Table 1 Accuracy metrics relating to three DL models: VGG9 trained from scratch, DenseNet-121 trained from scratch, and pretrained DenseNet-121
From: AI perceives like a local: predicting citizen deprivation perception using satellite imagery
DL model scratch/pretrained (bands) | T max R² | T min RMSE | T mean R² | T mean RMSE | T sd R² | T sd RMSE | V max R² | V min RMSE | V mean R² | V mean RMSE | V sd R² | V sd RMSE |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
VGG9 scratch (RGB) | 0.581 | 1.114 | 0.503 | 1.216 | 0.046 | 0.056 | 0.654 | 1.056 | 0.487 | 1.228 | 0.101 | 0.115 |
VGG9 scratch (RGNir) | 0.615 | 1.067 | 0.532 | 1.179 | 0.066 | 0.083 | 0.716 | 0.958 | 0.520 | 1.185 | 0.101 | 0.110 |
Dense Net-121 scratch (RGB) | 0.717 | 0.916 | 0.659 | 1.007 | 0.045 | 0.066 | 0.655 | 0.977 | 0.577 | 1.117 | 0.077 | 0.112 |
Dense Net-121 scratch (RGNir) | 0.745 | 0.869 | 0.695 | 0.952 | 0.037 | 0.059 | 0.696 | 0.958 | 0.627 | 1.049 | 0.058 | 0.063 |
Dense Net-121 pretrained (RGB) | 0.925 | 0.476 | 0.903 | 0.537 | 0.016 | 0.044 | 0.841 | 0.693 | 0.801 | 0.767 | 0.021 | 0.039 |
Dense Net-121 pretrained (RGNir) | 0.950 | 0.383 | 0.886 | 0.576 | 0.038 | 0.101 | 0.822 | 0.734 | 0.789 | 0.790 | 0.021 | 0.027 |