cannot be simply attributed to a wide integration window from the
motiongraphbecause, inscenario C, where the occluders areinvisible,
the connectionsbetweentheline segmentsarelostinstagell,and the
model generates incoherent motion. These model behaviours across
scenarios A-C align well with human psychophysical data®*, as shown
by the similarity in the motion coherence index between the model
and humans (see bar plot at the bottom-left of Fig. 2¢).

Stage Il is essential when processing complex natural scenes
(Fig.3a). Real scenes often exhibit chaotic local motion energies, com-
pounded by challenges such as occlusions and non-textured regions.
Addressing these complexities requires long-range and flexible spatial
interactions, which are effectively handled by the graph-based, recur-
rent integration process of stage Il. During the iterative process, the
model represents local regions as nodes of a graph. The connection
weights between locations are captured by the adjacency matrix
A € RMW=HW This matrix is normalized to within therange (0,1), where
higher valuesindicate stronger connections. An affinity heat map can
be expanded from a specific row of the adjacency matrix (Fig. 3a),
indicating how stage Il distinguishes objects from the background and
adaptively establishes connections across occlusions. We hypothesized
that some of the information required for object-level segmentation
was inherently encoded in the topology of the motion-based graph.
We used atraining-free visualization method to test this. Specifically,
graph bipartitioning based on the eigenvector corresponding to the
second smallest eigenvalue of the graph Laplacian® enabled instance
segmentation based on motion coherence (right side of Fig. 3a).
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Fig.2|Recurrent motion integration. a, The tuning properties of model

units for 1D gratings and 2D plaids. The partial correlations to component

and pattern tuning types are shown. Overall, the model units exhibit a trend
similar to mammalian neural recordings: Stage | predominantly consists of
component-selective neurons, whereas stage Il is dominated by pattern-selective
neurons, corresponding to the VI-MT processing hierarchy. The animal data

are fromref. 32. b, Response to global motion of Gabor patches®. Local patches
contain various motion directions and speeds, which are captured by stage .
Stage Il then performs motion integration, linking local motion signals to resolve
the aperture problem and infer global (downward) motion. The model response

aligns with the human perception of adaptive pooling. ¢, Motion integration

is sensitive to higher-order pattern cues. We used the three scenarios A, Band
Cdetailed inref. 34. The extents of integration were quantified by correlating
the directions of motion between adjacent segments across a single circular
translation cycle. Compared with scenario C, scenario B—characterized by
structural constraints and depth cues—led to anincreased integration index
inthe model, similar to human perception®*. In the middle column of the right
panels (for unit connections), we visualize the attention heat map derived from
the motion graph, showing the connectivity of the unit (marked by a circle) with
other unitsin stageIl.

Theresultsindicated that the modelintegrated motion representations
and object-level recognitions via graph structure, grouping objects
evenacross occlusions.

Our motion-graph-based integration mechanism can unify motion
perception and object segmentation in a single framework. Through
arecurrent process, local motion signals become accurately com-
bined in a graph space, yielding clear object-level representationin a
coarse-to-fine manner. Refer to the ‘Stage Il (global Motion integration
and segregation)’section for theimplementation details. This may be
related to motion-shape interactions in the biological visual system™.

We further tested the model using the Sintel slow benchmark?, for
which psychophysically measured human-perceived flows are avail-
able’. We compared our model to various CV optical flow estimation
methods, including traditional algorithms such as Farneback’®; bio-

logically inspired models™*’; and SOTA CV models such as multiscale

inference methods®*®, spatial recurrent models®, graph reasoning
approaches*® and vision transformers*.. As detailed in Table 1, we
computed the Pearson correlation coefficients and vector endpoint
errors (EPEs) to assess the relationships between model predictions,
humanresponses and ground truth. We also calculated partial correla-
tions between human and model responses while controlling for the
influence of ground truth, and the response consistency index (RCI)".
These two are global and local measures to evaluate how much the
model prediction accurately replicates human perceptual errors from
the physical ground truth (refer to the ‘Human and model comparison’
section for further details).

Although our framework was not explicitly optimized for pre-
cise flow estimation, its performance remains competitive with SOTA
CV models. Notably, our model shows the highest partial correla-
tion with human response and RCI. Figure 3b demonstrates a strong
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can further achieve instance segmentation without any additional training.

b, Ascatter plot comparing human and model responses to the Sintel dataset in
terms of u, v (pixels per frame). Ared regression line, fitted to the data, indicates
astronglinear relationship between human and model responses. The shadows

around the red line represent the 95% confidence interval (CI) of the linear
regression line. ¢, Qualitative comparison of ground truth, human and model
responses on the MPI-Sintel*®. The larger the red circle at each location, whose
size indicates the magnitude of positive RCI, the stronger the alignment with
human responses over ground truth. At many points, our model demonstrates a
better alignment with human perception than with ground truth. See Table 1 for
detailed quantitative results. The model only uses the first-order channel in
stagel. vs, versus.

correlation between the model prediction and human data in (u,v)
vector component distribution. Figure 3c qualitatively suggests that
motion integration in stage Il introduces perceptual biases that align
with humanerrors.

In addition to the Sintel benchmark, we tested our model on the
KITTI2025 dataset®, which consists of real-world driving scenes, and
found consistent results (Extended Data Table 1). See also Extended
Data Table 4 for the results obtained when the dual channels are used
on these benchmarks.

Material properties and second-order motion perception

In this section we will consider a full dual-channel model. Despite
including a second channel that extracted higher-order features, our
model could not identify second-order motion when trained only on
existing motion datasets. This limitation reflects broader challenges
in CV, as other DNN-based models also fail to capture second-order
motion perception®.

To test our hypothesis that the biological system evolved to per-
ceive second-order motion for estimating object movement amidst
optical noise from non-diffuse materials, we constructed datasets that
controlled the properties of object materials. One dataset contained

diffuse (matte) reflections and the other non-diffuse properties, includ-
ing glossy, transparent and metallic surfaces (Fig. 4a). The model was
trained withafocus on higher-order motion extractors to estimate the
ground truth of object motion while ignoring optical interferences
caused by non-diffuse reflections.

To quantify second-order motion perception, we developed a
benchmark using natural images with various second-order mod-
ulations. As shown in Fig. 4b, the benchmark included classical
drift-balanced motion (temporal contrast modulation)”; local low
contrast (spatial modulation); and natural phenomena such as water
waves and swirling flow fields (spatiotemporal modulation). The last
movements are not pure second-order motion butare almostindiscern-
iblein Fourier space, given the chaotic optical disturbances caused by
reflection and refraction. Our psychophysical experiment revealed a
strong correlation between the physical ground truth and the human
responsein detecting second-order motion (r,,c,, = 0.983,s.d. = 0.005)
(Fig.4c).By contrast, arepresentative CV model, RAFT, was associated
withamuchlower correlation (r= 0.102). We trained our model on the
diffuse and non-diffuse datasets and compared the correlations with
human responses. The results of Fig. 5c indicate that both the data-
set material properties and the model architecture greatly influence
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Table 1| Model versus human versus ground truth on Sintel benchmark

Method Puv Puir Pspd RCI vs Human vs Ground truth

Fuv Fspd Fair EPE L™ Fspd Fair EPE
Farneback® 0.27 0.23 on 0.039 0.4 0.91 0.34 2.02 0.34 0.33 0.92 1.96
FlowNet2.0° 0.39 0.26 0.34 0.034 0.92 0.90 0.96 0.94 0.95 0.94 0.98 0.47
RAFT® 0.20 0.22 014 0.026 0.92 0.90 0.96 0.93 0.98 0.99 0.99 0.25
RAFT-val 0.43 017 0.42 0.049 0.92 0.89 0.96 1.01 0.92 0.89 0.98 0.69
AGFlow*° 0.30 0.16 0.20 0.016 0.93 0.90 0.96 0.92 0.98 0.98 0.98 0.27
GMFlow*" 0.34 0.32 017 0.028 0.91 0.84 0.96 1.03 0.93 0.90 0.97 0.73
FlowFormer®' 0.36 0.14 0.32 0.030 0.93 0.91 0.95 0.90 0.98 0.97 0.98 0.42
FFVIMT¥ 0.31 0.16 0.31 0.043 0.83 0.64 0.92 1.48 0.59 0.84 0.94 1.29
DorsalNet" 017 0.19 -0.10 0.029 0.20 -0.08 0.86 2.35 0.20 -0.04 0.86 2.33
Ours-first 0.50 0.38 0.37 0.067 0.91 0.88 0.95 0.93 0.90 0.90 0.96 0.88

Text marked bold indicates the best performance in that column. p, Partial correlation between human and model controlling for ground truth; r, Pearson correlation coefficient; EPE, vector
endpoint error; uy, dir and spd represent motion components in Cartesian space, direction and speed, respectively; RCI denotes model-human similarity (larger=more human-aligned).

Ours-first uses only the first-order channel.

the perception of second-order motion. Even when trained with our
non-diffused data, the tested CV models still show a limited capabil-
ity torecognize second-order motions. By contrast, our dual-channel
model, trained with non-diffuse data, substantially improved recogni-
tion of second-order motion. The average correlation reaches 0.902
(right side of Fig. 5¢).

Figure 5b shows the directional tuning capacities of the first-and
higher-order motion channels. For various directions of first- and
second-order drifting gratings, directional tuning was estimated using
the modified circular variance®. The first-order channel responded
primarily to first-order motions, whereas the higher-order chan-
nel was more sensitive to second-order motion. The sensitivity of
the higher-order channel to the second-order motion was further
enhanced through training on non-diffuse materials (compare red
and blue dotsin Fig. 5b).

We also compared the Pearson correlations between our final
model responses and motion ground truth across SOTA optical flow
models, including RAFT, GMFlow and multi-frame-based VideoFlow*.
As shown in Fig. 5a, our model exhibited the highest correlation and
stability, closely matching human performance. Extended Data Tables 2
and 3 provide more detailed quantitative dataonsecond-order motion
comparison.

Notably, unlike our dual-channel model, SOTA CV models cannot
achieve agood ability to detect second-order motions even after train-
ing with non-diffuse materials. This limitation probably stems from
structural design. Computer vision models are primarily designed to
track the absolute pixel correspondences between frames, and thusrely
on pixel intensity**. As second-order motions such as drift-balanced
motion lack explicit pixel correspondences across frames, such models
often become unstable and generate noisy responses.

The interplay between the first- and higher-order channels

Extended Data Fig. 1a presents qualitative data illustrating the dif-
ference between the first- and higher-order channels, demonstrat-
ing their function when processing natural scenes with noisy optical
environments (first row). Higher-order processing affords more stable
results when interpreting global flow motion (left). Such processing
effectively tracks the movement of a plastic box with fluctuating water
inside, even outperforming certain SOTA CV models* when handling
such extremely noisy—but natural—scenes. The second and third
rows show the segmentation results for both natural scenes and pure
drift-balanced motion”. In terms of segmentation, the higher-order
channel usually helps the model to identify objects in motion. The
segmentation results are finer than those of the first-order channel

alone. We validated these results on the DAVIS 2016 video segmentation
benchmark*¢, which includes 3,505 image samples. The dual-channel
approachachieved ameanintersection over union (IoU) score of 0.60,
outperforming the single-channel method, which scored 0.56. In the
last row of Extended Data Fig. 1a, we show that our framework can
group objects, even when they are spatially invisible, as seen in the
pure drift-balanced motion test. The higher-order channel affords
adistinct advantage under such conditions, effectively identifying
objectinstances within noise. Such second-order motion patterns are
near-undetectable by current CV segmentation models, including SOTA
video segmentation models*”*¢, Note that our segmentation results
were obtained using a naive graph bipartition” without additional
training. Refer to the ‘Stage Il (global motionintegration and segrega-
tion)’ section for implementations of the motion graph.

Discussion

We establish ahuman-aligned optic flow estimation model capable of
processing both first-and higher-order motions. The model replicates
the characteristics of human visual motionin various scenarios ranging
from typical stimuli to more complex natural scenes.

Recent studies have also leveraged DNNs to infer the neural and
perceptual mechanisms underlying visual motion. For example,
Rideaux et al.">*°, and Nakamura and Gomi' used multilayer feed-
forward networks, whereas Storrs and colleagues™ used a predictive
coding network (PredNet) to model human visual motion processing.
DorsalNet" employed a 3D ResNet model to predict self-motion param-
eters. Despite their contributions, these models cannot estimate the
dense optical flows consistent with the physical or perceptual ground
truths, nor do they account for higher-order motion processing.

Modelling visual motion processing

We modelled human visual motion processing, including the VI-MT
architecture, viamotion energy sensing and graph-based integration.
After end-to-end training, our model generalized both simple labora-
tory stimuli and complex natural scenes well. The model naturally
captures various characteristics of neurons in the motion pathway,
including the change in spatiotemporal tuning from the V1to the mid-
dle temporal cortex areas. Motion integration successfully explains
the physiological findings—specifically, the shift in the populations
of component and pattern cells from the V1 to the middle temporal
cortex—and also the psychophysical findings such as adaptive global
motion pooling. The utility of the attention mechanism during motion
integration may be attributable to its similarity to the human visual
grouping mechanism®.
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Fig. 4| A material-controlled motion dataset and a second-order benchmark
demonstration. a, We manipulated material properties to create two motion
datasets with optical flow labels—one with purely reflective materials and
another incorporating non-Lambertian surfaces such as specular, glossy,
translucent and anisotropic materials. The motion was simulated by a physics
engine with gravity and initial movement, whereas material properties were
rendered via the Blender® engine. b, A large second-order benchmark was
generated by applying naturalistic modulations—such as water waves and swirl
effects—to natural images. A total of seven types of modulations were created
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to evaluate both human and model responses. For illustrative purposes, the

background images shown here have been replaced with visually similar,

copyright-free alternatives. ¢, Psychophysical experiments using this dataset

demonstrated that humans reliably perceive a wide range of second-order

motions, whereas current machine vision models struggle with this task.

The figure below illustrates perceived-motion vectors from a single participant

across seven different modulations. The shaded region around the fitted line

represents the 95% CI.

Second-order motion processing

Another critical contribution is that we reveal a function of second-
order motion perception, which has received little attention from
the CV community because the functional importance thereof has
been poorly understood. Early studies suggested that visual analysis
of second-order features might aid recognition of global image spa-
tial structure®® and/or may distinguish separation by shading froma
material change®>. However, the importance of second-order motion
remained unclear. Here we show that biological systems may engage
insecond-order motion perception to ensure reliable motion estima-
tion from non-diffuse material. Thisis animportant advancein making
CV algorithms more human-aligned and simultaneously more robust
in estimating the dynamic structural changes of natural scenes. Our
study also shows that machine learning can afford conceptual proof
of neuroscientific hypotheses that suggest how specific functions
evolved in natural environments.

Relationship with computer vision models

This study does not seek to outperform SOTA CV models optimized
for certainengineering tasks. We instead employ a heuristic approach
to balance the alignment of human vision with the robust process-
ing of natural scenes. Inspired by the human visual system, it may
be possible to expand the capacities of CV models. For example, we
show that human-aligned computation efficiently captures inherent
human-perceived flow illusions that CV models often fail to replicate
(Table 1). The current CV methods, when presented with certain sce-
narios, are often unstable because they seek to match the pixel cor-
respondences between frame pairs’. This strategy differs from the
human higher-order motion perception mechanism, which depends
on spatiotemporal features and demonstrates exceptional stability
and adaptability in interpreting object motion. Furthermore, the
second-order motion system could detect long-range motions of
high-level features. The addition of this system not only combats noise

Nature Machine Intelligence | Volume 7 | July 2025 | 1037-1052

1043


http://www.nature.com/natmachintell

Article

https://doi.org/10.1038/s42256-025-01068-w

a Perceptual response on

second-order motion across models First-order

Motion vector correlation to ground truth stimuli

— Mean £ 95% Cl (n=7)
10 I Human participants

I Trained on diffuse
0 . Trained on non-diffuse
X . cv da(asel trained

c e

o
©

o
o

Second-order
stimuli

Correlation
I
B

o
)

Directional selectivity to second-order

Invisible white
noise pattern

Ptcp1 Ptcp-2 Ptcp-3 Dual RAFT  VIMT VideoFlow Glow

Directional tuning verification between first- and second-order channels

Higher-order channel,
non-diffuse (n = 256)

0.8 [ wigher-order channel. diffuse (n = 256)
— Median
— Whisker (1.5 x IQR)

ny ~ W

[ 1aR box (25-75th %)
Type 5§ 07 —1e
0.8 © Higher-order, diffuse g .
Higher-order, non-diffuse E ¢
First-order, diffuse 3 e |& . 3
07 - ) o & First-order, non-diffuse -(.? 06 Pt " e
Y < §
9 S >
06 - g
a 3
> 05 —
05 - ‘ 2 &gl
5 g
°
04 °
I .
03 3 ; &
a e
0.2 03 N
1 1 1 1 1 1 ! 1 1
03 04 05 06 07 08 09 10 11 Trainedon  Trained with
diffuse non-diffuse

Directional selectivity to first-order

€ Correlation between models and human perception

RAFT (compuer vision model)

1.0 1.0

- Condition A: trained on diffuse/CV data (Pearson correlation + 95% Cl, n = 80 paired motion vectors)
. Condition B: trained on non-diffuse data (Pearson correlation + 95% Cl, n = 80 paired motion vectors)
First-order channel (motion energy model)

Dual channel (first + higher-order)

RAFT Slnlel vs hum
u 0.8 4

[ RAFT non-diffuse vs hum
0.6 4
0.4 4
‘ 0.

0.8 4

~

Correlation to humans
o
B
!
N
)

o

Corr
B First-order diffuse vs hum
[ First-order non-diffuse vs hum

[}

i
L

N
L

1.0
0.8
0.6
0.
0.
ol Corr

I Dual diffuse vs hum
M Dual non-diffuse vs hum

J

Mod1 Mod2 Mod3 Mod4 Mod5 ModG Mod7 Modl Mod2 Mod3

Modulation type

Mod4 Mod5 Mod6 Mod7 Modl Mod2 Mod3 Mod4 Mod5 Mod6é Mod7

d Visualization of dual channel model

Scene |: water wave

Fig. 5| Theinterplay between material properties and second-order motion
perception. a, We computed average Pearson correlations across various
second-order motion types and compared them with contemporary CV models.
Our dual-channel model, trained on a non-diffuse dataset, outperformed
others—achieving near-human performance. Error bars indicate the 95% CI
across seven modulation types; Ptcp-N represents different participants.

b, The directional tuning curves of model units were evaluated using first-and
second-order gratings. Tuning was quantified using a modified circular variance
measure*?, ranging from O (low tuning) to 1 (high tuning). Results from both
first-and higher-order channels, trained on diffuse and non-diffuse datasets,

[ Responses of the model trained in diffuse data

Scene II drift-balance

[C] Responses of the model trained in non-diffuse data

Scene lll: Gaussian blur

show that the higher-order channel exhibits significantly better tuning, further
enhanced with non-diffuse data. IQR, interquartile range. ¢, Pearson correlations
with human responses are detailed for all modulation types. Mod1 to Mod7
represent different second-order modulations, including random noise,
Gaussian blur, water waves, Fourier phase shuffle, random pixel shuffle, swirl and
drift-balanced motion. The dual-channel model trained on non-diffuse datasets
demonstrated significantly improved recognition of second-order motion. Error
bars denote the 95% Cl for each modulation type. hum, human. d, The model’s
response to second-order motion stimuli trained separately on diffuse and non-
diffuse motion sets. See Extended Data Tables 2 and 3 for quantitative data.

and optical turbulence but also results in amore stable and reliable
motion estimation model, particularly useful in challenging scenarios
suchasadversarial attacks’ or extreme weather conditions®. We believe
these advancements offer substantial insights towards enhancing
motion estimation in the CV field and developing a more reliable and
stable model.

Limitations

Human-like visual systems require more than basic motion energy com-
putation; they also need adaptive motionintegration and higher-order
motion feature extraction. Although our approach uses multilayer 3D

CNNsand motion graphsto address these needs, this inevitably reduces
interpretability compared with more traditional models. Interpreting
the specific higher-order features being extracted remains challeng-
ing, as does understanding how a dynamic graph structure could be
implemented in real neural systems.

Although our dual-channel model simply integrates outputs from
the two channels before the middle temporal cortex module, biological
systems are known to adaptively use first- and higher-order channels
depending on the stimulus condition (for example, jump size, reti-
nal eccentricity and attention)®**. To mimic the adaptive switching,
we manually switch off the higher-order channel when analysing the
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phenomena in which first-order processing is supposed to dominate
(refer tothe ‘The two-stage processing model’ and ‘Motion graph-based
sceneintegration’ sections). Even when switching higher-order chan-
nel on, we find no qualitative differences in the model prediction with
regard to motion integration and illusions. For quantitative evalu-
ation on naturalistic movie benchmarks, however, the addition of
the higher-order channel reduces the response similarity to humans
(Extended Data Table 4), presumably because the higher-order channel
has a powerful 3D CNN that has no explicit human-aligned computa-
tional constraints. In the future, we would like to add a function to the
model that canadaptively integrate dual-channel outputs inaway that
is consistent with biological systems.

For the second-order motion benchmark, due to the technical
challenges of real-world data collection, we use synthetic datafor quan-
titative evaluation, acknowledging a potential gap between simulation
and reality. Further data and validation would be helpful for practical
applicationsin future work.

Finally, higher-order motion processing serves broader functions,
including self-location and navigation in dynamic environments** %,
and hierarchical decomposition of motion and object inference™*.
These aspects are not explicitly modelled here; however, our model
exhibits grouping and segmentation capacities based on motion infer-
ence, which are important steps toward hierarchical inferences of
natural scenes.

Methods

Model structure

Our biologically oriented model features two stages, stages I and Il.
AsshowninFig. 1, stage I has two channels, of which the first engages
in straightforward luminance-based motion energy computation,
whereas the second contains a multilayer 3D CNN block that enables
higher-order feature extraction.

Stage I (first-order channel). Spatiotemporally separable Gabor
filter. When building our image-computable model, each input was a
sequence of grayscale images S(p,t) of spatial positions p = (x,y) within
domainQattimest > 0. Wesought to capture local motion energies at
specific spatiotemporal frequencies, as do the direction-selective
neurons of the V1 cortex. We modelled neuron responses using 3D
Gabor filters®*>. To enhance computational efficiency, these were
decomposed into spatial 2D Gabor filters g(-)and temporal 1D sinusoi-
dalfunctions exhibiting exponential decay 7(-). Given the coordinates
x' =xcosf+ysinfand y’ = —xsin6 + y cos 0, the filters may be defined
asfollows:

9(X’y;fs, B’ o, y) =exp (_%> X e(anSx’)i’

T (£, 7) = exp (- 2) exp2mi (f0)), v

S.t.{xy, t]0 <t < T;(x)) |2 +y* <R%)}

Trainable parameters such asf,, f;, 8, o and y control spatiotemporal
tuning, orientation and the Gabor filter shape, whereas T adjusts tem-
poral impulse response decay. All parameters are subject to certain
numerical constraints, for example, 6 is limited to [0,2m) to avoid
redundancy, whereasf;andf,are limited to less than 0.25 px per frame
to avoid spectrum aliasing, and so on. The response L, to the stimuli
S(p,t) is computed via separate convolutions:

L,(x,y,60)=(8*9) T
- /ff S, Y. 7) - Gulx— L.y~ ¥)
Tt —T)dxdy dT +ay

where a; are the learned spontaneous firing rates. Furthermore, local
motion energy is captured by a phase-insensitive complex cellinthe V1

cortex, whichcomputes the squared summation of the response from
a pair of simple V1 cells with orthogonal receptive fields®, defined as
(evenand odd):

Lo(x,y,6,0) =S« F[G]* R[T]+ S «J [G]) * S[T] @
Ly, 6,0) =S « R ([G) « R[T]— S * F[G] * [T,

where &(-) and J(-) extract the real and imaginary parts of a complex
number and the asterisks denote convolution operations. The complex
cellresponse L is then:

L5y, 5:0) = (L2, £:0)) + (Ls(.y, )’ 3)

Multiscale wavelet processing. The convolution kernel of our spatial
filter has a fixed size of 15 x 15. This imposes a physical limitation on
thereceptive field of each unit. We employed a multiscale processing
strategy to enhance receptive field size flexibility. Specifically, we
constructed a pyramid of eight images that were linearly scaled from
HxWto ¥ The 256 complex cells are evenly distributed across the
eight scafes, with 32 cells per scale. All of these cells function as
motion energy detectors, differing only in their receptive field sizes.
Specifically, cells at coarser scales have larger receptive fields due to
image downsampling before input. This enables the representation of
different groups of cells that were sensitive to short-and long-distance
motions®*. The N=256 complex cells {L;}f’ capture motion energy on
multiple scales. We subjected each cell to energy normalization to
ensure that the energy levels were consistent:

KiL7(0)
N LSO + 0y ’

i=1"7i

o= @

where g, is the semi-saturation constant of normalization and K; >0
determines the maximum attainable response. We interpret the
response, denoted £,,(¢), as the model equivalent of a post-stimulus
time histogram, which is a measure of the neuron’s firing rate. Physi-
ologically, such responses could also be computed using inhibitory
feedback mechanisms®*®, Bilinear interpolation was used to resize the
multiscale motion energies to the same spatial size, thus f%/
In the DNN context, this balances the trade-off between the spatial
resolution and the computational overhead. TDeWﬁnal output of the
first stage is a 256-channel feature map E, e Rs*5**° that captures
the underlying, local motion energy and thus partially characterizes
the cellular patterns of the V1 cortex in a computational manner®’;

the implementation also illustrated in Extended Data Fig. 2a.

Stage | (higher-order channel). In the higher-order channel, we
employ standard 3D CNNs to extract non-first-order features. This
channel features five layers of 3D CNNs, each of kernel size 3x3 x 3,
linked via residual connections and nonlinear ReLU activation func-
tions. The 3D CNN layers engage in preprocessing before extraction of
nonlinear features, whichare then processed using the motion energy
constraints described above, and the motion energies calculated. As
the human higher-order motion mechanism is highly sensitive to
colour®, each input to this channel is a sequence of RGB images, and
the output is formatted to match that of the first-order channel:
E, € R’ *s 2%, Both the first- and higher-order channel activations
undergo the same normalization process, after which they are merged
viaalx1convolution. The resulting fused output g, e RE X5 X256 is
then fed tostage .

In Fig. 5 and Extended Data Fig. 1, we designate the model incor-
porating stage Il with E,, as Ours-dual (signal from the dual chan-
nel), whereas the model using only E, is referred to as Ours-first
(signal only from the first-order channel). To simplify discussions
on motion-energy-based processing and integration (refer to the
‘The two-stage processing model’ and ‘Motion graph-based scene

Nature Machine Intelligence | Volume 7 | July 2025 | 1037-1052

1045


http://www.nature.com/natmachintell

Article

https://doi.org/10.1038/s42256-025-01068-w

integration’ sections), we focus on the first-order channel, avoiding
the complexities introduced by higher-order motion. Conversely,
when analysing second-order motion perception (refer to the ‘Material
properties and second-order motion perception’ and ‘The interplay
between the first-and higher-order channels’ sections), we adopt the
dual channel, jointly considering both first-and higher-order channels
(Fig. 5 and Extended DataFig. 1).

Stage Il (global motion integration and segregation). First-stage
neurons havealimited receptivefield, constraining themto detectonly
nearby motion. Solving the aperture problem in motion-perception
systems necessitates flexible spatial integration®®. This process
involves complex mechanisms®”° and requires extensive prior knowl-
edge, which may surpass traditional modelling methods. Convolu-
tional neural networks, with their extensive parameterization and
adaptability, provide a viable solution; however, spatial integration of
local motions demands more versatile connectivity than that offered
by standard 3 x 3 convolutions, which are limited to local receptive
fields. To address this, we developed a computational model that
employed a graph network and recurrent processing for effective
motion integration.

Motiongraphbased onaself-attention mechanism. We move beyond
traditional Euclidean space inimages, creating amore flexible connec-
tion across neurons using an undirected weighted graph, G = {V,A}.
Here, V denotes nodes (each spatial location p(i,j)) and A is the adja-
cency matrix, indicating connections among nodes. The feature of
eachnodeistheentiresetof the correspondinglocal motion energies:
E(i,j) € R*%¢, The connection between any pair of nodes is computed
using a specific distance metric. Strong connections form between
nodes with similar local motion energy patterns. This allows the model
to establish connections flexibly between different moving objects or
elements across spatial locations, thus creating what we termamotion
graph. Specifically, the distance between any pair of nodes (i,j) is cal-
culated using the cosine similarity. This is similar to the self-attention
mechanisms of current transformer structures””>. We use the adja-
cency matrix A € R¥W*H to represent the connectivity of the whole
topological space, where A is a symmetrical, semi-positive definite
matrix defined as:

(), - 9(E),

To®, M o), 1" ©)

A@)=AUD =

We subject the connections between graphs to exponential scaling
using the matrix A given by exp(As), where s is a learnable scalar
restricted to within (0,10) to avoid overflow. The smaller the s, the
smoother the connections across nodes, and vice versa. Finally,asym-
metrical normalization operation balances the energy, resulting in
A :=D": exp(sA)D~z, where D is the degree matrix. This yields an
energy-normalized undirected graph. Intuitively, the adjacency matrix
represents the affinity or connectivity of a neuron within the space.
Strong global connections form between neurons, the motion
responses of which are related.

Recurrentintegration processing. Recurrent neural networks flexibly
model temporal dependencies and feedback loops, which are funda-
mental aspects of neural processing in the brain’™. We use a recurrent
network, rather than multiple feedforward blocks, to simulate the
process of local motion signals being gradually integrated into the
middle temporal cortex and eventually converging to a stable state.
During eachiteration i,anadjacency matrix Alis first constructed
using the current graph embedding feature A'. Subsequent motion
integration is achieved through a simple matrix multiplication. We
introduce the gated recurrent unit”, implemented in a convolutional
manner®, as a general component for propagating memory from the

currentstate to the nextiteration. The integrated motioninformation
is therefore passed through convolutional gated recurrent unit blocks
that update the motion energies:

E*! = GRUy(A! x EL, EY) 6)
Thisis computationally similar to the information propagation mecha-
nisms in transformers’’? and can also be viewed as a simplified form
of graph convolution’. Through recurrentiteration, this motioninte-
grationapproximates theideal final convergence of motion energies,
thatis, E, > E*.
We adopted the same approach to decode the 2D optical flow from
Eofeachiteration k. Specifically, theintegrated motion Eis squared to
ensure positivity and then normalized in terms of energy:

HW
E(i)) = KEX )1 Y B ) + 0,2
ij

This yields E € RF*#x25%¢ which could be viewed as a post-stimulus
time histogram of neuronal activation. We use ashared flow decoder
to project the activation pattern of each spatial location onto the
motion field F e R"*W*2, This decoder employs multiple1 x 1convolu-
tion blocks withresidual connections, as dorecent advanced optical
flow models”’%. We observed that the results generally converged
by the eighth iteration. This was therefore chosen as the standard
stage Il output. The overall inference pipeline is illustrated in
Extended Data Fig. 2.

Cutting of an objectinstance from the motiongraph. Theinterac-
tions of objects in a dynamic scene are reflected in the adjacency
matrix of the motion graph G. After the incorporation of this adja-
cency matrix into A € RF"*H" segmentation can be achieved using
a graph-cut method. Specifically, we employ the normalized cuts
(Ncut) method”. This partitions a graph into disjoint subsets by
minimizing the total edge weight between the subsets relative to the
total edge weight within each subset. Specifically, the Laplacian
matrix of G can be expressed asL=D-A,or in the symmetrically
normalized form asL =1, —- D 2AD™z, where D is a diagonal matrix
defined as D = diag({2;Aj}i-)) ; L is a semi-positive definite matrix,
which facilitates the orthogonal decomposition to yield L = UAU’,
where Uis the set of all orthonormal basis vectors, denoted as {u;};_,
andis therefore the Fourier basis of G. The A termis a diagonal matrix
containing all eigenvalues {1;};_, ordered as 4, <A, < --- £A,. According
to ref. 15, the eigenvector corresponding to the second smallest
eigenvalue, u, € R"", commonly termed the Fiedler vector, yields a
real-valued solution to the relaxed Ncut problem. In ourimplementa-
tion, we extract u, and then apply binarization using the rule
u, = u, > mean(u,). The resulting binary segmentation is viewed as a
potential field and further refined using a conditional random field”’.
As such binarization does not inherently distinguish between fore-
ground and background, we adaptively assign a polarity that matches
the foreground during evaluation using the DAVIS 2016 segmentation
benchmark. The results shown in the second row of Extended Data
Fig.1were obtained using a recurrent bipartitioning method® that
allows multi-object segmentation. Notably, the entire process is
training free.

Training strategy

We employ asupervised learning approach to minimize the difference
between the model’s predictions and physical ground truth, and human
motion perceptiondatais only used for evaluation. Our primary focus
is on how effectively the model mimics human motion perception,
rather than how precisely it predicts the ground truth. During training,
we use a sequential pixel-wise mean-squared-error loss to minimize
the difference between the ground truth and the model predictions
of stagel (and of eachiteration of stageII).
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Dataset. Our dataset encompasses a diverse range of natural and
artificial motion scenes. Specifically, itintegrates existing benchmarks
suchas MPI-Sintel, Sintel slow?® and KITTI***°, along with natural videos
from DAVIS, where pseudo-labels are generated using FlowFormer®..
This collectionis referred to as dataset A.

Wealsointroduce custom multi-frame datasets: dataset B, which
comprises simple non-textured 2D motion patterns, and dataset C,
which features drifting grating motions (that is, continuously translat-
ing sinusoidal gratings with orthogonal ground-truth motion direc-
tions). These datasets provide fundamental motion patterns that
facilitate training from scratch, accelerating convergence and improv-
ing modelstability*®. Furthermore, as suggested by ref. 8, incorporating
such datasets aidsinmodel adaptation to non-textured scenarios and
introduces an orthogonal motion bias to ambiguous motion. It remains
controversial whether this bias reflects a slow-world Bayesian prior®
orother causes™.

To study second-order motion, we developed datasets with dif-
fuse (dataset D) and non-diffuse (dataset E) objects and integrated
theminto training. We then evaluated how the model perceived mate-
rial properties and second-order motion. We define three training
types:

1. TypeslandIl: The model was trained separately on D and E
to assess how second-order motion perception is related to
material properties. Results for these models, referred to as
Ours-D (diffuse) and Ours-ND (non-diffuse), are shown in
Fig. 5b,c.

2. Typelll: The model was trained on a mixed dataset {A, B, C,
D, E} using a curriculum strategy, thus starting with {B, C} and
progressing to the full set. This approach, commonly used
during optical flow model training®**’, improves convergence
and robustness. All of the other results are based on type Il
training, denoted by the Ours-F (final). Unless otherwise
specified, Ours refers to Ours-F throughout all of the results.

The environment. Model training was performed in PyTorch2.0 ona
workstation equipped with five NVIDIARTX A6000 GPUs operatingin
parallel under the CUDA v.11.7 runtime. Human psychophysical data
were collected using Python v.3.9.12 alongside PsychoPy v.2023.2,
EasyDictv.1.10, Pandas v.2.0.0 and NumPy v.1.23.5.

Data analysis and visualization were performed in MATLAB
v.2023a and Python v.3.9.12 by using NumPy v.1.23.5, Pandas v.2.0.0,
Matplotlib v.3.7.5, Seaborn v.0.13.2, SciPy v.1.7.3 and Pingouin v.0.5.3.
Allcodeis available at ref. 83.

Timing. Given the standard playback frame rate of 25 fps and the human
visualimpulse response duration of approximately 200 ms, we config-
ured the temporal window of stage I to cover six frames (200 ms). For
thefirst-order channel, sequences of 11 consecutive greyscale images
were input. Supervised training uses the instantaneous velocity at
the sequence midpoint (that is, the fifth frame) as the training label.
The higher-order channel with the 3D CNN was trained using a longer
temporal sequence of 15 frames to capture long-term spatio-temporal
features effectively.

Dataset generation
Simple motion generation. To generate simple motion in dataset B,
we employ animage-based affine transformation to warp objects and
simulate various motion patterns. Specifically, we first create multiple
sub-regions with different shapes (for example, circles, rectangles
or super-pixel partitions®*) atop a background of uniform random
colours. We then select n sub-regions as moving elements and place
themrandomly in the firstimage.

We simulate multi-frame motion under the assumption that object
motionremains smooth, asis the case in natural environments. To this

end, we partially adopt a Markov chain principle, where an object’s
motion state S(¢) = [U(¢), V()] depends only on S(t —1):

PriS(t) = s|S(t—1)=s,1,...]
PIS(E) = 5IS(¢— 1) = 54].

)]

The motion state at time ¢ follows a 2D Gaussian:

U

o} 0
(U, VOl » N(@,X), L= ( ) (8)
0 a
where p=[U(t - 1), V(t-1)]". We set g, 0, as constants controlling
motion variability, ensuring random yet smooth motion for each
object. Theinitial state S(0) is similarly random, with speed |S(0)| drawn
from N (i, 0)and angle from a uniform distribution U(0, 21). The param-
eterspuando = ’5‘ are chosen to match empirical speed distributions
inthe training set.

In practice, we simulate translation, rotation, scaling and distor-
tion for each element. These transformations all obey the proposed
Markov process to preserve smooth motion. At each time step, we
apply sequential affine transformations on a uniform 2D grid using
PyTorch’'saffine gridandgrid_sample for GPU acceleration.
The optical flow ground truth is derived via the inverse of these
transformations.

Dataset rendering. To generate datasets D and E (Fig. 4a), we used
the Kubric pipeline® to synthesize large-motion datasets that inte-
grate PyBullet® for physics simulation and Blender® for photorealistic
rendering. A variety of 3D models and textures were selected from
ShapeNet and GSO, whereas natural HDRI backgrounds from Poly-
haven® provided realistic illumination. For the diffuse (Lambertian)
motion dataset, we generated 58 scenes with a static camera and 35
scenes with dynamic camera motion. By contrast, the non-diffuse
(non-Lambertian) dataset comprises 131 static scenes and 27 scenes
with dynamic camera motion. Each scene consists of 36 consecutive
frames rendered at a resolution of 768 x 768 px, 30 fps. Scene com-
position was carefully controlled through a series of configurable
parameters. Ineach scene, the number of static (distractor) objects was
randomly chosen between 7 and 15, whereas the number of dynamic
(tossed) objects ranged from 5to12. Static objects were spawned within
apredefined region bounded by the coordinates (-7,-7,0) and (7,7,10)
(in metres), whereas dynamic objects were placed inamore restricted
regionbetween (-5,-5,1) and (5, 5, 5). Their initial velocities were uni-
formly sampled from the range [(-2, -2, 0), (2,2,0)], which ensured
diverse motion trajectories under controlled friction and restitution
conditions. Camera configurations were designed to capture different
motion types. In the fixed configuration, the camera was randomly
positioned within a half-spherical shelland aimed at the scene centre.
For dynamic acquisition, the camera underwent linear motion by
interpolating between two independently sampled positions, with
the maximum displacement limited to 4 m s™. Optical flow labels were
automatically generated using Kubric’s built-in functions, which track
the displacement of each element in camera coordinates and project
these displacements into pixel coordinates.

Material properties were manipulated viathe principled BSDF
functionto achieve natural optical effects. Materials with Lambertian
reflectance were employed for diffuse scenes, whereas non-diffuse
scenes featured materials with increased metallicity, specularity, ani-
sotropy and transmission. In the latter settings, the material assign-
ment wasrandomized from aset of predefined functions (for example,
those assigning metallic, anisotropic or transmission properties) to
yield avaried yet natural appearance across objects. Allother aspects—
suchasillumination, object placement, and scene configuration—were
standardized across datasets to ensure consistency.
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Second-order motion modulation. Asillustrated by Fig. 4b, we devel-
oped a second-order dataset to benchmark perception capability in
both humans and computational models. The dataset consists of 40
scenes featuring seven types of second-order motion modulations.
Each modulation comprises 16 frames, with arandomly moving carrier
overlaid on a1,024 x 1,024 natural image background selected from
an open-sourced image dataset®’. To eliminate first-order motion
interference, the natural images were kept static and the random
motion patterns were generated using a similar Markov chain from
equation (7), where the motion states [U, V] were sampled from 2D
Gaussiandistributions conditioned on the previousstate. The carrier
was subjected to seven distinct second-order motion modulations,
encompassing spatial effects such as {Gaussian blurring}; temporal
effects such as {drift-balanced} motion and {shuffle Fourier phase};
and spatiotemporal effects such as {water waves} and {swirls}. The
spatial noise and blur were sparse Gaussian noise and localized Gauss-
ian blur, respectively. The water wave, swirl and random flow field
modulations warp pixels using specific flow fields. In terms of the

water wave dynamics, the flow field f,,, = [Z—’;, Z—’;] was:

K(r,t) = cos(2mfr) x eV x cos(2mEt) x e~

r=+x2+)2,

where f, £and 6 control the wave frequency, temporal variation and
damping, respectively. We superimposed multiple water waves that
differed in terms of their dynamics in different locations. This cre-
ated chaotic, local optical turbulence contemporaneous with carrier
motion. The real carrier motion was thus obscured by local optical
noise and was invisible in Fourier space, epitomizing the characteris-
tics of second-order motion. Similarly, {frandom flow field} or {shuffle
Fourier phase} modulationinvolves the warping of either the pixels or
the Fourier phase of original local regions using a randomly sampled
Gaussian flow field.

Experimental details
In silico neurophysiological methods. We employed drifting Gabor
or plaid (composed of two Gabor components) with a single fre-
quency component as the input stimulus. For second-order motion,
drift-balanced motion modulation was applied to the same Gabor
envelope.

The modelresponses after stage I and after eachiteration of stage
Il were considered analogous to the post-stimulus time histogram of
aneuron, thusreflecting activation levels. Responses across the spatial
dimensions were averaged to obtain the activation distributions of the
256 units, represented as R**25¢ with respect to the input stimulus.
The stimuliwere typically 512 x 512 px in size, with full contrast.

Directional tuning. We employed a single frequency drifting Gabor
and a plaid (superimposed at +30°) as stimuli. Initially, twelve direc-
tions were uniformly sampled from (0, 2mt]. For each direction, we
logarithmically sampled 8 x 8 = 64 sets of spatiotemporal frequency
combinations and used the drifting Gabor stimulus to obtain 64 direc-
tional tuning curves for each unit. The spatiotemporal frequency with
the largest standard deviation was selected as the preferred frequency
st for each unit. Gabor and plaid stimuli with the frequency configura-
tions of st were theninput to the model to derive the directional tuning
curvesof all units. The model tuning curve with st  as the drifting Gabor
wastermed ¢ and that for the plaid ». We next assessed the directional
tuning capacity by deriving partial correlations®:

Iy=Tclep

Ja-ma-r)y’

re=rplrep

R = Lhle
component (lfl'[z,)(lfl'ﬁp)

Rpattern =

©

wherer,is the correlation between » and the component prediction
thatis the superimposed +30° shift of ¢; r, is the correlation between
2 and the pattern prediction ¢); r, is the correlation between
these two predictions. Units were classified as component, pattern
or unclassified on the basis of these correlations (Fig. 2a).

Orientation selectivity quantification. Figure 5b shows how the
orientation selectivity O,; was quantified using the modified circular
variance*’:

¥A(6) exp(2i6)

Oori = 5
2A0)

10

where A(6)) is the normalized response at angle 6,.

Human and model comparison. We used the human-perceived flow
data’ of the Sintel and KITTI 2015°° benchmark for comparison. The
metricsinclude the vector endpoint error, the Pearson correlationand
the partial correlation. Partial correlation measures the relationship
between human responses and model predictions after controlling
for the ground truth:

rrespmode[ - rrespGT X I'modelGT
I'tespmodel-GT = s 11

2
\/1 - ’fespGT\/l ~ InodelGT

whereristhe Pearson correlation. Inaddition, the RClis anindex from
ref.7toevaluate the similarity between model performance and human
flowillusions at each probed location.

The RClis defined as the product of A-B-C in equation (14), meas-
uring therelative alignment of ground truth (G), humanresponse (R),
model prediction (M) and the origin (0):

« A quantifies the deviation of human responses from the
ground truth.

- Bindicates the directional similarity between the response
error vector GR and the model error vector GM relative to the
ground truth.

« Ccompares the distance between model prediction and ground
truth ||GM| with the distance between model prediction and
response |RM|.

TheRClapproaches +1whenthe model’s prediction aligns closely
with human flow illusions and approaches -1 when the prediction
divergesinthe opposite direction.

pp— L — 12)
0G| + |OR|
_ GR-GM B)
IGRIIGM]|
co OS(nqwn —IRM] 1) ___leMi (14)
IGM| + |RM)| IGM| + |RM]|

Human data collection. We compared our model prediction with the
human-perceived motions for the Sintel slow?® benchmark (Table 1)
using the datareportedinref.7. The human datawere collected in the
laboratory withastrict yet practical psychophysical procedure. Briefly,
ineachtrial, participants viewed repeated alternating presentations of
the target motion sequence and amatching stimulus (Brownian noise).
The spatiotemporal position of the target was indicated by a flash
probe. Participants then used a mouse to adjust the speed and direc-
tion of the noise motion until it matched their subjective perception
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of the target’s motion. We recorded the matched noise motion as the
participant’s report of the subjective target motion.

The experiment controlled visual presentation across both spa-
tial and temporal domains. Spatially, the display resolution is set at
50 px per I' of visual angle. Temporally, visual stimuli were presented
at 60 Hz for Sintel slow 4K resolution image sequences. To minimize
directional bias, we applied data augmentation by flipping images
horizontally and vertically, generating four replicated collections
per data location. These flipped versions were averaged to mitigate
orientation-dependent perceptual biases. Finally, each data point was
averaged across 16 trials to ensure measurement stability.

To validate data reliability’, conducted a preliminary random
dot kinematogram task to train and verify participants’ perfor-
mance before the main experiment. In this random dot kinemato-
gram task, participants estimated the basic motion pattern of 5,000
black-and-white dots moving uniformly within a 600 px circular
aperture. The results showed a strong, though not perfect, agree-
ment between the reported motion and the ground truth motion
(correlation=0.97in (u,v)), asillustrated in Figure 2 of ref. 7. As the tar-
getand matching stimuli were similar noise patternsin this task, it was
relatively straightforward. These results indicate that our procedure
can provide highly accurate estimates of human-perceived-motion
vectors under optimal conditions. Data from MPI-Sintel (refer to
Supplementary Figure 4 in ref. 7) further demonstrate that partici-
pants can accurately align the flash-probing in both space and time,
yielding minimal endpoint errors relative to ground-truth vectors in
neighbouring locations and time steps.

The human datafor the KITTI2025benchmark was measuredinan
online experiment using a similar psychophysical method®.

Second-order motion benchmark. We extended the paradigm in
ref. 7 to collect second-order motion data. Stimuli were displayed on a
VIEWPixx /3D LCD monitor (VPixx Technologies) with a resolution of
1,920 x 1,080 px at a 30 Hz refresh rate. The display luminance levels
were linearly calibrated using an ilPro chromometer (VPixx Technolo-
gies). The minimum, mean and maximum values were 1.8, 48.4 and
96.7 cd m™, respectively. The viewing distance was 70 cm and each
pixel subtended 1.2376 arcmin. Participants sat in a darkened room
using a chinrest to stabilize the head and performed experiments.

In each trial, a 600 px aperture at the screen centre displayed
second-order motion for 500 ms (15 frames), followed by a 750 ms
inter-stimulus interval, then 500 ms (15 frames) of brown noise within
a120 px aperture. A 15 px probe indicated the timing and location of
the target motion, and four 5 px dots—orthogonally arranged 60 px
fromthe display centre—served as position markers. During repeated
presentations of the target motion and noise motion, participants
used a mouse to adjust the noise motion’s speed and direction until
it matched their perception of the target’s second-order motion,
asillustrated in Extended Data Fig. 3. As the reported noise motion
reflected the perceived target motion, it was recorded as the reported
second-order perception. Seven types of second-order modulations
were tested, each across 40 scenes. To counteract directional bias,
each scene was presented in four variations—original, horizontally
flipped, vertically flipped and both flipped—yielding 1,120 trials per
participant over 6 h. Results were averaged across flipped versions
into 280 perceived-motion vectors, whichwere then compared against
computer vision models. The stimulus sequence was randomized for
each participant.

The experiment adhered to the ethical standards of the Dec-
laration of Helsinki, with the exception of preregistration, and was
approved by the Ethics Committee of Kyoto University (approval
no. KUIS-EAR-2020-003). Two authors and one naive participant
(three males, average age 25.3 years) with normal or corrected-to-
normal vision participated. Informed consent was obtained prior to
the experiment. All participants were later financially compensated.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The project website is publicly available at https://anoymized.github.
io/motion-model-website/. Human psychophysical data and the
corresponding model responses are available at https://github.
com/anoymized/multi-order-motion-model and are also archived
on Zenodo®. All other relevant data supporting the findings of this
study—including model predictions, human behavioural responses and
custom datasets (Drifting Grating, Non-textured 2D Motion, Diffuse
Motion, Non-diffuse Motion and Second-order Motion datasets)—are
provided at the same repository. Two additional mini motion datasets
featuring diffuse and non-diffuse objects have alsobeenmade available
to support quick verification of the effects on second-order motion
perception. The public datasets used in this study are accessible from
the following sources: Kubric, https://github.com/google-research/
kubric; KITTI, https://www.cvlibs.net/datasets/kitti/; MPI-Sintel,
http://sintel.is.tue.mpg.de/; Sintel-slow, https://www.cvlibs.net/pro-
jects/slow_flow/; DAVIS, https://davischallenge.org/; and Unsplash,
https://github.com/unsplash/datasets.

Code availability

Our modelimplementation and human experimental code are publicly
availableat https://github.com/anoymized/multi-order-motion-model.
This code canbeaccessed viahttps://doi.org/10.5281/zenodo.14958959
(ref.83). The codeis released under the Apache License v.2.0.
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Extended Data Fig. 3 | Experimental procedure. Human participants were
seated in front of amonitor (30 fps, 1920 x 1080 resolution). At each trial,
alé-frame second-order motion sequence and a matching stimulus
(Brownian noise) were alternately presented until a response was made.
During repeated presentations of the target and noise motions, participants
used amouse to adjust the noise motion’s speed and direction to match their

Instruction

Mouse Pointer

Stimulus

Result

Feedback
(Keypress to next trail)

perception of the target’s second-order motion. Each motion sequence spans
500 ms, followed by a 750 msinter-stimulus interval (ISI), amatching stimulus
foranother 500 ms, and asecond 750 msISI. A flash probe was displayed between
the 8™ and 9" frames to mark the timing and location of the target motion.

The second-order motion centre, four-dot placeholders, and matching stimulus
allappeared around the centre location.
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Extended Data Table 1| Model v.s. Human v.s. ground truth on KITTI 2015 Benchmark

Method | Puv  Pdir Pspa RCI | v.s. Human | v.s. GT

‘ Tuv Tspd Tdir epe ‘ Tuv T'spd Tdir epe

Farneback [36] | 0.06 -0.09 0.08 .039 | 0.79 0.29 0.42 5.56 | 0.92 0.68 0.86 2.34
FlowNet2.0 [6] | 0.00 0.36 0.00 .025 | 0.83 0.32 0.61 527|098 092 0.81 1.10
RAFT [39] -0.03 0.24 0.00 .012 | 0.84 0.34 0.57 5.19 | 1.00 0.99 0.89 049
AGFlow [40] 0.06 0.24 0.00 .050 | 077 0.22 052 526|090 0.63 0.70 2.15
FlowFormer [81] | -0.02 0.08 -0.03 .011 | 0.84 0.34 0.52 5.17 | 1.00 0.99 0.93 0.42
FFVIMT [37] 0.21 0.28 0.07 .071| 080 0.27 047 537 | 0.88 0.64 0.51 3.39
VideoFlow [43] | 0.01 0.06 0.02 .013 | 0.84 0.34 0.51 5.16 | 1.00 0.98 0.92 0.48
Peceiver 10 [45] | 0.04 -0.11 0.10 .023 | 0.84 0.36 0.49 521 | 0.99 0.94 0.96 0.95
Ours-first 0.27 0.36 0.20 .055 | 0.85 0.39 0.62 5.07| 096 0.83 087 2.26

p: Partial correlation between human and model while controlling the effects of ground truth; r: Pearson correlation coefficient; epe: vector endpoint error; uv, dir, spd represent motion
components in Cartesian space, direction, and speed, respectively; RCl is introduced from’ to represent the model’s similarity to human perception (the larger, the more human-aligned).
Human perceptual data are adopted from®. ‘Ours-first’ represents the case in which we only use the first-order channel signal to generate the response.
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Extended Data Table 2 | Model vs. Human on Second-order Motion

Method ‘ Mod1l ‘ Mod2 ‘ Mod3 ‘ Mod4 ‘ Mod5 ‘ Mod6 ‘ Mod7 ‘ All
| 7uv EPE| ruy EPE| ryy EPE| ryy EPE| ruy EPE|ryy EPE| ryy EPE| ru, EPE

Trained with non-diffuse

RAFT [39] |0.52 8.88 |0.88 4.10 | 0.25 11.02|0.14 10.80| 0.22 10.15|0.61 7.50 |-0.14 10.89|0.35 9.05
MEGraph [16] | 0.22 10.53|0.52 8.06 | 0.40 10.38|0.60 14.21|0.30 10.42|0.81 6.76 | 0.21 9.97 | 0.44 10.05
GMFlow [41] | 0.07 10.80|0.09 9.11 | 0.07 10.45|0.11 10.82|0.16 10.34|0.13 10.05|-0.02 10.33| 0.09 10.27
Videoflow [43] | 0.54 8.88 | 0.51 7.62 | 0.57 10.05|0.19 10.77| 0.56 10.73|0.74 5.76 |-0.07 24.64|0.43 11.21
Ours-ND-dual | 0.87 8.27 | 0.96 10.57|0.82 10.46|0.88 9.68 | 0.94 10.79|0.90 10.16| 0.95 13.85| 0.90 10.54

Trained without non-diffuse

Farneback [36]|-0.04 11.14|-0.16 9.17 | 0.15 10.56|0.10 10.86| 0.26 9.99 | 0.36 8.67 | 0.08 10.60| 0.11 10.14
FFVIMT [37] |-0.26 11.26(-0.07 9.21 | 0.12 10.46|0.05 11.31|-0.02 10.83|0.01 11.06(|-0.10 11.96|-0.04 10.87
RAFT [39] |0.31 10.55|0.39 8.11|0.22 10.85|0.14 10.72| 0.16 10.30|0.44 8.06 | 0.02 10.33| 0.24 9.84
MEGraph [16] ] 0.15 10.85|0.15 9.13 | 0.03 11.08|0.17 15.04|0.03 10.69|0.55 8.09 |-0.17 11.56| 0.13 10.92
GMFlow [41] [ 0.33 9.99 | 0.23 8.99 |-0.19 10.49|0.11 10.78|0.06 10.40|0.04 10.48|-0.07 10.40| 0.07 10.22
Videoflow [43] | 0.33 9.98 | 0.25 8.60 | 0.19 12.31|0.38 10.81| 0.18 10.50|{0.43 8.80 | 0.16 10.31|0.27 10.19
Ours-D-dual | 0.41 10.59|0.30 8.83 | 0.53 12.25|0.56 19.41|0.46 13.68|0.68 11.61|0.62 9.53 | 0.51 12.27

QOurs Final

Ours-first |-0.11 10.93|0.46 7.97 | 0.36 10.06|0.45 13.34| 0.36 10.34|0.80 5.29 | 0.14 9.77 | 0.35 9.67
Ours-dual [0.91 3.95|0.93 3.34|0.90 3.81|0.93 3.14|0.95 2.97|0.95 2.71|0.96 2.59 0.93 3.22

For each dataset, we directly report the Pearson correlation (r,,) and the vector endpoint error (EPE). We both show the method trained on diffuse and non-diffuse motion datasets. Mod1 to
Mod7 are various second-order modulations, including random noise, Gaussian blur, water wave, Fourier phase shuffle, random pixel shuffle, swirl, and drift-balanced motion. The last two
rows indicate our final jointly trained model, evaluated separately using a single first-order channel and a dual-channel approach. ‘Ours-ND’ and ‘Ours-D’ represent our model separately
trained with non-diffuse and diffuse data.
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Extended Data Table 3 | Model vs. Ground-truth on Second-order Motion

Method ‘ Mod1l ‘ Mod2 ‘ Mod3 ‘ Mod4 ‘ Mod5 ‘ Mod6 ‘ Mod7 ‘ All
| ruv EPE| ruy EPE| ryy EPE| ruy EPE| ryy EPE|ru EPE|ryy, EPE| ry, EPE

Trained with non-diffuse

RAFT [39] |0.52 9.32 |0.86 4.04 |0.23 12.28|/0.10 11.71{0.19 11.37|0.61 8.22 |-0.15 12.22|0.34 9.88
MEGraph [16] ] 0.23 11.26|0.54 9.37 | 0.43 10.47|0.57 14.08|0.31 10.97|0.82 6.41 | 0.18 11.31|0.44 10.55
GMFlow [41] | 0.05 11.58|0.09 11.58|0.06 11.65|0.11 11.65|0.16 11.53|0.12 11.47|-0.04 11.65| 0.08 11.59
Videoflow [43] | 0.55 9.21 | 0.49 9.30 | 0.56 10.50|0.20 11.59|0.56 11.17|0.74 5.54 |-0.07 25.49|0.43 11.83
Ours-ND-dual | 0.88 7.86 [ 0.97 8.38 [ 0.85 9.53 |0.89 9.05 |0.95 9.56 | 0.90 9.12|0.96 12.63|0.91 9.45

Trained without non-diffuse

Farneback [36]|-0.03 11.87|-0.13 11.65| 0.16 11.66|0.12 11.59|0.28 11.17|0.36 9.93 | 0.10 11.89|0.12 11.39
FFVIMT [37] |-0.26 12.01(-0.07 11.69| 0.10 11.67|0.04 12.20|0.00 12.04|-0.02 12.45|-0.11 13.28|-0.05 12.19
RAFT [39] |0.32 11.07|0.36 10.50|0.19 12.11{0.12 11.64|0.15 11.50| 0.45 9.20 | 0.03 11.65| 0.23 11.09
MEGraph [16]]0.11 11.59|0.15 11.61| 0.03 12.22|0.18 15.61|0.03 11.85|0.55 8.84 |-0.15 12.88|0.13 12.08
GMFlow [41] | 0.26 10.77|0.20 11.47|-0.15 11.69|0.09 11.61|0.05 11.60|0.06 11.89|-0.09 11.77| 0.06 11.54
Videoflow [43] | 0.32 10.70| 0.26 10.92|0.18 13.44|0.33 11.63|0.17 11.63|0.42 9.98 | 0.13 11.64|0.26 11.42
Ours-D-dual | 0.41 11.15(0.31 11.31|0.51 12.54|0.56 19.13|0.47 14.00| 0.68 11.32| 0.64 9.38 | 0.51 12.69

QOurs Final

Ours-first |-0.08 11.68|0.42 10.39| 0.35 10.86|0.45 13.37|0.37 11.08|0.80 5.89 | 0.14 11.10| 0.35 10.63
Ours-dual [0.93 4.06 |0.93 3.37|0.91 4.17|0.94 3.11|0.95 2.61|0.95 2.92|0.97 2.58 |0.94 3.26

For each dataset, we directly report the Pearson correlation (r,,) and the vector endpoint error (EPE). We both show the method trained on diffuse and non-diffuse motion datasets. Mod1 to
Mod7 are various second-order modulations, including random noise, Gaussian blur, water wave, Fourier phase shuffle, random pixel shuffle, swirl, and drift-balanced motion. The last two
rows indicate our final jointly trained model, evaluated separately using a single first-order channel and a dual-channel approach. ‘Ours-ND’ and ‘Ours-D’ represent our model separately
trained with non-diffuse and diffuse data.
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Extended Data Table 4 | Model vs. Human vs. ground truth on First-order Motion

Sintel KITTI2015

to Human ‘ to GT ‘ . ‘ RCI
rw  EBEPE ‘ rw BPE ‘ ‘

0.50 | 0.67 | 0.85 5.07 | 0.96 2.26 | 0.27 | .055
0.29 0.84 511 | 098 1.61 | 0.11 | .040

rwy EPE | r,, EPE |

|

‘ to Human ‘ to GT

|
Ours-first | 091 0.93 | 0.90 0.88

Puv

Ours-dual | 0.88 1.12 | 0.90 0.93

We compare our first-order and dual-channel variants of our model on KITTI 2015 and Sintel®". For each dataset, we report the Pearson correlation (r,,) and endpoint error (EPE) relative to
both human judgments and ground truth. We also include the partial correlation (o,,) between human and model while controlling for ground truth, along with the Response Consistency
Index (RCI) from’. Notably, although adding the higher-order channel (Ours-dual) helps estimate the ground truth in some challenging scenes (KITTI), it reduces correlation with human data
and decreases partial correlation, indicating that motion energy-based first-order motion processing is necessary and sufficient to capture human perceptual bias for these scenes. Unlike the
first-order channel, the higher-order simply employs 3D convolution without human-aligned computational constraints and thus has more degrees of freedom, often introducing effects that
deviate from human-like processing. This is also consistent with the fact that the Sintel slow subset and the validated KITTI regions generally lack non-diffuse reflections, making higher-order

motion cues less relevant.
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Human psychophysical data and the corresponding model responses are available at: https://github.com/anoymized/multi-order-motion-model, and are also
archived on Zenodo at https://zenodo.org/records/14958959. All other relevant data supporting the findings of this study—including model predictions, human
behavioral responses, and custom datasets (Drifting Grating, Non-textured 2D Motion, Diffuse Motion, Non-diffuse Motion, and Second-order Motion datasets)—
are provided at the same repository. Two additional mini motion datasets featuring diffuse and non-diffuse objects are also made available to support quick
verification of the effects on second-order motion perception. The public datasets used in this study are accessible from the following sources:

Kubric: https://github.com/google-research/kubric

KITTI: https://www.cvlibs.net/datasets/kitti/

MPI-Sintel: http://sintel.is.tue.mpg.de/

Sintel-slow: https://www.cvlibs.net/projects/slow_flow/

DAVIS: https://davischallenge.org/

Unsplash: https://github.com/unsplash/datasets

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender Three participants (three male in sex) in the study were recruited, including two of the author and one naive participants,
with an average age of 25.3 years (SD = 1.24). Participants self-report to be normal or corrected-to-normal vision. No other
information related to other sex or gender-related information (including but not limited as gender, gender identity, etc)is
collected.

Population characteristics All the participants came from the Graduate School of Informatics Kyoto University, Japan. No other population
characteristics were collected or recorded during the experiment.

Recruitment The participants voluntarily joined the experiment and came from the Graduate School of Informatics, Kyoto University. The
honorarium is given after quitting the experiment (including finishing or quitting the experiment). All the participants read
and agreed with the consent form before the start of the experiment. All participants were told all their rights during the
experiment, including the free-to-leave.

Ethics oversight The experiment protocol, content, and consent form follow the Declaration of Helsinki and were screened and approved by
the Ethics Committee of Kyoto University (approval no. KUIS-EAR-2020-003).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|:| Life sciences |X| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description This study is a quantitative experimental study. It involves collecting numerical data from controlled psychophysical experiments to
evaluate participants' ability to estimate second-order motion vectors.

Research sample This study used three male participants (average age: 25.3 years, SD = 1.24) with normal or corrected-to-normal vision. Two were
authors of the study, and one was a naive participant from Kyoto University. All were graduate students recruited from the Graduate
School of Informatics, Kyoto University, and were financially compensated. They were pre-trained with the task to ensure reliable
data collection. Our choice is reasonable considering that low-level visual perception phenomena are widely regarded as highly
conserved across healthy adults, regardless of sex or cultural background, and that the current purpose was to demonstrate well-
established humans’ high capability in perceiving second-order motion.

Sampling strategy Our sampling procedure was based on convenience, as participants with normal or corrected-to-normal vision were recruited from
the Graduate School of Informatics, Kyoto University. Although we did not pre-compute sample size, based on our past experiences
with the measurement method, we designed our human experiment to measure a sufficiently large number of responses (1120
trails) for each participant to reliably compute the correlation with the ground truth. The results indicate that the responses were
highly consistent within each participant, and across participants (mean correlation = 0.983, SD = 0.005, n = 3).

Data collection Data were collected using a VIEWPixx /3D LCD monitor (VPixx Technologies) with a resolution of 1920x1080 pixels and a refresh rate
of 30 Hz. Display luminance was linearly calibrated using an i1Pro chromometer. Participants used a mouse to provide responses
during the experiment, which was programmed and run using the PsychoPy library.

The experiments were conducted in a darkened room, and participants' heads were stabilized using a chinrest to ensure accurate
viewing distance (70 cm). Only the participant and the researcher were present during the sessions.

The researcher was not blind to the experimental conditions or hypotheses, as two of the participants were also authors of the study.
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However, the experimental protocol and stimulus presentation were fully randomized to reduce potential biases.

Timing Data collection occurred on two separate dates. On October 16, 2023, experimental data from two authors were collected.
Subsequently, data from the naive participants were collected on February 7, 2024. All sessions were completed within a single day
for each participant.

Data exclusions No data were excluded from the analyses. All collected data were included in the final analysis.

Non-participation No participants dropped out or declined participation. All three participants who were recruited completed the experiment
successfully.

Randomization Participants were not allocated into experimental groups. The study followed a within-subject design where all participants
completed the same set of trials.
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Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies & |:| ChlP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Clinical data
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