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Urbanization’s dual role in the
exacerbation and mitigation of drought
dynamics in China
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Since the 1980s, China’s rapid urbanization has profoundly influenced local drought conditions by
altering ecological, environmental, and meteorological systems. However, the role of urbanization
timing in shaping drought dynamics—particularly drought duration, severity, intensity, and frequency
—remains underexplored. This study investigates the impacts of urbanization on drought
characteristics across mainland China using a comprehensive dataset of weather station
observations spanning 1951–2020. Stations were categorized based on their urbanization timing:
early-urbanized (Ub: before 1985) and recently urbanized (Ua: after 1985). Results reveal that early-
urbanized stations consistently exhibit drought exacerbation, especially for short-term drought
frequency (ΔTND) and severity (ΔMDS, ΔMDI), with regional mean urban effects (MUEs) reaching up to
+36%. In contrast, recently urbanized stations showmore heterogeneous responses, with up to 50%
demonstrating drought mitigation effects—particularly at longer timescales (SPEI-12)—with MUE
reductions as large as –36%. These patterns suggest that modern urban design, green infrastructure,
and adaptive planning in newer developments may help alleviate some drought risks. The findings
emphasize the importance of accounting for urbanization timing and land-use history when assessing
climate risks and planning for urban resilience. Sustainable urban planning and water balance-
sensitive design are essential for addressing the multifaceted challenges of urban-induced drought
under ongoing climate change and population growth.

Droughts have become one of the world’s deadliest and costliest
hazards, imposing far-reaching impacts on global agricultural pro-
duction and sustainable development1–3. Recent decades have wit-
nessed intensifying droughts globally4 including China5–7, a region
highly sensitive to and significantly impacted by global climate
change. Since the implementation of afforestation policies in China
in 1999, vegetation coverage has increased significantly8,9. However,
rapid economic development and substantial population growth are
constraining the expansion of vegetated areas, leading to vegetation
degradation in peri-urban regions. This degradation contributes to
increased land surface temperatures, higher potential evapo-
transpiration (PET), and reduced actual evapotranspiration (ET),

potentially intensifying local drought risks and amplifying the
impacts of climate change in urbanized regions10–13.

China, located within the East Eurasian monsoon zone, is highly vul-
nerable to frequent and severe droughts14–16. These droughts have far-
reaching impacts on the country’s extensive agricultural systems and
broader economic activities, posing significant risks to socio-economic
stability17–19. Historical records highlight the widespread nature and
devastating effects of these drought events. During 1962–1963 and
2010–2011, for example, drought conditions affected more than half of
China’s non-arid regions20,21.More recently, the summerof 2022 brought an
extreme drought to eastern China, resulting in substantial economic losses.
Similarly, southwest China has experienced several severe drought episodes,
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with profound impacts on socio-economic conditions, ecosystem func-
tionality, and crops productivity22–24.

One particularly notable event was the 2006 drought, during which
0.31 million hectares of crops failed, approximately 18 million people faced
water shortages, and economic losses reached 11.74 billion yuan25. Another
devastating drought occurred from late 2009 to early 2010, leaving more
than 16 million people and 11 million livestock without adequate drinking
water and causing direct economic losses of 19 billion yuan26,27. The fol-
lowing year, the 2011 summer drought impacted 5.86 million hectares of
crops, leaving 12million people and 9.17million livestockwithout sufficient
water22. These extremedrought eventsunderscore the ongoing challenges to
agriculture, water resources, and ecosystems in China18,28–30.

Droughtsmanifest in four primary forms:meteorological, agricultural,
hydrological, and socioeconomic31,32. These drought types interactwitheach
other. Meteorological droughts, often initiating drought sequences leading
to hydrological drought as precipitation deficits persist33–36. “Drought
Exacerbation” refers to the intensification of drought conditions over time.
It implies a trend or pattern where drought events become more severe, in
terms of duration, intensity, or spatial extent. Drought exacerbation it often
means an analyzing of how drought conditions have become more pro-
nounced with attention to the external drivers compared to historical or
baseline observations37–39. Factors like global warming and atmospheric
circulation changes contribute to precipitation decline, exacerbating
drought severity40–42. Anthropogenic climate change is widely recognized as
a key driver behind the rise in abrupt drought events in China, with
greenhouse gas emissions primarily influencing the frequency of flash
droughts in simulations5,43–46. By 2020, the urbanization rate reached 64%, a
significant increase from18% in 1978, representing a 3.6-fold rise, where the
current expansion pace is roughly 20 million individuals annually47. Since
the 1980s, China’s rapid urbanization48,49 has prompted significant concerns
about its potential impact on local drought conditions50, especially given the
extensive urban expansion in the Anthropocene51,52. While some studies
have proposed a possible link between urbanization and local drought
onset50,53–56, definitive quantitative evidence from historical observational
records in China remains lacking.

Significant research has focused on how urbanization affects atmo-
sphericwaterblanceandweatherpatterns.TheClausius–Clapeyronprinciple
indicates that for every 1 °C rise in temperature, the atmosphere’swater vapor
capacity increases by approximately 6–7%57. This relationship helps to
explain the increase in extreme rainfall and flooding in a warming climate.
Urban areas, dominated byheat-absorbing surfaces such as asphalt, concrete,
anddensely built environments, experience significantly higher temperatures
compared to their surrounding rural or suburban regions—a phenomenon
known as the urban heat island (UHI) effect58–60. This effect arises from
reduced vegetation, limited actual evapotranspiration, and increased
anthropogenic heat emissions, leading to altered local energy balances and
enhanced surface and near-surface temperatures61,62. This warming is linked
to changes in rainfall patterns, with studies showing increased heavy rainfall
in cities63,64. The UHI can disrupt the boundary layer, affecting atmospheric
circulationandpromoting localizedconvection, further exacerbating extreme
precipitation65,66. Additionally, urbanization alters surface humidity levels
compared to rural regions, often reducing urban actual evapotranspiration
due to decreased vegetation. Huang et al.50 highlighted the significant influ-
ence of urbanization on rainfall patterns during the rainy season across five
major urban regions in China. Their findings indicated that urbanization
contributed to increased heavy rainfall by 30.8 to 42.7%while also accounting
for a 30.6% reduction in light precipitation. However, in polluted atmo-
spheres in urban areas, aerosols can alter cloud microphysics, extending
rainfall durations or intensifying precipitation during specific events67–69.
Simulations by Shao et al.70 showed that these aerosols intensify heavy pre-
cipitation but reduce moderate and light precipitation.

Considering these dynamics, we propose that urbanization likely sig-
nificantly impacts local meteorological drought conditions. However, the
current understanding of drought causes predominantly highlights large-
scale influences at regional and global levels, alongside various climate

patterns. In contrast, the specific local and regional impacts of urbanization
on drought duration, severity, and intensity remain insufficiently explored.
For instance, Huang et al.71 investigated the global rise in droughts linked to
urbanization, finding that approximately 36% of weather monitoring sta-
tions worldwide reported increased drought severity and about 43% of
urban areas noted a rise in the extreme Standardized Precipitation Evapo-
transpiration Index (SPEI). In a regional analysis, Huang et al.50 employed
high-resolution datasets to evaluate the effects of urbanization on local
drought in 52 major cities within the Yangtze River Basin (YRB) in China.
Theirfindings indicated that urbanization significantly exacerbated extreme
SPEI and drought severity in 69.2% and 61.5% of these cities, respectively.
Nonetheless, a substantial gap remains in our understanding of how
urbanization may worsen or mitigate local drought conditions in China,
particularly when assessed through long-term observational datasets.

The objectives of this study are to examine the drought dynamics
across China, with particular emphasis on how both global climate change
and urbanization contribute to changes in drought duration, severity, fre-
quency, and intensity. A central aim is to analyze the spatial and temporal
differences in drought characteristics between urban and rural areas, using
long-term observational data and robust statistical methods. More specifi-
cally, the study also aims to quantify the impact of urbanization on drought
trends and quantify the influence of urbanization timing—distinguishing
between early-urbanized (pre-1985) and recently urbanized (post-1985)
areas—on various drought metrics across multiple timescales (SPEI-3, -6,
-9, and -12). As part of this, it seeks to explore urbanization’s dual role in
exacerbating and mitigating drought conditions. Differentiate the effects of
urbanization from large-scale climatic forcings, using a comparative
approach between urban and rural station pairs to isolate urbanization’s
specific impact on drought trends and its characteristics. The analyses are
performed based on comprehensive historical datasets and advanced sta-
tistical methods. Ultimately, the study aims to enhance understanding of
how urban development influences hydrometeorological extremes and to
inform sustainable urban planning and water management strategies that
bolster climate resilience in rapidly urbanizing regions.

Results
SPEI/SPI trends and warming effects in China
The theMann-Kendall (MK) test was employed to analyze temporal trends
in SPEI values (Fig. 1e–h) and compare them with Standardized Pre-
cipitation Index (SPI) values derived solely from precipitation data. The
trend analysis of SPEI across different time scales (SPEI-3, SPEI-6, SPEI-9,
and SPEI-12) revealed that 43.9%, 55.3%, 61.9%, and 64.3% of stations,
respectively, exhibited significant negative trends (P < 0.05). Conversely,
positive trends were identified in 5.3%, 11%, 19%, and 23.6% of the stations
for the same time scales.Meanwhile, the SPI trends (Fig. 1a–d) for these time
scales indicated significant negative trends in 13.7%, 14%, 14.3%, and 14.6%
of the stations, whereas 38%, 40%, 40.3%, and 41.4% of stations showed
significant positive trends (P < 0.05).

Notably, the patterns of change for SPEI values displayed sharper
declines at longer time scales, reflecting annual variations in hydrological
wet-dry conditions. Figure 1e–h illustrates that the magnitude of change,
represented by the Theil-Sen (TS) slope per decade, shows a declining trend
(<−0.1 per decade) near the Hu-Huanyong Line. In contrast, upward
trends (>+0.1 per decade) are apparent in the northwest, the
Qinghai–Tibet Plateau, and southeastern China. Regions like Beijing,
Tianjin, Liaoning, Henan, and Shandong exhibit a predominantly negative
trend, whereas northeastern Qinghai–Tibet Plateau and eastern Xinjiang
have the highest positive Sen’s slope values.

For SPI-12, the trends across mainland China are predominantly
upward, with a smaller proportion of areas showing a downward trend.
Upward trends tend to have greatermagnitude, while downward trends are
generally less pronounced. SPEI-12 trends, however, display more wide-
spread downward shifts than SPI trends, particularly in northern regions
beyond the Qinling–Huaihe Line and provinces such as Yunnan, Sichuan,
and Chongqing.
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Regions exhibiting significant upward trends include the northeastern
Qinghai–Tibet Plateau, aligning with SPI observations. On the other hand,
areas with notable downward trends include southern Xinjiang, western
InnerMongolia, Beijing, Tianjin, southern Liaoning, and eastern Shandong.
Interestingly, the trends of SPI and SPEI diverge in regions like south
Xinjiang and western Inner Mongolia, while they align in Beijing, Tianjin,
southern Liaoning, and eastern Shandong.

The statistical analysis demonstrates substantial spatial-temporal
variability in SPEI patterns across mainland China. The SPEI12 time ser-
ies generally exhibit stable trends, with a more distinct and pronounced
decreasing tendency inmagnitude and direction, particularly over extended

analysis periods. The most significant negative trends were identified in the
SPEI12dataduring the 1951–2020period (SupplementaryFig. 1).However,
the consistency of these trends across temporal windows exceeding 30 years
remains uncertain. Heatmaps illustrating trends across various temporal
windows (Fig. 1m–o) for the regional SPEI series show that significant
decreases are prevalent across most periods analyzed. A more pronounced
decline is evident in recent decades, such as the 1980–2010 window, where
over 80% of the windows indicate statistically significant negative trends.
These findings suggest that regional warming significantly influences on
SPEI trends over time, underscoring the intricate interaction of factors
shaping these variations.

Fig. 1 | Spatial and temporal trends of drought indices (SPI and SPEI) across
China (1951–2020). a–d Trends of SPEI at 3-, 6-, 9-, and 12-month timescales.
e–h Trends of SPI at the corresponding timescales. Trends were analyzed using the
Mann–Kendall (MK) test (P < 0.05) and Theil–Sen (TS) slope estimator per decade.
i–l Histograms of the TS slope for SPEI compared with SPI at each timescale,
showing the percentage of stations with significant negative (Neg. Sig.) or positive

(Pos. Sig.) trends.m–oHeatmaps showing regional variations in SPEI trends (based
on Supplementary Fig. 1) across multiple temporal windows of 30 years or longer.
The magnitude of the trend per decade is expressed as the TS slope, with statistical
significance determined by the MK test. Symbols: blue and red dots on maps
represent positive and negative trends, respectively; black dot indicates significant
slope magnitude.
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Changes in drought characteristics (ΔDC) reflect the effects of
warming
To assess the impact of warming on ΔDC, changes in drought attribute
values—including MDCpo85 and MDCpr85 (representing drought attri-
butes for the post-1985 and pre-1985 periods)—were analyzed. These
attributes encompass the total number of drought events (TND) and cal-
culate the mean drought duration (MDD), mean drought severity (MDS),
mean drought intensity (MDI), and mean peak value (MDP), calculated
across various SPEI time scales (SPEI-3, -6, -9, and -12) (Fig. 2). The results
revealed that most drought attribute values (ΔDC) changes were positive,
while a few areas exhibited negative changes. These negative changes were
primarily concentrated in the northwest, northeast, the Qinghai–Tibet
Plateau, and southeasternChina.Notably, thepatterns of changemagnitude
(%) in drought duration and severity (ΔMDD and ΔMDS) displayed

sharper increases at longer time scales (SPEI-12), reflecting annual varia-
tions in hydrological drought conditions. Figure 2 shows that themagnitude
of change (%), represented by the difference between the post-1985 andpre-
1985 periods, indicates upward trends (>50%) near theHu-Huanyong Line.
Regions such as Beijing, Tianjin, Liaoning, Henan, and Shandong pre-
dominantly exhibit increasing changes, and provinces such as Yunnan,
Sichuan, and Chongqing are also experiencing increasing changes. In
contrast, northeasternQinghai–TibetPlateau andeasternXinjiang show the
highest positive values. In contrast, negative ΔMDD and ΔMDS values are
evident in the northwest, the Qinghai–Tibet Plateau, and south-
eastern China.

Similarly, the magnitude of changes (%) in drought intensity and peak
(ΔMDI and ΔMDP) showedmoderate increases across various time scales,
aligning to some extent with changes in other drought attribute values.

Fig. 2 | Percentage changes in drought attributes before and after 1985 across
multiple timescales. a–d Spatial patterns of percentage changes (%) in mean
drought duration (ΔMDD), severity (ΔMDS), peak (ΔMDP), and intensity (ΔMDI)
between the post-1985 (Po85) and pre-1985 (Pr85) periods, calculated at SPEI-3, -6,
-9, and -12 timescales. Positive values indicate an increase in drought attributes after
1985, while negative values indicate a decrease. e–h Scatter plots of MDS versus

MDD for Po85 and Pr85, with Pearson correlation coefficients (r) displayed for each
timescale. i–l Scatter plots of MDI versus MDP for Po85 and Pr85, with corre-
sponding correlation coefficients. Box plots beneath each scatter plot summarize the
distribution of drought attributes, and statistical differences between periods were
tested using Welch’s t-test (***P 0.001).
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These results highlight upward changes (10–25%) in regions east of theHu-
Huanyong Line.

To evaluate the regional impact of warming on DC metrics across all
stations, we compared MDCpo85 and MDCpr85 (representing drought
attributes for the post-1985 and pre-1985 periods) using theWelch’s t-test.
A statistically significant difference (***P < 0.001) confirmed that global
warming had intensified drought conditions (Fig. 2, shown through scatter
plots). The results revealed significant positive changes and shifts in DC
metrics between MDCpo85 and MDCpr85 across China (***P < 0.001) at
all timescales. Additionally, MDD and MDS exhibited a strong correlation
in both periods.

Observed evidence of changes in drought dynamics due to
urbanization
To assess the regional impact of urbanization on ΔDC, we examined dif-
ferences in ΔDC metrics between urban and rural areas using the Welch’s
t-test. A negative and statistically significant difference (P < 0.05) indicated
that urbanization intensified drought conditions, while a positive and sig-
nificant result (P < 0.05) suggested that urbanization mitigated drought
(Fig. 3). When no significant difference was observed, urbanization was
considered to have no discernible impact on drought dynamics.

The analysis showed that ΔMDD differences between station urba-
nized after 1985 and rural stationswere significant (P < 0.05) at shorter time
scales, particularly SPEI-3 and SPEI-6, with regional MUEs of +5.6% and
+7.8%, respectively, indicating that urbanization intensified drought
duration. Similarly, In SPEI-6 (semiannual scale), significant urbanization
effects are observed, particularly inΔMDS.Both categories of urban stations
—Ua (urbanized after 1985) and Ub (urbanized before 1985)—exhibit
higher then ΔMDS compared to rural stations, with MUE of +8.6% and
+9.1%, respectively. Significant differences (P < 0.05) in ΔMDP were
observed for both categories of urban stations compared to rural stations at
SPEI-6 and SPEI-9. AlthoughmostΔDCmetrics did not exhibit substantial
differences across all comparisons based on Welch’s t-test statistics, these
results indicate subtle yet meaningful changes that can be attributed to
urbanization effects.

Notably,ΔTNDdifferences between both urban station categories and
rural stations were statistically significant (P < 0.05) across all SPEI time-
scales. The regional MUE for ΔTND in Ua stations (urbanized after 1985)
was+5.2%,+6.5%,+10.7%, and +15.0% for SPEI-3, SPEI-6, SPEI-9, and
SPEI-12, respectively. For Ub stations (urbanized before 1985), the corre-
sponding MUE values were +9.9%, +9.9%, +8.7%, and +17.2%. These
results underscore that urbanization consistently increases the frequency of

Fig. 3 | Regional impacts of urbanization on drought characteristics across dif-
ferent timescales.Boxplots showdifferences in percentage changes (Δ%)of drought
metrics between rural (R) and urban stations (Ua : urbanized after 1985 or recen-
tlyurbanized areas; Ub : urbanized before 1985, see Supplementary Fig. 4). Drought
attributes include mean drought duration (MDD), severity (MDS), peak (MDP),
intensity (MDI), and total number of droughts (TND), evaluated at SPEI-3, -6, -9,

and -12 timescales. ΔDC values were calculated as the difference between post-1985
(MDCpo85) and pre-1985 (MDCpr85) periods. Statistical significance was tested
usingWelch’s t-test (P-values shown above each panel). Mean urban effects (MUE),
expressed as the average difference in drought attributes between urban and rural
stations, are reported in each panel.
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drought events, regardless of the time scale. And underscore the complex
and multifaceted ways urbanization influences drought dynamics, varying
across different drought metrics and timescales.

To investigate the impact of urbanization on local drought conditions,
meteorological stationswere classified as urban or rural basedon 2020 land-
use data, which reflect the extent of urban expansion between 1985 and
2020. This approach allowed the identification of stations that transitioned
from rural to urban during this period (Ua: urbanized after 1985). The
analysis revealed that 44%of the stations (309 cities) were classified as urban

(Supplementary Fig. 4). As a key step, the urban effects on changes in
drought characteristics (UEonΔDC)were assessedby analyzing differences
in drought characteristics between urban and rural station pairs (Eq. 9). The
results (Fig. 4) showed that approximately 50–55% of urban stations
exhibited exacerbation of drought (ED) dynamics for UE on ΔΔMDD,
ΔMDP, ΔMDS, ΔTND, and ΔMDI. For instance, the MUE on ΔMDD
increased from +17% at SPEI-3 to+35.9% at SPEI-12, while the MUE on
ΔMDS ranged from +15.2% to +35.3% across the same timescales. How-
ever, 45–50% of the urban stations (Ua) demonstrated drought mitigation

Fig. 4 | Spatial distribution of urbanization effects on drought characteristics
in China.Urbanization effects (%UE) on changes in drought characteristics (ΔDC)
were evaluated across four SPEI timescales (SPEI-3, SPEI-6, SPEI-9, SPEI-12) by
comparing drought metrics between urban (ΔDCUi) and rural (ΔDCRi) station
pairs (Eq. 9). Maps display the spatial distribution of %UE for five drought metrics:
mean drought duration (MDD), mean drought peak (MDP), mean drought severity
(MDS), mean drought intensity (MDI), and total number of droughts (TND). Color
and symbol coding indicate the magnitude of effects. ED refers to “exacerbated

drought” conditions, where urbanization contributed to intensifying drought
severity. The analysis includes stations that transitioned from rural to urban after
1985 (Ua, urbanized after 1985), underscoring the role of recent urban expansion
(1985–2020) in amplifying drought intensity. Bottom panels summarize mean
urbanization effects (MUE, %) on ΔDC between the pre-1985 and post-1985 peri-
ods, illustrating systematic increases in drought characteristics associated with
urbanization.
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(MD), especially for longer timescales. Specifically, the MUE for ΔMDD
declined from –15.5% to –34% and for ΔMDS from –15.7% to –36.38%
between SPEI-3 and SPEI-12. Similarly, MUEs for ΔMDP and ΔMDI
ranged from –5.4% to –12.1% and –7% to –15.3%, respectively. Mitigation
of ΔTND was also evident among Ua stations, with MUE ranging from
–12.2% to –27.7% across SPEI-3 to SPEI-12 (Fig. 5).

On the other hand, stations were also classified using 1985 land-use
data to identify those already urbanized before 1985 (Ub: urbanized before
1985), enabling an assessment of early-urbanized areas and their impact on

drought dynamics. This classification identified only 6.9% of stations (48
cities) as urban by 1985 (Supplementary Fig. 4). The UE on ΔDC was
evaluated similarly by comparing urban (Ub) and rural station pairs (Eq. 9).

The results presented in Fig. 6 offer a more nuanced understanding of
how urbanization influences drought characteristics across different time-
scales. Both drought exacerbation (ED) and mitigation (MD) effects were
evident across all drought metrics (ΔMDD, ΔMDP, ΔMDS, ΔMDI, and
ΔTND), though the overall distribution wasmore balanced than previously
reported. At shorter timescales (e.g., SPEI-3), the urbanization effect on

Fig. 5 | Spatial distribution of urbanization effects on drought characteristics
in China.Urbanization effects (%UE) on changes in drought characteristics (ΔDC)
were evaluated across multiple SPEI timescales (SPEI-3, SPEI-6, SPEI-9, SPEI-12)
and quantified by comparing drought metrics between urban (ΔDCUi) and rural
(ΔDCRi) station pairs (Eq. 9). Maps show the spatial distribution of %UE for five
drought metrics: mean drought duration (MDD),mean drought peak (MDP), mean
drought severity (MDS), mean drought intensity (MDI), and total number of
droughts (TND). Color and symbol coding indicate the magnitude and direction of

urbanization effects. MD refers to “mitigating drought” conditions, where urbani-
zation contributed to reduced drought severity. The analysis includes stations that
transitioned from rural to urban after 1985 (Ua, urbanized after 1985), highlighting
the role of recenturban expansion (1985–2020) in amplifying drought intensity.
Bottom panels present mean urbanization effects (MUE, %) on ΔDC between the
pre-1985 and post-1985 periods, emphasizing systematic changes in drought
characteristics linked to urban growth.
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ΔMDD and ΔMDS was nearly evenly split between ED and MD (54% vs.
46%), while drought mitigation effects were slightly more prevalent for
ΔTND, ΔMDP, and ΔMDI, with 54–57% of stations showing reduced
drought severity. As the timescale lengthened, mitigation effects became
more dominant for certainmetrics. For example, at SPEI-12, 56%of stations
exhibitedMD for both ΔMDS and ΔTND, while the effects on ΔMDD and
ΔMDI remained more evenly distributed. Notably, ΔMDI showed con-
sistent mitigation proportions (~48%) across all timescales, suggesting a

complex and potentially offsetting relationship between urbanization and
drought intensity. The MUE further illustrates this dual role. In long-
urbanized areas (stations urbanized before 1985, Ub), MUE for ΔMDD
increased from +14.0% at SPEI-3 to +31.0% at SPEI-12, indicating a
stronger drought-exacerbating influence with increasing drought accumu-
lationperiod. Similar exacerbationpatternswere observed forΔMDS(rising
from +11.4% to +38.1%) and ΔTND (from +15.0% to +29.0%), high-
lighting the intensified impact of legacy urbanization on longer-term

Fig. 6 | Spatial distribution of urbanization effects on drought characteristics
in China.Urbanization effects (%UE) on changes in drought characteristics (ΔDC)
were evaluated across multiple SPEI timescales (SPEI-3, SPEI-6, SPEI-9, SPEI-12)
and quantified by comparing drought metrics between urban (ΔDCUi) and rural
(ΔDCRi) station pairs (Eq. 9). Maps illustrate the spatial distribution of %UE for five
drought metrics: mean drought duration (MDD),mean drought peak (MDP), mean
drought severity (MDS), mean drought intensity (MDI), and total number of
droughts (TND). Color and symbol coding represent themagnitude and direction of

urbanization effects. MD and ED denote “mitigating drought” and “exacerbated
drought” conditions, where urbanization contributed to reducing or intensifying
drought severity, respectively. The analysis includes stations that transitioned from
rural to urban before 1985 (Ub, urbanized before 1985). Bottom panels summarize
mean urbanization effects (MUE, %) on ΔDC between the pre-1985 and post-1985
periods, highlighting systematic positive and negative changes in drought char-
acteristics associated with urban growth.
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drought metrics. In contrast, recently urbanized stations (urbanized after
1985,Ua)displayedmorepronounceddroughtmitigation.MUEforΔMDD
ranged from –15.5% to –34.0%, while Ub stations showed slightly less
pronounced reductions (–15.0% to –31.9%). Comparablemitigation trends
were observed for ΔMDS (–15.7% to –36.8% in Ua vs. –15.6% to –29.6% in
Ub),ΔMDI (–7.0% to –15.3% inUa vs. –6.9% to –14.6% inUb), andΔMDP
(–4.5% to –12.1% in Ua vs. –6.2% to –10.6% in Ub). These patterns suggest
that more recent urban development may benefit from climate-resilient
infrastructure or increased occurrence of localized convective rainfall
events, helping to offset the adverse effects of urbanization on drought
severity.

Furthermore, we used Joint return period (JRP) of drought to char-
acterize drought frequency risk, representing the time intervals between
drought events under different climate patterns in China, classified using

PCA (Supplementary Figs. 2 and 3). The drought return period was cal-
culated based on the joint distribution of DD and DS, modeled using a
copula function (see Methods section). Given the strong correlation
between drought duration and severity, we observed that some urban sta-
tions exhibit shorter return periods then to their rural counterparts (Fig. 7),
particularly for PC2 and PC5, representing Shanghai and Kunming,
respectively.

For instance, the urban station in Shanghai (PC2) recorded only four
TND events with JRP ≥ 10 years, compared to six events at its paired rural
station. Similarly, the Kunming (PC5) urban station recorded only two
TND events with JRP ≥ 10 years, compared to five events at its paired rural
station. These findings suggest that urban stations in PC2 and PC5 are at an
increased risk of experiencing prolonged and severe drought events of a
given magnitude and intensity, with shorter return periods. Conversely,

Fig. 7 |Bivariate drought probabilities and joint return periods (JRPs) of drought risk
for urban and rural stations, defined by drought duration and severity, are presented
to demonstrate the intervals between drought events under varying climate patterns

in China. Climate patterns of SPEI were derived using PCA (Supplementary Figs.
2 and 3). Based on SPEI-3, the analysis applied bivariate copulas and OR-based
return periods (Tor) to evaluate drought events from 1951 to 2020.
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some urban stations exhibit longer return periods than their rural coun-
terparts (Fig. 7), particularly for PC1, PC4p, and PC6, representing Beijing,
Nanjing, andUrumqi, respectively. For example, theurban station inBeijing
(PC1) recorded five TND events with JRP ≥ 10 years, compared to only two
events at its paired rural station. These findings indicate that urban stations
in PC1, PC4p, and PC6 are at a reduced risk of experiencing prolonged and
severe drought events of a givenmagnitude and intensity,with longer return
periods. Refer to Supplementary Table 1 and Supplementary Fig. 5 formore
detailed drought frequency results.

Discussion
The inconsistency between SPI and SPEI trends reflects the
influence of warming effects
The observed inconsistency between SPI and SPEI trends underscores the
influence of warming on drought dynamics across mainland China. While
SPI—based solely on precipitation—often shows widespread positive
trends, SPEI trends are predominantly negative, especially at longer time
scales (SPEI-6, SPEI-9, and SPEI-12). This divergence highlights the critical
role of temperature-driven increases in evapotranspiration, which are
captured by SPEI but overlooked by SPI.

The MK test results reveal substantial spatial and temporal variability
in SPEI trends, reflecting the complex interplay between climatic warming,
precipitation variability, and hydrological drought. Across all time scales, a
higher proportion of negative SPEI trends indicates intensifying drought
conditions as warming exacerbates atmospheric water demand. This is
particularly evident in regions such as northern China, Yunnan, Sichuan,
andChongqing,where downward SPEI trends contrastwith neutral or even
positive SPI trends.

The strongerdecline in SPEI-12 compared to SPI-12, especially in areas
north of the Qinling–Huaihe Line, provides compelling evidence that
warming amplifieswater deficits over longer periods. This supportsfindings
by Alsafadi et al.72 and Sun et al.55, who emphasized the increasing role of
evaporative demand in driving hydrological drought under climate change.
Theil-Sen’s slope (TS) analysis further reinforces this pattern, showing
spatially divergent SPEI trends. Significant declines are concentrated near
the Hu–Huanyong Line, including major urban centers such as Beijing,
Tianjin, and Shandong, where rapid urbanization and associated climatic
stress likely exacerbate drought conditions. In contrast, regions such as the
northwestern arid zones, the Qinghai–Tibet Plateau, and parts of south-
eastern China exhibit positive SPEI trends this supports findings by Wang
et al.73, potentially due to localized hydrological resilience or differing cli-
mate drivers. While this research suggests a potential link between urba-
nization and the onset or intensification of local droughts, definitive
quantitative evidence from long-term observational records in China
remains limited. The contrasting trends in early-urbanized versus recently
urbanized regions imply that urbanization may play a dual role—either
intensifying or mitigating drought—depending on regional climatic,
hydrological, and land-use contexts. This duality will be further investigated
in the following sections through detailed analyses of urban effects on
drought characteristics.

The heatmaps (Fig. 1m–o) offer further temporal resolution, showing
howthedirectionand intensity of trends vary acrossdifferent start–end time
windows. For SPEI-12, the heatmap reveals persistent and intensifying
negative trends, particularly in windows beginning in the 1980s and
extending into the 2010s, where over 80% of the time windows exhibit
statistically significant declines. This period coincides with the accelerated
warming phase in China, reinforcing the interpretation that temperature-
driven evapotranspiration is a dominant force behind the observed drying
trends. In contrast, SPEI-3 and SPEI-6 display less pronounced and more
variable trends, indicating that short-term drought patterns are more
influenced by precipitation variability and less sensitive to evapotranspira-
tion effects. This temporal contrast emphasizes that longer accumulation
periods (e.g., SPEI-12) are more effective for capturing the cumulative
hydrological impacts of warming, making them essential for drought
monitoring and climate adaptation planning. Overall, these results

underscore that regional warming has not only intensified drought severity
but also altered its temporal persistence and spatial expression, especially
over extendedperiods and innorthern andurbanized regions ofChina. This
highlights the need for long-term, temperature-sensitive drought indices
like SPEI-12 in future climate impact assessments.

Changes in drought characteristics and the effects of warming
The analysis of changes in drought characteristics (ΔDC), particularly the
differences between post-1985 (MDCpo85) and pre-1985 (MDCpr85)
periods, provides further insights into the effects of warming. The observed
increases in drought duration (ΔMDD) and severity (ΔMDS) at longer time
scales, such as SPEI-12, indicate that warming-driven changes in hydro-
logical cycles are intensifying drought conditions across much of China74.
Regions near the Hu-Huanyong Line, as well as Yunnan, Sichuan, and
Chongqing, show significant upward changes in drought attributes, con-
sistent with broader climatic warming trends. These findings are corrobo-
rated by studies which similarly identify contrasting trends in extreme
drought events between eastern and western China75–77. This observation is
consistent with the findings of Liang et al.75, who identified contrasting
patterns in extreme drought events: cities east of the Hu-Huanyong Line
exhibit upward trends, while those west of the line demonstrate downward
trends.

The interplay between UHI effects and urban microclimates in arid
regions creates phenomena such as Urban Wet Islands (UWI), where
localized rainfall candiminishdrought impacts relative to surrounding rural
areas. Urban zones often experience intense and sporadic precipitation
events driven by anthropogenic aerosols, which act as cloud condensation
nuclei (CCN). These aerosols foster cloud formation and rainfall during
warm rain78–80. However, in polluted atmospheres, aerosols can alter cloud
microphysics, extending rainfall durations or intensifying precipitation
during specific events67,81–83. This intricate dynamic often leads to frag-
mented precipitation patterns that reduce the frequency and severity of
prolonged droughts in some urban areas. Interestingly, the magnitude of
change in drought intensity (ΔMDI) and peak (ΔMDP) demonstrates
moderate increases across various time scales, suggesting that while drought
events are becoming more frequent and prolonged, their intensity is not
increasing as sharply. This particular observation highlights the importance
of evaluating multiple metrics to capture the full complexity of drought
dynamics under warming scenarios.

On the other hand, urbanization can exacerbate drought conditions in
certain cities. Replacing vegetated areas with impervious surfaces reduces
evapotranspiration and the availability of local atmospheric moisture,
contributing to the development of Urban Dry Islands (UDI)84,85. This
reduction in vegetative cover diminishes latent heat flux (LE), impairs water
vapor exchange and evapotranspiration50. Impervious surfaces also alter soil
heat capacity and reduce infiltration rates, increasing sensible heat flux
(H)86,87. These combined effects elevate vapor pressure deficits (VPD),
increase potential evapotranspiration (PET), and reduce relative humidity
(RH), creating drier urban environments and reinforcing drought condi-
tions (see Fig. 8). The higherVPD suppresses light rainfall (LP) and sustains
droughts.

The statistically significant differences inMDCmetrics (***P < 0.001)
between pre- and post-1985 periods confirm the role of global warming in
amplifying drought conditions. The strong correlation between MDD and
MDS across both periods further suggests a consistent linkage between
drought duration and severity, reinforcing the hypothesis that warming-
induced evapotranspiration is a key driver of these changes.

Urbanization and its impact on drought dynamics
Urbanization exerts a complex and dual influence on meteorological
drought dynamics, impacting its duration, intensity, and frequency across
urban areas54.While itmaymitigate drought conditions in some cities, it can
exacerbate them in others, depending on interactions among climate, land-
surface dynamics, and anthropogenic factors50. In urban environments,
impervious surfaces such as asphalt and concrete replace natural vegetation,
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limiting water infiltration, increasing surface runoff, and disrupting natural
water cycles and energy balances88,89. Furthermore, heat emissions from
industrial processes, transportation, and dense infrastructure contribute to
localized warming, commonly referred to as the UHI effect90. This localized
warming alters wind circulation patterns, enhances convection, and facil-
itates the formation of convective clouds like cumulonimbus, which can
produce heavy rainfall91–93. In this context, Liang et al.75 observed that
extreme rainfall events in most Chinese cities exhibit increasing trends
specifically in eastern China. Additionally, UHI-induced warming can
channel moisture-laden air into cities, leading to localized rain events that
partially alleviate drought severity and duration.

The results also reveal the multifaceted influence of urbanization on
drought dynamics. The Welch’s t-test indicates that urbanization has both
exacerbating and mitigating effects, depending on the specific drought
metric and region. For shorter time scales (SPEI-3 andSPEI-6), urbanization
appears to intensify MDD and MDS, with regional MUE of +4% to +9%
(Fig. 3.). This intensification is likely due to UHI effects, which enhance
evapotranspiration and reduce soil moisture availability in urbanized areas.

Conversely, the results show that urbanization mitigates drought
conditions in approximately 45–50% of urban stations, particularly at
longer time scales (SPEI-9 and SPEI-12). This mitigationmay be attributed
to improved water management and infrastructure in urban areas, which
could buffer against prolongeddrought impacts. Theobserved reductions in
MDP and in ΔMDI in some urban areas support this hypothesis.

The increase in the frequency of drought events (i.e., TND) in urban
stations, despite urbanization intensifying the duration and severity of
drought, can be attributed to several interrelated factors. One primary
reason is fragmented precipitation patterns caused by anthropogenic
aerosols and pollution, which alter cloud microphysics, suppress light

rainfall, and create localized disruptions in precipitation94,95. These factors
lead to intermittent and fragmented rain events that fail tomitigate drought
conditions effectively.On the other hand, theUHI effect intensifies localized
warming, fostering conditions favorable for short-lived convective pre-
cipitation events. While these events may briefly interrupt prolonged
drought periods, they typically do not supply enough moisture to alleviate
the overall drought duration and severity, instead resetting thedrought cycle
more frequently. Urban areas also exhibit a heightened sensitivity to water
balance deficits due to altered atmospheric hydrology and higher eva-
porative demand. This increased sensitivity makes urban areas more vul-
nerable to short-term water balance deficits, rapidly classified as drought
events, contributing to a higher recorded frequency of droughts.

Aerosols, categorized as anthropogenic andnatural (e.g.,mineral dust),
significantly influence precipitation, with effects varying by intensity.
Anthropogenic aerosols often suppress precipitation in northern China
while enhancing it in southern China96,97. Simulations by Shao et al.70

showed that these aerosols intensify heavy precipitation by 70.96% but
reducemoderate and light precipitationby 24.87%and86.43%, respectively.
Their effects also vary diurnally, suppressing daytime precipitation by sta-
bilizing the atmosphere and reducing convection but enhancing nocturnal
convection and extreme precipitation98.

Mineral dust aerosols, recognized as CCN and ice-nucleating particles
(INP), also exhibit dual roles in precipitation. They suppress weak pre-
cipitation but intensify heavy rainfall by activating mixed-phase clouds and
forming ice crystals99. For instance, dust aerosols significantly increase
convective clouds and torrential rain100. Regional studies highlight varied
responses: in the Himalayas, dust enhances heavy precipitation in higher
terrains101, while in the Sierra Nevada and the Red Sea, dust modulates
precipitation differently based on elevation and synoptic conditions102.

Fig. 8 | Schematic representation of urbanization’s dual role in exacerbation and
mitigation of drought (ED andMD) dynamics. The figure illustrates the dual role of
urbanization in exacerbating and mitigating drought dynamics (ED andMD) using
SPEI data from 700 stations across China from 1951–2020. The flowchart in the
lower section outlines the characterization of drought (DC) events based on their
duration (DD), severity (DS), intensity (DI), and peak (DP). It also depicts the
calculation of drought characteristics (ΔDC) changes between two periods (pre-
1985 and post-1985). Subsequently, urban effects (UE) on ΔDC were analyzed to

identify changes in drought characteristics for urban-rural paired stations. Notes:
Tair Air temperature, LP Light precipitation, HP Heavy precipitation, RH Relative
humidity, PET Potential evapotranspiration, AET Actual evapotranspiration, VPD:
Vapor pressure deficit, H Sensible heat flux, LE Latent heat flux, UHI Urban heat
island. Note: The visual elements of the figure were created using vector assets from
Vectorpocket (Freepik.com) and ArcGIS 10.8, while additional components were
designed using Microsoft PowerPoint.
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Urbanization timing and its role in changing drought dynamics
The timing of urbanization has emerged as a critical factor in changing local
drought dynamics, a finding that aligns with and extends the growing body
of literature on urban climate impacts. In this study, we found that early-
urbanized stations (Ub) are consistently associated with exacerbated
drought conditions, particularly evident in short-term drought frequency
(ΔTND) and severity indices (ΔMDS and ΔMDI). This is reflected in the
high proportion of urban stations exhibiting exacerbation of drought (ED)
and in the positive values of the MUE. In contrast, recently urbanized
stations (Ua) demonstrated a more heterogeneous response, with many
stations showing droughtmitigation (MD), particularly at longer timescales
such as SPEI-12. These contrasting patterns underscore the significance of
urbanization history in modulating local hydroclimatic conditions.

The findings for Ub stations are consistent with earlier studies that
attribute intensified drought risk in older urban cores to long-term land-use
legacies, including increased impervious surfaces, suppressed evapo-
transpiration, and altered surface energy balances103,104. For example, Huang
et al.71 demonstrated that nearly 40%of cities globally experiencedworsened
extreme drought conditions due to sustained urban expansion, particularly
in regions where green infrastructure was historically limited. These find-
ings aremirrored inour results,where urbanizationprior to 1985 (Ub) led to
clear and consistent increases in drought severity and frequency across
multiple timescales.

Conversely, Ua stations, urbanized after 1985, displayed mixed but
oftenmitigative effects on drought characteristics. Severalmechanismsmay
explain this pattern. Recent urban expansions may have integrated green
spaces, water-sensitive urban design, and climate adaptation strategies,
which enhance local water retention and reduce surface runoff. Moreover,
modern urban forms may induce localized convection through the UHI
effect, potentially increasing precipitation frequency and intensity, espe-
cially in short-duration events105. For instance, studies in rapidly growing
Chinese cities like Urumqi have shown that UHI-driven convective rainfall
can offset drought tendencies in newly urbanized zones106 This supports the
observed drought mitigation trends in Ua stations, particularly for ΔMDD
and ΔMDS (See PC6 results in Supplementary Table 1.).

Importantly, short-term drought indices (e.g., SPEI-3 and SPEI-6)
were more sensitive to the influence of early urbanization, likely due to the
cumulative impacts of impervious surface buildup, altered hydrology, and
reduced soil moisture retention over decades. These results emphasize that
legacy effects of urban land-use are deeply embedded in the drought
response of cities and are not easily reversed.

Furthermore, spatial analysis indicates that urban drought exacerba-
tion is more pronounced in eastern and central China, regions with high
urban density and early industrial development. This spatial alignmentwith
long-standing urbanization further supports the idea that historical land-
use changes play amore decisive role thanmere urban extent in influencing
local drought regimes.

Drought frequency risk and joint return period analysis (JRP)
The JRP analysis provideed valuable insights into the risk of prolonged and
severe drought events under different climatic patterns. Urban stations,
particularly in regions like Shanghai (PC2) and Kunming (PC5), exhibit
shorter return periods for drought events compared to their rural coun-
terparts. This increased risk highlights the compounded vulnerability of
urban areas to extreme drought conditions, driven by a combination of
climatic and anthropogenic factors. Conversely, urban stations in Beijing
(PC1), Nanjing (PC4p), and Urumqi (PC6) exhibit longer return periods,
suggesting reduced drought frequency risk in these regions. These findings
may reflect localized climatic or infrastructural factors thatmitigate drought
impacts in certain urban areas.

Research Contributions, gaps, and Limitations
This study reveals the complex and spatially heterogeneous nature of
drought dynamics across China, driven by the combined influences of
regional warming, evolving land-use patterns, and the pace and timing

of urbanization. The clear divergence between SPI and SPEI trends
underscores the growing importance of temperature-driven evapo-
transpiration in shaping drought conditions—especially in northern
China and other warming-prone regions—highlighting how conven-
tional precipitation-based indices may underestimate drought risk
under climate change. Urbanization is identified as a critical modifier
of local drought characteristics, with its effects varying based on his-
torical context and development trajectories. Stations urbanized
before 1985 (Ub) consistently exhibit more severe and frequent short-
term droughts, as shown by high ΔTND, ΔMDS, and ΔMDI values
and predominantly positive MUEs. In contrast, more recently urba-
nized areas (Ua) often display mixed responses, with many showing
signs of drought mitigation—particularly at longer timescales—likely
due to improved urban planning practices, integration of green
infrastructure, and adaptive climate responses in newer developments.

These findings reinforce the importance of urbanization timing in
assessingdrought vulnerability and resilience.Historical land-use legacies in
early-urbanized regions continue to amplify drought risks, while recent
urban growth presents opportunities to implement more climate-resilient
designs. In terms of policy and adaptation, the results emphasize the need
for time-sensitive and spatially tailored urban planning strategies. Inte-
grating green infrastructure—such as vegetated surfaces, permeable pave-
ments, and rainwater harvesting systems—can help alleviate the urban heat
island effect and mitigate drought impacts. Additionally, promoting water-
efficient technologies and irrigation practices, particularly in agricultural
regions vulnerable to warming-induced water stress, is vital. Incentivizing
drought-resistant crops and improving irrigation efficiency in northeastern
China are practical steps toward enhancing water security. Ultimately, this
research provides actionable insights for policymakers, urban planners, and
climate resilience stakeholders, offering a pathway toward more adaptive
and sustainable urban development in the face of accelerating climate
change.

This studyhelps bridge this gap through several keycontributions: (i) It
utilizes dynamic, high-resolution land-use data (GISAv.3.0) to classify
meteorological stations based on urbanization timing (i.e., pre-1985 vs.
1985–2020), enabling a temporally nuanced analysis of urbanization’s
effects. (ii) It applies a spatial pairing approach between urban and rural
stations, controlling for elevation and proximity, which helps isolate
urbanization-specific impacts from broader regional climate trends. (iii) It
quantifies urbanization’s dual role—both in exacerbating and mitigating
drought characteristics—a dimension that is seldom captured within a
unified analytical framework. (iv) It offers novel insights into the temporal
sensitivity of urban effects on drought indices across different time scales
(e.g., SPEI-3 vs. SPEI-12), thus enhancing the temporal resolution and
interpretability of urban drought dynamics.

However, we acknowledge several limitations in our approach:
(i) Although the stations classified as rural, some stations may still be
affected by indirect anthropogenic influences such as agricultural
activities or peri-urban expansion. (ii) The assumption that paired
rural stations reflect only broad-scale climatic forcings may not
always be valid, especially in transitional or semi-developed regions.
(iii) The station classification is based on a threshold of 33%
impervious surface within a 2 km buffer, which—while consistent
with high-resolution land-use standards—may oversimplify the
complexity of urban morphology and overlook subtle land-use
transitions. (iv) While the urban–rural pairing method helps isolate
urbanization effects, the attribution could be further refined through
pixel-level land cover transition analysis, particularly in areas with
fine-scale spatial heterogeneity or recent rapid development. Despite
these limitations, our study contributes methodologically and con-
ceptually by integrating high-resolution spatial data with temporally
sensitive trend analysis. This dual-scale framework provides new
insights into the multifaceted role of urbanization in modulating
drought dynamics and offers valuable guidance for urban planners
and climate adaptation strategies.
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Methods
Study area and data collection
China, located in the eastern region of the Eurasian continent, spans from
approximately 3°51′N to 53°33′N in latitude and 73°33′E to 135°5′E in
longitude, covering a vast land area of around 9.6million square kilometers.
Its eastern border meets the Pacific Ocean, while the southwestern border
adjoins the Qinghai-Tibet Plateau. These diverse geographical features give
rise to distinct climate patterns, categorized as monsoon and continental
climates107,108. In China, most precipitation is concentrated during the
summer across most regions, although its distribution varies. The eastern
regions receive higher precipitation levels than the western areas, with a
gradual decline in precipitation from the southeast coast to the northwest
inland. This phenomenon is attributed to the influence ofwintermonsoons,
which are cold and dry during the winter while summer monsoons origi-
nating from the ocean bring warmth and rain and impact during the
summer months109,110.

The extensive eastern region of China is significantly influenced by the
southeast and southwest monsoons, resulting in abundant rainfall. In
contrast, the inland northwest experiences limited precipitation due to the
weaker influence of the summer monsoon (Supplementary Fig. 4). For this
study, monthly precipitation data for the period 1951–2016 were collected
from the China Meteorological Data Sharing Service System (http://data.
cma.cn/en, accessed on 28 February 2018). The dataset included records
from 756 benchmark ground observation stations across most parts of the
country. However, due to data limitations, 52 stations were excluded.

To address missing data, monthly precipitation records from 1951 to
2020 were obtained from the Global Precipitation Climatology Center111

(GPCC) (http://gpcc.dwd.de/, accessed on 24 February 2023). These data
were used to correct and fill missing values using linear equations, resulting
in a final dataset covering 700 stations for the 1951–2020 period (Supple-
mentaryFig. 4). Theprecipitationdataunderwent ahomogeneity test before
being utilized for drought index analysis. Supplementary figures (Supple-
mentary Figs. 5 and 6) provide additional details on the GPCC data’s per-
formance in correcting missing values, demonstrating a high correlation
with observed precipitation records.

Similarly, evapotranspiration data for the 1951–2020 period were
obtained from the Climatic Research Unit’s global gridded dataset112 (CRU
TS v4.06) at the University of East Anglia, UK (https://crudata.uea.ac.uk/
cru/data/hrg/, accessed on 1 February 2023). SPI/SPEI values calculated
over a 3-, 6-, 9-, and 12-month period for the entire study area are presented
as a two-dimensional array.

Drought indices calculation
To evaluate the effects of urbanization on local meteorological drought, we
utilized the SPEI113 as the primary metric for assessing drought conditions.
Unlike other indices such as the PalmerDrought Severity Index, SPEI offers
flexibility througdh its variable timescales, making it suitable for analyzing
long-,medium-, and short-termdrought events.Urbanizationoften leads to
significant changes in impervious surfaces and vegetation cover, and SPEI’s
inclusion of evapotranspiration provides amore comprehensivemeasure of
the impact of atmospheric aridity on water resources and ecosystems. SPEI
is derived by transforming thewater balance (precipitationminusPET) into
a log-logistic distribution, a method extensively applied in prior
research24,43,114. PET was calculated using the FAO-56 Penman-Monteith
approach,whichwas recognized for its accuracyand implementedwithdata
from the CRU TS v4.06 dataset. Additional details regarding the compu-
tation of SPEI can be found in Supplementary Note 1.

Temporal patterns (trend analysis, principal components
analysis)
To calculate SPEI temporal patterns across China, the MK115,116 was used.
The MK statistical test, recommended by the World Meteorological
Organization (WMO) for hydro-climatic data analysis, is widely used as a
non-parametric method for analyzing time series. Unlike other tests, the
MK test does not require the data to follow a specific distribution. It is

commonly applied to identify trends in hydro-meteorological time series,
such as rainfall, temperature, anddrought indices72. TheMK test is robust in
detecting trends and is unaffected by outliers or non-normal distribution.
This study used theMK test to determine statistically significant increasing
or decreasing trends in SPEI within a 95% confidence interval (p < 0.05)
over a specific period. Autocorrelations in time series can influence the
results of the MK test, as observed in previous studies117. The TS’s slope
estimator assessed themagnitude and extent of trends in SPI and SPEI time
series118,119. The TS’s slope estimator is a non-parametric method for esti-
mating the slope of a linear regression model. This method is robust to
outliers and makes no assumptions about the data distribution. It is parti-
cularly useful when dealing with data that contains outliers or when the
relationship between variables is not strictly linear. Additional details
regarding the TS slope estimator andMK test computation can be found in
Supplementary Note 2.

To comprehensively assess SPEI trends across various timescales, we
analyzed all possible temporal windows of 30 years or longer within the
study period. Thismethod helped evaluate the sensitivity of observed trends
(both positive and negative) to variations in the selected timeframe120. The
findings were represented through heat maps, which showcased the trend
magnitude (calculated using TS’s slope) alongside statistical significance
(determined by the MK test). Considering the large number of observation
stations, creating individual heatmaps for eachwas not feasible. Instead, we
employed Principal Component Analysis (PCA) in S-mode121 to condense
and identify spatial patterns with similar SPEI trends.

The analysis prioritized SPEI-12 due to its reliability in reflecting long-
term trend stability. Six principal components (PCs) were derived from the
dataset beginning in 1951, accounting for 46.3% of the total regional SPEI
variance. These components exhibited a uniform distribution across
mainland China (Supplementary Fig. 1). Each PC was paired with its most
correlated station, and the corresponding trendswere visualized in the same
units as the original SPEI data. This facilitated the depiction of decade-scale
changes and trend patterns via heat maps. Analyzing the spatial distribu-
tions of the component loadings, we pinpointed the geographic areas most
influenced by each trend pattern. This analysis was instrumental in
understanding the impact of urbanization on meteorological drought
conditions in cities with diverse climates and SPEI characteristics.

Drought identification and characterization
We defined five drought metrics based on SPEI to analyse drought devel-
opment further. For each station, we identified the thresholds for the onset
and termination of drought events across two periods reflecting the indirect
effects of urbanization: 1951–1985 and 1985–2020. This analysis utilized
Run Theory to determine drought characteristics systematically. The Run
theory, proposed by Yevjevich et al.122, is a widely utilized method for
characterizing drought events123. In this approach, a run refers to a con-
secutive period in a time series where all values remain below a specified
threshold124. This studydefines a drought event followingMcKee et al.125 as a
sequence of negative SPEI values lasting at least onemonth, with the lowest
SPEI value below -1. Characterizing drought events holds significant
importance for several reasons. Firstly, prolongeddroughts can substantially
impact agriculture, vegetation growth, and the local environment126. Sec-
ondly, identifying drought events starting fromnegative SPEI values can aid
in improving drought early-warning systems. TheRun theory allows for the
definition and characterization of a drought event based on its duration
(DD), severity (DS), intensity (DI), and peak (DP). DD is determined by
calculating the number ofmonths between the start and end of the drought.
DS ismeasured as the absolute sumof SPEI/SPI values during drought.DI is
obtained by calculating the average SPEI valueswithin the drought duration
anddividing it by the duration.DP refers to the lowest SPEI value during the
drought peak time.

Drought event indices are calculated using the Run theory at each
station to analyse the spatiotemporal characteristics of drought55. This
allows us to determine the total number of drought events (TND) and
calculate the mean drought duration (MDD), mean drought severity
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(MDS),meandrought intensity (MDI), andmeanpeakvalue (MDP)at each
station (Supplementary Fig. 7 based on SPEI data and Supplementary Fig. 8
for SPI data). Identifying the season when droughts are initiated can greatly
contribute to regional drought mitigation efforts.
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ΔDC is the change value of drought attribute, MDC po85 and
MDCpr85 the are drought attribute post-1985 and pre-1985, including
MDD, MDS, MDI, MDP, TND), and MDC is the mean drought
characteristics.

Joint return period (JRP) of drought using bivariate copula
Toevaluate drought characteristics comprehensively,we integrateddrought
duration and severity using copula functions127. Due to their adaptable
marginal distributions, these are highly versatile for modeling inter-
dependent hydrometeorological variables. Joint return periods (JRPs) were
calculated for drought events across six distinct SPEI drought patterns
identified through PCA over China. This analysis utilized three primary
copula families—Gaussian, Frank, and Gumbel—to estimate the joint dis-
tributionof droughtduration and severity.Among thevarious returnperiod
definitions, such as “OR”, “AND”, Kendall, and dynamic methods, the OR
criterion (Tor) was predominantly employed to assess drought occurrence
probabilities128. Themarginal distributions of drought duration and severity
were first determined using six statistical distributions: Gamma, General-
ized Extreme Value (GEV), Weibull, Normal, Log-normal, and Inverse
Gaussian. The best-fitting marginal and copula functions were selected
using the Akaike Information Criterion (AIC)129 and Ordinary Least
Squares (OLS). For more details see Supplementary note 3.

Based on Sklar’s theorem127, the joint probability distribution was
formulated as Dðd; sÞ ¼ CðDDðdÞ;DsðsÞÞ, where C represents the copula
function, andDDðdÞ andDSðsÞ denote the cumulative distribution functions
for drought duration and severity, respectively. Each region’s most suitable
copula family was identified, allowing for precise estimation of bivariate
drought probabilities and JRPs130,131. Similarly, the Gaussian, Gumbel, and
Frank copulas are ranked as the bivariate suggested distributions:

CGaussian θð Þ ¼ ΦθðΦ�1ðDDÞ;Φ�1ðDSÞÞ; θ 2 ð�1; 1Þ

CGumbel θð Þ ¼ exp � �lnðDDÞ
� �θ þ �lnðDSÞ

� �θ
h i1

θ

� �

; θ 2 ½1;1Þ

CFrank θð Þ ¼ � 1
θ ln 1þ e�θDD�1ð Þ e�θDS�1ð Þ

e�θ�1ð Þ
� �

; θ 2 �1; 0ð Þ; 0; 1ð Þð Þ

8
>>>>><

>>>>>:

9
>>>>>=

>>>>>;

ð6Þ

In recent studies employing the copula framework, several meth-
odologies for JRPs have been proposed132,133. These include the “OR”,
“AND”, Kendall, and dynamic-based return period approaches127,131. Of
these, the OR-based return period (Tor) is the most commonly applied
method, particularly for analyzing the occurrence probabilities of extreme

events such as droughts and floods134,135 and can be expressed as:

Tor ¼
El

1� F d; sð Þ ¼
El

1� C½DD dð Þ;DSðSÞ�
ð7Þ

El represents the inter-arrival time for estimated drought (D) events
under the bivariate analysis framework. The calculation of Tor is influenced
by the wide range of possible combinations of drought events. Its deter-
mination can be achieved using the following mathematical formulation136:

d�; s$�
� � ¼ argmaxD d; sð Þ ¼ C½DD dð Þ;DSðSÞ�f D dð Þ; f SðSÞ

C DD dð Þ;DS Sð Þ� � ¼ 1� El=Tor

( )

ð8Þ

The joint distribution of drought events, denoted as D d; sð Þ,
is described by the copula function, C DD dð Þ;DS Sð Þ� 	 ¼
dC dð Þ;DSðSÞ

dðDD dð ÞÞ ; dðDD dð ÞÞ represents the copula density function, while

fD dð ÞandfS Sð Þ correspond to the probability density functions for drought
duration DD dð Þ and drought severity DSðSÞ, respectively.

This approachoffered significant insights into the spatial and temporal
patterns of drought intensification, providing a comprehensive framework
to evaluate the combined impacts of drought duration and severity under
diverse climatic conditions across China. The variation in JRP between
urban and rural station pairs was utilized to quantify the influence of
urbanization on drought frequency.

Assessing the impact of urbanization on local drought
To investigate the impact of urbanization on local drought conditions,
meteorological stations were classified as either urban or rural based on
land-use data from 1985 and 2020, which capture patterns of urban
expansion. Stationswere categorized according towhether they transitioned
from rural to urban prior to 1985 (urbanized before 1985) or during the
period 1985–2020 (urbanized after 1985). This classification utilized
dynamic GISA v.3.0 impervious surface areas (ISA) data137, where circular
buffers were generated around each station to calculate the proportion of
impervious surface area. Stations with impervious surface fractions
exceeding a predetermined threshold were classified as urban, while those
below the threshold were designated as rural138–140 (Supplementary Fig. 4).

In this study, a buffer radius of 2 km and an impervious surface
threshold of 33% were applied, consistent with best practices for 30m
resolution land-use data. These parameters align with prior research, which
typically uses a 7 km radius with a 20% threshold for 1 km resolution data
anda2 kmradiuswith a 33%threshold forhigh-resolutiondatasets50,71,103,141.

Toaccount for regional variability, eachurban stationwaspairedwith its
nearest rural counterpart within a 100 km radius138,139. Rural stations with an
elevationdifference exceeding 500m from theurban stationwere excluded to
minimize topographic influences71. Drought metrics for each urban-rural
pair were analyzed, with differences attributed to the effects of urbanization.

The urbanization effect (UE) was quantified by examining changes in
drought characteristics (4DC) between two periods (pre-1985 and post-
1985). The UE on 4DC was applied to identify these changes in DC for
urban-rural pairs stations, providing a robustmeasure of urbanization’s role
in shaping local drought dynamics (Fig. 8).

UE %ð Þ ¼ ΔDCUi � ΔDCRi ð9Þ

Where ΔDCUi and ΔDCRi represent changes in drought attributes for for
urban-rural pairs stations, respectively. And ΔDC %ð Þ can be calculated
based on ðEq. 5). Thus, the difference in the change of drought
characteristics between urban and rural stations (ΔDCUi � ΔDCRi) is
interpreted as the UE, with the rural trend acting as a baseline for broader
climate-driven changes. To assess the statistical significance of differences in
ΔDC between urban and rural stations, we appliedWelch’s t-test For more
details see Supplementary note 4.
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Codes availability
The Python code for calculating drought characteristics is available in the
GitHub repository (https://github.com/Karam-lab7/Python-code-for-
drought-characteristics). This code computes drought characteristics and
applies Run Theory to systematically identify and analyze drought events.

Data availability
Precipitation data (1951–2020) used in this study were sourced from the
China Meteorological Data Sharing Service System (http://data.cma.cn/en)
and the Global Precipitation Climatology Centre (GPCC) dataset (http://
gpcc.dwd.de/). Evapotranspiration data for the same period were obtained
from the Climatic ResearchUnit’s gridded dataset (CRUTS v4.06) (https://
crudata.uea.ac.uk/cru/data/hrg/). Impervious surface area (ISA) data from
1985 to 2020, at a 30-meter spatial resolution, were derived from the GISA
v3.0 dataset available via the Zenodo repository (https://zenodo.org/
records/14848113). Monthly SPI and SPEI data across multiple time-
scales, developed and used in this study, are accessible on Figshare (https://
doi.org/10.6084/m9.figshare.28429727.v2) and Dryad (https://doi.org/10.
5061/dryad.zpc866tkp).
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