Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Sustainable aquaculture development in sub-Saharan Africa

Aquaculture must grow above the current rate of 11% per year to meet projected demand and reduce dependence on seafood imports. Government support and private investment are urgently needed for sustainable growth.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Annual growth rate in production volumes for aquaculture, tilapia (Oreochromis niloticus) and catfish (Clarias gariepinus).

References

  1. FishStatJ Datasets (2000–2019) (FAO, accessed 20 June 2021).

  2. Musinguzi, L. et al. J. Great Lakes Res. 45, 1340–1347 (2019).

    Article  Google Scholar 

  3. Chan, C. Y. et al. Glob. Food Secur. 20, 17–25 (2019).

    Article  Google Scholar 

  4. Ragasa, C. et al. A Blue Revolution in Sub-Saharan Africa? Evidence from Ghana’s Tilapia Value Chain (IFPRI, 2018).

  5. Clough, S. et al. Integr. Environ. Assess. Manag. 16, 934–941 (2020).

    Article  Google Scholar 

  6. Obirikorang, K. et al. Front. Sustain. Food Syst. https://doi.org/10.3389/fsufs.2021.705549 (2021).

  7. Tran, N. et al. Aquaculture 536, 736846 (2021).

    Google Scholar 

  8. Henriksson, P. et al. Aquaculture 468, 53–59 (2017).

    Article  Google Scholar 

  9. Barria, A. et al. Heredity 127, 334–343 (2021).

    Article  CAS  Google Scholar 

  10. Ramirez-Paredes, J. P. et al. Transbound. Emerg. Dis. 68, 1550–1563 (2021).

    Article  CAS  Google Scholar 

  11. Jansen, M. D., Dong, H. T. & Mohan, C. V. Rev. Aquac. 1, 725–739 (2018).

    Google Scholar 

  12. Mugimba, K. K. et al. J. Fish. Dis. 41, 1181–1189 (2018).

    Article  CAS  Google Scholar 

  13. Ssepuuya, G. et al. J. Insect. Food Feed 3, 289–302 (2017).

    Article  Google Scholar 

  14. Verdegem, M. et al. Sustainable and Accessible Fish Feeds for Small-Scale Fish Farmers FISH-2021-06 (CGIAR FISH, 2021).

  15. Dickson, M. et al. Aquaculture 465, 172–178 (2016).

    Article  Google Scholar 

  16. Adoption of Fingerling Production Technologies transforms livelihoods in Kenya. Relief Web https://go.nature.com/3rFCj3Y (2021).

  17. Ragasa, C. et al. Aquaculture 547, 737476 (2022).

    Article  CAS  Google Scholar 

  18. WorldFish Nigeria Strategy 20182022 (WorldFish, 2018).

  19. Takeshima, H. et al. Solar-Powered Cold-Storages and Sustainable Food System Transformation: Evidence from Horticulture Markets Interventions in Northeast Nigeria (IFPRI, 2021).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Ragasa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ragasa, C., Charo-Karisa, H., Rurangwa, E. et al. Sustainable aquaculture development in sub-Saharan Africa. Nat Food 3, 92–94 (2022). https://doi.org/10.1038/s43016-022-00467-1

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43016-022-00467-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing