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Efficient protein structure generation with 
sparse denoising models
 

Michael Jendrusch    1,2   & Jan O. Korbel    1,2 

Proteins play diverse roles in all domains of life and are extensively 
harnessed as biomolecules in biotechnology, with applications spanning 
from fundamental research to biomedicine. Therefore, there is considerable 
interest in computationally designing proteins with specified properties. 
Protein structure generative models provide a means to design protein 
structures in a controllable manner and have been successfully applied to 
address various protein design tasks. Such models are paired with protein 
sequence and structure predictors to produce and select protein sequences 
for experimental testing. However, current protein structure generators 
face important limitations for proteins with more than 400 amino acids and 
require retraining for protein design tasks unseen during model training. 
To address the first issue, we introduce salad, a family of sparse all-atom 
denoising models for protein structure generation. Our models are smaller 
and faster than the state of the art and matching or improving design quality, 
successfully generating structures for protein lengths up to 1,000 amino 
acids. To address the second issue, we combine salad with structure editing, 
a sampling strategy for expanding the capability of protein denoising 
models to unseen tasks. We apply our approach to a variety of challenging 
protein design tasks, from generating protein scaffolds containing 
functional protein motifs (motif scaffolding) to designing proteins capable 
of adopting multiple distinct folds under different conditions (multi-state 
protein design), demonstrating the flexibility of salad and structure editing.

Computational protein design aims to generate protein sequences 
and three-dimensional structures with specified folds, functions and 
dynamics. Protein design tasks are varied, from designing proteins with 
a specified shape1,2 or symmetry3–5 and producing scaffolds for known 
functional motifs2,6,7 to designing potent binders for protein targets1,8–10 
as well as proteins that can adopt multiple distinct folds under different 
conditions (multi-state design)11–13. Methods capable of solving these 
design tasks enable powerful applications in basic research and indus-
try, for example, designing or optimizing enzymes14–16, antibodies8, 
vaccine scaffolds17,18 and biosensors12.

Protein generative models have recently been applied to 
solve many such protein design tasks1,2,19,20. Protein generation is 

fundamentally a multimodal generation problem, as proteins rep-
resent chains of amino acid residues, where each residue i carries an 
amino acid identity si and a set of atom coordinates xi. s is the protein’s 
sequence, and x is its structure. Designing proteins corresponds to 
sampling from the joint distribution of sequence and structure p(s, 
x|task) conditioned on a protein design task21. Many approaches to 
protein design decompose p(s, x|task) as p(s|xbb, task)p(xbb|task), 
where xbb are the coordinates of the protein backbone atoms that are 
present in all amino acids1,2,21. This results in a sequential pipeline of 
backbone generation, followed by sequence design. However, there 
is no guarantee that proteins generated in this way will express, fold 
and function as designed in a living cell. Producing experimentally 
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This greatly reduces throughput and limits the applicability of back-
bone hallucination to large protein design tasks with lower per-design 
success rates compared with unconditional monomer design.

Another issue with current protein structure diffusion models is 
the need for additional training to solve specific protein design tasks. 
RFdiffusion and Genie are separately trained with protein motif con-
ditioning to scaffold functional protein motifs1,2. Although Chroma’s 
conditioners allow for training-free adaptation of the model for dif-
ferent tasks, implementing new conditioners is not straightforward 
and requires the development of custom energy functions21. Thus, 
there is a substantial barrier to applying existing diffusion models to 
novel design tasks.

To address these issues, we introduce salad (sparse all-atom 
denoising), a family of efficient protein generative models with 
sub-quadratic complexity. We train our models with a denoising dif-
fusion objective1,35 to remove noise from corrupted protein backbones. 
Starting from a sparse transformer architecture21,43,44, we investigate 
the impact of different model features and noise schedules on the 
designability and diversity of generated proteins. We find that our 
models are capable of generating diverse and designable backbones 
for proteins up to 1,000 residues long. salad matches or outperforms 
state-of-the-art diffusion models1,2,42 in terms of designability and dras-
tically reducing runtime and parameter count. We combine salad with 
structure editing, a modified sampling algorithm for protein structure 
diffusion models. By editing the input noise and output of the model, 
we can enforce arbitrary structural constraints without the need for 
model retraining. This enables rapid prototyping of protein design 
tasks unseen during training. For example, we can symmetrize both 
model input and output to generate symmetric proteins, or replace 
residue coordinates with the coordinates of a protein structural motif 
to embed that motif in the generated structure. Structure editing allows 
us to tackle a variety of protein design tasks, generating designable 
backbones with specified shapes21, scaffolds for functional protein 
motifs1,2,6, repeat proteins3,4,13 and multi-state proteins that adopt 
distinct folds when cleaved13. In this way, salad provides an efficient 
plug-and-play replacement for other backbone generators in existing 
protein design pipelines, allowing fine-grained control via structure 
editing and enabling efficient design of large proteins.

Results
Sparse protein model architecture
We base our model architecture on the current best practices for 
transformer models. We use layer norm pre-normalization to increase 
the training stability45 and generalized Gaussian linear units (GeGLU) 
feed-forward layers that were found to improve model performance 
for transformer models46. We replace standard multi-head attention by 
invariant point attention (IPA) introduced by AlphaFold 2 (ref. 23) as an 
easy-to-implement SE(3)-equivariant self-attention layer. To improve 
the runtime complexity of protein structure generation, we limit the 
attention operation to a sparse set of neighbours for each amino acid 
residue. A schematic of the basic block of this architecture is shown in 
Fig. 1a. Each block in our model takes as input a set of amino acid features 
locali and position features xi. These are fed into a sparse version of 
IPA23. Instead of computing the full attention matrix and pair features, 
we first construct a set of neighbours for each amino acid (Fig. 1b). Each 
residue only computes pair features and attention weights for its set of 
neighbours. This procedure reduces attention complexity from O(N2) 
to O(N ⋅ K), where N is the number of residues and K is the number of 
neighbours. In contrast to other protein generative models1,2,21, our 
model does not use persistent pair features with pair attention or tri-
angle multiplication23, which would increase complexity to O(N3). We 
also do not use explicit amino acid frame features23 that are updated 
in each block. Instead, our models directly update atom positions and 
recompute frame information when required to ensure equivariance. We 
reuse this basic block architecture (Fig. 1a) across all models in this work.

viable protein designs requires the generation and computational 
screening of many backbone–sequence pairs1,20. This computational 
design selection is enabled by the combination of sequence design 
models such as ProteinMPNN20, ChromaDesign21 or Frame2Seq22, 
as well as protein structure predictors such as AlphaFold 2 (ref. 23)  
and ESMFold24.

Designed structure–sequence pairs are deemed successful if 
their structure is predicted with high confidence and matches the 
initial design1. The prediction confidence is measured in terms of the 
predicted local distance difference test (pLDDT)25 and the predicted 
aligned error (pAE)23 of the structure predictor used in the pipeline. 
Designed and predicted structures are considered to be in agreement 
if their root mean square deviation (RMSD), which measures the aver-
age distance between superimposed atoms, is low1. RMSD measures 
consistency between design and prediction and is generally referred 
to as self-consistent RMSD (scRMSD)1,26. A common choice of success 
criteria is scRMSD < 2 Å and pLDDT > 70 for ESMFold2 or pLDDT > 80 
for AlphaFold 2, which have been shown to produce experimentally 
viable proteins1,10,27,28. This measure allows to compare different protein 
structure generators in terms of their designability, the fraction of 
generated structures for which at least one designed sequence meets 
the criteria for success. In addition to designability, models can be 
compared in terms of the diversity of their generations, as well as their 
novelty compared with the training set. Diversity can be measured in 
terms of the template modelling (TM) score2,29 within a set of gener-
ated structures. By contrast, novelty uses the TM-score to measure the 
dissimilarity between a model’s generated structures and its training 
set2. Together, these metrics characterize the performance of protein 
structure generators.

Current approaches to protein design combine multiple different 
methods for protein backbone generation. Knowledge-based design 
coupled with Rosetta30 plays an important role, especially for complex 
protein design tasks, such as enzyme design15,16, multi-state protein 
design11,12, and protein design with strong geometric and sequence 
constraints3,4. These methods are supported by machine learning 
models, which are capable of solving simpler design tasks without 
relying on Rosetta or manual design. Protein structure hallucination 
methods10,27,31–34 invert structure predictors using search or gradient 
descent to generate sequences with high-confidence predicted struc-
tures. These sequences are often adversarial and, therefore, discarded 
in favour of ProteinMPNN sequence designs10,27,31. Protein denoising dif-
fusion probabilistic models35 iteratively generate proteins from random 
noise by learning to remove noise from corrupted protein sequences13,36 
or structures1,2,21,37,38. Diffusion models have a runtime advantage over 
hallucination-based methods as they do not require optimization 
over a structure predictor1,27. Protein diffusion models have recently 
been applied to solve various protein design tasks from unconstrained 
de novo protein design1,2,21 to protein binders and complexes1,21.

Although current protein diffusion models have shown impres-
sive performance for small protein generation, their performance 
deteriorates with protein sequence length N1,2,21,37, limiting their use-
fulness for designing large and complex proteins. The majority of 
protein diffusion models use model architectures derived from protein 
structure predictors23,39. Notable exceptions include Chroma21, Prot-
pardelle40 and ProteinSGM41. Models based on structure predictors use 
residue-pair features and pair attention mechanisms, which result in 
O(N3) complexity, with pair features introducing a lower complexity 
bound of O(N2) and pair attention mechanisms increasing this complex-
ity to O(N3) (refs. 23,39). Along with decreased runtime performance, 
these models also experience a drop in designability with increasing 
N. Although recent work on Proteus37 and Proteina42 has improved 
designability for proteins up to 800 residues long, no protein structure 
diffusion model has reached the designability of hallucination-based 
approaches beyond that length27. However, protein backbone hal-
lucination suffers from long runtimes per design at these lengths27.  
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As the first step to see if our sparse attention architecture can 
model protein structures, we trained a family of models as autoencod-
ers on proteins in the Protein Data Bank (PDB)47 (Fig. 1c). We encoded 
protein structures using a single basic block with 32 nearest neighbours 
in Euclidean space per residue. We then optionally applied vector quan-
tization (+VQ) to the resulting latent representation48 and decoded it 
using a six-block decoder with recycling23, reusing the previous itera-
tion’s residue coordinates and locali features. VQ regularizes the latent 
space of the encoder and quantizes it into a set of discrete tokens for 
each residue48,49. This enables using the learned representation to train 
sequence generative models on structure-based data49. We tested both 
SE(3) equivariant and non-equivariant sparse transformers to check 
if there are any benefits to equivariance for the autoencoding task. 
Additionally, we investigated different neighbour-selection schemes. 
By default, we selected nearest neighbours based on distance along 
the protein chain and Euclidean distance between residues (Fig. 1b 
and Supplementary Algorithm 3). As Euclidean distances would be 
uninformative at the beginning of the decoding process, we optionally 
selected additional neighbours using average residue-pair distances 
predicted from locali by learning to predict a distogram23 in each block 
(+dgram, Fig. 1c (distogram attn.); also see the ‘Structure autoencoder 
models’ section and Supplementary Algorithms 7 and 8).

Evaluating these models on the CASP14 and CASP15 monomer test 
sets50,51 resulted in all models reaching <1 Å reconstruction accuracy 
after fewer than ten recycling iterations, regardless of equivariance 
and distogram-based neighbours (Fig. 1d). This indicates that our 
sparse attention architecture is expressive enough to model protein 
structures. Although there is a large difference in model performance 
between different architectures at one recycling iteration, this differ-
ence decreases with the number of iterations. We decided to keep the 

simplest version of our architecture using equivariant features without 
distogram neighbours for the rest of this work.

Edited denoising protein models
After ensuring that our sparse models are suitable for reconstructing 
protein structures, we modified our architecture for generative mod-
elling. Our models operate on protein structures containing the back-
bone atoms (N, CA, C and O), an idealized beta-carbon (CB) and 
additional learned pseudo-atoms (Fig. 2a; see the ‘Model architecture’ 
section). We trained our models to denoise noisy structures xt ~ p(xt|x0) 
and to recover the original structure x0, resulting in a denoising diffu-
sion probabilistic model loss ℒt = 𝔼𝔼xt∼p(xt|x0)[|| fθ(xt) − x0||2] (ref. 35). 
In addition to recovering x0, we introduced auxiliary losses to also 
predict an amino acid sequence and side-chain atom positions (Fig. 2a; 
also see the ‘Denoising model loss’ section). As our models generate 
all-atom structures, we refer to them as sparse all-atom denoising 
(salad) models throughout this work.

At inference, we can use our models to generate protein backbones 
by progressively denoising a pure noise structure x1. Given a noisy 
structure xt, we can use the model to predict an estimate fθ(xt) of the 
denoised structure x0. Reapplying noise at a lower diffusion time t′ 
results in a structure xt′ ~ p(xt′|fθ(xt)) (Fig. 2b). Repeating this process 
eventually results in a generated structure x. To enforce the structural 
properties of generated backbones directly in the denoising process, 
we introduce editing functions edit_input and edit_output, which 
modify the input and output of the denoising model, respectively 
(Fig. 2b). This results in a generative process:

xt′ ∼ p(xt′ |edit_output( fθ(edit_input(xt)))). (1)

EQ EQ+dgram NEQ+dgram

EQ+VQ EQ+VQ+dgram NEQ+VQ+dgram

1 5 10 15 20

#iterations

10−1

100

101

RM
SD

 (Å
)

1 5 10 15 20

#iterations

10−1

100

101

RM
SD

 (Å
)

a
Basic architecture

Local

IPA

Update

Pair features

PosUpdate

χ

Neighbours

Local χ

At
te

nt
io

n
U

pd
at

e

b Sparse neighbours

+kNN

χ

Index

kNN

dCA
ij ~1/(dCA

ij)
3

+kNN

Neighbour maps

K

N

c
Autoencoder architecture

χ

Embed

N×

IPA

Update

Pair features

Neighbours

Linear VQ Latent

Latent χ0/prev

Embed

Local

N×

IPA

Update

Pair features

PosUpdate

x

AADecoder

Side chains

Neighbours

Local x

AA χatom

Localprev

Distogram Attn

R× recycling steps

En
co

de
r

AA cross-entropy

All-atom FAPE2

Distogram

Distogram loss

Trajectory FAPE2 N×

D
ecoder

N×

Reconstruction error with recyclingd
CASP14

CASP15

Index Vector Scalar OptionalShared

Fig. 1 | Sparse model architecture. a, Schematic of the basic block of our 
architecture. b, Schematic of neighbour selection using residue index, nearest  
and random neighbours. c, Architecture of our sparse protein autoencoder.  
d, Sparse model performance on an autoencoding task. Box plots of scRMSD 
between the ground-truth and decoded structures for multiple sparse architectures: 
equivariant (EQ) and non-equivariant (NEQ). Optionally, we use predicted 

distograms for neighbour selection (dgram) and vector quantization (VQ). Measures 
of reconstruction performance are shown per number of model recycling iterations. 
The dotted line indicates the threshold of 1 Å for reconstruction at atomic precision. 
The box centre line indicates the median, the boundaries indicate the 1st and  
3rd quartiles, and whiskers show the 1st or 3rd quartile + 1.5 times the interquartile 
range based on n = 34 CASP14 test structures and n = 45 CASP15 test structures.
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Designing suitable editing functions allows us to adapt our models to 
various tasks, from motif scaffolding to multi-state protein design, 
without having to re-train our models.

As we are using sparse models for the sake of runtime efficiency, 
we compare the runtime performance of our models to state-of-the-art 
protein diffusion models (RFdiffusion, Genie 2, Chroma and Proteina). 
To see how far we can push the model runtime, we tested both full and 
lightweight versions of our model. For each model, we generated ten 
protein backbones per length (50–1,000 residues) on a single NVIDIA 
RTX 3090 GPU (Fig. 2c). salad outperformed all other models in terms 
of both time per design at the default number of diffusion steps and 
time per model iteration. Compared with the fastest non-salad model 
(Proteina), our models reached up to 7× speed-ups, and outperformed 
RFdiffusion by up to two orders of magnitude on large proteins. Indeed, 
generating a 1,000-residue protein structure using salad on a single 
NVIDIA RTX 3090 GPU takes only 19 s on average, whereas RFdiffusion 
takes over 10 min. In addition, our models use fewer parameters than 
comparable protein structure generators (Extended Data Table 1). This 
suggests that we have indeed reached our primary goal of implement-
ing a runtime- and parameter-efficient protein generative model.

Sparse models generate diverse and designable protein 
structures
Although a flexible sampler and good runtime performance are 
important properties of our models, we need to assess model perfor-
mance in terms of the quality of the generated backbones. To compare 
salad model performance to state-of-the-art diffusion models and 
hallucination-based approaches, we generated 200 backbones each 
for proteins with sizes of 50 to 1,000 residues (50, 100–600 in incre-
ments of 100, 800 and 1,000). For each backbone, we designed eight 
sequences using ProteinMPNN and predicted their structures with 

ESMFold. Following current best practices2,27, we computed design-
ability as the percentage of structures, reaching an RMSD between 
design and predicted structure (scRMSD) < 2 Å and pLDDT > 70 for 
the best designed sequence (Fig. 3a). We assessed the impact of dif-
ferent noise distributions on protein structure generation by com-
paring model performance with both variance-preserving (VP) and 
variance-expanding (VE) noise with different standard deviations 
(80 Å and 100 Å, respectively). In addition, we include models trained 
with protein-length-dependent variance VP noise (VP scaled), as the 
variance of atom positions in protein backbones increases with the 
number of residues (Extended Data Fig. 4a). We compare the results 
of our models (VP, VP scaled and VE) with RFdiffusion1, Genie 2 (ref. 2) 
and Proteina42, as well as results from relaxed sequence optimization 
(RSO)—the state-of-the-art hallucination-based method for protein 
design27—using the same evaluation approach for all methods.

Our models are able to generate designable backbones for a vari-
ety of protein lengths from 50 to 1,000 residues (Fig. 3a and Extended 
Data Fig. 2). The generated structures show low scRMSD, high scTM/
pLDDT and diverse secondary structures that include both all-helix and 
all-strand topologies (Fig. 3a,b and Extended Data Figs. 3 and 5a,b). In 
the range from 50 to 400 residues, our VP model reaches comparable 
designability to previous VP models (Genie 2 and RFdiffusion), out-
performing RFdiffusion and slightly underpeforming compared with 
Genie 2, which was trained on a much larger dataset2 (Fig. 3c). At 400 
residues, all VP models show a sharp increase in scRMSD accompanied 
by a decrease in designability (Fig. 3b,c). Although neither Genie 2 nor 
RFdiffusion produce any designable structures with 800 residues, salad 
VP still produces 4.8% designable structures at that size. We suspect 
that the decrease in designability with residue count is caused by VP dif-
fusion models generating highly compact backbones (Extended Data 
Fig. 4a). We find that such backbones require a high fraction of glycine 
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and alanine residues to avoid clashes (Extended Data Fig. 4b,c), which 
might decrease designability. A likely cause of this is the fixed vari-
ance of the VP diffusion process, which requires the model to reduce 
amino acid distances at small protein sizes, but increase amino acid 
distances at large protein sizes (Extended Data Fig. 4d). If the model 
trains predominantly on small proteins, this discrepancy might result 
in the observed compact backbones for larger proteins at inference. 
This issue with protein diffusion models is anecdotally known to the 
protein design community52.

By contrast, VP-scaled and VE models do not experience increases 
in scRMSD at the 400-residue threshold. VP-scaled models maintain 
median scRMSD < 2 Å for proteins of up to 600 residues, whereas VE 
models maintain this value for proteins up to 800 residues in length 
(Fig. 3b). This is mirrored by designability, where both VP-scaled and 
VE models outperform all VP models at protein lengths above 300 
residues. However, neither VP-scaled nor VE models can maintain high 

designability for generated backbones of length 1,000, where both 
types of model drop below 20%. We hypothesized that this decrease in 
designability is due to the models being unable to properly model the 
global structure of large proteins. As large proteins generally consist 
of multiple domains in which residues of a single domain are close 
in space53, we tested if VE models initialized from noise shaped in a 
similar way would result in lower scRMSD and greater designability 
for large proteins. Instead of using normal-distributed noise centred 
on the coordinate origin, we first sample a set of centres and then add 
normal-distributed noise (with standard deviation of 80 Å or 100 Å) for 
200 residues to each of these centres. At every subsequent denoising 
step, we use standard VE noise. Using this shaped-noise initializa-
tion leads to decreased scRMSD and increased designability for large 
proteins, reaching a designability of up to 36.7% for 1,000 amino acid 
proteins (Fig. 3c). This way, shaped noise matches or improves on 
the designability of RSO27 and Proteina42, the current state-of-the-art 
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TM-score with a cut-off of TM-score ≥ 0.6. Mean diversity across n = 10 random 
samples of 100 structures from 200 generated structures. Error bars indicate 
the minimum and maximum diversities across n = 10 samples. Area between the 
maximum and minimum sampled diversity is shaded.
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hallucination- and diffusion-based approaches to large protein design, 
respectively (Fig. 3b,c). Strikingly, salad with shaped noise produces 
designable 1,000-residue proteins with only ~8M parameters, com-
pared with concurrent work introducing Proteina, which uses 200M 
parameters (Extended Data Table 1) and does not result in any design-
able structures at 1,000 residues (Fig. 3b,c).

As we can use shaped noise to generate large proteins with VE 
models, we investigated if we could control the shape of the generated 
backbones by directly specifying the positions of noise centres used for 
shaping. By sampling the initial noise centred on letter shapes, we were 
able to generate designable structures spelling out the name of our 
framework (Fig. 3d). In contrast to previous work on shape-conditioned 
protein design using the Chroma model21, our approach does not 
require an additional shape conditioner and results in designs with 
low scRMSD and high pLDDT (Fig. 3d). In terms of standard design-
ability criteria using ESMFold (scRMSD < 2 Å, pLDDT > 70), 55% of the 
letters generated by our models are designable, whereas up to 92.5% 
of the letters are re-foldable according to the criteria used for Chroma 
(scTM > 0.7)21 (Extended Data Fig. 1). This indicates that our models 
can be used to generate designable backbones even on challenging 
out-of-distribution design tasks.

In addition to designability, we measure the diversity of protein 
backbones generated by our models. Lin et al.2 previously quantified 
the diversity of generated backbones by performing hierarchical clus-
tering with single linkage on designable structures, using a TM-score 
threshold of 0.6 to define distinct clusters. Diversity is then computed 
as the fraction of designable clusters in all generated backbones: 
diversityall =

#clusters

#all
 (ref. 2). This diversity measure implicitly 

includes backbone designability, as a lower number of designable 
backbones results in a lower number of clusters. A method trading off 
designability for increased diversity would, therefore, result in a low 
diversityall score. To disentangle diversity and designability, we decom-
pose this diversity score as follows.

diversityall =
#clusters

#all
= #clusters
#designable⏟⎵⎵⎵⏟⎵⎵⎵⏟
diversitydesignable

⋅ #designable
#all⏟⎵⎵⎵⏟⎵⎵⎵⏟

designability

(2)

When computing diversitydesignable, only the diversity of designable 
structures is taken into account and diversity is not deflated by low des-
ignability. We argue that this is a more meaningful measure of diversity 
as only designable structures are used for protein design in the end.
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secondary structure conditioning for 50–400 residues, compared with the 
diversity of designable structures generated using RFdiffusion and Genie 2. Mean 
diversity across n = 10 random samples of 100 backbones from 200 generated 
backbones. Error bars correspond to minimum and maximum diversities across 
these n = 10 samples. Area between the maximum and minimum sampled 
diversity is shaded. c, Secondary structure distribution for our models using 
no conditioning (left) or random secondary structure conditioning (right). 
d, Overview of diverse synthetic dataset generation using random secondary 
structure conditioning. e, Left: scatter plot of ESMFold scRMSD for all 50,000 

generated structures. The line indicates the median scRMSD within a length 
window of 100 residues. Right: designability of the generated structures  
in the synthetic dataset computed for a length window of 100 amino acids.  
f, Single-shot performance of diffusion models trained on the synthetic dataset 
(synthetic 256) compared with the subset of proteins of length of <256 residues 
in PDB (PDB 256). Left: box plot of RMSD between the generated structures and 
ESMFold predictions for the argmax sequence prediction for models trained 
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box boundaries indicate the 1st and 3rd quartiles, and whiskers show the 1st or 
3rd quartile + 1.5 times the interquartile range from the box. Right: designability 
of argmax sequence predictions for models trained on synthetic data and PDB 
based on n = 200 generated backbones per condition.
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We compare our models with RFdiffusion1 and Genie 2 (ref. 2). For 
proteins of length 50–400 residues, we take random samples of 100 
generated structures and compute both diversityall and diversitydesignable 
for each sample. To quantify the spread of diversity across samples, we 
show the median as well as the minimum and maximum diversities over 
ten samples (Fig. 3e,f). Our VP model achieves similar diversity to RFdif-
fusion for both diversitydesignable and diversityall, whereas the VP-scaled 
model outperforms RFdiffusion on both metrics and approaches 
the diversity of Genie 2, outperforming it in terms of diversityall for 
400-residue proteins. Our VE model shows reduced diversity at small 
protein sizes, but shows comparable diversitydesignable to RFdiffusion on 
400-residue proteins and outperforms both Genie 2 and RFdiffusion 
in terms of diversityall for this protein length. This indicates that des-
ignable 400-residue structures generated by our non-VP models are 
comparably diverse to those generated using Genie 2. Their increased 
diversityall can be attributed to their improved designability (Fig. 3c). 
We, therefore, argue that diversitydesignable is a more meaningful measure 
of diversity as it is not inflated by changes in designability. Although 
our models slightly underperform Genie 2 in terms of diversity, we 
note that Genie 2 was trained on AlphaFold DB54—a larger and more 
diverse dataset.

Random secondary structure conditioning maximizes 
diversity
As our models can be conditioned to generate proteins with a given sec-
ondary structure, we investigated if conditioning models with random 
secondary structures could increase the diversity of generated back-
bones. We sampled random three-state secondary structure strings 
(helix, strand and loop) by selecting a random percentage of helices and 
strands, constructing secondary structure elements of random lengths 
that add up to the selected percentages and randomly arranging them 
into a secondary structure string (Fig. 4a). We then used our denoising 
models to produce backbones for each random secondary structure. 
Computing diversitydesignable for backbones of length 50–400 residues 
generated this way resulted in our models surpassing RFdiffusion at 
all sizes and matching or outperforming the designability of Genie 2 
in spite of having been trained on a much smaller dataset2 (Fig. 4b). In 
particular, random secondary structure conditioning resulted in an 
increased diversity for small proteins and saturated the diversity metric 
on proteins of length 200 or larger. However, increasing diversity this 
way resulted in decreased designability across all protein lengths and 
models (Extended Data Fig. 5c).

In addition to greatly increasing clustering-based diversity, this 
approach equalized secondary structure content biases inherent to 
our models (Fig. 4c and Extended Data Fig. 5a,b,d). Although all of 
our models showed a preference for alpha-helices for unconditional 
generation, conditioning resulted in a uniform distribution of sec-
ondary structure content. Quantifying the diversity in secondary 
structure content of the designs showed that conditioning increased 
the entropy of the secondary structure distribution relative to the 
non-conditioned baseline (Extended Data Fig. 5e,f). This indicates 
that conditioned designs are more diverse both in terms of shape and 
secondary structure content.

To test the limits of random secondary structure conditioning for 
generating diverse protein structures, we generated a synthetic dataset 
of 50,000 backbones with size between 50 and 256 residues (Fig. 4d; 
also see the ‘Synthetic dataset generation’ section). We designed ten 
sequences per backbone with ProteinMPNN; predicted their structures 
with ESMFold; and quantified the designability, diversity and novelty 
with respect to the PDB. Of the 50,000 backbones, 81.4% were design-
able. Across protein sizes, designs showed low median scRMSD and 
high overall designability (Fig. 4e). To quantify diversity, we clustered 
all backbones using Foldseek with TM-align alignment (TM-score 
threshold of 0.6) and a minimum coverage of 90% of the sequence to 
only cluster structures of similar sizes55. This yielded 45,713 clusters 

corresponding to 91.4% of the dataset. Of these cluster representa-
tives, 75.3% were designable, resulting in a dataset of 37,661 diverse and 
designable structures. Using Foldseek to search the PDB for matches 
for all designable structures in the dataset resulted in 11,973 structures 
without a single match at TM-score > 0.5. In particular, most matches 
were concentrated in short backbones, with the majority of backbones 
with 200 or more residues had no matches in the PDB. This indicates 
that generating structures with a random secondary structure can 
explore parts of the protein fold space far outside the training set and 
result in ‘dark matter’ folds outside the PDB.

Synthetic data improve one-shot designability
Previous work on protein generative models49,56 reported that training 
on synthetic data with ProteinMPNN-designed sequence could improve 
model performance. To check if a synthetic dataset generated this way 
could be used to potentially train improved protein generative models, 
we compared the performance of two salad models trained on proteins 
of size 50–256 residues. We trained one model on a subset of PDB with 
chains of length between 50 and 256. The other was trained on design-
able structures and sequences in our synthetic dataset. Using each 
model, we generated 200 backbones for protein sizes between 50 and 
300 residues. As our models learn to predict a sequence as an auxiliary 
task during training (see the ‘Denoising model loss’ section), we gener-
ated a single sequence per backbone. We predicted the structure of each 
sequence using ESMFold24 to assess design success. The model trained 
on PDB resulted in high median scRMSD (>2 Å) and low designability 
(<20%) across all tested protein sizes (Fig. 4f). By contrast, the model 
trained on our synthetic dataset showed low median scRMSD and high 
designability for in-distribution tasks, with performance deteriorating 
for 300-residue proteins, which the model was not trained on (Fig. 4f). 
Directly generating successful backbone–sequence pairs circumvents 
the sequence design step in the protein design pipeline, reducing the 
number of tested sequences and AlphaFold or ESMFold evaluations 
for design filtering from 8 to 1. This greatly decreases the runtime of 
the protein design pipeline.

Structure editing for motif scaffolding
Although unconditional backbone generation can give an indication 
about the general performance of a protein generative model, it is 
rather removed from the realistic applications of protein generative 
models. Motif scaffolding provides a more realistic benchmark task. 
Models have to generate backbones that accommodate one or more 
functional motifs from natural proteins1. This has immediate applica-
tions in enzyme design (scaffolding theozymes)15,16, synthetic vaccine 
design7 and design of natural protein mimics57.

We compare the performance of salad models against the 
state-of-the-art protein diffusion models Genie 2 and RFdiffusion 
on a standardized motif-scaffolding benchmark. The benchmark, 
introduced in ref. 1, includes 24 single-motif tasks of varying difficul-
ties and was extended in ref. 2 to contain six additional tasks in which 
the models have to scaffold more than one motif in a single backbone 
(multi-motif scaffolding). For a direct comparison with Genie 2 and 
RFdiffusion (which are both VP models), we only use VP models in this 
benchmark. As our models are not trained for multi-motif scaffolding 
by default, we approach this problem in two different ways. First, we 
use our structure-editing approach to edit the denoised structure by 
aligning the motif backbone and replacing the output coordinates by 
the motif’s coordinates (Extended Data Fig. 7a). This ensures that the 
motif is present in the final generated backbone, even if the model is 
not conditioned on the motif’s structure. We call this configuration 
salad+edit. Second, we train a separate multi-motif-conditioned model, 
which we will refer to as salad+cond (Extended Data Fig. 7b).

In the following we compare the results for our method with the 
results for RFdiffusion and Genie 2 reported in ref. 2. To directly com-
pare with these, we closely followed the same evaluation strategy. 
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For each approach, we generated 1,000 backbones per scaffolding 
problem, designed eight sequences with ProteinMPNN and assessed 
the designability with ESMFold. We further filtered designable struc-
tures by their motif RMSD computed over all backbone atoms (N, 
CA, C and O). Structures were deemed successful if they reached 
motif RMSD < 1 Å. All successful structures were then clustered using 
TM-align at a TM-score cut-off of 0.6 to identify unique scaffolds for 
each problem. Evaluating success using CA-based motif RMSD showed 
little to no impact on both number of successful and unique designs 
for salad+cond (Extended Data Fig. 8a,b). By contrast, salad+edit 
showed large variability in success rates for some motifs (Extended 
Data Fig. 8a,b). This indicates that the lack of explicit motif condi-
tioning may result in the model changing the motif orientation in the 
denoising step.

We found that both salad+edit and salad+cond solved 23/24 
single-motif as well as 5/6 multi-motif design tasks (Extended Data 
Fig. 7c,d). Both salad+edit and salad+cond generated diverse back-
bones with low motif RMSD (Extended Data Fig. 7e). Only the motifs 
for 4jhw and 3ntn remained non-designable, consistent with Genie 2  
(ref. 2). However, compared with Genie 2, we were able to solve 
one additional multi-motif-scaffolding task with 2b5i. Although 
RFdiffusion cannot be straightforwardly applied to multi-motif 
scaffolding, our approaches still outperformed it on single-motif 

scaffolding, solving one additional problem. Overall, salad+cond 
generated 1,610 (salad+edit, 1,446) unique scaffolds, slightly outper-
forming Genie 2 and dwarfing RFdiffusion’s 889 scaffolds (Extended  
Data Fig. 7c).

Thus, our models outperform RFdiffusion across all criteria, match 
Genie 2 in terms of the total number of unique scaffolds and solve one 
additional problem with 2b5i. Although a direct comparison of the 
number of unique backbones per scaffolding problem (Extended Data 
Fig. 8c) shows that there is currently no best model across all tasks, 
our models result in equal or more scaffolds for the majority of design 
tasks (21/24 versus RFdiffusion and 19/30 versus Genie 2 for structure 
editing; 20/24 and 20/30 for conditioning; Extended Data Fig. 8c). This 
indicates that both our approaches are competitive with the state of 
the art for single- and multi-motif scaffolding.

Structure editing for repeat protein design
As a second application to demonstrate the flexibility of our models 
combined with structure editing, we set out to generate repeat pro-
teins. Similar to the approach used in previous work1, we can generate 
point-symmetric repeat proteins by symmetrizing the inputs of our 
models according to the action of a point group (Fig. 5a). As our model 
has residues attend to random neighbours, we also symmetrize the 
output of our models. All repeat subunits are aligned using the action 
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of the point-symmetry group and averaged to produce a representa-
tive repeat unit. This can then be placed at a specified radius from 
the symmetry axis to control the radius of the generated symmet-
ric repeats. Replicating the representative structure then gives us a 
symmetrized output structure. Applying this procedure resulted in 
designable backbones with low scRMSD for various cyclic symmetry 
groups (Fig. 5b).

Although both hallucination5 and diffusion1 methods have 
been successful in producing point-symmetric proteins, only 
sequence-based13 machine learning methods and Rosetta-based pro-
tein design3,4 have been successfully applied to design extended repeat 
proteins that cannot be described by a point group. However, our edit-
ing approach is readily extended to arbitrary symmetry groups includ-
ing screw (helical) symmetries, which cover the class extended repeats 
described in refs. 3,4,13 (Fig. 5c). By explicitly setting the radius R, 
rotation angle α and translation T of a screw-symmetric repeat (Fig. 5c), 
we can generate designable backbones with the specified geometry 
(Fig. 5d). Generated backbones are structurally diverse, with topologies 
ranging from fully alpha-helical to fully beta-sheet. Repeat sequences 
designed using ProteinMPNN20 are reliably predicted to take on the 
designed structure with low scRMSD, even when extending the number 
of repeats by a factor of 3 (Fig. 5).

Overall success rates for symmetric protein design vary between 
models (VP or VE) and design tasks (Fig. 5e). Strikingly, designabili-
ties for both cyclic and screw-symmetric designs show a dependency 
on the specified radius and rotation angle, for example, C6 symme-
try with a radius of 12 Å (r12) and a radius of 14 Å (r14). This is prob-
ably because the generated structures become highly compact for 
low radii, which is associated with a loss in designability (Extended  
Data Fig. 4).

Structure editing for multi-state design
Although both motif scaffolding and repeat protein generation dem-
onstrate the applicability of structure editing to protein design, these 
tasks do not showcase the full flexibility of this approach. In both cases, 
external conditioning information is available in the form of a motif or 
symmetry group. Additionally, there is sufficient data to train structure 
generative models conditioned on either of these tasks. By contrast, 
designing amino acid sequences that can fold into multiple distinct 
backbone structures (multi-state design) fits none of these criteria: data 
on natural multi-state proteins are scarce58 and structure-based genera-
tive models are believed to be unsuitable for this task13. Therefore, we 
chose to demonstrate that salad models can solve a recent multi-state 
benchmark task introduced in ref. 13 by using structure editing to  
couple the outcome of multiple denoising processes—one for each state.

Following ref. 13, we designed backbones for a protein (the ‘par-
ent’) that takes on a specified secondary structure when intact and a 
different secondary structure when split into two ‘child’ proteins. The 
N- and C-terminal parts of the parent share their secondary structure 
with the children, whereas the central part of the parent should tran-
sition from a beta-sheet to an alpha-helix when split (Supplementary 
Table III). As we cannot directly design the protein on the sequence 
level, we instead instantiate three separate denoising processes, one 
for each state (Fig. 6a). Each denoising process is conditioned on the 
secondary structure string of either parent, child 1 or child 2. At each 
denoising step, we enforce that the parts with the same secondary 
structure between parent and child share a similar three-dimensional 
geometry by aligning and averaging their substructures (Fig. 6a). 
Essentially, the denoising processes are coupled by conditioning their 
structures on each other. This approach results in three coupled struc-
tures per generation.
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We generated 1,000 structure triples, designed their sequences 
with ProteinMPNN, tying the sequence across parent and child struc-
tures20. To compare with the benchmark done in ref. 13, we evaluated 
the design success with the same criteria of AlphaFold RMSD < 3.0 Å 
and pLDDT > 75. Here 16% of the generated backbones resulted in 
partially successful designs, where all structures passed the pLDDT 
threshold, and a parent and at least one child passed the RMSD thresh-
old (Fig. 6b). Although these designs did not meet all the criteria, they 
still resulted in a sequence predicted to change conformation in the 
parent state compared with the child state. Using the complete criteria, 
2.9% of the backbones generated by our approach were successful, 
compared with the 0.05% of successes reported for ProteinGenerator 
(PG) in ref. 13. Although we used ProteinMPNN for sequence design, 
PG returns one sequence per backbone. However, even evaluating the 
percentage of success on a sequence-level salad reached a success rate 
of 0.32%, outperforming PG by a factor of 6.

To check whether structure editing contributed to the success 
rate of multi-state design, we generated another 1,000 backbone tri-
ples using only secondary structure conditioning. This resulted in 
per-backbone success rate of 0.4% and a per-sequence success rate of 
0.06%, matching PG (Extended Data Fig. 9). This indicates that struc-
ture editing is indeed behind the increased performance observed for 
this multi-state design task. Overall, our structure editing approach 
generates varied low-RMSD solutions to this multi-state design prob-
lem (Fig. 6d), outperforming previous machine learning approaches. 
To our best knowledge, this is the first demonstration of multi-state 
design with a protein backbone denoising model.

Discussion
In this work, we present salad, a family of efficient sparse denoising 
models, capable of generating designable and diverse protein struc-
tures up to a length of 1,000 amino acid residues. For unconditional 
protein structure generation, our models outperform RFdiffusion both 
in terms of designability and diversity for all protein lengths, closely 
approaching the diversity of Genie 2 (which was trained on a larger 
and more diverse dataset). We bridge this gap in diversity by applying 
random secondary structure conditioning at the cost of designability. 
This allows us to generate a large, highly diverse dataset of design-
able structures novel to the PDB. For longer proteins with 400–1,000  
residues, our models clearly outperform both RFdiffusion and Genie 2,  
approaching the designability observed for hallucination-based  
methods27. Although the concurrently developed Proteina42 matches 
salad’s designability for up to 800-residue proteins, it does so at the cost 
of increased runtime, a 25-fold increase in the number of parameters, 
and does not generalize to 1,000-residue proteins. Therefore, salad 
pushes the boundaries of designability and diversity across protein 
lengths up to 1,000 and greatly reduces the time-per-design value due 
to its efficient sparse architecture. The ability to design large proteins in 
a high-throughput manner can open up new possibilities for designing 
increasingly large and complex molecular machines.

We expand the capabilities of salad by combining it with struc-
ture editing. By editing the output of a salad model at each denoising 
step, we can rapidly prototype generators for protein design tasks 
unseen during training. We show that this combination can generate 
designable, low-RMSD backbones for a variety of tasks. We design 
shape-conditioned proteins, scaffold multiple functional motifs, gener-
ate repeat proteins and produce protein sequences predicted to adopt 
distinct folds when cleaved. For motif scaffolding, salad matches or 
exceeds the performance of both RFdiffusion and Genie 2. For repeat 
protein design, we generate screw-symmetric repeats, which, to our 
knowledge, have not been explored using protein structure diffusion 
models beyond a single mention in ref. 21. Instead, such proteins have so 
far been designed using Rosetta4 or sequence-based design methods3,13. 
For multi-state protein design, we reproduced a design task introduced 
in ref. 13 and achieved a success rate one order of magnitude higher 

than the original work. This indicates that salad is, in fact, sufficiently 
flexible to generate designs even for tasks like multi-state design, which 
are believed to be unfavourable for structure generative models13.

Although salad produces acceptable results on computational 
benchmarks, this work does not contain additional experimental vali-
dation. While our ESMFold- and AlphaFold-based approach to measure 
designability have been previously shown to select experimentally 
viable protein designs1,13,20,28, it is ultimately not the ideal metric. Nei-
ther AlphaFold nor ESMFold can perfectly distinguish experimen-
tally viable from non-viable designs28,59—both models are known to 
be vulnerable to adversarial protein sequences5,27,32 and have limited 
sensitivity to amino acid masking and mutation59. Nonetheless, prior 
work has produced extensive experimental validation, showing that 
a pipeline using a structure generator with ProteinMPNN sequence 
design and structure predictor filtering can produce experimentally 
viable designs at a reasonable rate1,13,20. We argue that salad matching 
or exceeding previous, experimentally validated models in terms of 
ESMFold/AlphaFold design success alleviates concerns about the 
lack of experimental validation. In particular, salad is part of the same 
pipeline of structure generation, ProteinMPNN sequence design and 
AlphaFold 2/ESMFold selection as RFdiffusion1. As salad was trained 
independently from ProteinMPNN and AlphaFold 2/ESMFold, it is 
unlikely that it has learned to generate backbones that are adversarial 
for both. We also emphasize that the focus of this work is on develop-
ing more efficient and versatile backbone generators, not to present 
an all-in-one solution for protein design.

Another limitation of salad is that it is currently restricted to a lim-
ited training set. salad is trained on protein structures in the PDB, with all 
small molecules, ions, waters and nucleic acids removed. Therefore, its 
uses for enzyme design and small-molecule binder design are limited. In 
particular, more recent versions of RFdiffusion can design proteins in the 
presence of small molecules16,19. The salad architecture is likely capable 
of handling small molecules with minor modifications, which makes this 
an attractive step to address in the future. In addition, salad struggles to 
match the diversity of Genie 2 (ref. 2) without using random secondary 
structure conditioning. Genie 2 was trained on a clustered subset of the 
AlphaFold database, which greatly exceeds our PDB dataset in both size 
and structural diversity2,54,60. We believe that this issue can be addressed 
in future work by training salad models on AlphaFold DB.

In this work, we compare salad to RFdiffusion1 and Genie 2  
(ref. 2) as well as the concurrent work of Proteina42. Although many 
other protein diffusion models exist37,40,61–63, we argue that comparing 
to these ones in particular is sufficient to establish salad to be on par 
with the state of the art, as prior work has shown that they outperform 
most other protein structure generative models1,2,42. The designability 
of salad generations for up to 1,000-residue-long proteins as well as 
its runtime performance give it an edge over comparable models. 
This should enable salad to fill the niche it is designed for, providing 
efficient and versatile backbone generation in the first step of the 
protein design pipeline.

Methods
Protein structure denoising models
Denoising protein structure models are trained to reconstruct a 
noise-free structure x from a noisy input structure. To train our mod-
els, we sample random time points t ∈ [0, 1], where t = 0 corresponds 
to a noise-free structure and t = 1 corresponds to pure noise. Depend-
ing on the noise schedule, we then convert t into a noise scale σt. We 
use three different noise schedules: VP noise with a cosine sched-
ule64 and constant-standard-deviation noise (VP), VP noise with a 
protein-size-dependent standard deviation (VP scaled) and VE noise (VE).

For VP noise, a noisy structure xt is then generated by sampling

xVP
t (x) ∼ 𝒩𝒩 (√1 − σ2t ⋅ x,σ2t ⋅ σ2noise) , (3)
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where σnoise = 10 Å is the standard deviation of the noise at time t = 1.  
For VP-scaled noise, we instead set the standard deviation σnoise equal 
to the standard deviation of CA positions in input structure x:

xVP scaled
t (x) ∼ 𝒩𝒩 (√1 − σ2t ⋅ x,σ2t ⋅ σ(xCA)

2) , (4)

The fully noised structure xVP−scaled
1  will, therefore, have the same stand-

ard deviation as the alpha-carbons starting structure xCA. Finally, for 
VE noise, instead of sampling diffusion time t, we directly sample a 
noise scale from a log-normal distribution, following ref. 65:

σ ∼ LogNormal (1.6, 1.4) Å (5)

and sample noisy structures according to

xVE
σ ∼ 𝒩𝒩(x,σ2). (6)

The models are then trained to reconstruct x from xt by minimizing 
||x − xt||22  and additional auxiliary losses (see the ‘Denoising model loss’ 
section).

Our models are trained using self-conditioning. At each training 
step, we sample two noisy structures xt andx′t. With probability 50%, 
we predict x′ from x′t  without self-conditioning. We then predict x  
from xt using x′ as an additional input. At inference, the model passes 
the current noised structure xt as well as its previous prediction xprev to 
predict x.

In addition to self-conditioning, our models can also be con-
ditioned on amino acid sequence, partial structure information, 
three-state secondary structure (helix, strand and loop), block contacts 
between secondary structure elements, inter-chain contact informa-
tion and hotspot residues interacting with other protein chains1. During 
training, conditioning information is provided at random for 50% of 
training examples. Each conditioning modality is further randomly 
masked for a random fraction between 20% and 100% of the residues. 
To determine inter-residue and inter-chain contacts for condition-
ing, we compute pairwise CA distances between residues. Residues 
are considered in contact, if their CA distance is < 8 Å. Two chains and 
secondary structure elements are considered in contact if at least 
one pair of residues is in contact. Residues are considered hotspot 
residues if they are in contact with at least one residue in another chain. 
Partial structure information is presented to the model as a matrix of 
inter-residue CB distances together with a mask of amino acid pairs with 
valid conditioning information. Partial structure information is masked 
out for between 20% and 80% of residues in any training example.

To sample from a trained denoising model, we initialize a backbone 
x with all atom positions set to 0. We then partition the interval [0, 1] 
into N equally spaced time steps (t0…tN) with tN = 1. For each time step 
t starting with tN, we apply noise with a chosen noise schedule to x, 
resulting in a noised structure xt. This noisy structure is denoised by the 
model, resulting in a new structure x. Repeating this process gradually 
reduces the noise level and results in a denoised protein backbone. 
Our approach differs from the denoising processes described in the 
literature: protein structure denoising diffusion models generally 
sample structures xt according to a distribution q(xt|xt+s, x), which 
depends on both denoised structure x and an earlier noisy structure 
xt+s at diffusion time t + s (refs. 1,2,35). Instead, our approach samples 
from q(xt|x = fθ(xt+s)), removing any direct dependency on the previous 
noise xt and only depends on it through the model fθ. This approach has 
been previously reported for categorical text diffusion models66 and 
more recently for amino acid sequence diffusion models13.

We chose this approach not because of its success in sequence 
diffusion models but to enable the arbitrary modification of denoised 
structures x without having to take into account xt. To use our models 
for protein generation tasks they were not trained for, we wanted to 

allow the arbitrary editing of the denoised structure—for symmetri-
zation, to introduce structural motifs for scaffolding and to couple 
multiple denoising processes for multi-state design. This necessitates 
translating, rotating and replacing parts of the denoised structure. 
Changing the denoised structure x this way without also adjusting 
xt+s in a compatible way could result in failure to generate valid protein 
structures.

Supplementary Algorithm 1 shows the generative process for a 
model involving conditioning information c, self-conditioning and 
structure editing.

Model architecture
Our sparse denoising models consist of three separate modules. An 
Encoder that encodes the ground-truth backbone atom positions 
(N, CA, C, O and idealized CB) xgt and adds 15 additional pseudoatom 
positions for each residue to result in the denoising model input x, a 
DenoisingModule that receives noised positions xt, and is trained to 
reconstruct x and an amino acid decoder (AADecoder), which pre-
dicts an amino acid sequence and side-chain conformations for each 
residue. The model is trained with self-conditioning, receiving a previ-
ously predicted structure xprev and per-residue representation localprev 
as additional inputs. All modules are based on a sparse transformer 
architecture44 with pre-normalization45.

DenoisingModule. The DenoisingModule consists of six denoising 
blocks based on a pre-norm transformer architecture45. Every block 
updates the per-residue representation locali of size local_size = 256 
and residue atom positions x. We save the trajectory of x values across 
all blocks to apply losses over the entire denoising trajectory.

Supplementary Algorithm 2 shows an overview of a block in the 
DenoisingModule. We replace standard self-attention in the trans-
former block by a sparse version of IPA (SparseIPA)23. Instead of com-
puting the attention matrix and pair features for all amino acid pairs, 
we compute them for a set of precomputed neighbours. This reduces 
the complexity of attention from O(N2) to O(N ⋅ K), where K is the num-
ber of neighbours per residue. To support conditioning on structure 
information, we use two SparseIPA layers. The first IPA layer operates on 
the current set of position features, whereas the second one operates 
on previous positions from self-conditioning, as well as block contact 
and distance conditioning information. For multi-motif models, we 
instead run IPA using motif information first, followed by IPA on the 
current position features.

Following SparseIPA, the per residue features locali are updated 
using a GeGLU-gated feed-forward layer with global pooling of the 
hidden state (Update; Supplementary Algorithm 5). This combina-
tion of sparse attention and global mean pooling of features allows 
the DenoisingModule to learn global dependencies without having 
to use full O(N2) attention.

Neighbour selection. To compute sparse attention features, we select 
a set of neighbours for each residue based on their sequence and CA 
distances. For each residue, we choose the 16 nearest neighbours by 
residue index. Then, we select an additional 16 neighbours by CA dis-
tance, excluding previously selected neighbours. Finally, we select 
#random neighbours at random with probability 1/d3

CA following  
ref. 21 and #cond neighbours based on pairwise conditioning informa-
tion, such as block contact conditioning1 or pairwise distances. All 
default models have #random = 32 when computing neighbours on 
the current set of positions and #random = #cond = 16 when computing 
neighbours on self-conditioning information. This results in a total of 
64 neighbours per amino acid. Multi-motif-conditioned models have 
#random = 32 and do not use additional neighbours from the condi-
tioning information. It is important to note that unlike Chroma21, a new 
set of neighbours is computed for each DenoisingBlock, as each block 
updates the residue positions x.
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Pair features. As part of SparseIPA, we compute amino acid pair 
features for each amino acid and its selected neighbours. Distances 
between all pairs of backbone atoms (N, CA, C, O and idealized CB) are 
computed for each pair and featurized using 16 Gaussian Radial Basis 
Functions20 uniformly spaced between 0 Å and 22 Å. The bandwidth is 
set to the distance between Radial Basis Function centres σ = 1.375 Å. 
In addition to distance features, we also compute direction from the 
CA atom of each residue to each of its neighbour, the relative rotation 
between residues and the atom positions of a residue and its neighbour 
in local coordinates. These features are then flattened and linearly 
projected to pair_size = 64 pair features. For models with minimal pair 
features, we instead only compute inter-residue distances and relative 
rotations (Supplementary Algorithm 4).

Update module. After applying SparseIPA, we update per-residue fea-
tures locali using a gated feed-forward layer. We first update locali using 
the atom positions in each residue. Then, we linearly project and pool 
amino acid features within and across chains. Per-residue, per-chain 
and per-complex features are then summed and passed through a final 
linear layer (Supplementary Algorithm 5). Combined with SparseIPA, 
this allows the model to learn global dependencies within a protein 
complex without the need for full O(N2) attention.

Equivariant position update. The final component of a Denoising-
Block updates the atom positions xi for each residue in an equivari-
ant manner. Per-residue features locali are linearly projected to a set 
of position updates, scaled by a unit factor of 10 Å and added to the 
current positions xi in the local frame of each residue i. The resulting 
updated positions are then transformed back into global coordinates 
(Supplementary Algorithm 6).

Structure encoder. The Encoder uses a simplified version of the 
DenoisingModule and uses the same feature size as the main Denois-
ingModule. As the Encoder does not change the protein backbone 
xgt, we use a precomputed set of neighbours for each residue. Each 
amino acid is assigned a set of 32 nearest neighbours based on the CA 
distance. The trunk of the Encoder consists of two blocks of SparseIPA 
followed by a GeGLU layer46. After the second block of the Encoder, the 
residue representation is used to generate 15 pseudoatom positions per 
residue, which are combined with the backbone atom positions. The 
resulting structure x is used to train the DenoisingModule.

AADecoder. The AADecoder uses three blocks of the same type as 
the Encoder, together with a set of 32 nearest neighbours per amino 
acid computed on the denoised CA positions. In addition to denoised 
positions x and DenoisingModule features locali, the AADecoder 
also receives a partially masked amino acid sequence during train-
ing. A random fraction between 1% and 100% of amino acids in each 
training sequence are replaced by a mask token. The AADecoder is 
then trained to predict the masked amino acids with a cross-entropy 
loss. This corresponds to the training objective of an autoregressive  
diffusion model67.

Model variants. We trained denoising models for three different noise 
schedules: VP with σ = 10 Å; VP with σ = σ(xCA) dependent on the stand-
ard deviation of CA atoms in the training example; and VE diffusion 
with σ ~ LogNormal (1.4 Å, 1.6 Å). For each noise schedule, we trained 
three ablated models: a model with full pair features and Fourier time 
embedding35; a model without time-embedding features; a model with 
minimal pair features and no time-embedding features.

Denoising model loss
Our denoising models are trained using a combination of standard 
denoising and auxiliary losses. A per-block denoising loss is computed 
on residue (pseudo) atom positions for the output f arb (xt)  of each 

DenoisingBlock, where r are residues and a are the atoms in each 
residue:

ℒb(x,xt) =
1

Na ⋅ Nr
∑
a,r

clip(|| f arb (xt) − x||2,0, 10 Å)
2
. (7)

The norm ||xb − x|| is clipped to 10 Å to stabilize training and the loss 
is averaged over residues r and (pseudo) atoms a in each residue. The 
losses for each block are then weighted together to result in a trajec-
tory denoising loss:

ℒtraj = 2 ⋅ ℒn(xt,x) +
1
n

n
∑
b=1

ℒb(xt,x) (8)

where the final prediction is weighted by a factor of 2 to increase its 
importance in the final loss. This is combined with an auxiliary all-atom 
denoising loss using the all-atom structure faratom(xt) predicted by the 
AADecoder:

ℒatom = 1
Nr

∑
r

1
Na

∑
a∈r

clip(|| f ar(xt) − xgt||2,0, 10 Å)
2
. (9)

To ensure that the models learn to reproduce the relative orientations 
between amino acid residues, we also introduce a rotation denoising 
loss for each block following RFdiffusion1:

ℒrot,b =
1
Nr

∑
r
||RT

r Rr,gt − 1||22, (10)

where Rr and Rr,gt are the rotation matrices defined by the backbone 
frame of each residue in the predicted and ground-truth structures, 
respectively1. This results in a trajectory denoising loss for residue 
rotations as

ℒrot = 2 ⋅ ℒrot,n +
1
n

n
∑
b=1

ℒrot,b. (11)

In addition to using unaligned denoising losses, we also compute a 
squared frame-aligned point error (FAPE) loss ℒ2

FAPE (ref. 23) over the 
trajectory of predictions f arb (xt) as well as a local FAPE loss on the pre-
dicted all-atom structure ℒlocal. Instead of computing the FAPE over all 
amino acid pairs, we instead compute it over the 64 nearest neighbours 
in the ground-truth structure ℒfape and 16 nearest neighbours for ℒlocal. 
As with the denoising loss, the FAPE losses are also clipped to a maxi-
mum of 10 Å. Finally, the structural losses also include AlphaFold’s 
structural violation loss ℒviol  (ref. 23) to penalize clashes in denoised 
structures.

The models are also trained with a number of non-coordinate 
losses, consisting of a distogram ℒdist (ref. 23) and amino acid prediction 
ℒaa and secondary structure ℒdssp cross-entropy losses.

ℒaux = 10 ⋅ ℒaa + ℒdssp + 0.1 ⋅ ℒdist (12)

The final weighted loss of the model is then as follows.

ℒ = ℒtraj + ℒatom + ℒfape + ℒrot + 10 ⋅ ℒlocal + 10 ⋅ ℒaa + 0.1 ⋅ ℒviol + ℒaux
(13)

In this loss, ℒviol  and ℒlocal  are set to zero in the high-noise regime (dif-
fusion time t > 0.5 for VP models; noise σt > 5.0 Å for VE models), as the 
model is unlikely to learn to predict non-clashing structures at high 
noise levels.

Structure autoencoder models
Our sparse autoencoders were implemented to have the same graph 
transformer architecture as the denoising models. Each autoencoder 
model consists of a single Encoder block with SparseIPA over 32 
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nearest neighbours for each residue, followed by a GeGLU layer46. The 
resulting per-residue representation locali is then layer normalized68 
and linearly projected to a latent vector zi ∶ ℝlatent_size  for each  
residue i. For model variants with VQ48 enabled, zi is then quantized 
with a codebook of size 4,096.

This latent representation is decoded by a Decoder, which con-
sists of six blocks of SparseIPA followed by the same Update and posi-
tion_update layers used in our denoising models. The decoder is 
trained with zero to three recycling steps for each batch, initializing 
the positions x of each recycling step with the result of the previous 
step xprev. The first recycling step starts from randomly initialized 
positions x ∼ 𝒩𝒩(0, 1). We train models with three different decoder 
variants: an SE(3) equivariant model using the same neighbour selec-
tion and features as used in our denoising models; an equivariant 
model with per-block distogram prediction (EQ+dist; Supplementary 
Algorithm 7) and an additional SparseIPA layer using distogram nearest 
neighbours (Supplementary Algorithm 8); and a non-equivariant 
model directly embedding atom positions without first projecting 
them to residue local coordinate systems. This results in a total of six 
models trained (three decoder variants with and without VQ).

All the models are trained with ℒ2
FAPE  over the entire denoising 

trajectory and ℒlocal for the final all-atom structure prediction. Amino 
acid cross-entropy ℒaa is used as an auxiliary loss. In addition, models 
with per-block distogram loss are trained with distogram cross-entropy 
for each layer ℒdist. This results in a combined autoencoder loss of

ℒ = ℒ2
FAPE + ℒlocal + ℒdist + 10 ⋅ ℒaa. (14)

Training dataset
We trained our models on a snapshot of PDB collected in October 2023 
excluding any PDB entries submitted after 31 December 2020. PDB 
entries were then filtered for a resolution of ≤ 4 Å. Entries containing 
protein chains of length less than 16 were excluded from training and 
non-amino-acid residues were removed from chains in the dataset. We 
clustered all protein chains in the resulting dataset using mmseqs2 
(git commit 4f046dd)69 with a 30% sequence identity cut-off. To train 
our model, we generated input batches of 1,024 residues. Batches 
were constructed by repeatedly sampling structures from the dataset, 
until the total number of residues reached 1,024. If the total number of 
residues would exceed 1,024, the batch was zero padded instead, and 
the sampled structure was included in the next batch. At each epoch, 
we sampled clusters from the dataset without replacement, selecting 
a random chain identifier and biological assembly for each cluster. If 
the selected chain belonged to a complex and the entire complex fit in 
the current batch, we added the complex to the batch with a probability 
of 50%. Otherwise, we added only the selected chain.

Model training
All the denoising models were trained for 200,000 iterations on the 
dataset with a mini-batch size of 1,024 and 32 batches per iteration, 
resulting in a total of 32,768 residues per iteration. Structure autoen-
coder models were trained for 200,000 steps with a batch size of 16,384 
residues. We used the Adam optimizer70 with β1 = 0.9 and β2 = 0.99. The 
learning rate was warmed up from 0 for 1,000 steps at the start of train-
ing and then reduced to 1 × 10−7 using cosine decay71. On an example 
machine with eight NVIDIA RTX 3090 GPUs, an average training run 
took 3.5 days, or 672 GPU hours. Models were trained on different 
GPU nodes using eight of either NVIDIA RTX 3090, A40 or L40S GPUs.

Runtime benchmarking
We compared the runtimes of salad models with RFdiffusion, Genie 2, 
Chroma and Proteina on a single NVIDIA RTX 3090 GPU. We sampled 
ten structures from each model using their default settings (Supple-
mentary Table I) and measured the time elapsed for each generated 
structure. We discarded times measured for the first generated 

structure to account for library initialization and model compilation 
and reported the average time for the remaining nine generations.

Model ablation study
We selected a model architecture and sampling hyperparameters 
by evaluating models with and without time-embedding features as 
well as with full and minimal pair features on unconditional structure 
generation. We generated 200 backbones for proteins of size 50–400 
residues for each model, using 100, 200 and 500 diffusion steps with 
early stopping at 80, 180 and 400 steps into the denoising process. 
Self-conditioning was applied until diffusion time tprev = 0.8 for VP mod-
els as this was determined to yield good results in preliminary testing. 
For VE models, we tested self-conditioning thresholds of 0.8 and 0.99. 
Ten sequences were designed for each backbone using ProteinMPNN20. 
Structures were predicted using ESMFold24. Designability was meas-
ured as the fraction of backbones with at least one designed sequence 
with pLDDT > 70 and scRMSD < 2.0 Å (Extended Data Fig. 6a,b). Models 
with full pair features, time embedding and 500-step sampling were 
chosen for further benchmarking. tprev = 0.99 was chosen for VE models.

Unconditional generation benchmark
At each evaluated protein length between 50 and 1,000 residues, we 
generated 200 protein backbones using both our models as well as 
Genie 2, RFdiffusion and Proteina for comparison1,2,42. Backbones 
were sampled using 500 diffusion time steps with early stopping at 
400 time steps and self-conditioning turned off below the threshold 
diffusion time tprev = 0.8 for VP models and tprev = 0.99 for VE models. 
For each backbone, we then generated ten amino acid sequences using 
ProteinMPNN with a temperature of 0.1 (ref. 20). This resulted in a total 
of 11 sequences for our models (ten ProteinMPNN and one from the 
model itself) compared with ten sequences for Genie 2 and RFdiffusion. 
To fairly measure the model performance and remain comparable to 
previous work, we restricted all the computed performance measures 
to use the first eight sequences generated by ProteinMPNN.

We predicted the structures of each sequence using ESMFold24 
and AlphaFold 2 (ref. 23). For each structure prediction, we measured 
the RMSD to the generated backbone (scRMSD) and pLDDT. Following 
ref. 2, we then computed designability as the fraction of the generated 
backbones with at least one sequence with ESMFold pLDDT > 70 and 
scRMSD < 2 Å. We evaluated pairwise similarities between the gener-
ated backbones using TM-align (v.20220412)29. To compute backbone 
diversity for direct comparison with Genie 2 and RFdiffusion2, we 
randomly subsampled the set of generated structures to a size of 100 
backbones. Designable structures in this subset were then clustered 
using single-linkage clustering on the TM-score. Backbones with 
TM-score > 0.6 were included in the same cluster. Diversity for all 
backbones (diversityall) was then defined as the fraction of designable 
clusters in all generated structures #clusters

#generated
 (ref. 2). We also defined a 

second diversity measure as the fraction of clusters in all designable 
structures diversitydesignable =

#clusters

#designable
 to fully separate diversity 

 from designability. Diversity was measured on ten samples of 100 
structures, each sampled from the original 200 generated structures 
to report median, minimum and maximum diversities for each model.

Shape-initialized structure generation
We prepared letter shapes as paths in SVG format using Inkscape 1.4 
(e7c3feb100, 2024-10-09; Inkscape Project) and then extracted the 
coordinates of the nodes in each path into a CSV file. To sample struc-
tures based on these shapes, we used our VE model with default settings 
and shaped noise initialization. Instead of initializing the denoising 
process with noise for each residue i as

ϵi ∼ 𝒩𝒩(0, (80 Å)
2
), (15)
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we instead centred the noise on the coordinates of nodes of the SVG 
path corresponding to the desired shape:

ϵi ∼ 𝒩𝒩(nodei, (80 Å)
2
), (16)

where nodei is the position of the node assigned to residue i. To gener-
ate the letter shapes described in this work, we assigned 200 consecu-
tive residues to each node, that is, residues 1–200 were assigned to 
the first node, 201–400 to the second and so on. We then sampled 
ten structures for each letter shape (S, A, L and D) starting from this 
noise, designed ten sequences with ProteinMPNN at a temperature of 
0.1 and predicted their structures with ESMFold. We then identified 
designable structures as described in the ‘Unconditional generation 
benchmark’ section.

Shaped noise
To initialize noise for VE models better suited for large protein genera-
tion than normal-distributed noise, we adapted shape-initialized noise 
generation to work with random noise centres. We sampled random 
starting positions for centres centrei according to

centrei = ∑
k<i

centrek + ϵi (17)

where ϵi ∼ 𝒩𝒩(0, (10 Å)2) is a normal-distributed offset. Essentially, we 
are sampling centres as Gaussian chains with average segment length 
of 10 Å (ref. 21). We then enforce globularity of the chain by optimizing 
inter-chain distances with a harmonic restraint centred on 10 Å. Opti-
mization is done using ten steps of gradient descent with a learning 
rate of 0.1. We sample shape-initialized noise with 200 residues per 
centre using these randomly generated centres. We generate fresh 
centres for each designed backbone.

Random secondary structure conditioning
To sample a random three-state secondary structure (helix, strand and 
loop) of a fixed length, we first sampled a random secondary structure 
fraction with a maximum loop content of 50% and arbitrary propor-
tions of alpha-helices and beta-strands. We then computed the closest 
integer number of helix, strand and loop residues for this fraction at a 
fixed protein length. To arrange these residues into contiguous second-
ary structure elements, we then heuristically determine the minimum 
and maximum numbers of helices and strands that can be generated 
using this number of residues (Supplementary Table II). We sample 
a random number of helices and strands in this range and randomly 
assign residues to each helix and strand until we reach the previously 
computed number of residues for each secondary structure. These 
secondary structure elements are then randomly shuffled, and the 
remaining loop residues are randomly placed in between.

For random secondary structure sampling, we then conditioned 
our models on secondary structure strings generated this way, ran-
domly replacing secondary structure elements with unknown sec-
ondary structure with a probability of 50% per element. Additionally, 
the first and last residues in each secondary structure element were 
replaced with an unknown secondary structure to allow the model to 
decide the correct secondary structure at boundaries between sec-
ondary structure elements. Evaluation of structures generated using 
random secondary structures followed the procedure described in the 
‘Unconditional generation benchmark’ section.

Synthetic dataset generation
To generate our synthetic protein dataset, we used our VP model with 
random secondary structure conditioning. We generated 50,000 
backbones for random protein lengths between 50 and 256 residues. 
For each backbone, we designed ten sequences using ProteinMPNN 
with a temperature of 0.1 (ref. 20) and predicted their structures using 

ESMFold24. We then identified successfully designed sequences with 
scRMSD < 2 Å and pLDDT > 70. The dataset was then restricted to 
structures with at least one successful sequence, resulting in 41,713 
backbones. These backbones were then clustered using Foldseek55 
with a TM-score cut-off of 0.6 and minimum coverage of query and 
target of 0.9 using the command foldseek easy-cluster data/pdb/ -c 
0.9 –tmscore-threshold 0.6. The coverage cut-off was chosen in this 
way to mostly cluster structures of similar size. This resulted in 37,661 
structures chosen as cluster representatives and also had one or more 
successful sequence designs, corresponding to 90.3% of designable 
backbones. We evaluated the percentage of novel structures relative to 
PDB by running Foldseek55 against PDB using TM-align and exhaustive 
search (foldseek easy-search data/pdb/ fs_pdb –alignment-type 1 – 
format-output query,target,alntmscore,qtmscore,ttmscore,alnlen, 
qstart,qend,tstart,tend, where fs_pdb is a precomputed copy of the 
PDB database downloaded using Foldseek). Structures were consid-
ered novel if they had no match in the PDB with query TM-score > 0.5 
(qtmscore).

Synthetic dataset model benchmark
We trained two salad models with default_vp configuration on both 
the synthetic dataset and the PDB dataset described above, limited 
to sampling only single chains of length between 50 and 256 residues. 
Models were trained according to the procedure in the ‘Model train-
ing’ section. We assessed the performance of both models using the 
ESMFold structure prediction of a single sequence prediction for each 
generated backbone according to the procedure in the ‘Unconditional 
generation benchmark’ section. Instead of using ProteinMPNN20 for 
sequence design, we directly used the sequence defined by the argmax 
of the amino acid distribution predicted by each model at the final 
denoising step.

Motif-conditioning model training
To compare with Genie 2 (ref. 2), we trained a separate salad model with 
multi-motif conditioning. The model was trained on PDB and was given 
multi-motif-conditioning information for each training example. Train-
ing was run for 200,000 steps according to the procedure described in 
the ‘Model training’ section. To prepare the motif-conditioning infor-
mation, we first partitioned each structure into contiguous segments 
with random lengths between 10 and 50 residues. Each segment was 
then assigned to one of two segment groups. Only segments within the 
same segment group would then be treated as a single rigid segment 
for the purpose of multi-motif scaffolding. Finally, segments were set 
as active with a probability of 50%. Inactive segments were not used 
for conditioning. We then computed the CA distance map between 
all amino acids, together with a mask indicating amino acid pairs with 
active conditioning:

maskij = (si = s j) ∧ ai ∧ a j, (18)

where si is the segment ID of a residue and ai is a Boolean specifying if 
the segment at that residue is active.

Motif conditioning using structure editing
In addition to training a model for multi-motif scaffolding, we adapted 
the sampling process of the default_vp model to allow multi-motif 
design. At each denoising step, we align the motifs to its corresponding 
residues in the denoised structure. We then replace the coordinates 
of those residues with the coordinates of the motif (Supplementary 
Algorithm 9). Sampling structures in this way guarantees that the motif 
will be incorporated into the resulting backbone.

Motif benchmark
Following ref. 2, we generated 1,000 structures using motif condition-
ing and motif editing for each single-motif-scaffolding task defined 
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in ref. 1 and additional multi-motif-scaffolding task specified in ref. 2. 
We then designed sequences for each backbone using ProteinMPNN 
and evaluated the designability using ESMFold (see the ‘Unconditional 
generation benchmark’ section). In addition, we computed the CA 
and full-backbone (N, CA, C and O) RMSD between the predicted 
structures and the input motif. Successful designs were selected using 
a backbone RMSD cut-off of 1 Å and clustered using single-linkage 
clustering at a TM-score threshold of 0.6 to identify the number of 
unique successes. For comparison, we also computed the number 
of unique successes based on RMSD-CA. We compared these results 
with results published for Genie 2 and RFdiffusion in ref. 2 using the 
same evaluation strategy2.

Symmetry editing
To generate symmetric repeat proteins according to a given symmetry 
group, a representative subunit structure was generated by aligning all 
the subunits of a repeat protein and averaging their positions. Subunits 
were aligned using the action of the symmetry group. For cyclic groups, 
all consecutive subunits were rotated around the symmetry axis onto 
a single subunit. For a screw (helical) symmetry group, consecutive 
subunits are first centred along the screw axis and then rotated onto 
a single subunit around the axis. We can then position the centre of 
mass of the subunit at a specified radius R from the symmetry axis to 
generate structures with a specified radius. The resulting representa-
tive structure is then replicated using the group action. This process is 
described in detail in Supplementary Algorithm 10 for a group G with 
a single generator g.

Symmetry benchmark
We generated symmetric repeat proteins with subunits of lengths 50 
and 100 for cyclic symmetry groups C3, C4 and C5 with variable radii 
using VP diffusion as well as C3 to C7 with radii from 10 Å to 14 Å using 
VE diffusion. In addition, we generated screw-symmetric designs with 
2–3 repeat subunits for various angles and radii. For each design class, 
we generated 20 symmetrized backbones and designed ten sequences 
using ProteinMPNN with a temperature of 0.1 (ref. 20). We evaluated 
designability using ESMFold for all the designs. To verify that the 
designed screw-symmetric proteins would be predicted to fold with 
more repeats added, we used AlphaFold 3 (ref. 72) to verify the structure 
of nine-subunit repeats for a subset of designs.

Multi-state structure editing
Multi-state outputs were generated by running one independent diffu-
sion process per state and editing the denoised output structures to fix 
shared substructures across states. To fix a set of residues across states, 
we aligned the fixed residue positions, optionally averaged them and 
copied the result back to each state. Repeating this procedure for each 
denoising step ensures that the fixed residues will have highly similar 
positions in the final generated structures. Supplementary Algorithm 
11 describes the editing process for a two-state design process with a 
set of fixed residues {m}.

Multi-state design benchmark
We generated designs for the multi-state design problem described 
in ref. 13 (Supplementary Table III). For each design, three backbones 
(parent, child 1 and child 2) were generated with secondary structure 
conditioning according to ref. 13 using the editing strategy described in 
the ‘Multi-state structure editing’ section. Editing was performed with 
two different conditions: either the structure of the terminal helices 
(unconstrained) or the structure of all helices (constrained) shared 
between parent and children was fixed using structure editing. Here 
1,000 designs were generated per condition. We used ProteinMPNN20 
with a temperature of 0.1 to generate ten sequences for each set of 
backbones, fixing amino acid identities across the parent and child 
sequences. To allow a comparison with the results presented in  

ref. 13, AlphaFold 2 (ref. 23) was used to determine the designability. We 
used the cut-offs for success (scRMSD < 3 Å and pLDDT > 75) reported 
in ref. 13.

Software tools
We used Foldseek v.7.04e0ec8 for structural alignment and cluster-
ing55. Protein structures were additionally aligned using TM-align 
v.20220412. For dataset generation, sequences of PDB proteins were 
clustered using mmseqs2 v.4f046dd1979ec87b440656ff13b12e5c5
25b8374. For structure predictions, novobench used AlphaFold v.2.3.1 
and ESMFold v.1.0.3.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The generated protein structures and ESMFold-based scores and struc-
ture predictions from this work have been deposited in Zenodo (https://
zenodo.org/records/14711580)73, which also contains the parameters 
of models used in this study and a snapshot of the source code that was 
used to generate them. The source code on Zenodo (https://zenodo.
org/records/14711580)73 and GitHub (https://github.com/mjendrusch/
salad) contains instructions and scripts to reconstruct the datasets 
used for training in this study, as well as the training scripts used to 
produce the model parameters.

Code availability
The code for all models described in this work is available under an 
Apache 2.0 license via GitHub at github.com/mjendrusch/salad. Param-
eters for those models are available under a CC BY 4.0 license via GitHub 
at github.com/mjendrusch/salad and via Zenodo (https://zenodo.org/
records/14711580)73. The code for the AlphaFold 2- and ESMFold-based 
benchmarking is available under an Apache 2.0 license via GitHub at 
github.com/mjendrusch/novobench.
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Extended Data Fig. 1 | Letter shape generation. (a) Successfully designed letter 
shapes for letters (S, A, L, D). The designed structure (grey) is overlaid with the 
best ESMfold prediction (coloured by residue index) out of 10 ProteinMPNN 

sequences. (b, c) scRMSD, scTM and pLDDT for each backbone (b, n = 10) or 
designed sequence (c, n = 110, 1 salad sequence and 10 ProteinMPNN sequences 
per backbone) across all letter designs.
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Extended Data Fig. 2 | Example unconditional monomer designs. Monomers 
of length 50, 100, 200, 300, 400, 500, 600, 800 and 1,000 residues, using VP, 
VP-scaled and VE models with and without domain-like noise. Designs shown 

are the first up to 6 designs with scRMSD < 2.0 Å and pLDDT > 70 for each length 
and model type. Structures are coloured by residue index (N-terminus: purple, 
C-terminus: turquoise) and beta sheets are coloured in grey.

http://www.nature.com/natmachintell
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Extended Data Fig. 3 | Unconditional monomer designability statistics.  
(a) Distributions of scRMSD, scTM between generated and ESMfold-predicted 
structures as well as ESMfold pLDDT for each backbone, taking the best value 
over 8 ProteinMPNN sequences for each backbone. Each point corresponds 
 to a backbone. Points are coloured and grouped by model type and noise 
schedule. The solid black lines indicate the median value for each model.  

(b) Joint distributions of ESMfold scRMSD and pLDDT over all structures 
generated with salad models with results for RSO and RFdiffusion shown from 
comparison (results were obtained from [27]). Scatterplots are coloured as in (a). 
The dashed lines indicate the success cutoff values of scRMSD < 2.0 Å and pLDDT 
> 70 and the shaded area corresponds to the area of successful designs. Based on 
n = 200 generated backbones per condition.
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Extended Data Fig. 4 | Impacts of VP noise on protein shape and sequence 
composition. (a) Boxplot of CA atom position standard deviations for protein 
structures in the PDB and backbones generated using different noise schedules. 
σCA distributions are shown for protein lengths between 50 and 1,000 residues. 
VP noise consistently produces highly-compact backbones with low σCA, while 
VP-scaled and VE noise result in higher σCA structures more closely matching the 
σCA of proteins in the PDB. (b) Boxplots of the fraction of alanine (ALA) and glycine 
(GLY) residues in sequence designs for backbones generated using VP, VP-scaled 
and VE diffusion. A high proportion of ALA and GLY residues in a designed 
sequence coincides with the presence of tightly-packed secondary structure 
elements with no space for more bulky amino acids. The fraction of small amino 
acids increases with protein length for all models but shows a particularly 
pronounced increase for structures generated using VP noise. In comparison,  
VP-scaled and VE models show a slower increase and an overall lower fraction 

of ALA and GLY residues. (c) Example structure of a 400 residue backbone 
generated using VP noise. ALA (GLY) residues are marked in red (black). 
(d) Boxplot of amino acid pair CA distances for proteins of size 50 to 400. 
Distributions of distances are shown for noise-free structures (orange) and 
noised structures at diffusion time t = 0.9. At low protein lengths (50 - 200),  
a VP model needs to decrease CA distances to denoise the structure, whereas  
at high protein lengths (>= 300 residues) it needs to increase CA distances to 
arrive at the denoised structure. A VP model mostly trained on smaller proteins 
will therefore likely develop a bias for lower CA distances resulting in overly 
compact, undesignable structures. (a, b, d) For all box plots, the center line 
indicates the median, box boundaries the 1st and 3rd quartiles and whiskers  
1.5 × the inter-quartile range from the box. Distributions were computed over  
n = 200 generated backbones for each protein length.
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Extended Data Fig. 5 | Effects of random secondary structure conditioning 
on diversity and designability. (a) Secondary structure fraction for protein 
structures between 50 and 400 residues generated using unconditional 
sampling from salad VP, VP-scaled and VE models. (b) Ternary plots of the 
distribution of secondary structure contents in generated backbones of length 
50 to 400 residues using salad VP, VP-scaled and VE. (c) Designability of salad 
VP, VP-scaled (sVP) and VE generated structures for proteins of length 50 to 400 
residues compared to results for Genie2 and RFdiffusion. (top) designability 
for unconditional generation; (bottom) designability for random conditioning 
for salad models compared to unconditional generation for RFdiffusion / 

Genie2. (d) Overall secondary structure distribution for unconditional (left) and 
randomly conditioned (right) generations for proteins of length 50 to 400 using 
salad VP, VP-scaled and VE models. (e) Bar graph of binned secondary structure 
distribution entropy for unconditional and randomly conditioned generations of 
length 50 to 400. The binned secondary structure distributions were constructed 
by subdividing the range of helix and strand percentages into 20x20 bins of equal 
size. (f) Ternary plots of the distribution of secondary structure content for all 
generated structures between 50 and 400 residues using salad VP, VP-scaled and 
VE models with unconditional sampling (inset) and random conditioning.
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Extended Data Fig. 6 | Impact of sampling steps and model architecture on 
designability. (a) ESMfold designability for 8 ProteinMPNN sequences per 
backbone of length 50 to 400 residues for salad VP and VP-scaled models at 
100, 200 or 500 denoising steps. (b) ESMfold designability as in (a) for salad VP 

and VP-scaled (sVP) models at 500 denoising steps, as well as variants without 
diffusion time embedding (-T) and additionally using only minimal distance and 
orientation pair features (-MT).
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Extended Data Fig. 7 | Motif scaffolding. (a) Schematic of the output-editing 
procedure for motif scaffolding. (b) Schematic of model conditioning for  
motif scaffolding. (c) Table of unique successful designs on the motif 
scaffolding benchmark established by Lin et al. 20242 using structure editing 
and model conditioning. Results for RFdiffusion and Genie2 are shown as 
reported by Lin et al. 20242. (d) Bar plot of the number of unique successful 
designs (as measured by single-linkage clustering at TM score < 0.6) out of  

n = 1,000 generated backbones for salad models with editing and conditioning, 
compared to results reported in Lin et al. 2024. All evaluations were performed 
with the same settings as Lin et al. 20242. (e) Example structures of scaffolded 
motifs using structure editing and model conditioning. All displayed structures 
are ESMfold predictions of designed sequences with the motifs marked in grey. 
Motif RMSD is reported below each structure.
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Extended Data Fig. 8 | Additional motif scaffolding performance metrics.  
(a) Number of unique scaffolds out of n = 1,000 generated per motif-scaffolding 
problem using backbone atom (N, CA, C, O) RMSD (bb) and CA RMSD (CA) as a 
threshold for success. Results are shown for both structure-editing (salad+edit) 
and motif conditioned models (salad+cond). (b) Percentage of successful 
designs for each motif-scaffolding problem. (c) Scatter plots comparing the 
number of unique successful scaffolds for all single (n = 24) and multi-motif  

(n = 6) scaffolding tasks between salad models and state-of-the-art diffusion 
models (Genie2, RFdiffusion). The x and y axes show the number of unique 
scaffolds for each model. Points on the dashed line correspond to motifs with 
an equal number of designs for both methods. For points above the line, salad 
is better; for points below the line RFdiffusion/Genie2 is better. The number of 
points above and below the line is listed in the upper left and lower right corners.
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Extended Data Fig. 9 | Design success for unconstrained multi-state design. 
Scatter plots of scRMSD for parent and child designs generated only with 
secondary structure conditioning, without fixing parts of the structure across 
denoising processes. Only designed sequences with AF2-pLDDT > 75 are shown. 

Successful designs (0.4 % of backbones) are shown in blue, partially successful 
designs (14.2 %) in red and failed designs (85.8 %) in grey. n = 1,000 structures 
generated and evaluated per condition.
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Extended Data Table 1 | Diffusion model hyperparameters and parameter counts

.
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