A unified optimization framework, CORNETO, introduces a versatile approach to knowledge-driven biological network inference, bringing machine learning sensibilities to systems biology.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout

References
Rodriguez-Mier, P., Garrido-Rodriguez, M., Gabor, A. & Saez-Rodriguez, J. Nat. Mach. Intell. https://doi.org/10.1038/s42256-025-01069-9 (2025).
Orth, J. D., Thiele, I. & Palsson, B. O. Nat. Biotechnol. 28, 245–248 (2010).
Liu, A. et al. npj Syst. Biol. Appl. 5, 1–10 (2019).
Fleming, R. M. T. et al. Bioinformatics 39, btad450 (2023).
Mohammadi, S., Davila-Velderrain, J. & Kellis, M. Cell Syst. 9, 559–568.e4 (2019).
Li, M. M. et al. Nat. Methods 21, 1546–1557 (2024).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Rights and permissions
About this article
Cite this article
Gomez-Cabrero, D., Tegnér, J.N. Data meets prior knowledge for interpretable mechanistic inference in biology. Nat Mach Intell 7, 987–988 (2025). https://doi.org/10.1038/s42256-025-01075-x
Published:
Issue date:
DOI: https://doi.org/10.1038/s42256-025-01075-x