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Proteins play diverse roles in all domains of life and are extensively
harnessed as biomolecules in biotechnology, with applications spanning
from fundamental research to biomedicine. Therefore, there is considerable

interest in computationally designing proteins with specified properties.
Protein structure generative models provide a means to design protein
structures in a controllable manner and have been successfully applied to
address various protein design tasks. Such models are paired with protein
sequence and structure predictors to produce and select protein sequences
for experimental testing. However, current protein structure generators
faceimportant limitations for proteins with more than 400 amino acids and
require retraining for protein design tasks unseen during model training.
To address the first issue, we introduce salad, a family of sparse all-atom

denoising models for protein structure generation. Our models are smaller
and faster than the state of the art and matching or improving design quality,
successfully generating structures for protein lengths up to1,000 amino
acids. To address the second issue, we combine salad with structure editing,

asampling strategy for expanding the capability of protein denoising
models to unseen tasks. We apply our approach to a variety of challenging
protein design tasks, from generating protein scaffolds containing
functional protein motifs (motif scaffolding) to designing proteins capable
of adopting multiple distinct folds under different conditions (multi-state
protein design), demonstrating the flexibility of salad and structure editing.

Computational protein design aims to generate protein sequences
and three-dimensional structures with specified folds, functions and
dynamics. Protein designtasks are varied, from designing proteins with
aspecified shape'? or symmetry>™ and producing scaffolds for known
functional motifs>®’ to designing potent binders for protein targets"*
aswellas proteins that can adopt multiple distinct folds under different
conditions (multi-state design)" >, Methods capable of solving these
design tasks enable powerful applicationsin basic research and indus-
try, for example, designing or optimizing enzymes' ¢, antibodies®,
vaccine scaffolds"”'® and biosensors™.

Protein generative models have recently been applied to
solve many such protein design tasks"*'**°. Protein generation is

fundamentally a multimodal generation problem, as proteins rep-
resent chains of amino acid residues, where each residue i carries an
amino acid identity s;and a set of atom coordinates x;. sis the protein’s
sequence, and x is its structure. Designing proteins corresponds to
sampling from the joint distribution of sequence and structure p(s,
x|task) conditioned on a protein design task?’. Many approaches to
protein design decompose p(s, x|task) as p(s|x°?, task)p(x°?|task),
where x® are the coordinates of the protein backbone atoms that are
present in all amino acids"*?.. This results in a sequential pipeline of
backbone generation, followed by sequence design. However, there
is no guarantee that proteins generated in this way will express, fold
and function as designed in a living cell. Producing experimentally
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viable protein designs requires the generation and computational
screening of many backbone-sequence pairs"*°. This computational
design selection is enabled by the combination of sequence design
models such as ProteinMPNN?°, ChromaDesign® or Frame2Seq?®,
as well as protein structure predictors such as AlphaFold 2 (ref. 23)
and ESMFold*.

Designed structure-sequence pairs are deemed successful if
their structure is predicted with high confidence and matches the
initial design'. The prediction confidence is measured in terms of the
predicted local distance difference test (pLDDT)* and the predicted
aligned error (pAE)* of the structure predictor used in the pipeline.
Designed and predicted structures are considered to be inagreement
iftheir root mean square deviation (RMSD), which measures the aver-
age distance between superimposed atoms, is low'. RMSD measures
consistency between design and prediction and is generally referred
to as self-consistent RMSD (scRMSD)"*. Acommon choice of success
criteria is sSCRMSD <2 A and pLDDT > 70 for ESMFold? or pLDDT >80
for AlphaFold 2, which have been shown to produce experimentally
viable proteins*'*?*, This measure allows to compare different protein
structure generators in terms of their designability, the fraction of
generated structures for which at least one designed sequence meets
the criteria for success. In addition to designability, models can be
compared interms of the diversity of their generations, as well as their
novelty compared with the training set. Diversity can be measured in
terms of the template modelling (TM) score®* within a set of gener-
ated structures. By contrast, novelty uses the TM-score to measure the
dissimilarity between a model’s generated structures and its training
set’. Together, these metrics characterize the performance of protein
structure generators.

Current approachesto protein design combine multiple different
methods for protein backbone generation. Knowledge-based design
coupled with Rosetta®® plays animportantrole, especially for complex
protein design tasks, such as enzyme design''®, multi-state protein
design'", and protein design with strong geometric and sequence
constraints**. These methods are supported by machine learning
models, which are capable of solving simpler design tasks without
relying on Rosetta or manual design. Protein structure hallucination
methods'®*'** invert structure predictors using search or gradient
descent to generate sequences with high-confidence predicted struc-
tures. These sequences are often adversarial and, therefore, discarded
in favour of ProteinMPNN sequence designs'®*”*, Protein denoising dif-
fusion probabilistic models® iteratively generate proteins fromrandom
noise by learning to remove noise from corrupted protein sequences™*
or structures>*"**%, Diffusion models have a runtime advantage over
hallucination-based methods as they do not require optimization
over a structure predictor”. Protein diffusion models have recently
been applied to solve various protein design tasks from unconstrained
de novo protein design'** to protein binders and complexes*.

Although current protein diffusion models have shown impres-
sive performance for small protein generation, their performance
deteriorates with protein sequence length N**?'*¥, limiting their use-
fulness for designing large and complex proteins. The majority of
protein diffusion models use model architectures derived from protein
structure predictors***, Notable exceptions include Chroma®, Prot-
pardelle*®and ProteinSGM*. Models based on structure predictors use
residue-pair features and pair attention mechanisms, which result in
O(N?) complexity, with pair features introducing a lower complexity
bound of O(N?) and pair attention mechanisms increasing this complex-
ity to O(N?) (refs. 23,39). Along with decreased runtime performance,
these models also experience a drop in designability with increasing
N. Although recent work on Proteus® and Proteina*? has improved
designability for proteins up to 800 residues long, no protein structure
diffusion model has reached the designability of hallucination-based
approaches beyond that length?”. However, protein backbone hal-
lucination suffers from long runtimes per design at these lengths?.

This greatly reduces throughput and limits the applicability of back-
bone hallucination to large protein design tasks with lower per-design
success rates compared with unconditional monomer design.

Another issue with current protein structure diffusion models is
the need for additional training to solve specific protein design tasks.
RFdiffusion and Genie are separately trained with protein motif con-
ditioning to scaffold functional protein motifs'?. Although Chroma’s
conditioners allow for training-free adaptation of the model for dif-
ferent tasks, implementing new conditioners is not straightforward
and requires the development of custom energy functions?. Thus,
there is a substantial barrier to applying existing diffusion models to
novel design tasks.

To address these issues, we introduce salad (sparse all-atom
denoising), a family of efficient protein generative models with
sub-quadratic complexity. We train our models with a denoising dif-
fusion objective* to remove noise from corrupted protein backbones.
Starting from a sparse transformer architecture”***, we investigate
the impact of different model features and noise schedules on the
designability and diversity of generated proteins. We find that our
models are capable of generating diverse and designable backbones
for proteins up to1,000 residues long. salad matches or outperforms
state-of-the-art diffusion models"** in terms of designability and dras-
tically reducing runtime and parameter count. We combine salad with
structure editing, amodified sampling algorithm for protein structure
diffusion models. By editing the input noise and output of the model,
we can enforce arbitrary structural constraints without the need for
model retraining. This enables rapid prototyping of protein design
tasks unseen during training. For example, we can symmetrize both
model input and output to generate symmetric proteins, or replace
residue coordinates with the coordinates of a protein structural motif
toembed that motifin the generated structure. Structure editing allows
us to tackle a variety of protein design tasks, generating designable
backbones with specified shapes?, scaffolds for functional protein
motifs'*¢, repeat proteins®>*" and multi-state proteins that adopt
distinct folds when cleaved™. In this way, salad provides an efficient
plug-and-play replacement for other backbone generators in existing
protein design pipelines, allowing fine-grained control via structure
editing and enabling efficient design of large proteins.

Results

Sparse protein model architecture

We base our model architecture on the current best practices for
transformer models. We use layer norm pre-normalization toincrease
the training stability* and generalized Gaussian linear units (GeGLU)
feed-forward layers that were found to improve model performance
for transformer models*. We replace standard multi-head attention by
invariant point attention (IPA) introduced by AlphaFold 2 (ref.23) asan
easy-to-implement SE(3)-equivariant self-attention layer. To improve
the runtime complexity of protein structure generation, we limit the
attention operation to a sparse set of neighbours for each amino acid
residue. A schematic of the basic block of this architecture is shownin
Fig.1a.Eachblockin our model takes asinput aset of aminoacid features
local; and position features x;. These are fed into a sparse version of
IPA”. Instead of computing the full attention matrix and pair features,
we first constructaset of neighbours for eachamino acid (Fig. 1b). Each
residue only computes pair features and attention weights for its set of
neighbours. This procedure reduces attention complexity from O(N?)
to O(N - K), where Nis the number of residues and K is the number of
neighbours. In contrast to other protein generative models"**, our
model does not use persistent pair features with pair attention or tri-
angle multiplication®, which would increase complexity to O(N?). We
also do not use explicit amino acid frame features® that are updated
ineach block. Instead, our models directly update atom positions and
recompute frame information when required to ensure equivariance. We
reuse this basic block architecture (Fig.1a) across allmodelsin thiswork.
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Fig.1|Sparse model architecture. a, Schematic of the basic block of our
architecture. b, Schematic of neighbour selection using residue index, nearest

and random neighbours. ¢, Architecture of our sparse protein autoencoder.

d, Sparse model performance on an autoencoding task. Box plots of sScRMSD
between the ground-truth and decoded structures for multiple sparse architectures:
equivariant (EQ) and non-equivariant (NEQ). Optionally, we use predicted

distograms for neighbour selection (dgram) and vector quantization (VQ). Measures
ofreconstruction performance are shown per number of model recycling iterations.
The dotted line indicates the threshold of 1 A for reconstruction at atomic precision.
Thebox centre line indicates the median, the boundaries indicate the 1stand

3rd quartiles, and whiskers show the 1st or 3rd quartile + 1.5 times the interquartile
range based onn =34 CASP14 test structures and n =45 CASP15 test structures.

As the first step to see if our sparse attention architecture can
model proteinstructures, we trained a family of models as autoencod-
ers on proteins in the Protein Data Bank (PDB)* (Fig. 1c). We encoded
proteinstructures using asingle basic block with 32 nearest neighbours
inEuclideanspace per residue. We then optionally applied vector quan-
tization (+VQ) to the resulting latent representation*® and decoded it
using asix-block decoder with recycling®, reusing the previous itera-
tion’s residue coordinates and local, features. VQregularizes the latent
space of the encoder and quantizes it into a set of discrete tokens for
eachresidue*®*’. This enables using the learned representation to train
sequence generative models onstructure-based data*. We tested both
SE(3) equivariant and non-equivariant sparse transformers to check
if there are any benefits to equivariance for the autoencoding task.
Additionally, we investigated different neighbour-selection schemes.
By default, we selected nearest neighbours based on distance along
the protein chain and Euclidean distance between residues (Fig. 1b
and Supplementary Algorithm 3). As Euclidean distances would be
uninformative at the beginning of the decoding process, we optionally
selected additional neighbours using average residue-pair distances
predicted from local;by learning to predict adistogram? in eachblock
(+dgram, Fig.1c (distogramattn.); also see the ‘Structure autoencoder
models’ section and Supplementary Algorithms 7 and 8).

Evaluating these models on the CASP14 and CASP15 monomer test
sets’**! resulted in all models reaching <1 A reconstruction accuracy
after fewer than ten recycling iterations, regardless of equivariance
and distogram-based neighbours (Fig. 1d). This indicates that our
sparse attention architecture is expressive enough to model protein
structures. Although thereisalarge difference in model performance
between different architectures at one recyclingiteration, this differ-
ence decreases withthe number of iterations. We decided to keep the

simplest version of our architecture using equivariant features without
distogram neighbours for the rest of this work.

Edited denoising protein models

After ensuring that our sparse models are suitable for reconstructing
proteinstructures, we modified our architecture for generative mod-
elling. Our models operate on protein structures containing the back-
bone atoms (N, CA, C and O), an idealized beta-carbon (CB) and
additional learned pseudo-atoms (Fig. 2a; see the ‘Model architecture’
section). We trained our models to denoise noisy structures x, - p(X,/X,)
andtorecover the original structure X, resulting in a denoising diffu-
sion probabilistic modelloss £, = Ex, ~p(xjxo) [/ fo(Xe) — Xol|?](ref.35).
In addition to recovering x,, we introduced auxiliary losses to also
predictanamino acid sequence and side-chain atom positions (Fig. 2a;
also see the ‘Denoising model loss’ section). As our models generate
all-atom structures, we refer to them as sparse all-atom denoising
(salad) models throughout this work.

Atinference, we can use our models to generate protein backbones
by progressively denoising a pure noise structure x,. Given a noisy
structure X,, we can use the model to predict an estimate fy(x,) of the
denoised structure x,. Reapplying noise at a lower diffusion time ¢’
results in a structure X, -~ p(X.|f5(X,)) (Fig. 2b). Repeating this process
eventually resultsinagenerated structure X. To enforce the structural
properties of generated backbones directly in the denoising process,
we introduce editing functions edit_input and edit_output, which
modify the input and output of the denoising model, respectively
(Fig.2b). This results in a generative process:

@

Xy ~ P(Xy ledit_output( fy(edit_input(X,)))).
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Fig.2|Denoising model architecture and runtime. a, Schematic of the salad
architecture. b, Sampling process of a salad model with structure editing, with
example applications of input and output editing. ¢, Average runtimes on a single
RTX 3090 GPU by number of amino acid residues of sparse diffusion models (full
pair features and minimal pair features) compared with RFdiffusion, Genie 2,
Chroma and Proteina. Runtimes are reported per designed structure, using the

default number of denoising iterations for each model (salad, 400; Chroma, 500;
Genie 2,1,000; RFdiffusion, 50; Proteina, 400) as well as the time per iteration.
Mean time is based on n =10 generated backbones per size, and the generation
time of the first backbone per size is discarded to exclude model compilation
time from the average.

Designing suitable editing functions allows us to adapt our models to
various tasks, from motif scaffolding to multi-state protein design,
without having to re-train our models.

As we are using sparse models for the sake of runtime efficiency,
we compare the runtime performance of our models to state-of-the-art
proteindiffusion models (RFdiffusion, Genie 2, Chroma and Proteina).
To see how far we can push the model runtime, we tested both full and
lightweight versions of our model. For each model, we generated ten
proteinbackbones perlength (50-1,000 residues) on asingle NVIDIA
RTX 3090 GPU (Fig. 2c). salad outperformed all other modelsin terms
of both time per design at the default number of diffusion steps and
time per modeliteration. Compared with the fastest non-salad model
(Proteina), our models reached up to 7x speed-ups, and outperformed
RFdiffusionby up to two orders of magnitude on large proteins. Indeed,
generating a1,000-residue protein structure using salad on a single
NVIDIARTX 3090 GPU takes only19 son average, whereas RFdiffusion
takes over 10 min. In addition, our models use fewer parameters than
comparable protein structure generators (Extended Data Table1). This
suggests that we haveindeed reached our primary goal ofimplement-
ing aruntime- and parameter-efficient protein generative model.

Sparse models generate diverse and designable protein
structures

Although a flexible sampler and good runtime performance are
important properties of our models, we need to assess model perfor-
manceinterms of the quality of the generated backbones. To compare
salad model performance to state-of-the-art diffusion models and
hallucination-based approaches, we generated 200 backbones each
for proteins with sizes of 50 to 1,000 residues (50,100-600 in incre-
ments of 100,800 and 1,000). For each backbone, we designed eight
sequences using ProteinMPNN and predicted their structures with

ESMFold. Following current best practices*”, we computed design-
ability as the percentage of structures, reaching an RMSD between
design and predicted structure (scRMSD) <2 A and pLDDT > 70 for
the best designed sequence (Fig. 3a). We assessed the impact of dif-
ferent noise distributions on protein structure generation by com-
paring model performance with both variance-preserving (VP) and
variance-expanding (VE) noise with different standard deviations
(80 Aand100 A, respectively). In addition, weinclude models trained
with protein-length-dependent variance VP noise (VP scaled), as the
variance of atom positions in protein backbones increases with the
number of residues (Extended Data Fig. 4a). We compare the results
of our models (VP, VP scaled and VE) with RFdiffusion’, Genie 2 (ref. 2)
and Proteina*?, as well as results from relaxed sequence optimization
(RSO)—the state-of-the-art hallucination-based method for protein
design”—using the same evaluation approach for all methods.

Our models are able to generate designable backbones for a vari-
ety of proteinlengths from 50 to 1,000 residues (Fig. 3a and Extended
Data Fig. 2). The generated structures show low scRMSD, high scTM/
pLDDT and diverse secondary structures thatinclude both all-helix and
all-strand topologies (Fig. 3a,b and Extended Data Figs.3 and 5a,b). In
therange from 50 to 400 residues, our VP model reaches comparable
designability to previous VP models (Genie 2 and RFdiffusion), out-
performing RFdiffusion and slightly underpeforming compared with
Genie 2, which was trained on a much larger dataset’ (Fig. 3c). At 400
residues, all VP models show a sharp increase in scRMSD accompanied
by adecrease indesignability (Fig. 3b,c). Although neither Genie 2 nor
RFdiffusion produce any designable structures with 800 residues, salad
VP still produces 4.8% designable structures at that size. We suspect
that the decrease in designability with residue count is caused by VP dif-
fusion models generating highly compact backbones (Extended Data
Fig.4a). Wefind that such backbones require a high fraction of glycine
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Fig. 3| Unconditional structure generation with salad models. a, Example
unconditional generations using salad, ranging from 50 to 1,000 residues
(coloured by secondary structure; loop, grey; helix, red; strand, blue) and their
ESMFold-predicted structures (light grey). The scRMSD between generation
and ESMFold prediction s listed underneath each structure. b, scRMSD values
using ESMFold for designed structures from 50 to 1,000 residues for salad,
RFdiffusion’, Genie 2 (ref. 2), Proteina** and RSO?. The region of successful
designs with scRMSD < 2.0 A is marked in light grey. The box centre line
indicates the median scRMSD, the boundaries indicate the 1st and 3rd quartiles,
and whiskers show the 1st or 3rd quartile + 1.5 times the interquartile range.

¢, Designability of generated structures by protein length from 50 to 1,000
residues. The shown RSO values are fromref. 27. Datainb and c are based on
n=200 generated backbones per length. d, Generations (coloured by residue

Protein length (#residues) Protein length (#residues)

index) and ESMFold predictions (light grey) for large protein structures
generated using VE denoising starting from letter-shaped noise. Each structure is
reported with its sSCRMSD between generation and ESMFold prediction. The grey
letter shape in the top left corresponds to the shape of the noise the proteins were
generated from. Scale bar (grey), 5 nm. The black bar corresponds to the same
distancein the depicted protein structures. e,f, Model diversity computed as the
fraction of designable clusters over designable structures (e) or all the generated
structures (f). Clusters are generated using single-linkage clustering by pairwise
TM-score with a cut-off of TM-score > 0.6. Mean diversity across n =10 random
samples of 100 structures from 200 generated structures. Error bars indicate

the minimum and maximum diversities across n =10 samples. Areabetween the
maximum and minimum sampled diversity is shaded.

and alanine residues to avoid clashes (Extended Data Fig. 4b,c), which
might decrease designability. A likely cause of this is the fixed vari-
ance of the VP diffusion process, which requires the model to reduce
amino acid distances at small protein sizes, but increase amino acid
distances at large protein sizes (Extended Data Fig. 4d). If the model
trains predominantly on small proteins, this discrepancy might result
in the observed compact backbones for larger proteins at inference.
This issue with protein diffusion models is anecdotally known to the
protein design community*.

By contrast, VP-scaled and VE models do not experience increases
in sScCRMSD at the 400-residue threshold. VP-scaled models maintain
median scRMSD < 2 A for proteins of up to 600 residues, whereas VE
models maintain this value for proteins up to 800 residues in length
(Fig. 3b). This is mirrored by designability, where both VP-scaled and
VE models outperform all VP models at protein lengths above 300
residues. However, neither VP-scaled nor VE models can maintain high

designability for generated backbones of length 1,000, where both
types of model drop below 20%. We hypothesized that this decreasein
designability is due to the models being unable to properly model the
global structure of large proteins. As large proteins generally consist
of multiple domains in which residues of a single domain are close
in space®, we tested if VE models initialized from noise shaped in a
similar way would result in lower scRMSD and greater designability
for large proteins. Instead of using normal-distributed noise centred
onthe coordinate origin, we first sample aset of centres and then add
normal-distributed noise (with standard deviation of 80 A or100 A) for
200 residues to each of these centres. At every subsequent denoising
step, we use standard VE noise. Using this shaped-noise initializa-
tionleads to decreased scRMSD and increased designability for large
proteins, reaching a designability of up to 36.7% for 1,000 amino acid
proteins (Fig. 3c). This way, shaped noise matches or improves on
the designability of RSO* and Proteina*?, the current state-of-the-art
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Fig.4|Randomsecondary structure conditioning maximizes diversity at the
cost of designability. a, Schematic of our random secondary structure sampling
procedure. b, Diversity of designable structures generated using random
secondary structure conditioning for 50-400 residues, compared with the
diversity of designable structures generated using RFdiffusion and Genie 2. Mean
diversity across n =10 random samples of 100 backbones from 200 generated
backbones. Error bars correspond to minimum and maximum diversities across
these n =10 samples. Area between the maximum and minimum sampled
diversity is shaded. ¢, Secondary structure distribution for our models using

no conditioning (left) or random secondary structure conditioning (right).

d, Overview of diverse synthetic dataset generation using random secondary
structure conditioning. e, Left: scatter plot of ESMFold scRMSD for all 50,000

Protein length (#residues) Protein length (#residues)

generated structures. The line indicates the median scRMSD within alength
window of 100 residues. Right: designability of the generated structures

inthe synthetic dataset computed for alength window of 100 amino acids.

f, Single-shot performance of diffusion models trained on the synthetic dataset
(synthetic 256) compared with the subset of proteins of length of <256 residues
in PDB (PDB 256). Left: box plot of RMSD between the generated structures and
ESMFold predictions for the argmax sequence prediction for models trained
onthe synthetic dataset and PDB. The centre line indicates the median scRMSD,
box boundaries indicate the 1st and 3rd quartiles, and whiskers show the 1st or
3rd quartile + 1.5 times the interquartile range from the box. Right: designability
of argmax sequence predictions for models trained on synthetic dataand PDB
based onn =200 generated backbones per condition.

hallucination-and diffusion-based approaches to large protein design,
respectively (Fig. 3b,c). Strikingly, salad with shaped noise produces
designable 1,000-residue proteins with only ~8M parameters, com-
pared with concurrent work introducing Proteina, which uses 200M
parameters (Extended Data Table 1) and does not resultin any design-
ablestructures at1,000 residues (Fig. 3b,c).

As we can use shaped noise to generate large proteins with VE
models, weinvestigated if we could control the shape of the generated
backbones by directly specifying the positions of noise centres used for
shaping. By sampling theinitial noise centred onletter shapes, we were
able to generate designable structures spelling out the name of our
framework (Fig.3d). In contrast to previous work on shape-conditioned
protein design using the Chroma model®, our approach does not
require an additional shape conditioner and results in designs with
low scRMSD and high pLDDT (Fig. 3d). In terms of standard design-
ability criteria using ESMFold (scRMSD < 2 A, pLDDT > 70), 55% of the
letters generated by our models are designable, whereas up to 92.5%
oftheletters arere-foldable accordingto the criteria used for Chroma
(scTM > 0.7)* (Extended Data Fig. 1). This indicates that our models
can be used to generate designable backbones even on challenging
out-of-distribution design tasks.

In addition to designability, we measure the diversity of protein
backbones generated by our models. Lin et al.> previously quantified
thediversity of generated backbones by performing hierarchical clus-
tering with single linkage on designable structures, using a TM-score
threshold of 0.6 to define distinct clusters. Diversity is then computed
as the fraction of designable clusters in all generated backbones:
diversity,, = % (ref. 2). This diversity measure implicitly
includes backboné&esignability, as a lower number of designable
backbonesresultsinalower number of clusters. Amethod trading off
designability for increased diversity would, therefore, result in a low
diversity,, score. To disentangle diversity and designability, we decom-
pose this diversity score as follows.

diversit _ #clusters _ #clusters #designable @
Ya = —ga11 #designable #all
N———
designability

diversitygegenapie

When computing diversityeggnabie, ONY the diversity of designable
structuresis takenintoaccountand diversity is not deflated by low des-
ignability. We argue that thisis amore meaningful measure of diversity
as only designable structures are used for protein design in the end.
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We compare our models with RFdiffusion’ and Genie 2 (ref. 2). For
proteins of length 50-400 residues, we take random samples of 100
generated structures and compute both diversity,, and diversityeggnaie
foreachsample. To quantify the spread of diversity across samples, we
show the median as well as the minimum and maximum diversities over
tensamples (Fig.3e,f). Our VP model achieves similar diversity to RFdif-
fusion for both diversityesgnanie and diversity,,, whereas the VP-scaled
model outperforms RFdiffusion on both metrics and approaches
the diversity of Genie 2, outperforming it in terms of diversity,, for
400-residue proteins. Our VE model shows reduced diversity at small
proteinsizes, but shows comparable diversity sesignanie to RFdiffusion on
400-residue proteins and outperforms both Genie 2 and RFdiffusion
in terms of diversity,, for this protein length. This indicates that des-
ignable 400-residue structures generated by our non-VP models are
comparably diverse to those generated using Genie 2. Their increased
diversity,, can be attributed to their improved designability (Fig. 3c).
We, therefore, argue that diversityeggnapie is @ more meaningful measure
of diversity as it is not inflated by changes in designability. Although
our models slightly underperform Genie 2 in terms of diversity, we
note that Genie 2 was trained on AlphaFold DB**—a larger and more
diverse dataset.

Random secondary structure conditioning maximizes
diversity

Asour models canbe conditioned to generate proteins withagiven sec-
ondary structure, we investigated if conditioning models with random
secondary structures could increase the diversity of generated back-
bones. We sampled random three-state secondary structure strings
(helix, strand and loop) by selecting arandom percentage of helices and
strands, constructing secondary structure elements of random lengths
thatadd up totheselected percentages and randomly arranging them
into asecondary structure string (Fig. 4a). We then used our denoising
models to produce backbones for each random secondary structure.
Computing diversity gegignani fOr backbones of length 50-400 residues
generated this way resulted in our models surpassing RFdiffusion at
all sizes and matching or outperforming the designability of Genie 2
inspite of having been trained on a much smaller dataset? (Fig. 4b). In
particular, random secondary structure conditioning resulted in an
increased diversity for small proteins and saturated the diversity metric
on proteins oflength200 or larger. However, increasing diversity this
way resulted in decreased designability across all protein lengths and
models (Extended Data Fig. 5c).

In addition to greatly increasing clustering-based diversity, this
approach equalized secondary structure content biases inherent to
our models (Fig. 4c and Extended Data Fig. 5a,b,d). Although all of
our models showed a preference for alpha-helices for unconditional
generation, conditioning resulted in a uniform distribution of sec-
ondary structure content. Quantifying the diversity in secondary
structure content of the designs showed that conditioning increased
the entropy of the secondary structure distribution relative to the
non-conditioned baseline (Extended Data Fig. Se,f). This indicates
that conditioned designs are more diverse both in terms of shape and
secondary structure content.

Totest the limits of random secondary structure conditioning for
generating diverse protein structures, we generated a synthetic dataset
of 50,000 backbones with size between 50 and 256 residues (Fig. 4d;
also see the ‘Synthetic dataset generation’ section). We designed ten
sequences per backbone with ProteinMPNN; predicted their structures
with ESMFold; and quantified the designability, diversity and novelty
withrespecttothe PDB. Ofthe 50,000 backbones, 81.4% were design-
able. Across protein sizes, designs showed low median scRMSD and
high overall designability (Fig. 4¢e). To quantify diversity, we clustered
all backbones using Foldseek with TM-align alignment (TM-score
threshold of 0.6) and a minimum coverage of 90% of the sequence to
only cluster structures of similar sizes®. This yielded 45,713 clusters

corresponding to 91.4% of the dataset. Of these cluster representa-
tives, 75.3% were designable, resulting in a dataset of 37,661 diverse and
designable structures. Using Foldseek to search the PDB for matches
forall designable structuresinthe dataset resulted in 11,973 structures
without asingle match at TM-score > 0.5. In particular, most matches
were concentrated in short backbones, with the majority of backbones
with 200 or more residues had no matches in the PDB. This indicates
that generating structures with a random secondary structure can
explore parts of the protein fold space far outside the training set and
resultin ‘dark matter’ folds outside the PDB.

Synthetic dataimprove one-shot designability

Previous work on protein generative models***° reported that training
onsynthetic datawith ProteinMPNN-designed sequence couldimprove
model performance. To checkif asynthetic dataset generated this way
couldbe used to potentially trainimproved protein generative models,
we compared the performance of two salad models trained on proteins
of size 50-256 residues. We trained one model on a subset of PDB with
chains of length between 50 and 256. The other was trained on design-
able structures and sequences in our synthetic dataset. Using each
model, we generated 200 backbones for protein sizes between 50 and
300residues. Asour modelslearnto predict asequence as anauxiliary
task duringtraining (see the ‘Denoising modelloss’ section), we gener-
ated asingle sequence perbackbone. We predicted the structure of each
sequence using ESMFold** to assess design success. The model trained
on PDB resulted in high median scRMSD (>2 A) and low designability
(<20%) across all tested protein sizes (Fig. 4f). By contrast, the model
trained on our synthetic dataset showed low median scRMSD and high
designability for in-distribution tasks, with performance deteriorating
for300-residue proteins, which the model was not trained on (Fig. 4f).
Directly generating successful backbone-sequence pairs circumvents
the sequence design step in the protein design pipeline, reducing the
number of tested sequences and AlphaFold or ESMFold evaluations
for design filtering from 8 to 1. This greatly decreases the runtime of
the protein design pipeline.

Structure editing for motif scaffolding

Although unconditional backbone generation can give an indication
about the general performance of a protein generative model, it is
rather removed from the realistic applications of protein generative
models. Motif scaffolding provides a more realistic benchmark task.
Models have to generate backbones that accommodate one or more
functional motifs from natural proteins'. This hasimmediate applica-
tionsinenzyme design (scaffolding theozymes)™', synthetic vaccine
design’ and design of natural protein mimics®’.

We compare the performance of salad models against the
state-of-the-art protein diffusion models Genie 2 and RFdiffusion
on a standardized motif-scaffolding benchmark. The benchmark,
introduced in ref. 1, includes 24 single-motif tasks of varying difficul-
ties and was extended in ref. 2 to contain six additional tasks in which
the models have to scaffold more than one motifin asingle backbone
(multi-motif scaffolding). For a direct comparison with Genie 2 and
RFdiffusion (which areboth VP models), we only use VP models in this
benchmark. As our models are not trained for multi-motif scaffolding
by default, we approach this problem in two different ways. First, we
use our structure-editing approach to edit the denoised structure by
aligning the motifbackbone and replacing the output coordinates by
the motif’s coordinates (Extended Data Fig. 7a). This ensures that the
motif is present in the final generated backbone, even if the model is
not conditioned on the motif’s structure. We call this configuration
salad+edit. Second, we train a separate multi-motif-conditioned model,
which we will refer to as salad+cond (Extended Data Fig. 7b).

In the following we compare the results for our method with the
results for RFdiffusion and Genie 2 reported in ref. 2. To directly com-
pare with these, we closely followed the same evaluation strategy.
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Fig. 5| Edited denoising for symmetric and repeat proteins. a, Schematic of
the structure editing procedure for point-symmetric repeat protein design.

b, Example generated point-symmetric repeat proteins for different subunit
sizes (50 and 100 residues) and cyclic groups (G;, C,, Csand C,). The idealized
symmetric design is shown in grey, and the ESMFold prediction for each design
is coloured by the residue index. scRMSD values are reported for each example
structure. ¢, Schematic of the structure editing procedure for screw-symmetric
repeat proteins. d, Example screw-symmetric designs (grey) for different angles
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An ESMFold-predicted structure (turquoise) is superimposed onto the designed
repeat (left). Additionally, a structure of the design predicted by AlphaFold 3

(ref. 72) replicated three times (coloured by residue index) is shown together with
the scRMSD of the design to that extended repeat protein. e, Design success rates
for cyclic and screw-symmetric designs using VP and VE models with different
symmetry groups, radii and rotation angles based on n =20 generated backbones
per condition.

For each approach, we generated 1,000 backbones per scaffolding
problem, designed eight sequences with ProteinMPNN and assessed
the designability with ESMFold. We further filtered designable struc-
tures by their motif RMSD computed over all backbone atoms (N,
CA, C and 0). Structures were deemed successful if they reached
motif RMSD <1 A. All successful structures were then clustered using
TM-align at a TM-score cut-off of 0.6 to identify unique scaffolds for
each problem. Evaluating success using CA-based motif RMSD showed
little to no impact on both number of successful and unique designs
for salad+cond (Extended Data Fig. 8a,b). By contrast, salad+edit
showed large variability in success rates for some motifs (Extended
Data Fig. 8a,b). This indicates that the lack of explicit motif condi-
tioning may result in the model changing the motif orientationin the
denoising step.

We found that both salad+edit and salad+cond solved 23/24
single-motif as well as 5/6 multi-motif design tasks (Extended Data
Fig. 7c,d). Both salad+edit and salad+cond generated diverse back-
bones with low motif RMSD (Extended Data Fig. 7e). Only the motifs
for 4jhw and 3ntn remained non-designable, consistent with Genie 2
(ref. 2). However, compared with Genie 2, we were able to solve
one additional multi-motif-scaffolding task with 2b5i. Although
RFdiffusion cannot be straightforwardly applied to multi-motif
scaffolding, our approaches still outperformed it on single-motif

scaffolding, solving one additional problem. Overall, salad+cond
generated 1,610 (salad+edit, 1,446) unique scaffolds, slightly outper-
forming Genie 2 and dwarfing RFdiffusion’s 889 scaffolds (Extended
DataFig.7c).

Thus, our models outperform RFdiffusionacrossall criteria, match
Genie2intermsofthetotal number of unique scaffolds and solve one
additional problem with 2b5i. Although a direct comparison of the
number of unique backbones per scaffolding problem (Extended Data
Fig. 8c) shows that there is currently no best model across all tasks,
our models resultin equal or more scaffolds for the majority of design
tasks (21/24 versus RFdiffusion and 19/30 versus Genie 2 for structure
editing; 20/24 and 20/30 for conditioning; Extended Data Fig. 8c). This
indicates that both our approaches are competitive with the state of
the art for single- and multi-motif scaffolding.

Structure editing for repeat protein design

Asasecond application to demonstrate the flexibility of our models
combined with structure editing, we set out to generate repeat pro-
teins. Similar to the approach used in previous work', we can generate
point-symmetric repeat proteins by symmetrizing the inputs of our
modelsaccordingto the action of a point group (Fig. 5a). As our model
has residues attend to random neighbours, we also symmetrize the
output of our models. All repeat subunits are aligned using the action
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Fig. 6 | Multi-state protein design. a, Schematic of the structure editing
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the predicted structures are coloured by their corresponding child protein. The
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scRMSD values are reported for each parent and child design based onn=1,000
backbones per condition.

of the point-symmetry group and averaged to produce arepresenta-
tive repeat unit. This can then be placed at a specified radius from
the symmetry axis to control the radius of the generated symmet-
ric repeats. Replicating the representative structure then gives us a
symmetrized output structure. Applying this procedure resulted in
designable backbones with low scRMSD for various cyclic symmetry
groups (Fig. 5b).

Although both hallucination® and diffusion' methods have
been successful in producing point-symmetric proteins, only
sequence-based” machine learning methods and Rosetta-based pro-
tein design®* have been successfully applied to design extended repeat
proteins that cannot be described by a point group. However, our edit-
ingapproachisreadily extended to arbitrary symmetry groups includ-
ing screw (helical) symmetries, which cover the class extended repeats
described in refs. 3,4,13 (Fig. 5c). By explicitly setting the radius R,
rotation angle aand translation 7 of ascrew-symmetric repeat (Fig. 5c),
we can generate designable backbones with the specified geometry
(Fig.5d). Generated backbones are structurally diverse, with topologies
ranging from fully alpha-helical to fully beta-sheet. Repeat sequences
designed using ProteinMPNN® are reliably predicted to take on the
designed structure with low scRMSD, even when extending the number
of repeats by a factor of 3 (Fig. 5).

Overallsuccess rates for symmetric protein design vary between
models (VP or VE) and design tasks (Fig. 5e). Strikingly, designabili-
ties for both cyclic and screw-symmetric designs show a dependency
on the specified radius and rotation angle, for example, C, symme-
try with a radius of 12 A (r12) and a radius of 14 A (r14). This is prob-
ably because the generated structures become highly compact for
low radii, which is associated with a loss in designability (Extended
DataFig.4).

Structure editing for multi-state design
Although both motif scaffolding and repeat protein generation dem-
onstrate the applicability of structure editing to protein design, these
tasks do not showcase the full flexibility of thisapproach. Inboth cases,
external conditioning information is available in the form of amotif or
symmetry group. Additionally, thereis sufficient data totrainstructure
generative models conditioned on either of these tasks. By contrast,
designing amino acid sequences that can fold into multiple distinct
backbone structures (multi-state design) fits none of these criteria: data
onnatural multi-state proteins are scarce’® and structure-based genera-
tive models are believed to be unsuitable for this task™. Therefore, we
chose to demonstrate that salad models can solve a recent multi-state
benchmark task introduced in ref. 13 by using structure editing to
couple the outcome of multiple denoising processes—one for each state.
Following ref. 13, we designed backbones for a protein (the ‘par-
ent’) that takes on a specified secondary structure when intact and a
different secondary structure whensplitinto two ‘child’ proteins. The
N-and C-terminal parts of the parent share their secondary structure
with the children, whereas the central part of the parent should tran-
sition from a beta-sheet to an alpha-helix when split (Supplementary
Table IlI). As we cannot directly design the protein on the sequence
level, we instead instantiate three separate denoising processes, one
for each state (Fig. 6a). Each denoising process is conditioned on the
secondary structure string of either parent, child 1 or child 2. At each
denoising step, we enforce that the parts with the same secondary
structure between parent and child share asimilar three-dimensional
geometry by aligning and averaging their substructures (Fig. 6a).
Essentially, the denoising processes are coupled by conditioning their
structures on each other. Thisapproachresultsinthree coupled struc-
tures per generation.

Nature Machine Intelligence | Volume 7 | September 2025 | 1429-1445

1437


http://www.nature.com/natmachintell

Article

https://doi.org/10.1038/s42256-025-01100-z

We generated 1,000 structure triples, designed their sequences
with ProteinMPNN, tying the sequence across parent and child struc-
tures®°. To compare with the benchmark done in ref. 13, we evaluated
the design success with the same criteria of AlphaFold RMSD <3.0 A
and pLDDT > 75. Here 16% of the generated backbones resulted in
partially successful designs, where all structures passed the pLDDT
threshold, and a parent and at least one child passed the RMSD thresh-
old (Fig. 6b). Although these designs did not meet all the criteria, they
still resulted in a sequence predicted to change conformation in the
parentstate compared with the child state. Using the complete criteria,
2.9% of the backbones generated by our approach were successful,
compared with the 0.05% of successes reported for ProteinGenerator
(PG) inref. 13. Although we used ProteinMPNN for sequence design,
PGreturns one sequence per backbone. However, even evaluating the
percentage of success onasequence-level salad reached asuccess rate
0f 0.32%, outperforming PG by a factor of 6.

To check whether structure editing contributed to the success
rate of multi-state design, we generated another 1,000 backbone tri-
ples using only secondary structure conditioning. This resulted in
per-backbone success rate of 0.4% and a per-sequence success rate of
0.06%, matching PG (Extended Data Fig. 9). This indicates that struc-
ture editingisindeed behind the increased performance observed for
this multi-state design task. Overall, our structure editing approach
generates varied low-RMSD solutions to this multi-state design prob-
lem (Fig. 6d), outperforming previous machine learning approaches.
To our best knowledge, this is the first demonstration of multi-state
design with a protein backbone denoising model.

Discussion

In this work, we present salad, a family of efficient sparse denoising
models, capable of generating designable and diverse protein struc-
tures up to alength of 1,000 amino acid residues. For unconditional
proteinstructure generation, our models outperform RFdiffusion both
in terms of designability and diversity for all protein lengths, closely
approaching the diversity of Genie 2 (which was trained on a larger
and more diverse dataset). We bridge this gap in diversity by applying
randomsecondary structure conditioning at the cost of designability.
This allows us to generate a large, highly diverse dataset of design-
able structures novel to the PDB. For longer proteins with 400-1,000
residues, our models clearly outperform both RFdiffusion and Genie 2,
approaching the designability observed for hallucination-based
methods?. Although the concurrently developed Proteina** matches
salad’s designability for up to 800-residue proteins, it does so at the cost
ofincreased runtime, a25-fold increase in the number of parameters,
and does not generalize to 1,000-residue proteins. Therefore, salad
pushes the boundaries of designability and diversity across protein
lengths up to1,000 and greatly reduces the time-per-design value due
toitsefficient sparse architecture. The ability to design large proteinsin
ahigh-throughput manner can open up new possibilities for designing
increasingly large and complex molecular machines.

We expand the capabilities of salad by combining it with struc-
ture editing. By editing the output of a salad model at each denoising
step, we can rapidly prototype generators for protein design tasks
unseen during training. We show that this combination can generate
designable, low-RMSD backbones for a variety of tasks. We design
shape-conditioned proteins, scaffold multiple functional motifs, gener-
aterepeat proteins and produce protein sequences predicted toadopt
distinct folds when cleaved. For motif scaffolding, salad matches or
exceeds the performance of both RFdiffusion and Genie 2. For repeat
protein design, we generate screw-symmetric repeats, which, to our
knowledge, have not been explored using protein structure diffusion
modelsbeyondasingle mentioninref.21. Instead, such proteins have so
far been designed using Rosetta* or sequence-based design methods>".
For multi-state protein design, we reproduced a design task introduced
inref. 13 and achieved a success rate one order of magnitude higher

than the original work. This indicates that salad is, in fact, sufficiently
flexible to generate designs even for tasks like multi-state design, which
arebelieved to be unfavourable for structure generative models”.

Although salad produces acceptable results on computational
benchmarks, this work does not contain additional experimental vali-
dation. While our ESMFold- and AlphaFold-based approach to measure
designability have been previously shown to select experimentally
viable protein designs"'>**%, it is ultimately not the ideal metric. Nei-
ther AlphaFold nor ESMFold can perfectly distinguish experimen-
tally viable from non-viable designs*®**—both models are known to
be vulnerable to adversarial protein sequences®*** and have limited
sensitivity to amino acid masking and mutation®’. Nonetheless, prior
work has produced extensive experimental validation, showing that
a pipeline using a structure generator with ProteinMPNN sequence
design and structure predictor filtering can produce experimentally
viable designs at a reasonable rate**°, We argue that salad matching
or exceeding previous, experimentally validated models in terms of
ESMFold/AlphaFold design success alleviates concerns about the
lack of experimental validation. In particular, salad is part of the same
pipeline of structure generation, ProteinMPNN sequence design and
AlphaFold 2/ESMFold selection as RFdiffusion’. As salad was trained
independently from ProteinMPNN and AlphaFold 2/ESMFold, it is
unlikely thatit haslearned to generate backbones that are adversarial
for both. We also emphasize that the focus of this work is on develop-
ing more efficient and versatile backbone generators, not to present
anall-in-one solution for protein design.

Another limitation of salad is that it is currently restricted to alim-
ited training set. salad is trained on proteinstructuresin the PDB, withall
smallmolecules, ions, waters and nucleic acids removed. Therefore, its
uses for enzyme design and small-molecule binder designare limited. In
particular, more recent versions of RFdiffusion can design proteinsinthe
presence of small molecules'®”. The salad architectureis likely capable
ofhandling small molecules with minor modifications, whichmakes this
anattractivesteptoaddressin the future. Inaddition, salad struggles to
match the diversity of Genie 2 (ref. 2) without using random secondary
structure conditioning. Genie 2 was trained on a clustered subset of the
AlphaFold database, which greatly exceeds our PDB datasetin both size
andstructural diversity>***°, We believe that this issue canbe addressed
in future work by training salad models on AlphaFold DB.

In this work, we compare salad to RFdiffusion' and Genie 2
(ref. 2) as well as the concurrent work of Proteina*?. Although many
other protein diffusion models exist*>”*>*'"** we argue that comparing
to these ones in particular is sufficient to establish salad to be on par
with thestate of theart, as prior work has shown that they outperform
mostother proteinstructure generative models™**2. The designability
of salad generations for up to 1,000-residue-long proteins as well as
its runtime performance give it an edge over comparable models.
This should enable salad to fill the niche it is designed for, providing
efficient and versatile backbone generation in the first step of the
protein design pipeline.

Methods

Protein structure denoising models

Denoising protein structure models are trained to reconstruct a
noise-free structure x from a noisy input structure. To train our mod-
els, we sample random time points ¢t € [0, 1], where ¢t = O corresponds
to a noise-free structure and ¢ =1 corresponds to pure noise. Depend-
ing on the noise schedule, we then convert ¢ into a noise scale g,. We
use three different noise schedules: VP noise with a cosine sched-
ule®* and constant-standard-deviation noise (VP), VP noise with a
protein-size-dependent standard deviation (VP scaled) and VE noise (VE).

For VP noise, a noisy structure x,is then generated by sampling

x}”’(x)~N(\/1—of -x,af-ofmise), 3)
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where 0,,;. =10 A is the standard deviation of the noise at time t=1.
For VP-scaled noise, we instead set the standard deviation g, equal
to the standard deviation of CA positions in input structure x:

x\Psaaled(x) ~ o (« /1-02-x,0%- o(XCA)2> : @

The fully noised structure x!"=*#wjll, therefore, have the same stand-
ard deviation as the alpha-carbons starting structure Xc,. Finally, for
VE noise, instead of sampling diffusion time ¢, we directly sample a
noise scale from alog-normal distribution, following ref. 65:

o ~ LogNormal (1.6,1.4) A (%)

and sample noisy structures according to

XVE ~ V(x, 02). (6)

The models are then trained to reconstruct x from x, by minimizing
[Ix — x,||5 and additional auxiliary losses (see the ‘Denoising model loss’
section).

Our models are trained using self-conditioning. At each training
step, we sample two noisy structures x, and x;. With probability 50%,
we predict X’ from x; without self-conditioning. We then predict x
from x, using X’ as an additional input. At inference, the model passes
the currentnoised structure x,as well asits previous prediction X .., to
predictx.

In addition to self-conditioning, our models can also be con-
ditioned on amino acid sequence, partial structure information,
three-state secondary structure (helix, strand and loop), block contacts
between secondary structure elements, inter-chain contact informa-
tionand hotspot residues interacting with other protein chains'. During
training, conditioning information is provided at random for 50% of
training examples. Each conditioning modality is further randomly
masked for arandom fraction between 20% and 100% of the residues.
To determine inter-residue and inter-chain contacts for condition-
ing, we compute pairwise CA distances between residues. Residues
are considered in contact, if their CA distance is <8 A. Two chains and
secondary structure elements are considered in contact if at least
one pair of residues is in contact. Residues are considered hotspot
residuesiftheyarein contact withatleast one residue inanother chain.
Partial structure information is presented to the model as a matrix of
inter-residue CB distances together with amask of amino acid pairs with
valid conditioninginformation. Partial structure information is masked
out for between 20% and 80% of residues in any training example.

Tosamplefromatrained denoising model, weinitialize abackbone
x with all atom positions set to 0. We then partition the interval [0, 1]
into Nequally spaced time steps (¢,...ty) with ¢, = 1. For each time step
t starting with ¢,, we apply noise with a chosen noise schedule to x,
resultinginanoised structure x,. This noisy structure is denoised by the
model, resulting inanew structure X. Repeating this process gradually
reduces the noise level and results in a denoised protein backbone.
Our approach differs from the denoising processes described in the
literature: protein structure denoising diffusion models generally
sample structures X, according to a distribution g(x,|x,.,, X), which
depends on both denoised structure x and an earlier noisy structure
X, at diffusion time ¢ + s (refs. 1,2,35). Instead, our approach samples
from g(x,Ix = f4(X,,)), removing any direct dependency on the previous
noise x,and only depends onit through the modelf;. Thisapproach has
been previously reported for categorical text diffusion models®® and
more recently for amino acid sequence diffusion models®.

We chose this approach not because of its success in sequence
diffusion models but to enable the arbitrary modification of denoised
structures x without having to take into account x,. To use our models
for protein generation tasks they were not trained for, we wanted to

allow the arbitrary editing of the denoised structure—for symmetri-
zation, to introduce structural motifs for scaffolding and to couple
multiple denoising processes for multi-state design. This necessitates
translating, rotating and replacing parts of the denoised structure.
Changing the denoised structure x this way without also adjusting
X,.sinacompatible way could resultin failure to generate valid protein
structures.

Supplementary Algorithm 1 shows the generative process for a
model involving conditioning information c, self-conditioning and
structure editing.

Model architecture

Our sparse denoising models consist of three separate modules. An
Encoder that encodes the ground-truth backbone atom positions
(N, CA, C, Oandidealized CB) x,, and adds 15 additional pseudoatom
positions for each residue to result in the denoising model input x, a
DenoisingModule that receives noised positions x,, and is trained to
reconstruct x and an amino acid decoder (AADecoder), which pre-
dicts an amino acid sequence and side-chain conformations for each
residue. The model is trained with self-conditioning, receiving a previ-
ously predicted structure x,,.,and per-residue representation local,,,,
as additional inputs. All modules are based on a sparse transformer
architecture* with pre-normalization®.

DenoisingModule. The DenoisingModule consists of six denoising
blocks based on a pre-norm transformer architecture®. Every block
updates the per-residue representation local; of size local_size =256
andresidue atom positions x. We save the trajectory of x values across
all blocks to apply losses over the entire denoising trajectory.

Supplementary Algorithm 2 shows an overview of a block in the
DenoisingModule. We replace standard self-attention in the trans-
former block by a sparse version of IPA (SparselPA)*. Instead of com-
puting the attention matrix and pair features for all amino acid pairs,
we compute them for aset of precomputed neighbours. This reduces
the complexity of attention from O(N?) to O(N - K), where K is the num-
ber of neighbours per residue. To support conditioning on structure
information, we use two SparselPA layers. The first IPA layer operates on
the current set of position features, whereas the second one operates
on previous positions from self-conditioning, as well as block contact
and distance conditioning information. For multi-motif models, we
instead run IPA using motif information first, followed by IPA on the
current position features.

Following SparselPA, the per residue features local, are updated
using a GeGLU-gated feed-forward layer with global pooling of the
hidden state (Update; Supplementary Algorithm 5). This combina-
tion of sparse attention and global mean pooling of features allows
the DenoisingModule to learn global dependencies without having
to use full O(N?) attention.

Neighbour selection. Tocompute sparse attention features, we select
a set of neighbours for each residue based on their sequence and CA
distances. For each residue, we choose the 16 nearest neighbours by
residue index. Then, we select an additional 16 neighbours by CA dis-
tance, excluding previously selected neighbours. Finally, we select
#random neighbours at random with probability 1/a2, following
ref.21and #cond neighbours based on pairwise conditioning informa-
tion, such as block contact conditioning' or pairwise distances. All
default models have #random = 32 when computing neighbours on
the currentset of positions and #random = #cond = 16 when computing
neighbours on self-conditioning information. This resultsin atotal of
64 neighbours per amino acid. Multi-motif-conditioned models have
#random =32 and do not use additional neighbours from the condi-
tioning information. Itis important to note that unlike Chroma®, anew
setof neighboursis computed for each DenoisingBlock, as each block
updates the residue positions x.
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Pair features. As part of SparselPA, we compute amino acid pair
features for each amino acid and its selected neighbours. Distances
betweenall pairs of backbone atoms (N, CA, C, O and idealized CB) are
computed for each pair and featurized using 16 Gaussian Radial Basis
Functions® uniformly spaced between 0 A and 22 A. The bandwidthis
set to the distance between Radial Basis Function centres 0 =1.375 A.
In addition to distance features, we also compute direction from the
CAatomofeachresidue toeach of its neighbour, the relative rotation
betweenresidues and the atom positions of aresidue andits neighbour
in local coordinates. These features are then flattened and linearly
projected to pair_size = 64 pair features. For models with minimal pair
features, weinstead only compute inter-residue distances and relative
rotations (Supplementary Algorithm 4).

Update module. After applying SparselPA, we update per-residue fea-
tureslocal;using agated feed-forward layer. We first update local; using
theatom positionsineachresidue. Then, welinearly project and pool
amino acid features within and across chains. Per-residue, per-chain
and per-complex features are then summed and passed through afinal
linear layer (Supplementary Algorithm 5). Combined with SparselPA,
this allows the model to learn global dependencies within a protein
complex without the need for full O(N?) attention.

Equivariant position update. The final component of a Denoising-
Block updates the atom positions x; for each residue in an equivari-
ant manner. Per-residue features local; are linearly projected to a set
of position updates, scaled by a unit factor of 10 A and added to the
current positions x; in the local frame of each residue i. The resulting
updated positions are then transformed back into global coordinates
(Supplementary Algorithm 6).

Structure encoder. The Encoder uses a simplified version of the
DenoisingModule and uses the same feature size as the main Denois-
ingModule. As the Encoder does not change the protein backbone
Xg, We use a precomputed set of neighbours for each residue. Each
amino acid is assigned a set of 32 nearest neighbours based on the CA
distance. The trunk of the Encoder consists of two blocks of SparselPA
followed by aGeGLU layer*®. After the second block of the Encoder, the
residue representation is used to generate 15 pseudoatom positions per
residue, which are combined with the backbone atom positions. The
resulting structure X is used to train the DenoisingModule.

AADecoder. The AADecoder uses three blocks of the same type as
the Encoder, together with a set of 32 nearest neighbours per amino
acid computed on the denoised CA positions. In addition to denoised
positions x and DenoisingModule features local,, the AADecoder
also receives a partially masked amino acid sequence during train-
ing. A random fraction between 1% and 100% of amino acids in each
training sequence are replaced by a mask token. The AADecoder is
then trained to predict the masked amino acids with a cross-entropy
loss. This corresponds to the training objective of an autoregressive
diffusion model®.

Model variants. We trained denoising models for three different noise
schedules: VPwitho=10 A; VP with o= 6(x,) dependent on the stand-
ard deviation of CA atoms in the training example; and VE diffusion
with o - LogNormal (1.4 A, 1.6 A). For each noise schedule, we trained
three ablated models: amodel with full pair features and Fourier time
embedding®; amodel without time-embedding features; amodel with
minimal pair features and no time-embedding features.

Denoising model loss

Our denoising models are trained using a combination of standard
denoising and auxiliary losses. A per-block denoising loss is computed
on residue (pseudo) atom positions for the output f;"(x,) of each

DenoisingBlock, where r are residues and a are the atoms in each
residue:

v Deindlf %) - X1, 0,104, (@)

r ar

Lp(X,X,) =

The norm ||x, — x|| is clipped to 10 A to stabilize training and the loss
isaveraged over residues rand (pseudo) atoms ain each residue. The
losses for each block are then weighted together to result in a trajec-
tory denoisingloss:

1
'Ctraj =2-Ly(X;, X) + n z Lp(Xs, X) (8)
b=1

where the final prediction is weighted by a factor of 2 to increase its
importancein the finalloss. Thisis combined with an auxiliary all-atom
denoising loss using the all-atom structure (x,) predicted by the
AADecoder:

r
atom

1 1 .2
Latom = 7 2, 7 2 cLip(| 7 (X) = Xge|[2,0,10A) .
N r Na aer

r

©

Toensurethatthe modelslearntoreproduce therelative orientations
between amino acid residues, we also introduce a rotation denoising
loss for each block following RFdiffusion':
1
'Crot,b = F z HR.rrRr,gt - 1”%’ (10)
rr

where R, and R, are the rotation matrices defined by the backbone
frame of each residue in the predicted and ground-truth structures,
respectively’. This results in a trajectory denoising loss for residue
rotations as

1&
Lot = 2. ‘Crot,n + = z Lrot,b- (11)
=

In addition to using unaligned denoising losses, we also compute a
squared frame-aligned point error (FAPE) loss £2,p (ref. 23) over the
trajectory of predictions f;”(x,) as well as alocal FAPE loss on the pre-
dicted all-atom structure £,.4. Instead of computing the FAPE over all
amino acid pairs, we instead compute it over the 64 nearest neighbours
inthe ground-truthstructure £, and 16 nearest neighbours for £ .
As with the denoising loss, the FAPE losses are also clipped to a maxi-
mum of 10 A. Finally, the structural losses also include AlphaFold’s
structural violation loss £, (ref. 23) to penalize clashes in denoised
structures.

The models are also trained with a number of non-coordinate
losses, consisting of a distogram £ 4, (ref.23) and amino acid prediction
£q,and secondary structure L, Cross-entropy losses.

Laux =10 - Lgg + Ldssp +0.1- Lyise (12)

The final weighted loss of the model is then as follows.

L= [/traj + Latom + ‘Cfape + Lot + 10- Liocal + 10- Laa + 01- Lyiol + Lal(jx )
13

Inthisloss, £,,,;and £, are set to zero in the high-noise regime (dif-
fusiontime ¢ > 0.5 for VP models; noise g,> 5.0 A for VE models), as the
model is unlikely to learn to predict non-clashing structures at high
noise levels.

Structure autoencoder models

Our sparse autoencoders were implemented to have the same graph
transformer architecture as the denoising models. Each autoencoder
model consists of a single Encoder block with SparselPA over 32
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nearest neighbours for each residue, followed by a GeGLU layer*®. The
resulting per-residue representation local;is then layer normalized®®
and linearly projected to a latent vector z; : Rtertsize for each
residue i. For model variants with VQ*® enabled, z; is then quantized
with a codebook of size 4,096.

This latent representation is decoded by a Decoder, which con-
sists of six blocks of SparselPA followed by the same Update and posi-
tion_update layers used in our denoising models. The decoder is
trained with zero to three recycling steps for each batch, initializing
the positions x of each recycling step with the result of the previous
step X,re,- The first recycling step starts from randomly initialized
positions x ~ N(0,1). We train models with three different decoder
variants: an SE(3) equivariant model using the same neighbour selec-
tion and features as used in our denoising models; an equivariant
model with per-block distogram prediction (EQ+dist; Supplementary
Algorithm7) and anadditional SparselPA layer using distogram nearest
neighbours (Supplementary Algorithm 8); and a non-equivariant
model directly embedding atom positions without first projecting
themtoresiduelocal coordinate systems. This resultsin a total of six
models trained (three decoder variants with and without VQ).

All the models are trained with £Z,,; over the entire denoising
trajectory and £,,., for the final all-atom structure prediction. Amino
acid cross-entropy £,,is used as an auxiliary loss. In addition, models
with per-block distogramloss are trained with distogram cross-entropy
for eachlayer £ 4. This results in acombined autoencoder loss of

L= L%APE + Ligcal + Laist +10 - Lya- (14)

Training dataset

We trained our models onasnapshot of PDB collected in October 2023
excluding any PDB entries submitted after 31 December 2020. PDB
entries were then filtered for a resolution of < 4 A. Entries containing
protein chains of length less than 16 were excluded from training and
non-amino-acid residues were removed from chainsin the dataset. We
clustered all protein chains in the resulting dataset using mmseqs2
(git commit 4f046dd)*° with a 30% sequence identity cut-off. To train
our model, we generated input batches of 1,024 residues. Batches
were constructed by repeatedly sampling structures from the dataset,
until the total number of residues reached 1,024. If the total number of
residues would exceed 1,024, the batch was zero padded instead, and
the sampled structure was included in the next batch. At each epoch,
we sampled clusters from the dataset without replacement, selecting
arandom chain identifier and biological assembly for each cluster. If
theselected chainbelonged to acomplex and the entire complexfitin
the current batch, we added the complex to the batch with a probability
of 50%. Otherwise, we added only the selected chain.

Model training

All the denoising models were trained for 200,000 iterations on the
dataset with a mini-batch size of 1,024 and 32 batches per iteration,
resulting in a total of 32,768 residues per iteration. Structure autoen-
coder modelswere trained for 200,000 steps with abatch size 0of 16,384
residues. We used the Adam optimizer’® with 8,= 0.9 and 8,= 0.99. The
learning rate was warmed up from O for 1,000 steps at the start of train-
ing and then reduced to 1x 107 using cosine decay’. On an example
machine with eight NVIDIA RTX 3090 GPUs, an average training run
took 3.5 days, or 672 GPU hours. Models were trained on different
GPU nodes using eight of either NVIDIARTX 3090, A40 or L40S GPUs.

Runtime benchmarking

We compared the runtimes of salad models with RFdiffusion, Genie 2,
Chroma and Proteina on a single NVIDIA RTX 3090 GPU. We sampled
ten structures from each model using their default settings (Supple-
mentary Table I) and measured the time elapsed for each generated
structure. We discarded times measured for the first generated

structure to account for library initialization and model compilation
and reported the average time for the remaining nine generations.

Model ablation study

We selected a model architecture and sampling hyperparameters
by evaluating models with and without time-embedding features as
well as with full and minimal pair features on unconditional structure
generation. We generated 200 backbones for proteins of size 50-400
residues for each model, using 100, 200 and 500 diffusion steps with
early stopping at 80, 180 and 400 steps into the denoising process.
Self-conditioning was applied until diffusion time ¢, = 0.8 for VP mod-
elsasthis was determined to yield good results in preliminary testing.
For VEmodels, we tested self-conditioning thresholds of 0.8 and 0.99.
Tensequences were designed for each backbone using ProteinMPNN?,
Structures were predicted using ESMFold*. Designability was meas-
ured as the fraction of backbones with at least one designed sequence
withpLDDT >70and scRMSD < 2.0 A (Extended DataFig. 6a,b). Models
with full pair features, time embedding and 500-step sampling were
chosen for furtherbenchmarking. ¢,,., = 0.99 was chosen for VEmodels.

Unconditional generation benchmark

At each evaluated protein length between 50 and 1,000 residues, we
generated 200 protein backbones using both our models as well as
Genie 2, RFdiffusion and Proteina for comparison**?. Backbones
were sampled using 500 diffusion time steps with early stopping at
400 time steps and self-conditioning turned off below the threshold
diffusion time ¢, = 0.8 for VP models and t,,., = 0.99 for VE models.
Foreachbackbone, we then generated ten amino acid sequences using
ProteinMPNN withatemperature of 0.1(ref. 20). This resulted ina total
of 11 sequences for our models (ten ProteinMPNN and one from the
modelitself) compared with ten sequences for Genie 2 and RFdiffusion.
To fairly measure the model performance and remain comparable to
previous work, werestricted all the computed performance measures
to use the first eight sequences generated by ProteinMPNN.

We predicted the structures of each sequence using ESMFold**
and AlphaFold 2 (ref. 23). For each structure prediction, we measured
the RMSD to the generated backbone (scRMSD) and pLDDT. Following
ref.2, we then computed designability as the fraction of the generated
backbones with at least one sequence with ESMFold pLDDT >70 and
scRMSD < 2 A. We evaluated pairwise similarities between the gener-
ated backbones using TM-align (v.20220412)*. To compute backbone
diversity for direct comparison with Genie 2 and RFdiffusion®, we
randomly subsampled the set of generated structures to a size of 100
backbones. Designable structures in this subset were then clustered
using single-linkage clustering on the TM-score. Backbones with
TM-score > 0.6 were included in the same cluster. Diversity for all
backbones (diversity,;) was then defined as the fraction of designable
clustersin all generated structures ﬁ (ref. 2). We also defined a

second diversity measure as the fraction of clusters in all designable

. . #clusters . .
SLrUCLUTeS diversityyeguaste = Jorsienamrs L0 fully separate diversity

from designability. Diversity was measured on ten samples of 100
structures, each sampled from the original 200 generated structures
toreport median, minimum and maximum diversities for eachmodel.

Shape-initialized structure generation

We prepared letter shapes as paths in SVG format using Inkscape 1.4
(e7¢c3feb100, 2024-10-09; Inkscape Project) and then extracted the
coordinates of the nodesin each pathinto a CSV file. To sample struc-
tures based onthese shapes, we used our VE model with default settings
and shaped noise initialization. Instead of initializing the denoising
process with noise for each residue i as

€ ~ N(0,(804)), (15)
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we instead centred the noise on the coordinates of nodes of the SVG
path corresponding to the desired shape:
€; ~ N(node;, (80 A)z), (16)

where node;is the position of the node assigned to residue i. To gener-
atetheletter shapes described in this work, we assigned 200 consecu-
tive residues to each node, that is, residues 1-200 were assigned to
the first node, 201-400 to the second and so on. We then sampled
ten structures for each letter shape (S, A, L and D) starting from this
noise, designed ten sequences with ProteinMPNN at atemperature of
0.1and predicted their structures with ESMFold. We then identified
designable structures as described in the ‘Unconditional generation
benchmark’section.

Shaped noise

Toinitialize noise for VE models better suited for large protein genera-
tionthan normal-distributed noise, we adapted shape-initialized noise
generation to work with random noise centres. We sampled random
starting positions for centres centre;according to

centre; = z centrey + €; 17)

k<i

where ¢; ~ (0, (10 A)?) is a normal-distributed offset. Essentially, we
are sampling centres as Gaussian chains with average segment length
of 10 A (ref. 21). We then enforce globularity of the chain by optimizing
inter-chain distances with aharmonicrestraint centred on 10 A. Opti-
mization is done using ten steps of gradient descent with a learning
rate of 0.1. We sample shape-initialized noise with 200 residues per
centre using these randomly generated centres. We generate fresh
centres for each designed backbone.

Random secondary structure conditioning
Tosamplearandomthree-state secondary structure (helix, strand and
loop) of afixed length, we first sampled arandom secondary structure
fraction with a maximum loop content of 50% and arbitrary propor-
tions of alpha-helices and beta-strands. We then computed the closest
integer number of helix, strand and loop residues for this fractionata
fixed protein length. To arrange these residues into contiguous second-
ary structure elements, we then heuristically determine the minimum
and maximum numbers of helices and strands that can be generated
using this number of residues (Supplementary Table II). We sample
arandom number of helices and strands in this range and randomly
assign residues to each helix and strand until we reach the previously
computed number of residues for each secondary structure. These
secondary structure elements are then randomly shuffled, and the
remaining loop residues are randomly placed in between.

For random secondary structure sampling, we then conditioned
our models on secondary structure strings generated this way, ran-
domly replacing secondary structure elements with unknown sec-
ondary structure with a probability of 50% per element. Additionally,
the first and last residues in each secondary structure element were
replaced with an unknown secondary structure to allow the model to
decide the correct secondary structure at boundaries between sec-
ondary structure elements. Evaluation of structures generated using
random secondary structures followed the procedure describedin the
‘Unconditional generation benchmark’ section.

Synthetic dataset generation

To generate our synthetic protein dataset, we used our VP model with
random secondary structure conditioning. We generated 50,000
backbones for random protein lengths between 50 and 256 residues.
For each backbone, we designed ten sequences using ProteinMPNN
with atemperature of 0.1(ref. 20) and predicted their structures using

ESMFold**. We then identified successfully designed sequences with
scRMSD <2 A and pLDDT > 70. The dataset was then restricted to
structures with at least one successful sequence, resulting in 41,713
backbones. These backbones were then clustered using Foldseek™
with a TM-score cut-off of 0.6 and minimum coverage of query and
target of 0.9 using the command foldseek easy-cluster data/pdb/ -c
0.9 -tmscore-threshold 0.6. The coverage cut-off was chosen in this
way to mostly cluster structures of similar size. Thisresulted in 37,661
structures chosen as cluster representatives and also had one or more
successful sequence designs, corresponding to 90.3% of designable
backbones. We evaluated the percentage of novel structures relative to
PDB by running Foldseek> against PDB using TM-align and exhaustive
search (foldseek easy-search data/pdb/ fs_pdb -alignment-type 1 -
format-output query,target,alntmscore,qtmscore,ttmscore,alnlen,
gstart,qend,tstart,tend, where fs_pdb is a precomputed copy of the
PDB database downloaded using Foldseek). Structures were consid-
ered novel if they had no match in the PDB with query TM-score > 0.5
(qtmscore).

Synthetic dataset model benchmark

We trained two salad models with default_vp configuration on both
the synthetic dataset and the PDB dataset described above, limited
tosampling only single chains of length between 50 and 256 residues.
Models were trained according to the procedure in the ‘Model train-
ing’ section. We assessed the performance of both models using the
ESMFoldstructure prediction of asingle sequence prediction for each
generated backbone according tothe procedureinthe ‘Unconditional
generation benchmark’ section. Instead of using ProteinMPNN? for
sequence design, we directly used the sequence defined by the argmax
of the amino acid distribution predicted by each model at the final
denoising step.

Motif-conditioning model training

To compare with Genie 2 (ref. 2), we trained a separate salad model with
multi-motif conditioning. The model was trained on PDB and was given
multi-motif-conditioning information for each training example. Train-
ingwas runfor200,000 steps according tothe procedure describedin
the ‘Model training’ section. To prepare the motif-conditioning infor-
mation, we first partitioned each structure into contiguous segments
with random lengths between 10 and 50 residues. Each segment was
then assigned to one of two segment groups. Only segments withinthe
same segment group would then be treated as a single rigid segment
for the purpose of multi-motif scaffolding. Finally, segments were set
as active with a probability of 50%. Inactive segments were not used
for conditioning. We then computed the CA distance map between
allamino acids, together with a mask indicating amino acid pairs with
active conditioning:

mask; = (S; =S)Aa;AQ, (18)

wheress;is the segment ID of aresidue and a;is a Boolean specifying if
the segment at thatresidueis active.

Motif conditioning using structure editing

Inaddition to training amodel for multi-motif scaffolding, we adapted
the sampling process of the default_vp model to allow multi-motif
design. Ateach denoising step, we align the motifs toits corresponding
residues in the denoised structure. We then replace the coordinates
of those residues with the coordinates of the motif (Supplementary
Algorithm9). Sampling structures in this way guarantees that the motif
will be incorporated into the resulting backbone.

Motif benchmark
Following ref. 2, we generated 1,000 structures using motif condition-
ing and motif editing for each single-motif-scaffolding task defined
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inref.1and additional multi-motif-scaffolding task specified in ref. 2.
We then designed sequences for each backbone using ProteinMPNN
and evaluated the designability using ESMFold (see the ‘Unconditional
generation benchmark’ section). In addition, we computed the CA
and full-backbone (N, CA, C and O) RMSD between the predicted
structures and the input motif. Successful designs were selected using
abackbone RMSD cut-off of 1 A and clustered using single-linkage
clustering at a TM-score threshold of 0.6 to identify the number of
unique successes. For comparison, we also computed the number
of unique successes based on RMSD-CA. We compared these results
with results published for Genie 2 and RFdiffusion in ref. 2 using the
same evaluation strategy’.

Symmetry editing

To generate symmetric repeat proteins according to a given symmetry
group, arepresentative subunit structure was generated by aligning all
the subunits of arepeat protein and averaging their positions. Subunits
were aligned using the action of the symmetry group. For cyclicgroups,
all consecutive subunits were rotated around the symmetry axis onto
a single subunit. For a screw (helical) symmetry group, consecutive
subunits are first centred along the screw axis and then rotated onto
a single subunit around the axis. We can then position the centre of
mass of the subunit at a specified radius R from the symmetry axis to
generate structures with aspecified radius. The resulting representa-
tive structureisthenreplicated using the group action. This processis
described in detail in Supplementary Algorithm 10 for a group G with
asingle generator g.

Symmetry benchmark

We generated symmetric repeat proteins with subunits of lengths 50
and 100 for cyclic symmetry groups G, C, and C; with variable radii
using VP diffusion as well as C; to C, with radii from 10 A to 14 A using
VE diffusion. Inaddition, we generated screw-symmetric designs with
2-3repeat subunits for various angles and radii. For each design class,
we generated 20 symmetrized backbones and designed ten sequences
using ProteinMPNN with a temperature of 0.1 (ref. 20). We evaluated
designability using ESMFold for all the designs. To verify that the
designed screw-symmetric proteins would be predicted to fold with
morerepeatsadded, we used AlphaFold 3 (ref. 72) to verify the structure
of nine-subunit repeats for a subset of designs.

Multi-state structure editing

Multi-state outputs were generated by running one independent diffu-
sion process per state and editing the denoised output structures to fix
shared substructures across states. To fix a set of residues across states,
we aligned the fixed residue positions, optionally averaged them and
copiedtheresultback to each state. Repeating this procedure for each
denoising step ensures that the fixed residues will have highly similar
positionsinthe final generated structures. Supplementary Algorithm
11 describes the editing process for a two-state design process with a
set of fixed residues {m}.

Multi-state design benchmark

We generated designs for the multi-state design problem described
inref. 13 (Supplementary Table IlI). For each design, three backbones
(parent, child 1and child 2) were generated with secondary structure
conditioningaccordingtoref.13 using the editing strategy describedin
the ‘Multi-state structure editing’ section. Editing was performed with
two different conditions: either the structure of the terminal helices
(unconstrained) or the structure of all helices (constrained) shared
between parent and children was fixed using structure editing. Here
1,000 designs were generated per condition. We used ProteinMPNN?°
with a temperature of 0.1to generate ten sequences for each set of
backbones, fixing amino acid identities across the parent and child
sequences. To allow a comparison with the results presented in

ref.13, AlphaFold 2 (ref. 23) was used to determine the designability. We
used the cut-offs for success (scRMSD < 3 A and pLDDT > 75) reported
inref.13.

Software tools

We used Foldseek v.7.04e0ec8 for structural alignment and cluster-
ing®. Protein structures were additionally aligned using TM-align
v.20220412. For dataset generation, sequences of PDB proteins were
clustered using mmseqs2 v.4f046dd1979ec87b440656ff13b12e5c5
25b8374.For structure predictions, novobench used AlphaFold v.2.3.1
and ESMFold v.1.0.3.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Thegenerated protein structures and ESMFold-based scores and struc-
ture predictions fromthis work have been depositedin Zenodo (https://
zenodo.org/records/14711580)"*, which also contains the parameters
of models used inthis study and asnapshot of the source code that was
used to generate them. The source code on Zenodo (https://zenodo.
org/records/14711580)* and GitHub (https://github.com/mjendrusch/
salad) contains instructions and scripts to reconstruct the datasets
used for training in this study, as well as the training scripts used to
produce the model parameters.

Code availability

The code for all models described in this work is available under an
Apache2.0license via GitHub at github.com/mjendrusch/salad. Param-
eters for those models are available undera CCBY 4.0 license via GitHub
atgithub.com/mjendrusch/salad and viaZenodo (https://zenodo.org/
records/14711580). The code for the AlphaFold 2- and ESMFold-based
benchmarking is available under an Apache 2.0 license via GitHub at
github.com/mjendrusch/novobench.
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shapes for letters (S, A, L, D). The designed structure (grey) is overlaid with the
best ESMfold prediction (coloured by residue index) out of 10 ProteinMPNN
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Extended Data Fig. 2 | Example unconditional monomer designs. Monomers are the first up to 6 designs with scRMSD < 2.0 A and pLDDT > 70 for each length
oflength 50,100, 200,300, 400, 500, 600,800 and 1,000 residues, using VP, and model type. Structures are coloured by residue index (N-terminus: purple,
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(a) Distributions of scRMSD, scTM between generated and ESMfold-predicted

structures as well as ESMfold pLDDT for each backbone, taking the best value
over 8 ProteinMPNN sequences for each backbone. Each point corresponds

to abackbone. Points are coloured and grouped by model type and noise
schedule. The solid black lines indicate the median value for each model.
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(b) Joint distributions of ESMfold scRMSD and pLDDT over all structures
generated with salad models with results for RSO and RFdiffusion shown from
comparison (results were obtained from [27]). Scatterplots are coloured asin (a).
The dashed lines indicate the success cutoffvalues of ScRMSD <2.0 A and pLDDT
>70 and the shaded area corresponds to the area of successful designs. Based on
n=200 generated backbones per condition.
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Extended Data Fig. 4 | Impacts of VP noise on protein shape and sequence
composition. (a) Boxplot of CA atom position standard deviations for protein
structures in the PDB and backbones generated using different noise schedules.
o distributions are shown for protein lengths between 50 and 1,000 residues.
VP noise consistently produces highly-compact backbones with low a.,, while
VP-scaled and VE noise result in higher o, structures more closely matching the
o, of proteins in the PDB. (b) Boxplots of the fraction of alanine (ALA) and glycine
(GLY) residues in sequence designs for backbones generated using VP, VP-scaled
and VE diffusion. A high proportion of ALA and GLY residuesin adesigned
sequence coincides with the presence of tightly-packed secondary structure
elements with no space for more bulky amino acids. The fraction of small amino
acidsincreases with protein length for all models but shows a particularly
pronounced increase for structures generated using VP noise. In comparison,
VP-scaled and VE models show a slower increase and an overall lower fraction

protein length (# residues)

of ALA and GLY residues. (c) Example structure of a400 residue backbone
generated using VP noise. ALA (GLY) residues are marked in red (black).

(d) Boxplot of amino acid pair CA distances for proteins of size 50 to 400.
Distributions of distances are shown for noise-free structures (orange) and
noised structures at diffusion time t =0.9. At low protein lengths (50 -200),
aVP model needs to decrease CA distances to denoise the structure, whereas
athigh protein lengths (>=300 residues) it needs to increase CA distances to
arrive at the denoised structure. A VP model mostly trained on smaller proteins
will therefore likely develop abias for lower CA distances resulting in overly
compact, undesignable structures. (a, b, d) For all box plots, the center line
indicates the median, box boundaries the 1st and 3rd quartiles and whiskers
1.5 x the inter-quartile range from the box. Distributions were computed over
n=200 generated backbones for each protein length.
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Extended DataFig. 5| Effects of random secondary structure conditioning
ondiversity and designability. (a) Secondary structure fraction for protein
structures between 50 and 400 residues generated using unconditional
sampling from salad VP, VP-scaled and VE models. (b) Ternary plots of the
distribution of secondary structure contents in generated backbones of length
50t0400 residues using salad VP, VP-scaled and VE. (c) Designability of salad
VP, VP-scaled (sVP) and VE generated structures for proteins of length 50 to 400
residues compared to results for Genie2 and RFdiffusion. (top) designability
for unconditional generation; (bottom) designability for random conditioning

for salad models compared to unconditional generation for RFdiffusion /

Genie2. (d) Overall secondary structure distribution for unconditional (left) and
randomly conditioned (right) generations for proteins of length 50 to 400 using
salad VP, VP-scaled and VE models. (e) Bar graph of binned secondary structure
distribution entropy for unconditional and randomly conditioned generations of
length 50 t0 400. The binned secondary structure distributions were constructed
by subdividing the range of helix and strand percentages into 20x20 bins of equal
size. (f) Ternary plots of the distribution of secondary structure content for all
generated structures between 50 and 400 residues using salad VP, VP-scaled and
VE models with unconditional sampling (inset) and random conditioning.
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Extended Data Fig. 6 | Impact of sampling steps and model architecture on
designability. (a) ESMfold designability for 8 ProteinMPNN sequences per
backbone oflength 50 to 400 residues for salad VP and VP-scaled models at
100,200 or 500 denoising steps. (b) ESMfold designability asin (a) for salad VP

protein length (# residues)
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and VP-scaled (sVP) models at 500 denoising steps, as well as variants without
diffusion time embedding (-T) and additionally using only minimal distance and
orientation pair features (-MT).
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Extended Data Fig. 7 | Motif scaffolding. (a) Schematic of the output-editing
procedure for motif scaffolding. (b) Schematic of model conditioning for
motif scaffolding. (c) Table of unique successful designs on the motif
scaffolding benchmark established by Lin et al. 2024? using structure editing
and model conditioning. Results for RFdiffusion and Genie2 are shown as

@ salad+edit E=m salad+cond ===

reported by Lin et al. 2024°. (d) Bar plot of the number of unique successful Motif RMSD is reported below each structure.
designs (as measured by single-linkage clustering at TM score < 0.6) out of

motif

n=1,000 generated backbones for salad models with editing and conditioning,
compared to results reported in Lin et al. 2024. All evaluations were performed
with the same settings as Lin et al. 2024°. (e) Example structures of scaffolded
motifs using structure editing and model conditioning. All displayed structures
are ESMfold predictions of designed sequences with the motifs marked in grey.
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Extended Data Fig. 8| Additional motif scaffolding performance metrics.

(a) Number of unique scaffolds out of n =1,000 generated per motif-scaffolding
problemusing backbone atom (N, CA, C, 0) RMSD (bb) and CARMSD (CA) asa
threshold for success. Results are shown for both structure-editing (salad+edit)
and motif conditioned models (salad+cond). (b) Percentage of successful
designs for each motif-scaffolding problem. (c) Scatter plots comparing the
number of unique successful scaffolds for all single (n = 24) and multi-motif

(n=6) scaffolding tasks between salad models and state-of-the-art diffusion
models (Genie2, RFdiffusion). The x and y axes show the number of unique
scaffolds for each model. Points on the dashed line correspond to motifs with
an equal number of designs for both methods. For points above the line, salad

is better; for points below the line RFdiffusion/Genie2 is better. The number of
points above and below the line is listed in the upper left and lower right corners.
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Extended Data Fig. 9 | Design success for unconstrained multi-state design. Successful designs (0.4 % of backbones) are shown in blue, partially successful
Scatter plots of scRMSD for parent and child designs generated only with designs (14.2 %) inred and failed designs (85.8 %) in grey.n=1,000 structures
secondary structure conditioning, without fixing parts of the structure across generated and evaluated per condition.

denoising processes. Only designed sequences with AF2-pLDDT > 75 are shown.
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Extended Data Table 1| Diffusion model hyperparameters and parameter counts

model sparse # layers # AA features # pair features # parameters
salad (Encoder + Diffusion + AADecoder) yes 2+ 6+ 3 128 64 11.9M
salad (Diffusion) yes 6 128 64 8.4M
Chroma yes 12 512 256 18.5M
Genie 2 no 8 384 128 15.7M
RFdiffusion no 36 256 128 59.8M
Proteina no 15 768 512 200M
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A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
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A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
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AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.
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Data collection  salad 0.1.0 (this work: github.com/mjendrusch/salad, also on Zenodo: https://zenodo.org/records/14711580), novobench 0.0.1 (this work:
github.com/mjendrusch/novobench, also on Zenodo: https://zenodo.org/records/14711580); ProteinMPNN v1.0.1, RFdiffusion v1.1.0,
AlphaFold 2.3.1, ESMfold v1.0.3, foldseek 7.04e0ec8, TMalign 20220412, mmseqs2 4f046dd1979ec87b440656ff13b12e5c525b8374, Python
3.10

Data analysis Python 3.10, numpy, pandas, matplotlib, ChimeraX
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Data generated in this study (including model parameters) are available at https://zenodo.org/records/14711580; training data was generated based on the RCSB
PDB database of protein structures. Scripts for constructing the training dataset as used in this work are provided at https://github.com/mjendrusch/salad.
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information has not been collected.

Report sex- and gender-based analyses where performed, justify reasons for lack of sex- and gender-based analysis.

Reporting on race, ethnicity, or |Please specify the socially constructed or socially relevant categorization variable(s) used in your manuscript and explain why
other socially relevant they were used. Please note that such variables should not be used as proxies for other socially constructed/relevant variables
groupings (for example, race or ethnicity should not be used as a proxy for socioeconomic status)
Provide clear definitions of the relevant terms used, how they were provided (by the participants/respondents, the
researchers, or third parties), and the method(s) used to classify people into the different categories (e.g. self-report, census or
administrative data, social media data, etc.)
Please provide details about how you controlled for confounding variables in your analyses.

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, genotypic
information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study

design questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and
how these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size sample size differs by analysis. The sample size for each benchmark was reported in the corresponding Results section and Methods section.
We selected sample sizes in accordance with current practices in the field: for unconditional protein structure generation benchmarks
previous studies used at least 100 designs per task — to be able to estimate the amount of between-run deviation we generate 200 designs
per task and evaluate the range of e.g. diversities by sampling random subsets of 100 designs. For other protein design benchmarks (motif
scaffolding, multi-state design) we follow the articles that first defined the benchmark and generate 1,000 designs each for motif scaffolding
tasks and multi-state design tasks.

Data exclusions no data were excluded

Replication all data points for each analysis were independently generated. Model training was not repeated with different random seeds, but model
performance in our ablation study shows that different versions of a model, trained with different random seeds reach similar performance.
Similarly, we find that generating multiple random samples from a model produces consistent diversities of protein structures, further
indicating that our models produce designs of consistent quality across runs. We would therefore consider the results of our study
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reproducible.

Randomization | n/a(data generation and analysis were fully automated and are therefore unlikely to be affected by bias)

Blinding n/a (data generation and analysis were fully automated and are therefore unlikely to be affected by bias)

Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description

Research sample
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Data collection
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Data exclusions
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Randomization

Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional,
quantitative experimental, mixed-methods case study).

State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic
information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For
studies involving existing datasets, please describe the dataset and source.

Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to
predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a
rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and
what criteria were used to decide that no further sampling was needed.

Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper,
computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and
whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.

Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample
cohort.

If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the
rationale behind them, indicating whether exclusion criteria were pre-established.

State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no
participants dropped out/declined participation.

If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if
allocation was not random, describe how covariates were controlled.
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All studies must disclose on these points even when the disclosure is negative.

Study description

Research sample

Sampling strategy

Data collection

Timing and spatial scale
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Reproducibility

Randomization
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Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested,
hierarchical), nature and number of experimental units and replicates.

Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National
Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and
any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets,
describe the data and its source.

Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size
calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Describe the data collection procedure, including who recorded the data and how.

Indicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which
the data are taken

If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them,
indicating whether exclusion criteria were pre-established.

Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were
controlled. If this is not relevant to your study, explain why.

Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why
blinding was not relevant to your study.
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Did the study involve field work? |:| Yes |:| No

Field work, collection and transport

Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).
Access & import/export |Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in
compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority,

the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.
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Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
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Antibodies used Describe all antibodies used in the study; as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) State the source of each cell line used and the sex of all primary cell lines and cells derived from human participants or
vertebrate models.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines | g me any commonly misidentified cell lines used in the study and provide a rationale for their use.
(See ICLAC register)

Palaeontology and Archaeology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the
issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable,
export.

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where




Dating methods they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are
provided.

|:| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
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Wild animals Provide details on animals observed in or captured in the field; report species and age where possible. Describe how animals were
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released,
say where and when) OR state that the study did not involve wild animals.

Reporting on sex Indicate if findings apply to only one sex; describe whether sex was considered in study design, methods used for assigning sex.
Provide data disaggregated for sex where this information has been collected in the source data as appropriate; provide overall
numbers in this Reporting Summary. Please state if this information has not been collected. Report sex-based analyses where
performed, justify reasons for lack of sex-based analysis.

Field-collected samples | For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature,
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.
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