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Machine learning modelling for multi-order 
human visual motion processing
 

Zitang Sun    , Yen-Ju Chen    , Yung-Hao Yang, Yuan Li & Shin’ya Nishida     

Visual motion perception is a key function for agents interacting with their 
environment. Although recent advances in optical flow estimation using 
deep neural networks have surpassed human-level accuracy, a notable 
disparity remains. In addition to limitations in luminance-based first-order 
motion perception, humans can perceive motions in higher-order features—
an ability lacking in conventional optical flow models that rely on intensity 
conservation law. To address this, we propose a dual-pathway model that 
mimics the cortical V1-MT motion processing pathway. It uses a trainable 
motion energy sensor bank and a recurrent graph network to process 
luminance-based motion and incorporates an additional sensing pathway 
with nonlinear preprocessing using a multilayer 3D CNN block to capture 
higher-order motion signals. We hypothesize that higher-order mechanisms 
are critical for estimating robust object motion in natural environments 
that contain complex optical fluctuations, for example, highlights on 
glossy surfaces. By training on motion datasets with varying material 
properties of moving objects, our dual-pathway model naturally developed 
the capacity to perceive multi-order motion as humans do. The resulting 
model effectively aligns with biological systems while generalizing both 
luminance-based and higher-order motion phenomena in natural scenes.

Creating machines that perceive the world as humans do poses a sub-
stantial interdisciplinary challenge bridging cognitive science and 
engineering. From the former perspective, developing human-aligned 
computational models advances our understanding of brain func-
tions and the mechanisms underlying perception1–3. On the latter 
side, such models, which accurately simulate human perception in 
diverse real-world scenarios, would enhance the reliability and utility 
of human-centred technologies.

Recent advances in machine learning by deep neural networks 
(DNNs) have led machine vision to surpass humans in performing 
many vision tasks4,5. In visual motion estimation6, state-of-the-art 
(SOTA) computer vision (CV) models are more accurate than humans 
at estimating optical flow in natural images7; however, they are not yet 
sufficiently human-aligned, being unable to predict human perception 
in many aspects. Computer vision models are often unstable under 
certain experimental conditions8,9. They do not reproduce human 
visual illusions nor fully capture biases inherent in human perception7.

Recent attempts to integrate insights from cognitive science with 
deep learning techniques10–12 demonstrate the DNNs’ potential to 
align with the biological visual motion processing, but they cannot 
accurately compute the detailed image motion, unlike humans and 
SOTA CV models.

Here, to contribute both to biological vision science and com-
puter vision, we propose a DNN model showing human-like perceptual 
responses across broad aspects of motion phenomena, while main-
taining high motion estimation capabilities comparable to SOTA CV 
models.

Our model features a two-stage processing that simulates the cor-
tical system of primates13,14. The first stage mimics the primary visual 
cortex (V1), featuring neurons with multiscale spatiotemporal filters 
that extract local motion energy. Unlike past models, the filter tunings 
are learnable to fit natural optic flow computation. The second stage, 
which mimics the middle temporal cortex (MT), addresses motion 
integration and segregation. We introduce the concept of motion 
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•	 To show the model’s ability to reproduce past scientific findings 
related to motion perception while providing high-density optical 
flow estimation and segmentation comparable with SOTA CV models.

•	 To demonstrate the conceptual feasibility of a hypothesis that 
second-order motion perception may have evolved for reliable 
estimation of motion of non-Lambertian objects despite the pres-
ence of optical noise.

Results
In the next section we present the processing pipeline of the 
dual-channel two-stage motion model. We then demonstrate how the 
model integrates local motions in various scenarios. Finally, we extend 
the model’s scope to higher-order motions, exploring the relationship 
between material properties and the ability of second-order motion 
perception. Demonstrations of our project are available at https://
kucognitiveinformaticslab.github.io/motion-model-website/.

The two-stage processing model
Our prototype model features two-stage motion processing that com-
bines classical motion energy sensors in stage I with modern DNNs in 
stage II. Stage I captures local motion energy, simulating the function 
of V1, whereas stage II globally integrates local motions, simulating the 
primary function of the middle temporal cortex. The red route in Fig. 1a 
is for sensing first-order motion. Specifically, we built 256 trainable 
motion energy units, each with a quadrature 2D Gabor spatial filter 
and a quadrature temporal filter. These captured the spatiotemporal 
motion energies of input videos within a multiscale wavelet space. The 
key implementation difference from past motion energy models13,14 is 
that we embedded computation in the deep learning framework, with 
each motion energy neuron’s parameters, such as preferred moving 
speed and direction, being trainable to fit the task. In Fig. 1b we demon-
strate the speed–direction distribution and filter receptive field of the 
trained motion energy neurons. These neurons, activated by stimuli 
with the preferred spatiotemporal frequency, have their activation 
patterns decoded into perceptual responses (Fig. 1b(iii)). The activa-
tion patterns of stage I resemble mammalian neuron recordings in the 
V1 cortex with respect to spatiotemporal receptive field and direction 
tuning (Fig. 1b(ii),(iv)). Moreover, incorporating motion energy sensors 
allows the model to replicate human-aligned perception of various 
motion illusions, such as reverse phi and missing fundamental illu-
sions, which are not captured by CV models estimating dense optical 
flow based on correspondence tracking16.

Stage I is connected to stage II, which constructs a fully connected 
graph on local motion energy, treating each spatial location as a node, 
with all nodes interconnected. We use a self-attention mechanism to 
define the topological structure of the graph, by which motions are 
recurrently integrated to generate interpretations of global motion 
and address aperture problems (Fig. 1a, right). A shared trainable 
decoder is used to visualize the optical flow fields from stages I and II. 
The entire model is trained under supervision to estimate pixel-wise 
object motions in naturalistic datasets28–30.

The first-order motion energy channel can capture first-order 
motions only. We added an alternative channel to extract information 
on higher-order motion; this is depicted by the grey route in Fig. 1a. 
This channel employs trainable multilayer 3D convolutions that extract 
nonlinear spatiotemporal features before the motion energy computa-
tions. This dual-channel design was inspired by earlier vision studies 
of separate processing designs23–25.

Refer to the ‘Model structure’ and ‘Training strategy’ sections in 
the Methods for more technical details on the model.

Motion graph-based scene integration
This section focuses on how stage II of our model integrates first-order 
motion signals to solve the aperture problem31 by switching off the 
connection from the higher-order channel in stage I.

graph modelling dynamic scenes, enabling flexible connections across 
local motion elements for global motion integration and segregation. 
As the motion graph implicitly encodes object interconnections in a 
graph topology, training-free graph cuts15 can be seamlessly applied 
for object-level segmentation.

The early version of our model, reported partially in ref. 16, fea-
tured a single-channel motion sensing pathway in the first stage and was 
trained to estimate the ground truth flow across various video datasets. 
The model successfully replicated a wide range of findings on biologi-
cal visual motion processing for low-level, luminance-based motion 
(first-order motion); however, as it is solely based on luminance-based 
motion sensing, it cannot explain higher-level human motion per-
ception involving spatiotemporal pattern preprocessing, such as 
second-order motion17,18.

Second-order motion, also termed non-Fourier motion, features 
high-level spatiotemporal features, including spatial or temporal con-
trast modulations. Such motion perception is observed across many 
species, including macaques19, flies20 and humans18,21, yet it remains 
undetectable by most CV models8. This limitation stems from CV 
models’ reliance on flow estimation algorithms based on the intensity 
conservation law22, which estimates pixel shifts by matching intensity 
distributions before and after the movement.

We revised the model’s structure and training scheme to encom-
pass both first- and second-order motion perception. As human 
vision studies suggest separate processing mechanisms for first- 
and second-order motions23–25, we introduced a secondary sens-
ing pathway with a naive three-dimensional convolutional neural 
network (3D CNN) preceding the motion energy sensing stage23,26. 
The 3D CNN is designed to perform nonlinear preprocessing to 
extract spatiotemporal textures, following the filter-rectify-filter 
model of second-order motion processing27. Given the computa-
tional power of neural networks, the modified model is expected to 
detect second-order motion after training on an adequate number 
of artificial, second-order motion stimuli; however, such training 
is unrealistic in natural environments, where pure second-order 
motions are rarely observed. The critical scientific question is how 
and why the biological visual system naturally acquires the ability 
to perceive second-order motion.

We hypothesized that second-order motion perception aids 
the estimation of the motion of objects exhibiting different material 
properties. Natural non-Lambertian optical effects, such as specular 
reflections and transparent refractions, can alter the light path of 
an object. This generates complex and dynamic optical turbulence 
on the surface of the moving object, introducing serious first-order 
motion noise in the image motion flow. For such non-diffuse materi-
als, detecting first-order motion alone will not provide an accurate 
estimation of object motion, but the additional use of second-order 
motion—such as the movements of dynamic luminance noise—would 
be able to improve the object motion estimation. As a proof of con-
cept that detecting second-order motion correlates with estimat-
ing non-Lambertian objects’ motion, we created two versions of a 
motion dataset. One contained purely Lambertian (matte) objects, 
and the other non-Lambertian objects experienced optical turbulence 
imparted by non-diffuse materials. We trained different models on both 
datasets and found that, given an appropriate structure and training 
environment, the model naturally developed the ability to perceive 
second-order motion comparable to human capabilities. We also show 
that our human-aligned visual motion model, with the ability to process 
both first- and second-order motions, can robustly estimate object 
motion under noisy natural environments.

The contributions of our study can be summarized as follows:

•	 To model human visual motion processing by trainable motion 
energy sensing and a graph network, with the dual-channel design 
for the detection of both first- and second-order motions.

http://www.nature.com/natmachintell
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Figure 2a (left) displays the responses of 256 units to both drift-
ing Gabor and plaid stimuli32. Analysis revealed three distinct groups 
of units on the basis of their partial correlations with the Gabor and 
plaid stimuli. Component cells responded to the direction of a Gabor 
component. Pattern cells responded to the integrated (coherent) 
direction of plaid motion. Unclassified cells showed no definitive pref-
erence for either response, as shown on the right of Fig. 2a. Typically, 
component cells dominate in V1, whereas pattern cells, equipped with 
motion integration capabilities, are more common in the middle tem-
poral cortex32. Our model mirrors this biological distribution, as more 
component cells are in stage I and more pattern and unclassified cells 
in stage II. Figure 2b shows a global motion of drifting Gabors, where 
each local patch exhibits a different local direction and speed but is 
collectively consistent with unified 2D motion downward. Humans 
perceive coherent downward motion by integrating local motions 
across space and orientation33. In agreement with human perception, 
stage I of our model computes local motion whereas stage II responds 
to global motion.

Figure 2c illustrates how the model adapts to spatial patterns when 
integrating motions. When a diamond moves along a circular path 
(scenario A), where stage I would detect local orthogonal movements 
of the line segments, stage II integrates the local motions into a coher-
ent global motion (see the left side of Fig. 2c). In scenario B, despite the 
corners of the diamond being occluded by stationary rounded squares, 
the model integrates the local motions of the line segments into a single 
coherent motion. The heat map of the stage II connections shows that 
the line segments remain linked, as if the model properly considers 

the spatial relationships between occluders and edge segments. This 
cannot be simply attributed to a wide integration window from the 
motion graph because, in scenario C, where the occluders are invisible, 
the connections between the line segments are lost in stage II, and the 
model generates incoherent motion. These model behaviours across 
scenarios A–C align well with human psychophysical data34, as shown 
by the similarity in the motion coherence index between the model 
and humans (see bar plot at the bottom-left of Fig. 2c).

Stage II is essential when processing complex natural scenes 
(Fig. 3a). Real scenes often exhibit chaotic local motion energies, com-
pounded by challenges such as occlusions and non-textured regions. 
Addressing these complexities requires long-range and flexible spatial 
interactions, which are effectively handled by the graph-based, recur-
rent integration process of stage II. During the iterative process, the 
model represents local regions as nodes of a graph. The connection 
weights between locations are captured by the adjacency matrix 
A ∈ ℝHW×HW. This matrix is normalized to within the range (0,1), where 
higher values indicate stronger connections. An affinity heat map can 
be expanded from a specific row of the adjacency matrix (Fig. 3a), 
indicating how stage II distinguishes objects from the background and 
adaptively establishes connections across occlusions. We hypothesized 
that some of the information required for object-level segmentation 
was inherently encoded in the topology of the motion-based graph. 
We used a training-free visualization method to test this. Specifically, 
graph bipartitioning based on the eigenvector corresponding to the 
second smallest eigenvalue of the graph Laplacian15 enabled instance 
segmentation based on motion coherence (right side of Fig. 3a).  
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the entire model for motion flow estimation. b, Illustration of motion energy 

units in stage I after training. b(i), Distribution of preferred moving directions 
and speeds. b(ii), Spatiotemporal receptive field of one motion energy unit, 
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kernel. The neuron’s receptive field is from ref. 91. b(iii), A demo showing how a 
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The results indicated that the model integrated motion representations 
and object-level recognitions via graph structure, grouping objects 
even across occlusions.

Our motion-graph-based integration mechanism can unify motion 
perception and object segmentation in a single framework. Through 
a recurrent process, local motion signals become accurately com-
bined in a graph space, yielding clear object-level representation in a 
coarse-to-fine manner. Refer to the ‘Stage II (global Motion integration 
and segregation)’ section for the implementation details. This may be 
related to motion-shape interactions in the biological visual system35.

We further tested the model using the Sintel slow benchmark28, for 
which psychophysically measured human-perceived flows are avail-
able7. We compared our model to various CV optical flow estimation 
methods, including traditional algorithms such as Farneback36; bio-
logically inspired models11,37; and SOTA CV models such as multiscale 

inference methods6,38, spatial recurrent models39, graph reasoning 
approaches40 and vision transformers41. As detailed in Table 1, we 
computed the Pearson correlation coefficients and vector endpoint 
errors (EPEs) to assess the relationships between model predictions, 
human responses and ground truth. We also calculated partial correla-
tions between human and model responses while controlling for the 
influence of ground truth, and the response consistency index (RCI)7. 
These two are global and local measures to evaluate how much the 
model prediction accurately replicates human perceptual errors from 
the physical ground truth (refer to the ‘Human and model comparison’ 
section for further details).

Although our framework was not explicitly optimized for pre-
cise flow estimation, its performance remains competitive with SOTA 
CV models. Notably, our model shows the highest partial correla-
tion with human response and RCI. Figure 3b demonstrates a strong 
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units for 1D gratings and 2D plaids. The partial correlations to component 
and pattern tuning types are shown. Overall, the model units exhibit a trend 
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Stage II then performs motion integration, linking local motion signals to resolve 
the aperture problem and infer global (downward) motion. The model response 

aligns with the human perception of adaptive pooling. c, Motion integration 
is sensitive to higher-order pattern cues. We used the three scenarios A, B and 
C detailed in ref. 34. The extents of integration were quantified by correlating 
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correlation between the model prediction and human data in (u,v) 
vector component distribution. Figure 3c qualitatively suggests that 
motion integration in stage II introduces perceptual biases that align 
with human errors.

In addition to the Sintel benchmark, we tested our model on the 
KITTI 2025 dataset30, which consists of real-world driving scenes, and 
found consistent results (Extended Data Table 1). See also Extended 
Data Table 4 for the results obtained when the dual channels are used 
on these benchmarks.

Material properties and second-order motion perception
In this section we will consider a full dual-channel model. Despite 
including a second channel that extracted higher-order features, our 
model could not identify second-order motion when trained only on 
existing motion datasets. This limitation reflects broader challenges 
in CV, as other DNN-based models also fail to capture second-order 
motion perception8.

To test our hypothesis that the biological system evolved to per-
ceive second-order motion for estimating object movement amidst 
optical noise from non-diffuse materials, we constructed datasets that 
controlled the properties of object materials. One dataset contained 

diffuse (matte) reflections and the other non-diffuse properties, includ-
ing glossy, transparent and metallic surfaces (Fig. 4a). The model was 
trained with a focus on higher-order motion extractors to estimate the 
ground truth of object motion while ignoring optical interferences 
caused by non-diffuse reflections.

To quantify second-order motion perception, we developed a 
benchmark using natural images with various second-order mod-
ulations. As shown in Fig. 4b, the benchmark included classical 
drift-balanced motion (temporal contrast modulation)17; local low 
contrast (spatial modulation); and natural phenomena such as water 
waves and swirling flow fields (spatiotemporal modulation). The last 
movements are not pure second-order motion but are almost indiscern-
ible in Fourier space, given the chaotic optical disturbances caused by 
reflection and refraction. Our psychophysical experiment revealed a 
strong correlation between the physical ground truth and the human 
response in detecting second-order motion (rmean = 0.983, s.d. = 0.005) 
(Fig. 4c). By contrast, a representative CV model, RAFT, was associated 
with a much lower correlation (r = 0.102). We trained our model on the 
diffuse and non-diffuse datasets and compared the correlations with 
human responses. The results of Fig. 5c indicate that both the data-
set material properties and the model architecture greatly influence 
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the perception of second-order motion. Even when trained with our 
non-diffused data, the tested CV models still show a limited capabil-
ity to recognize second-order motions. By contrast, our dual-channel 
model, trained with non-diffuse data, substantially improved recogni-
tion of second-order motion. The average correlation reaches 0.902 
(right side of Fig. 5c).

Figure 5b shows the directional tuning capacities of the first- and 
higher-order motion channels. For various directions of first- and 
second-order drifting gratings, directional tuning was estimated using 
the modified circular variance42. The first-order channel responded 
primarily to first-order motions, whereas the higher-order chan-
nel was more sensitive to second-order motion. The sensitivity of 
the higher-order channel to the second-order motion was further 
enhanced through training on non-diffuse materials (compare red 
and blue dots in Fig. 5b).

We also compared the Pearson correlations between our final 
model responses and motion ground truth across SOTA optical flow 
models, including RAFT, GMFlow and multi-frame-based VideoFlow43. 
As shown in Fig. 5a, our model exhibited the highest correlation and 
stability, closely matching human performance. Extended Data Tables 2 
and 3 provide more detailed quantitative data on second-order motion 
comparison.

Notably, unlike our dual-channel model, SOTA CV models cannot 
achieve a good ability to detect second-order motions even after train-
ing with non-diffuse materials. This limitation probably stems from 
structural design. Computer vision models are primarily designed to 
track the absolute pixel correspondences between frames, and thus rely 
on pixel intensity44. As second-order motions such as drift-balanced 
motion lack explicit pixel correspondences across frames, such models 
often become unstable and generate noisy responses.

The interplay between the first- and higher-order channels
Extended Data Fig. 1a presents qualitative data illustrating the dif-
ference between the first- and higher-order channels, demonstrat-
ing their function when processing natural scenes with noisy optical 
environments (first row). Higher-order processing affords more stable 
results when interpreting global flow motion (left). Such processing 
effectively tracks the movement of a plastic box with fluctuating water 
inside, even outperforming certain SOTA CV models45 when handling 
such extremely noisy—but natural—scenes. The second and third 
rows show the segmentation results for both natural scenes and pure 
drift-balanced motion17. In terms of segmentation, the higher-order 
channel usually helps the model to identify objects in motion. The 
segmentation results are finer than those of the first-order channel 

alone. We validated these results on the DAVIS 2016 video segmentation 
benchmark46, which includes 3,505 image samples. The dual-channel 
approach achieved a mean intersection over union (IoU) score of 0.60, 
outperforming the single-channel method, which scored 0.56. In the 
last row of Extended Data Fig. 1a, we show that our framework can 
group objects, even when they are spatially invisible, as seen in the 
pure drift-balanced motion test. The higher-order channel affords 
a distinct advantage under such conditions, effectively identifying 
object instances within noise. Such second-order motion patterns are 
near-undetectable by current CV segmentation models, including SOTA 
video segmentation models47,48. Note that our segmentation results 
were obtained using a naive graph bipartition15 without additional 
training. Refer to the ‘Stage II (global motion integration and segrega-
tion)’ section for implementations of the motion graph.

Discussion
We establish a human-aligned optic flow estimation model capable of 
processing both first- and higher-order motions. The model replicates 
the characteristics of human visual motion in various scenarios ranging 
from typical stimuli to more complex natural scenes.

Recent studies have also leveraged DNNs to infer the neural and 
perceptual mechanisms underlying visual motion. For example, 
Rideaux et al.10,49, and Nakamura and Gomi12 used multilayer feed-
forward networks, whereas Storrs and colleagues50 used a predictive 
coding network (PredNet) to model human visual motion processing. 
DorsalNet11 employed a 3D ResNet model to predict self-motion param-
eters. Despite their contributions, these models cannot estimate the 
dense optical flows consistent with the physical or perceptual ground 
truths, nor do they account for higher-order motion processing.

Modelling visual motion processing
We modelled human visual motion processing, including the V1-MT 
architecture, via motion energy sensing and graph-based integration. 
After end-to-end training, our model generalized both simple labora-
tory stimuli and complex natural scenes well. The model naturally 
captures various characteristics of neurons in the motion pathway, 
including the change in spatiotemporal tuning from the V1 to the mid-
dle temporal cortex areas. Motion integration successfully explains 
the physiological findings—specifically, the shift in the populations 
of component and pattern cells from the V1 to the middle temporal 
cortex—and also the psychophysical findings such as adaptive global 
motion pooling. The utility of the attention mechanism during motion 
integration may be attributable to its similarity to the human visual 
grouping mechanism51.

Table 1 | Model versus human versus ground truth on Sintel benchmark

Method ρuv ρdir ρspd RCI vs Human vs Ground truth

ruv rspd rdir EPE ruv rspd rdir EPE

Farneback36 0.27 0.23 0.11 0.039 0.41 0.91 0.34 2.02 0.34 0.33 0.92 1.96

FlowNet2.06 0.39 0.26 0.34 0.034 0.92 0.90 0.96 0.94 0.95 0.94 0.98 0.47

RAFT39 0.20 0.22 0.14 0.026 0.92 0.90 0.96 0.93 0.98 0.99 0.99 0.25

RAFT-val 0.43 0.17 0.42 0.049 0.92 0.89 0.96 1.01 0.92 0.89 0.98 0.69

AGFlow40 0.30 0.16 0.20 0.016 0.93 0.90 0.96 0.92 0.98 0.98 0.98 0.27

GMFlow41 0.34 0.32 0.17 0.028 0.91 0.84 0.96 1.03 0.93 0.90 0.97 0.73

FlowFormer81 0.36 0.14 0.32 0.030 0.93 0.91 0.95 0.90 0.98 0.97 0.98 0.42

FFV1MT37 0.31 0.16 0.31 0.043 0.83 0.64 0.92 1.48 0.59 0.84 0.94 1.29

DorsalNet11 0.17 0.19 −0.10 0.029 0.20 −0.08 0.86 2.35 0.20 −0.04 0.86 2.33

Ours-first 0.50 0.38 0.37 0.067 0.91 0.88 0.95 0.93 0.90 0.90 0.96 0.88

Text marked bold indicates the best performance in that column. ρ, Partial correlation between human and model controlling for ground truth; r, Pearson correlation coefficient; EPE, vector 
endpoint error; uv, dir and spd represent motion components in Cartesian space, direction and speed, respectively; RCI denotes model–human similarity (larger = more human-aligned). 
Ours-first uses only the first-order channel.
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Second-order motion processing
Another critical contribution is that we reveal a function of second- 
order motion perception, which has received little attention from 
the CV community because the functional importance thereof has 
been poorly understood. Early studies suggested that visual analysis 
of second-order features might aid recognition of global image spa-
tial structure52 and/or may distinguish separation by shading from a 
material change53. However, the importance of second-order motion 
remained unclear. Here we show that biological systems may engage 
in second-order motion perception to ensure reliable motion estima-
tion from non-diffuse material. This is an important advance in making 
CV algorithms more human-aligned and simultaneously more robust 
in estimating the dynamic structural changes of natural scenes. Our 
study also shows that machine learning can afford conceptual proof 
of neuroscientific hypotheses that suggest how specific functions 
evolved in natural environments.

Relationship with computer vision models
This study does not seek to outperform SOTA CV models optimized 
for certain engineering tasks. We instead employ a heuristic approach 
to balance the alignment of human vision with the robust process-
ing of natural scenes. Inspired by the human visual system, it may 
be possible to expand the capacities of CV models. For example, we 
show that human-aligned computation efficiently captures inherent 
human-perceived flow illusions that CV models often fail to replicate 
(Table 1). The current CV methods, when presented with certain sce-
narios, are often unstable because they seek to match the pixel cor-
respondences between frame pairs9. This strategy differs from the 
human higher-order motion perception mechanism, which depends 
on spatiotemporal features and demonstrates exceptional stability 
and adaptability in interpreting object motion. Furthermore, the 
second-order motion system could detect long-range motions of 
high-level features. The addition of this system not only combats noise 
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Fig. 4 | A material-controlled motion dataset and a second-order benchmark 
demonstration. a, We manipulated material properties to create two motion 
datasets with optical flow labels—one with purely reflective materials and 
another incorporating non-Lambertian surfaces such as specular, glossy, 
translucent and anisotropic materials. The motion was simulated by a physics 
engine with gravity and initial movement, whereas material properties were 
rendered via the Blender87 engine. b, A large second-order benchmark was 
generated by applying naturalistic modulations—such as water waves and swirl 
effects—to natural images. A total of seven types of modulations were created 

to evaluate both human and model responses. For illustrative purposes, the 
background images shown here have been replaced with visually similar, 
copyright-free alternatives. c, Psychophysical experiments using this dataset 
demonstrated that humans reliably perceive a wide range of second-order 
motions, whereas current machine vision models struggle with this task.  
The figure below illustrates perceived-motion vectors from a single participant 
across seven different modulations. The shaded region around the fitted line 
represents the 95% CI.
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and optical turbulence but also results in a more stable and reliable 
motion estimation model, particularly useful in challenging scenarios 
such as adversarial attacks9 or extreme weather conditions54. We believe 
these advancements offer substantial insights towards enhancing 
motion estimation in the CV field and developing a more reliable and 
stable model.

Limitations
Human-like visual systems require more than basic motion energy com-
putation; they also need adaptive motion integration and higher-order 
motion feature extraction. Although our approach uses multilayer 3D 

CNNs and motion graphs to address these needs, this inevitably reduces 
interpretability compared with more traditional models. Interpreting 
the specific higher-order features being extracted remains challeng-
ing, as does understanding how a dynamic graph structure could be 
implemented in real neural systems.

Although our dual-channel model simply integrates outputs from 
the two channels before the middle temporal cortex module, biological 
systems are known to adaptively use first- and higher-order channels 
depending on the stimulus condition (for example, jump size, reti-
nal eccentricity and attention)26,55. To mimic the adaptive switching,  
we manually switch off the higher-order channel when analysing the 
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Fig. 5 | The interplay between material properties and second-order motion 
perception. a, We computed average Pearson correlations across various 
second-order motion types and compared them with contemporary CV models. 
Our dual-channel model, trained on a non-diffuse dataset, outperformed 
others—achieving near-human performance. Error bars indicate the 95% CI 
across seven modulation types; Ptcp-N represents different participants.  
b, The directional tuning curves of model units were evaluated using first- and 
second-order gratings. Tuning was quantified using a modified circular variance 
measure42, ranging from 0 (low tuning) to 1 (high tuning). Results from both 
first- and higher-order channels, trained on diffuse and non-diffuse datasets, 

show that the higher-order channel exhibits significantly better tuning, further 
enhanced with non-diffuse data. IQR, interquartile range. c, Pearson correlations 
with human responses are detailed for all modulation types. Mod1 to Mod7 
represent different second-order modulations, including random noise, 
Gaussian blur, water waves, Fourier phase shuffle, random pixel shuffle, swirl and 
drift-balanced motion. The dual-channel model trained on non-diffuse datasets 
demonstrated significantly improved recognition of second-order motion. Error 
bars denote the 95% CI for each modulation type. hum, human. d, The model’s 
response to second-order motion stimuli trained separately on diffuse and non-
diffuse motion sets. See Extended Data Tables 2 and 3 for quantitative data.
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phenomena in which first-order processing is supposed to dominate 
(refer to the ‘The two-stage processing model’ and ‘Motion graph-based 
scene integration’ sections). Even when switching higher-order chan-
nel on, we find no qualitative differences in the model prediction with 
regard to motion integration and illusions. For quantitative evalu-
ation on naturalistic movie benchmarks, however, the addition of 
the higher-order channel reduces the response similarity to humans 
(Extended Data Table 4), presumably because the higher-order channel 
has a powerful 3D CNN that has no explicit human-aligned computa-
tional constraints. In the future, we would like to add a function to the 
model that can adaptively integrate dual-channel outputs in a way that 
is consistent with biological systems.

For the second-order motion benchmark, due to the technical 
challenges of real-world data collection, we use synthetic data for quan-
titative evaluation, acknowledging a potential gap between simulation 
and reality. Further data and validation would be helpful for practical 
applications in future work.

Finally, higher-order motion processing serves broader functions, 
including self-location and navigation in dynamic environments56–58, 
and hierarchical decomposition of motion and object inference59,60. 
These aspects are not explicitly modelled here; however, our model 
exhibits grouping and segmentation capacities based on motion infer-
ence, which are important steps toward hierarchical inferences of 
natural scenes.

Methods
Model structure
Our biologically oriented model features two stages, stages I and II. 
As shown in Fig. 1, stage I has two channels, of which the first engages 
in straightforward luminance-based motion energy computation, 
whereas the second contains a multilayer 3D CNN block that enables 
higher-order feature extraction.

Stage I (first-order channel). Spatiotemporally separable Gabor 
filter. When building our image-computable model, each input was a 
sequence of grayscale images S(p,t) of spatial positions p = (x,y) within 
domain Ω at times t > 0. We sought to capture local motion energies at 
specific spatiotemporal frequencies, as do the direction-selective 
neurons of the V1 cortex. We modelled neuron responses using 3D 
Gabor filters61,62. To enhance computational efficiency, these were 
decomposed into spatial 2D Gabor filters 𝒢𝒢𝒢𝒢𝒢 and temporal 1D sinusoi-
dal functions exhibiting exponential decay 𝒯𝒯𝒢𝒢𝒢. Given the coordinates 
x′ = x cosθ 𝒯 y sinθ and y′ = −x sinθ 𝒯 y cosθ, the filters may be defined 
as follows:

⎧
⎪
⎨
⎪
⎩

𝒢𝒢𝒢x, y; fs,θ,σ, γ𝒢 = exp (− x′2+γ2y′2

2σ2
) × e(2πfsx′)i,

𝒯𝒯 (t; ft, τ) = exp (− t
τ
) exp(2πi ( ftt)𝒢,

s.t. {x, y, t |0 ≤ t < T; (x, y𝒢 |(x2 𝒯 y2 ≤ R2𝒢}

(1)

Trainable parameters such as fs, ft, θ, σ and γ control spatiotemporal 
tuning, orientation and the Gabor filter shape, whereas τ adjusts tem-
poral impulse response decay. All parameters are subject to certain 
numerical constraints, for example, θ is limited to [0,2π) to avoid 
redundancy, whereas fs and ft are limited to less than 0.25 px per frame 
to avoid spectrum aliasing, and so on. The response Ln to the stimuli 
S(p,t) is computed via separate convolutions:

Ln𝒢x, y, t;Θ𝒢 = 𝒢S ∗ 𝒢𝒢𝒢𝒢  𝒯𝒯

=∭S𝒢𝒳𝒳𝒳 𝒳𝒳𝒳𝒳𝒳𝒳  𝒢 𝒳𝒳n𝒢x −𝒳𝒳𝒳 y − 𝒴𝒴𝒴𝒴

𝒯𝒯n𝒢t − 𝒯𝒯𝒯d𝒳𝒳 d𝒴𝒴 d𝒯𝒯 𝒯 α1

where α1 are the learned spontaneous firing rates. Furthermore, local 
motion energy is captured by a phase-insensitive complex cell in the V1 

cortex, which computes the squared summation of the response from 
a pair of simple V1 cells with orthogonal receptive fields63, defined as 
(even and odd):

{
Lon𝒢x, y, t;ϴ𝒢 = S ∗ ℑ[𝒢𝒢𝒢 𝒢 𝒢𝒢𝒯𝒯𝒢 𝒯 S ∗ ℑ [𝒢𝒢𝒢𝒢 ∗ ℑ[𝒯𝒯𝒯

Len𝒢x, y, t;ϴ𝒢 = S ∗ ℜ [𝒢𝒢𝒢 ∗ ℜ[𝒯𝒯𝒯 − S ∗ ℑ[𝒢𝒢𝒢 𝒢𝒢𝒢 𝒯𝒯𝒢𝒢
(2)

where ℜ(⋅) and ℑ(⋅) extract the real and imaginary parts of a complex 
number and the asterisks denote convolution operations. The complex 
cell response Lcn is then:

Lcn𝒢x, y, t;ϴ𝒢 = (Lon𝒢x, y, t;ϴ𝒢)
2 𝒯 (Len𝒢x, y, t;ϴ𝒢)

2 (3)

Multiscale wavelet processing. The convolution kernel of our spatial 
filter has a fixed size of 15 × 15. This imposes a physical limitation on 
the receptive field of each unit. We employed a multiscale processing 
strategy to enhance receptive field size flexibility. Specifically, we 
constructed a pyramid of eight images that were linearly scaled from 
H × W to H×W

16
. The 256 complex cells are evenly distributed across the 

eight scales, with 32 cells per scale. All of these cells function as  
motion energy detectors, differing only in their receptive field sizes.  
Specifically, cells at coarser scales have larger receptive fields due to 
image downsampling before input. This enables the representation of 
different groups of cells that were sensitive to short- and long-distance 
motions64. The N = 256 complex cells {Lcn}

N
i  capture motion energy on 

multiple scales. We subjected each cell to energy normalization to 
ensure that the energy levels were consistent:

̂L
c
n𝒢t𝒢 =

K1Lcn𝒢t𝒢

∑N
i=1 L

c
i 𝒢t𝒢 𝒯 σ1

, (4)

where σ1 is the semi-saturation constant of normalization and K1 > 0 
determines the maximum attainable response. We interpret the 
response, denoted ̂Ln𝒢t𝒢, as the model equivalent of a post-stimulus 
time histogram, which is a measure of the neuron’s firing rate. Physi-
ologically, such responses could also be computed using inhibitory 
feedback mechanisms65,66. Bilinear interpolation was used to resize the 
multiscale motion energies to the same spatial size, thus 

H×W
8 .  

In the DNN context, this balances the trade-off between the spatial 
resolution and the computational overhead. The final output of the 
first stage is a 256-channel feature map E1 ∈ ℝ

H
8
× W

8
×256  that captures  

the underlying, local motion energy and thus partially characterizes  
the cellular patterns of the V1 cortex in a computational manner63;  
the implementation also illustrated in Extended Data Fig. 2a.

Stage I (higher-order channel). In the higher-order channel, we 
employ standard 3D CNNs to extract non-first-order features. This 
channel features five layers of 3D CNNs, each of kernel size 3 × 3 × 3, 
linked via residual connections and nonlinear ReLU activation func-
tions. The 3D CNN layers engage in preprocessing before extraction of 
nonlinear features, which are then processed using the motion energy 
constraints described above, and the motion energies calculated. As 
the human higher-order motion mechanism is highly sensitive to 
colour67, each input to this channel is a sequence of RGB images, and 
the output is formatted to match that of the first-order channel: 
E2 ∈ ℝ

H
8
× W

8
×256 . Both the first- and higher-order channel activations 

undergo the same normalization process, after which they are merged 
via a 1 × 1 convolution. The resulting fused output Em ∈ ℝ

H
8
× W

8
×256  is  

then fed to stage II.
In Fig. 5 and Extended Data Fig. 1, we designate the model incor-

porating stage II with Em as Ours-dual (signal from the dual chan-
nel), whereas the model using only E1 is referred to as Ours-first 
(signal only from the first-order channel). To simplify discussions 
on motion-energy-based processing and integration (refer to the 
‘The two-stage processing model’ and ‘Motion graph-based scene 
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integration’ sections), we focus on the first-order channel, avoiding 
the complexities introduced by higher-order motion. Conversely, 
when analysing second-order motion perception (refer to the ‘Material 
properties and second-order motion perception’ and ‘The interplay 
between the first- and higher-order channels’ sections), we adopt the 
dual channel, jointly considering both first- and higher-order channels 
(Fig. 5 and Extended Data Fig. 1).

Stage II (global motion integration and segregation). First-stage 
neurons have a limited receptive field, constraining them to detect only 
nearby motion. Solving the aperture problem in motion-perception 
systems necessitates flexible spatial integration68. This process 
involves complex mechanisms69,70 and requires extensive prior knowl-
edge, which may surpass traditional modelling methods. Convolu-
tional neural networks, with their extensive parameterization and 
adaptability, provide a viable solution; however, spatial integration of 
local motions demands more versatile connectivity than that offered 
by standard 3 × 3 convolutions, which are limited to local receptive 
fields. To address this, we developed a computational model that 
employed a graph network and recurrent processing for effective 
motion integration.

Motion graph based on a self-attention mechanism. We move beyond 
traditional Euclidean space in images, creating a more flexible connec-
tion across neurons using an undirected weighted graph, G = {V,A}. 
Here, V denotes nodes (each spatial location p(i,j)) and A is the adja-
cency matrix, indicating connections among nodes. The feature of 
each node is the entire set of the corresponding local motion energies: 
E𝒢i, j𝒢 ∈ ℝ1×256. The connection between any pair of nodes is computed 
using a specific distance metric. Strong connections form between 
nodes with similar local motion energy patterns. This allows the model 
to establish connections flexibly between different moving objects or 
elements across spatial locations, thus creating what we term a motion 
graph. Specifically, the distance between any pair of nodes (i,j) is cal-
culated using the cosine similarity. This is similar to the self-attention 
mechanisms of current transformer structures71–73. We use the adja-
cency matrix A ∈ ℝHW×HW  to represent the connectivity of the whole 
topological space, where A is a symmetrical, semi-positive definite 
matrix defined as:

A𝒢i, j𝒢 = A𝒢 j, i𝒢 =
φ𝒢E𝒢i 𝒢 φ𝒢E𝒢j

∥ φ𝒢E𝒢i ∥∥ φ𝒢E𝒢j ∥
. (5)

We subject the connections between graphs to exponential scaling 
using the matrix A given by exp𝒢As𝒢 , where s is a learnable scalar 
restricted to within (0,10) to avoid overflow. The smaller the s, the 
smoother the connections across nodes, and vice versa. Finally, a sym-
metrical normalization operation balances the energy, resulting in 
A ∶= D− 1

2 exp𝒢sA𝒢D− 1
2 , where D is the degree matrix. This yields an 

energy-normalized undirected graph. Intuitively, the adjacency matrix 
represents the affinity or connectivity of a neuron within the space. 
Strong global connections form between neurons, the motion 
responses of which are related.

Recurrent integration processing. Recurrent neural networks flexibly 
model temporal dependencies and feedback loops, which are funda-
mental aspects of neural processing in the brain74. We use a recurrent 
network, rather than multiple feedforward blocks, to simulate the 
process of local motion signals being gradually integrated into the 
middle temporal cortex and eventually converging to a stable state.

During each iteration i, an adjacency matrix Ai is first constructed 
using the current graph embedding feature Ai. Subsequent motion 
integration is achieved through a simple matrix multiplication. We 
introduce the gated recurrent unit75, implemented in a convolutional 
manner39, as a general component for propagating memory from the 

current state to the next iteration. The integrated motion information 
is therefore passed through convolutional gated recurrent unit blocks 
that update the motion energies:

Ei+1 = GRUθ𝒢Ai × Ei,Ei𝒢 (6)

This is computationally similar to the information propagation mecha-
nisms in transformers71,72 and can also be viewed as a simplified form 
of graph convolution76. Through recurrent iteration, this motion inte-
gration approximates the ideal final convergence of motion energies, 
that is, Ek → E*.

We adopted the same approach to decode the 2D optical flow from 
E of each iteration k. Specifically, the integrated motion E is squared to 
ensure positivity and then normalized in terms of energy:

Ê𝒢i, j𝒢 = K2E2𝒢i, j𝒢/
HW
∑
i, j
E2𝒢i, j𝒢 𝒯 σ22.

This yields Ê ∈ ℝH×W×256 , which could be viewed as a post-stimulus 
time histogram of neuronal activation. We use a shared flow decoder 
to project the activation pattern of each spatial location onto the 
motion field F ∈ ℝH×W×2. This decoder employs multiple 1 × 1 convolu-
tion blocks with residual connections, as do recent advanced optical 
flow models77,78. We observed that the results generally converged 
by the eighth iteration. This was therefore chosen as the standard 
stage II output. The overall inference pipeline is illustrated in 
Extended Data Fig. 2.

Cutting of an object instance from the motion graph. The interac-
tions of objects in a dynamic scene are reflected in the adjacency 
matrix of the motion graph G. After the incorporation of this adja-
cency matrix into A ∈ ℝHW×HW , segmentation can be achieved using 
a graph-cut method. Specifically, we employ the normalized cuts 
(Ncut) method15. This partitions a graph into disjoint subsets by 
minimizing the total edge weight between the subsets relative to the 
total edge weight within each subset. Specifically, the Laplacian 
matrix of G can be expressed as L = D − A, or in the symmetrically 
normalized form as L = In −D− 1

2 AD− 1
2 , where D is a diagonal matrix 

defined as D = diag𝒢{∑jAij}nj=1𝒢 ; L is a semi-positive definite matrix, 
which facilitates the orthogonal decomposition to yield L = UΛUT, 
where U is the set of all orthonormal basis vectors, denoted as {ui}

n
i=1 

and is therefore the Fourier basis of G. The Λ term is a diagonal matrix 
containing all eigenvalues {λi}

n
i=1 ordered as λ1 ≤ λ2 ≤ ⋯ ≤ λn. According 

to ref. 15, the eigenvector corresponding to the second smallest 
eigenvalue, u2 ∈ ℝHW , commonly termed the Fiedler vector, yields a 
real-valued solution to the relaxed Ncut problem. In our implementa-
tion, we extract u2 and then apply binarization using the rule 
u2 = u2 > mean(u2). The resulting binary segmentation is viewed as a 
potential field and further refined using a conditional random field79. 
As such binarization does not inherently distinguish between fore-
ground and background, we adaptively assign a polarity that matches 
the foreground during evaluation using the DAVIS 2016 segmentation 
benchmark. The results shown in the second row of Extended Data 
Fig. 1 were obtained using a recurrent bipartitioning method80 that 
allows multi-object segmentation. Notably, the entire process is 
training free.

Training strategy
We employ a supervised learning approach to minimize the difference 
between the model’s predictions and physical ground truth, and human 
motion perception data is only used for evaluation. Our primary focus 
is on how effectively the model mimics human motion perception, 
rather than how precisely it predicts the ground truth. During training, 
we use a sequential pixel-wise mean-squared-error loss to minimize 
the difference between the ground truth and the model predictions 
of stage I (and of each iteration of stage II).
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Dataset. Our dataset encompasses a diverse range of natural and 
artificial motion scenes. Specifically, it integrates existing benchmarks 
such as MPI-Sintel, Sintel slow28 and KITTI29,30, along with natural videos 
from DAVIS, where pseudo-labels are generated using FlowFormer81. 
This collection is referred to as dataset A.

We also introduce custom multi-frame datasets: dataset B, which 
comprises simple non-textured 2D motion patterns, and dataset C, 
which features drifting grating motions (that is, continuously translat-
ing sinusoidal gratings with orthogonal ground-truth motion direc-
tions). These datasets provide fundamental motion patterns that 
facilitate training from scratch, accelerating convergence and improv-
ing model stability38. Furthermore, as suggested by ref. 8, incorporating 
such datasets aids in model adaptation to non-textured scenarios and 
introduces an orthogonal motion bias to ambiguous motion. It remains 
controversial whether this bias reflects a slow-world Bayesian prior82 
or other causes10.

To study second-order motion, we developed datasets with dif-
fuse (dataset D) and non-diffuse (dataset E) objects and integrated 
them into training. We then evaluated how the model perceived mate-
rial properties and second-order motion. We define three training 
types:

1.	 Types I and II: The model was trained separately on D and E  
to assess how second-order motion perception is related to 
material properties. Results for these models, referred to as 
Ours-D (diffuse) and Ours-ND (non-diffuse), are shown in 
Fig. 5b,c.

2.	 Type III: The model was trained on a mixed dataset {A, B, C, 
D, E} using a curriculum strategy, thus starting with {B, C} and 
progressing to the full set. This approach, commonly used  
during optical flow model training38,39, improves convergence 
and robustness. All of the other results are based on type III 
training, denoted by the Ours-F (final). Unless otherwise  
specified, Ours refers to Ours-F throughout all of the results.

The environment. Model training was performed in PyTorch 2.0 on a 
workstation equipped with five NVIDIA RTX A6000 GPUs operating in 
parallel under the CUDA v.11.7 runtime. Human psychophysical data 
were collected using Python v.3.9.12 alongside PsychoPy v.2023.2, 
EasyDict v.1.10, Pandas v.2.0.0 and NumPy v.1.23.5.

Data analysis and visualization were performed in MATLAB 
v.2023a and Python v.3.9.12 by using NumPy v.1.23.5, Pandas v.2.0.0, 
Matplotlib v.3.7.5, Seaborn v.0.13.2, SciPy v.1.7.3 and Pingouin v.0.5.3. 
All code is available at ref. 83.

Timing. Given the standard playback frame rate of 25 fps and the human 
visual impulse response duration of approximately 200 ms, we config-
ured the temporal window of stage I to cover six frames (200 ms). For 
the first-order channel, sequences of 11 consecutive greyscale images 
were input. Supervised training uses the instantaneous velocity at 
the sequence midpoint (that is, the fifth frame) as the training label. 
The higher-order channel with the 3D CNN was trained using a longer 
temporal sequence of 15 frames to capture long-term spatio-temporal 
features effectively.

Dataset generation
Simple motion generation. To generate simple motion in dataset B, 
we employ an image-based affine transformation to warp objects and 
simulate various motion patterns. Specifically, we first create multiple 
sub-regions with different shapes (for example, circles, rectangles 
or super-pixel partitions84) atop a background of uniform random 
colours. We then select n sub-regions as moving elements and place 
them randomly in the first image.

We simulate multi-frame motion under the assumption that object 
motion remains smooth, as is the case in natural environments. To this 

end, we partially adopt a Markov chain principle, where an object’s 
motion state S(t) = [U(t), V(t)] depends only on S(t − 1):

Pr [S𝒢t𝒢 = st|S𝒢t − 1𝒢 = st−1,…𝒢

= Pr[S𝒢t𝒢 = st|S𝒢t − 1𝒢 = st−1𝒢.
(7)

The motion state at time t follows a 2D Gaussian:

[U𝒢t𝒢,V𝒢t𝒢𝒢 ≈ 𝒩𝒩𝒩μμμ,ΣΣΣ𝒢, ΣΣΣ = (
σ2U 0

0 σ2V
) , (8)

where μ = [U(t − 1), V(t − 1)]T. We set σU, σV as constants controlling 
motion variability, ensuring random yet smooth motion for each 
object. The initial state S(0) is similarly random, with speed ∣S(0)∣ drawn 
from 𝒩𝒩𝒢μ,σ𝒢 and angle from a uniform distribution U(0, 2π). The param-
eters μ and σ = μ

3
 are chosen to match empirical speed distributions  

in the training set.
In practice, we simulate translation, rotation, scaling and distor-

tion for each element. These transformations all obey the proposed 
Markov process to preserve smooth motion. At each time step, we 
apply sequential affine transformations on a uniform 2D grid using 
PyTorch’s affine_grid and grid_sample for GPU acceleration. 
The optical flow ground truth is derived via the inverse of these 
transformations.

Dataset rendering. To generate datasets D and E (Fig. 4a), we used 
the Kubric pipeline85 to synthesize large-motion datasets that inte-
grate PyBullet86 for physics simulation and Blender87 for photorealistic 
rendering. A variety of 3D models and textures were selected from 
ShapeNet and GSO, whereas natural HDRI backgrounds from Poly-
haven88 provided realistic illumination. For the diffuse (Lambertian) 
motion dataset, we generated 58 scenes with a static camera and 35 
scenes with dynamic camera motion. By contrast, the non-diffuse 
(non-Lambertian) dataset comprises 131 static scenes and 27 scenes 
with dynamic camera motion. Each scene consists of 36 consecutive 
frames rendered at a resolution of 768 × 768 px, 30 fps. Scene com-
position was carefully controlled through a series of configurable 
parameters. In each scene, the number of static (distractor) objects was 
randomly chosen between 7 and 15, whereas the number of dynamic 
(tossed) objects ranged from 5 to 12. Static objects were spawned within 
a predefined region bounded by the coordinates (−7, −7, 0) and (7, 7, 10) 
(in metres), whereas dynamic objects were placed in a more restricted 
region between (−5, −5, 1) and (5, 5, 5). Their initial velocities were uni-
formly sampled from the range [(−2, −2, 0), (2,2,0)], which ensured 
diverse motion trajectories under controlled friction and restitution 
conditions. Camera configurations were designed to capture different 
motion types. In the fixed configuration, the camera was randomly 
positioned within a half-spherical shell and aimed at the scene centre. 
For dynamic acquisition, the camera underwent linear motion by 
interpolating between two independently sampled positions, with 
the maximum displacement limited to 4 m s−1. Optical flow labels were 
automatically generated using Kubric’s built-in functions, which track 
the displacement of each element in camera coordinates and project 
these displacements into pixel coordinates.

Material properties were manipulated via the principled BSDF 
function to achieve natural optical effects. Materials with Lambertian 
reflectance were employed for diffuse scenes, whereas non-diffuse 
scenes featured materials with increased metallicity, specularity, ani-
sotropy and transmission. In the latter settings, the material assign-
ment was randomized from a set of predefined functions (for example, 
those assigning metallic, anisotropic or transmission properties) to 
yield a varied yet natural appearance across objects. All other aspects—
such as illumination, object placement, and scene configuration—were 
standardized across datasets to ensure consistency.
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Second-order motion modulation. As illustrated by Fig. 4b, we devel-
oped a second-order dataset to benchmark perception capability in 
both humans and computational models. The dataset consists of 40 
scenes featuring seven types of second-order motion modulations. 
Each modulation comprises 16 frames, with a randomly moving carrier 
overlaid on a 1,024 × 1,024 natural image background selected from 
an open-sourced image dataset89. To eliminate first-order motion 
interference, the natural images were kept static and the random 
motion patterns were generated using a similar Markov chain from 
equation (7), where the motion states [U,V] were sampled from 2D 
Gaussian distributions conditioned on the previous state. The carrier 
was subjected to seven distinct second-order motion modulations, 
encompassing spatial effects such as {Gaussian blurring}; temporal 
effects such as {drift-balanced} motion and {shuffle Fourier phase}; 
and spatiotemporal effects such as {water waves} and {swirls}. The 
spatial noise and blur were sparse Gaussian noise and localized Gauss-
ian blur, respectively. The water wave, swirl and random flow field 
modulations warp pixels using specific flow fields. In terms of the 
water wave dynamics, the flow field fu,v,t = [ ∂K

∂x
, ∂K
∂y
𝒢 was:

K𝒢r, t𝒢 = cos𝒢2πfr𝒢 × e−γr2 × cos𝒢2πξt𝒢 × e−δt2 ,

r = √x2 𝒯 y2,

where f, ξ and δ control the wave frequency, temporal variation and 
damping, respectively. We superimposed multiple water waves that 
differed in terms of their dynamics in different locations. This cre-
ated chaotic, local optical turbulence contemporaneous with carrier 
motion. The real carrier motion was thus obscured by local optical 
noise and was invisible in Fourier space, epitomizing the characteris-
tics of second-order motion. Similarly, {random flow field} or {shuffle 
Fourier phase} modulation involves the warping of either the pixels or 
the Fourier phase of original local regions using a randomly sampled 
Gaussian flow field.

Experimental details
In silico neurophysiological methods. We employed drifting Gabor 
or plaid (composed of two Gabor components) with a single fre-
quency component as the input stimulus. For second-order motion, 
drift-balanced motion modulation was applied to the same Gabor 
envelope.

The model responses after stage I and after each iteration of stage 
II were considered analogous to the post-stimulus time histogram of 
a neuron, thus reflecting activation levels. Responses across the spatial 
dimensions were averaged to obtain the activation distributions of the 
256 units, represented as ℝ1×1×256 with respect to the input stimulus. 
The stimuli were typically 512 × 512 px in size, with full contrast.

Directional tuning. We employed a single frequency drifting Gabor 
and a plaid (superimposed at ±30°) as stimuli. Initially, twelve direc-
tions were uniformly sampled from (0, 2π]. For each direction, we 
logarithmically sampled 8 × 8 = 64 sets of spatiotemporal frequency 
combinations and used the drifting Gabor stimulus to obtain 64 direc-
tional tuning curves for each unit. The spatiotemporal frequency with 
the largest standard deviation was selected as the preferred frequency 
st* for each unit. Gabor and plaid stimuli with the frequency configura-
tions of st* were then input to the model to derive the directional tuning 
curves of all units. The model tuning curve with st* as the drifting Gabor 
was termed 𝒞𝒞 and that for the plaid 𝒫𝒫. We next assessed the directional 
tuning capacity by deriving partial correlations32:

⎧⎪
⎨⎪
⎩

Rpattern =
rp−rcrcp

√(1−r2c )(1−r2cp)
,

Rcomponent =
rc−rprcp

√(1−r2p)(1−r2cp)
,

(9)

where rc is the correlation between 𝒫𝒫 and the component prediction 
that is the superimposed ±30° shift of 𝒞𝒞; rp is the correlation between 
𝒫𝒫  and the pattern prediction 𝒞𝒞); rcp is the correlation between  
these two predictions. Units were classified as component, pattern  
or unclassified on the basis of these correlations (Fig. 2a).

Orientation selectivity quantification. Figure 5b shows how the 
orientation selectivity Oori was quantified using the modified circular 
variance42:

Oori =
|||
∑iA𝒢θi𝒢 exp𝒢2iθi𝒢

∑iA𝒢θi𝒢
||| , (10)

where A(θi) is the normalized response at angle θi.

Human and model comparison. We used the human-perceived flow 
data7 of the Sintel and KITTI 201530 benchmark for comparison. The 
metrics include the vector endpoint error, the Pearson correlation and 
the partial correlation. Partial correlation measures the relationship 
between human responses and model predictions after controlling 
for the ground truth:

rrespmodel⋅GT =
rrespmodel − rrespGT × rmodelGT

√1 − r2respGT√1 − r2modelGT

, (11)

where r is the Pearson correlation. In addition, the RCI is an index from 
ref. 7 to evaluate the similarity between model performance and human 
flow illusions at each probed location.

The RCI is defined as the product of A⋅B⋅C in equation (14), meas-
uring the relative alignment of ground truth (G), human response (R), 
model prediction (M) and the origin (O):

•	 A quantifies the deviation of human responses from the  
ground truth.

•	 B indicates the directional similarity between the response  
error vector ⃗GR and the model error vector ⃗GM  relative to the 
ground truth.

•	 C compares the distance between model prediction and ground 
truth ‖ ⃗GM‖ with the distance between model prediction and 
response ‖ ⃗RM‖.

The RCI approaches +1 when the model’s prediction aligns closely 
with human flow illusions and approaches –1 when the prediction 
diverges in the opposite direction.

A = ‖ ⃗GR‖
‖ ⃗OG‖ 𝒯 ‖ ⃗OR‖

, (12)

B =
⃗GR 𝒢 ⃗GM

‖ ⃗GR‖‖ ⃗GM‖
, (13)

C = 0.5 ( ‖
⃗GM‖ − ‖ ⃗RM‖

‖ ⃗GM‖ 𝒯 ‖ ⃗RM‖
𝒯 1) = ‖ ⃗GM‖

‖ ⃗GM‖ 𝒯 ‖ ⃗RM‖
. (14)

Human data collection. We compared our model prediction with the 
human-perceived motions for the Sintel slow28 benchmark (Table 1) 
using the data reported in ref. 7. The human data were collected in the 
laboratory with a strict yet practical psychophysical procedure. Briefly, 
in each trial, participants viewed repeated alternating presentations of 
the target motion sequence and a matching stimulus (Brownian noise). 
The spatiotemporal position of the target was indicated by a flash 
probe. Participants then used a mouse to adjust the speed and direc-
tion of the noise motion until it matched their subjective perception 

http://www.nature.com/natmachintell


Nature Machine Intelligence | Volume 7 | July 2025 | 1037–1052 1049

Article https://doi.org/10.1038/s42256-025-01068-w

of the target’s motion. We recorded the matched noise motion as the 
participant’s report of the subjective target motion.

The experiment controlled visual presentation across both spa-
tial and temporal domains. Spatially, the display resolution is set at 
50 px per 1∘ of visual angle. Temporally, visual stimuli were presented 
at 60 Hz for Sintel slow 4K resolution image sequences. To minimize 
directional bias, we applied data augmentation by flipping images 
horizontally and vertically, generating four replicated collections 
per data location. These flipped versions were averaged to mitigate 
orientation-dependent perceptual biases. Finally, each data point was 
averaged across 16 trials to ensure measurement stability.

To validate data reliability7, conducted a preliminary random 
dot kinematogram task to train and verify participants’ perfor-
mance before the main experiment. In this random dot kinemato-
gram task, participants estimated the basic motion pattern of 5,000 
black-and-white dots moving uniformly within a 600 px circular 
aperture. The results showed a strong, though not perfect, agree-
ment between the reported motion and the ground truth motion  
(correlation = 0.97 in (u, v)), as illustrated in Figure 2 of ref. 7. As the tar-
get and matching stimuli were similar noise patterns in this task, it was 
relatively straightforward. These results indicate that our procedure 
can provide highly accurate estimates of human-perceived-motion 
vectors under optimal conditions. Data from MPI-Sintel (refer to 
Supplementary Figure 4 in ref. 7) further demonstrate that partici-
pants can accurately align the flash-probing in both space and time, 
yielding minimal endpoint errors relative to ground-truth vectors in 
neighbouring locations and time steps.

The human data for the KITTI 2025 benchmark was measured in an 
online experiment using a similar psychophysical method90.

Second-order motion benchmark. We extended the paradigm in  
ref. 7 to collect second-order motion data. Stimuli were displayed on a 
VIEWPixx /3D LCD monitor (VPixx Technologies) with a resolution of 
1,920 × 1,080 px at a 30 Hz refresh rate. The display luminance levels 
were linearly calibrated using an i1Pro chromometer (VPixx Technolo-
gies). The minimum, mean and maximum values were 1.8, 48.4 and 
96.7 cd m−2, respectively. The viewing distance was 70 cm and each  
pixel subtended 1.2376 arcmin. Participants sat in a darkened room 
using a chinrest to stabilize the head and performed experiments.

In each trial, a 600 px aperture at the screen centre displayed 
second-order motion for 500 ms (15 frames), followed by a 750 ms 
inter-stimulus interval, then 500 ms (15 frames) of brown noise within 
a 120 px aperture. A 15 px probe indicated the timing and location of 
the target motion, and four 5 px dots—orthogonally arranged 60 px 
from the display centre—served as position markers. During repeated 
presentations of the target motion and noise motion, participants 
used a mouse to adjust the noise motion’s speed and direction until 
it matched their perception of the target’s second-order motion, 
as illustrated in Extended Data Fig. 3. As the reported noise motion 
reflected the perceived target motion, it was recorded as the reported 
second-order perception. Seven types of second-order modulations 
were tested, each across 40 scenes. To counteract directional bias, 
each scene was presented in four variations—original, horizontally 
flipped, vertically flipped and both flipped—yielding 1,120 trials per 
participant over 6 h. Results were averaged across flipped versions 
into 280 perceived-motion vectors, which were then compared against 
computer vision models. The stimulus sequence was randomized for 
each participant.

The experiment adhered to the ethical standards of the Dec-
laration of Helsinki, with the exception of preregistration, and was 
approved by the Ethics Committee of Kyoto University (approval 
no. KUIS-EAR-2020-003). Two authors and one naive participant  
(three males, average age 25.3 years) with normal or corrected-to- 
normal vision participated. Informed consent was obtained prior to 
the experiment. All participants were later financially compensated.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The project website is publicly available at https://anoymized.github. 
io/motion-model-website/. Human psychophysical data and the 
corresponding model responses are available at https://github.
com/anoymized/multi-order-motion-model and are also archived 
on Zenodo83. All other relevant data supporting the findings of this 
study—including model predictions, human behavioural responses and 
custom datasets (Drifting Grating, Non-textured 2D Motion, Diffuse 
Motion, Non-diffuse Motion and Second-order Motion datasets)—are 
provided at the same repository. Two additional mini motion datasets 
featuring diffuse and non-diffuse objects have also been made available 
to support quick verification of the effects on second-order motion 
perception. The public datasets used in this study are accessible from 
the following sources: Kubric, https://github.com/google-research/
kubric; KITTI, https://www.cvlibs.net/datasets/kitti/; MPI-Sintel,  
http://sintel.is.tue.mpg.de/; Sintel-slow, https://www.cvlibs.net/pro-
jects/slow_flow/; DAVIS, https://davischallenge.org/; and Unsplash, 
https://github.com/unsplash/datasets.

Code availability
Our model implementation and human experimental code are publicly 
available at https://github.com/anoymized/multi-order-motion-model. 
This code can be accessed via https://doi.org/10.5281/zenodo.14958959 
(ref. 83). The code is released under the Apache License v.2.0.
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Water flow with 
Optic Noise

First-C Dual-C

(A) Demos of the roles of higher-order channel

CV model (PerceiveIO) Ours (Dual-C)

Translating box 
with fluctuating water

CV models (Mask2Former VITA ) Result of Ours (First-C) Result of Ours (Dual-C)Drift-balance motion

Natural Video Optical Flow Segmentation from First-C Segmentation from Dual-C

First-C:  Our model with First-order Channel
Dual-C:  Our model with Dual Channel

Instance I Instance I

Instance I

Instance II

Instance III

Instance I

Instance II

Instance III

No segmentation output

(B) Demos of  instance segmentation on real scenes

Extended Data Fig. 1 | Demonstration of the Roles Played by the Higher-
Order Channel. Qualitative comparison of the first-order and dual-channel 
approaches. (A): First row: Motion estimation in noisy natural conditions, 
compared to a state-of-the-art CV method47. The dual-channel model effectively 
suppresses water fluctuation noise, an example of second-order motion in 
natural scenes. Second row: Instance segmentation based on motion features, 

where the dual-channel approach yields finer object segmentation. Third row:  
The higher-order channel improves the segmentation of drift-balanced 
motion, which remains undetected by SOTA CV segmentation methods50. 
(B): Demonstration on motion segmentation in real scenes48. Notably, all 
segmentation results are generated from the model’s inherent graph structure, 
operating in a training-free, zero-shot manner.
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Extended Data Fig. 2 | Modelling the motion perception system. Stage-I 
demonstrates the inference process for motion energy computation in the 
first-order channel. The higher-order motion channel follows a similar process, 
with an additional block of multilayer 3D convolutions and ReLU nonlinearity 
preceding the motion energy computation. This extension extracts higher-order 
nonlinear features. (a): The first stage employs a set of trainable motion energy 
units to capture local motion energy. (b): Motion energy computation, using 

spatiotemporal separable filters, as a subcomponent of (b). (c): Illustration of 
spatiotemporal separable filters, including a quadrature pair of spatial filters 
and temporal filters. (d): The second stage uses a motion graph network with 
recurrent processing to simulate global motion integration and segregation, 
employing a flow decoder to visualize dense optical flow across iterations. 
(e): Global motion integration based on a motion graph and self-attention 
mechanism, as a subcomponent of (d).
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Extended Data Fig. 3 | Experimental procedure. Human participants were 
seated in front of a monitor (30 fps, 1920 × 1080 resolution). At each trial,  
a 16-frame second-order motion sequence and a matching stimulus  
(Brownian noise) were alternately presented until a response was made. 
During repeated presentations of the target and noise motions, participants 
used a mouse to adjust the noise motion’s speed and direction to match their 

perception of the target’s second-order motion. Each motion sequence spans 
500 ms, followed by a 750 ms inter-stimulus interval (ISI), a matching stimulus  
for another 500 ms, and a second 750 ms ISI. A flash probe was displayed between 
the 8th and 9th frames to mark the timing and location of the target motion.  
The second-order motion centre, four-dot placeholders, and matching stimulus 
all appeared around the centre location.
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Extended Data Table 1 | Model v.s. Human v.s. ground truth on KITTI 2015 Benchmark

ρ: Partial correlation between human and model while controlling the effects of ground truth; r: Pearson correlation coefficient; epe: vector endpoint error; uv, dir, spd represent motion 
components in Cartesian space, direction, and speed, respectively; RCI is introduced from7 to represent the model’s similarity to human perception (the larger, the more human-aligned). 
Human perceptual data are adopted from88. ‘Ours-first’ represents the case in which we only use the first-order channel signal to generate the response.
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Extended Data Table 2 | Model vs. Human on Second-order Motion

For each dataset, we directly report the Pearson correlation (ruv) and the vector endpoint error (EPE). We both show the method trained on diffuse and non-diffuse motion datasets. Mod1 to 
Mod7 are various second-order modulations, including random noise, Gaussian blur, water wave, Fourier phase shuffle, random pixel shuffle, swirl, and drift-balanced motion. The last two 
rows indicate our final jointly trained model, evaluated separately using a single first-order channel and a dual-channel approach. ‘Ours-ND’ and ‘Ours-D’ represent our model separately 
trained with non-diffuse and diffuse data.
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Extended Data Table 3 | Model vs. Ground-truth on Second-order Motion

For each dataset, we directly report the Pearson correlation (ruv) and the vector endpoint error (EPE). We both show the method trained on diffuse and non-diffuse motion datasets. Mod1 to 
Mod7 are various second-order modulations, including random noise, Gaussian blur, water wave, Fourier phase shuffle, random pixel shuffle, swirl, and drift-balanced motion. The last two 
rows indicate our final jointly trained model, evaluated separately using a single first-order channel and a dual-channel approach. ‘Ours-ND’ and ‘Ours-D’ represent our model separately 
trained with non-diffuse and diffuse data.
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Extended Data Table 4 | Model vs. Human vs. ground truth on First-order Motion

We compare our first-order and dual-channel variants of our model on KITTI 201533 and Sintel31. For each dataset, we report the Pearson correlation (ruv) and endpoint error (EPE) relative to 
both human judgments and ground truth. We also include the partial correlation (ρuv) between human and model while controlling for ground truth, along with the Response Consistency 
Index (RCI) from7. Notably, although adding the higher-order channel (Ours-dual) helps estimate the ground truth in some challenging scenes (KITTI), it reduces correlation with human data 
and decreases partial correlation, indicating that motion energy-based first-order motion processing is necessary and sufficient to capture human perceptual bias for these scenes. Unlike the 
first-order channel, the higher-order simply employs 3D convolution without human-aligned computational constraints and thus has more degrees of freedom, often introducing effects that 
deviate from human-like processing. This is also consistent with the fact that the Sintel slow subset and the validated KITTI regions generally lack non-diffuse reflections, making higher-order 
motion cues less relevant.
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