Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Planetary Boundaries guide humanity’s future on Earth

A Publisher Correction to this article was published on 05 June 2025

This article has been updated

Abstract

Human pressures have pushed the Earth system deep into the Anthropocene, threatening its stability, resilience and functioning. The Planetary Boundaries (PB) framework emerged against these threats, setting safe levels to the biophysical systems and processes that, with high likelihood, ensure life-supporting Holocene-like conditions. In this Review, we synthesize PB advancements, detailing its emergence and mainstreaming across scientific disciplines and society. The nine PBs capture the key functions regulating the Earth system. The safe operating space has been transgressed for six of these. PB science is essential to prevent further Earth system risks and has sparked new research on the precision of safe boundaries. Human development within planetary boundaries defines sustainable development, informing advances in social sciences. Each PB translates to a finite budget that the world must operate within, requiring strengthened global governance. The PB framework has been adopted by businesses and informed policy across the world, informing new thinking about fundamental justice concerns, and has inspired, among other concepts, the planetary commons, planetary health and doughnut economics. Future work must increase the precision and frequency of PB analyses, and, together with Earth observation data analytics, produce a high-resolution and real-time state of planetary health.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Origins, evolution and societal uptake of the Planetary Boundary framework.
Fig. 2: The evolution of the Planetary Boundaries framework.
Fig. 3: Planetary Boundary co-occurring terms.
Fig. 4: Past and possible future Earth system trajectories.

Similar content being viewed by others

Change history

References

  1. Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997).

    Article  CAS  Google Scholar 

  2. Crutzen, P. J. Geology of mankind. Nature 415, 23–23 (2002).

    Article  CAS  Google Scholar 

  3. Steffen, W. et al. Global Change and the Earth System (Springer, 2004).

  4. Steffen, W., Crutzen, P. J. & McNeill, J. R. The Anthropocene: are humans now overwhelming the great forces of nature? AMBIO J. Hum. Environ. 36, 614–621 (2007).

    Article  CAS  Google Scholar 

  5. Rockström, J. et al. Safe and just Earth system boundaries. Nature 619, 102–111 (2023).

    Article  Google Scholar 

  6. Armstrong McKay, D. I. et al. Exceeding 1.5 °C global warming could trigger multiple climate tipping points. Science 377, eabn7950 (2022).

    Article  Google Scholar 

  7. Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).

    Article  CAS  Google Scholar 

  8. Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).

    Article  CAS  Google Scholar 

  9. IPCC. Climate Change 2023: Synthesis Report (eds Lee, H. & Romero, J.) (IPCC, 2023).

  10. Pörtner, H. O. et al. IPBES-IPCC Co-Sponsored Workshop Report on Biodiversity and Climate Change https://doi.org/10.5281/zenodo.4782538 (IPBES and IPCC, 2021).

  11. Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).

    Article  Google Scholar 

  12. Rockström, J. et al. Planetary boundaries: exploring the safe operating space for humanity. Ecol. Soc. 14, 32 (2009).

    Article  Google Scholar 

  13. Steffen, W. et al. Trajectories of the Earth system in the Anthropocene. Proc. Natl Acad. Sci. USA 115, 8252–8259 (2018).

    Article  CAS  Google Scholar 

  14. Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).

    Article  CAS  Google Scholar 

  15. Osman, M. B. et al. Globally resolved surface temperatures since the Last Glacial Maximum. Nature 599, 239–244 (2021).

    Article  CAS  Google Scholar 

  16. Feynman, J. & Ruzmaikin, A. Climate stability and the development of agricultural societies. Clim. Change 84, 295–311 (2007).

    Article  Google Scholar 

  17. Rockström, J. & Klum, M. Big World, Small Planet: Abundance within Planetary Boundaries (Yale Univ. Press, 2015).

  18. Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

    Article  Google Scholar 

  19. Richardson, K. et al. Earth beyond six of nine planetary boundaries. Sci. Adv. 9, eadh2458 (2023).

    Article  Google Scholar 

  20. Resilient People, Resilient Planet: A Future Worth Choosing, the Report of the United Nations Secretary-General’s High Level Panel on Global Sustainability (United Nations, 2012).

  21. Living Planet Report 2016. Risk and Resilience in a New Era https://www.worldwildlife.org/pages/living-planet-report-2016 (WWF, 2016).

  22. Science Based Targets Network https://sciencebasedtargetsnetwork.org/ (SBTN, 2020).

  23. Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    Article  Google Scholar 

  24. Singh Chawla, D. Revealed: the ten research papers that policy documents cite most. Nature https://doi.org/10.1038/d41586-024-00660-1 (2024).

    Article  Google Scholar 

  25. The World in 2050 Initiative. Transformations to Achieve the Sustainable Development Goals www.twi2050.org (IIASA, 2018).

  26. Earth’s boundaries? Nature 461, 447–448 (2009).

  27. Turner, B. L. et al. The Earth as Transformed by Human Action — Global and Regional Changes in the Biosphere over the Past 300Years (Cambridge Univ. Press, 1993).

  28. Witze, A. Geologists reject the Anthropocene as Earth’s new epoch — after 15 years of debate. Nature 627, 249–250 (2024).

    Article  CAS  Google Scholar 

  29. Daly, H. E. On economics as a life science. J. Polit. Econ. 76, 392–406 (1968).

    Article  Google Scholar 

  30. The Cocoyoc declaration. Intl Organ. 29, 893–901 (1975).

  31. Boulding, Kenneth E. in Environmental Quality in a Growing Economy 3–14 (Johns Hopkins Univ. Press, 1966); http://arachnid.biosci.utexas.edu/courses/thoc/readings/boulding_spaceshipearth.pdf.

  32. Meadows, D., Meadows, D. L., Randers, J. & Behrens III, W. W. The Limits to Growth (Universe, 1972).

  33. Daly, H. E. (ed.) Towards a Steady-State Economy (Freeman, 1973).

  34. Steffen, W. et al. The emergence and evolution of Earth system science. Nat. Rev. Earth Environ. 1, 54–63 (2020).

    Article  Google Scholar 

  35. Petit, R. J. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–413 (1999).

    Article  CAS  Google Scholar 

  36. Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4, 1–23 (1973).

    Article  Google Scholar 

  37. Folke, C. et al. Regime shifts, resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst. 35, 557–581 (2004).

    Article  Google Scholar 

  38. Lovelock, J. E. Gaia as seen through the atmosphere. Atmos. Environ. 1967 6, 579–580 (1972).

    Google Scholar 

  39. Earth System Science — Overview: A Program for Global Change (National Academies Press, 1986).

  40. Schellnhuber, H. J. ‘Earth system’ analysis and the second Copernican revolution. Nature 402, C19–C23 (1999).

    Article  CAS  Google Scholar 

  41. Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).

    Article  CAS  Google Scholar 

  42. Downing, A. S. et al. Matching scope, purpose and uses of planetary boundaries science. Environ. Res. Lett. 14, 073005 (2019).

    Article  Google Scholar 

  43. Downing, A. S. et al. Learning from generations of sustainability concepts. Environ. Res. Lett. 15, 083002 (2020).

    CAS  Google Scholar 

  44. Galli, A. et al. Questioning the ecological footprint. Ecol. Indic. 69, 224–232 (2016).

    Article  Google Scholar 

  45. Petschel-Held, G., Schellnhuber, H.-J., Bruckner, T., Tóth, F. L. & Hasselmann, K. The tolerable windows approach: theoretical and methodological foundations. Clim. Change 41, 303–331 (1999).

    Article  CAS  Google Scholar 

  46. Past Interglacials Working Group of PAGES Interglacials of the last 800,000 years. Rev. Geophys. 54, 162–219 (2016).

    Article  Google Scholar 

  47. Hays, J. D., Imbrie, J. & Shackleton, N. J. Variations in the Earth’s orbit: pacemaker of the ice ages. Science 194, 1121–1132 (1976).

    Article  CAS  Google Scholar 

  48. Dansgaard, W. et al. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218–220 (1993).

    Article  Google Scholar 

  49. Ruddiman, W. F. The anthropogenic greenhouse era began thousands of years ago. Clim. Change 61, 261–293 (2003).

    Article  CAS  Google Scholar 

  50. Oppenheimer, S. Out of Eden: The Peopling of the World (Little, Brown, 2004).

  51. IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (IPCC, 2021).

  52. Richardson, K. & Rosing, M. in Multiplicity of Time Scales in Complex Systems: Challenges for Sciences and Communication, 215–233 (Springer Nature, 2023).

  53. Persson, L. et al. Outside the safe operating space of the planetary boundary for novel entities. Environ. Sci. Technol. 56, 1510–1521 (2022).

    Article  CAS  Google Scholar 

  54. Molden, D. et al. Improving agricultural water productivity: between optimism and caution. Agric. Water Manag. 97, 528–535 (2010).

    Article  Google Scholar 

  55. Gerten, D. et al. Towards a revised planetary boundary for consumptive freshwater use: role of environmental flow requirements. Curr. Opin. Environ. Sustain. 5, 551–558 (2013).

    Article  Google Scholar 

  56. Bogardi, J. J., Fekete, B. M. & Vörösmarty, C. J. Planetary boundaries revisited: a view through the ‘water lens’. Curr. Opin. Environ. Sustain. 5, 581–589 (2013).

    Article  Google Scholar 

  57. Gleeson, T. et al. The water planetary boundary: interrogation and revision. One Earth 2, 223–234 (2020).

    Article  Google Scholar 

  58. Pastor, A. V. et al. Understanding the transgression of global and regional freshwater planetary boundaries. Phil. Trans. R. Soc. A 380, 20210294 (2022).

    Article  Google Scholar 

  59. Wang-Erlandsson, L. et al. A planetary boundary for green water. Nat. Rev. Earth Environ. 3, 380–392 (2022).

    Article  Google Scholar 

  60. Mace, G. M. et al. Approaches to defining a planetary boundary for biodiversity. Glob. Environ. Change 28, 289–297 (2014).

    Article  Google Scholar 

  61. Carpenter, S. R. & Bennett, E. M. Reconsideration of the planetary boundary for phosphorus. Environ. Res. Lett. 6, 014009 (2011).

    Article  Google Scholar 

  62. de Vries, W., Kros, J., Kroeze, C. & Seitzinger, S. P. Assessing planetary and regional nitrogen boundaries related to food security and adverse environmental impacts. Curr. Opin. Environ. Sustain. 5, 392–402 (2013).

    Article  Google Scholar 

  63. Gleeson, T. et al. Illuminating water cycle modifications and Earth system resilience in the Anthropocene. Water Resour. Res. 56, e2019WR024957 (2020).

    Article  Google Scholar 

  64. Porkka, M. et al. Notable shifts beyond pre-industrial streamflow and soil moisture conditions transgress the planetary boundary for freshwater change. Nat. Water 2, 262–273 (2024).

    Article  CAS  Google Scholar 

  65. Scholes, R. J. & Biggs, R. A biodiversity intactness index. Nature 434, 45–49 (2005).

    Article  CAS  Google Scholar 

  66. Martin, P. A., Green, R. E. & Balmford, A. The biodiversity intactness index may underestimate losses. Nat. Ecol. Evol. 3, 862–863 (2019).

    Article  Google Scholar 

  67. Haberl, H., Erb, K.-H. & Krausmann, F. Human appropriation of net primary production: patterns, trends, and planetary boundaries. Annu. Rev. Environ. Resour. 39, 363–391 (2014).

    Article  Google Scholar 

  68. Running, S. W. A measurable planetary boundary for the biosphere. Science 337, 1458–1459 (2012).

    Article  CAS  Google Scholar 

  69. Nash, K. L. et al. Planetary boundaries for a blue planet. Nat. Ecol. Evol. 1, 1625–1634 (2017).

    Article  Google Scholar 

  70. Kraamwinkel, C. T., Beaulieu, A., Dias, T. & Howison, R. A. Planetary limits to soil degradation. Commun. Earth Environ. 2, 249 (2021).

    Article  Google Scholar 

  71. Flores, B. M. et al. Critical transitions in the Amazon forest system. Nature 626, 555–564 (2024).

    Article  CAS  Google Scholar 

  72. Lade, S. J. et al. Potential feedbacks between loss of biosphere integrity and climate change. Glob. Sustain. 2, e21 (2019).

    Article  Google Scholar 

  73. Lade, S. J. et al. Human impacts on planetary boundaries amplified by Earth system interactions. Nat. Sustain. 3, 119–128 (2020).

    Article  Google Scholar 

  74. Anderies, J. M., Carpenter, S. R., Steffen, W. & Rockström, J. The topology of non-linear global carbon dynamics: from tipping points to planetary boundaries. Environ. Res. Lett. 8, 044048 (2013).

    Article  CAS  Google Scholar 

  75. Folke, C. et al. Reconnecting to the biosphere. Ambio 40, 719–738 (2011).

    Article  Google Scholar 

  76. Donges, J. F. et al. Closing the loop: reconnecting human dynamics to Earth system science. Anthr. Rev. 4, 151–157 (2017).

    Google Scholar 

  77. Earth System Science Discovery, Diagnosis, and Solutions in Times of Global Change (Nationale Akademie der Wissenschaften Leopoldina, 2022).

  78. Roberts, P. et al. Mapping our reliance on the tropics can reveal the roots of the Anthropocene. Nat. Ecol. Evol. 7, 632–636 (2023).

    Article  Google Scholar 

  79. Purves, D. et al. Time to model all life on Earth. Nature 493, 295–297 (2013).

    Article  CAS  Google Scholar 

  80. Heck, V., Donges, J. F. & Lucht, W. Collateral transgression of planetary boundaries due to climate engineering by terrestrial carbon dioxide removal. Earth Syst. Dyn. 7, 783–796 (2016).

    Article  Google Scholar 

  81. Gerten, D. et al. Feeding ten billion people is possible within four terrestrial planetary boundaries. Nat. Sustain. 3, 200–208 (2020).

    Article  Google Scholar 

  82. Heck, V., Gerten, D., Lucht, W. & Popp, A. Biomass-based negative emissions difficult to reconcile with planetary boundaries. Nat. Clim. Change 8, 151–155 (2018).

    Article  CAS  Google Scholar 

  83. Chapin, F. S. et al. Earth stewardship: shaping a sustainable future through interacting policy and norm shifts. Ambio 51, 1907–1920 (2022).

    Article  Google Scholar 

  84. Gupta, J. et al. Earth system justice needed to identify and live within Earth system boundaries. Nat. Sustain. 6, 630–638 (2023).

    Article  Google Scholar 

  85. Rammelt, C. F. et al. Impacts of meeting minimum access on critical Earth systems amidst the Great Inequality. Nat. Sustain. 6, 212–221 (2023).

    Article  Google Scholar 

  86. Wiedmann, T., Lenzen, M., Keyßer, L. T. & Steinberger, J. K. Scientists’ warning on affluence. Nat. Commun. 11, 3107 (2020).

    Article  CAS  Google Scholar 

  87. Sultana, F. Whose growth in whose planetary boundaries? Decolonising planetary justice in the Anthropocene. Geo Geogr. Environ. 10, e00128 (2023).

    Article  Google Scholar 

  88. Fanning, A. L. & Hickel, J. Compensation for atmospheric appropriation. Nat. Sustain. 6, 1077–1086 (2023).

    Article  Google Scholar 

  89. 2023 was the hottest year on record, Copernicus data show. ECMWF https://www.ecmwf.int/en/about/media-centre/news/2024/2023-was-hottest-year-record-copernicus-data-show (2024).

  90. Galaz, V., Biermann, F., Folke, C., Nilsson, M. & Olsson, P. Global environmental governance and planetary boundaries: an introduction. Ecol. Econ. 81, 1–3 (2012).

    Article  Google Scholar 

  91. Galaz, V. Global Environmental Governance, Technology and Politics: The Anthropocene Gap (Edward Elgar, 2014).

  92. Kim, R. E. & Bosselmann, K. International environmental law in the Anthropocene: towards a purposive system of multilateral environmental agreements. Transnatl. Environ. Law 2, 285–309 (2013).

    Article  CAS  Google Scholar 

  93. du Toit, L. & Kotzé, L. J. Reimagining international environmental law for the Anthropocene: an Earth system law perspective. Earth Syst. Gov. 11, 100132 (2022).

    Article  Google Scholar 

  94. French, D. & Kotzé, L. J. (eds) Research Handbook on Law, Governance and Planetary Boundaries (Edward Elgar, 2021).

  95. Magalhães, P. et al. Planetary Condominium: The Legal Framework for the Common Home of Humanity (Global Challenges Foundation, 2018).

  96. Biermann, F. & Kim, R. E. The boundaries of the planetary boundary framework: a critical appraisal of approaches to define a ‘safe operating space’ for humanity. Annu. Rev. Env. Resour. 45, 497–512 (2020).

    Article  Google Scholar 

  97. Biermann, F. et al. Navigating the Anthropocene: improving Earth system governance. Science 335, 1306–1307 (2012).

    Article  CAS  Google Scholar 

  98. Nakicenovic, N., Rockström, J., Gaffney, O., Zimm, C. & Kabat, P. Global Commons in the Anthropocene: World Development on a Stable and Resilient Planet. IIASA Working Paper WP-16-019 (2016).

  99. Rockström, J. et al. The planetary commons: a new paradigm for safeguarding Earth-regulating systems in the Anthropocene. Proc. Natl Acad. Sci. USA 121, e2301531121 (2024).

    Article  Google Scholar 

  100. Sureth, M., Kalkuhl, M., Edenhofer, O. & Rockström, J. A welfare economic approach to planetary boundaries. Jb. Natl. Stat. https://doi.org/10.1515/jbnst-2022-0022 (2023).

  101. Daly, H. E. Steady-State Economics (Island, 1991).

  102. Turner, R. K., Perrings, C. & Folke, C. Ecological Economics: Paradigm or Perspective. CSERGE Working Paper (1995).

  103. Dasgupta, P. The Economics of Biodiversity: The Dasgupta Review: Full Report (HM Treasury, 2021).

  104. Daly, H. E. Allocation, distribution, and scale: towards an economics that is efficient, just, and sustainable. Ecol. Econ. 6, 185–193 (1992).

    Article  Google Scholar 

  105. Sterner, T. et al. Policy design for the Anthropocene. Nat. Sustain. 2, 14–21 (2019).

    Article  Google Scholar 

  106. McKinsey & Company. Nature in the Balance: What Companies Can Do to Restore Natural Capital (2022).

  107. Raworth, K. A Safe and Just Space for Humanity: Can We Live within the Doughnut? (Oxfam, 2012).

  108. Raworth, K. A doughnut for the Anthropocene: humanity’s compass in the 21st century. Lancet Planet. Health 1, e48–e49 (2017).

    Article  Google Scholar 

  109. Raworth, K. Doughnut Economics: Seven Ways to Think Like a 21st-Century Economist (Penguin, 2022).

  110. O’Neill, D. W., Fanning, A. L., Lamb, W. F. & Steinberger, J. K. A good life for all within planetary boundaries. Nat. Sustain. 1, 88–95 (2018).

    Article  Google Scholar 

  111. Fanning, A. L., O’Neill, D. W., Hickel, J. & Roux, N. The social shortfall and ecological overshoot of nations. Nat. Sustain. 5, 26–36 (2022).

    Article  Google Scholar 

  112. van den Bergh, J. C. J. M. & Kallis, G. Growth, a-growth or degrowth to stay within planetary boundaries? J. Econ. Issues 46, 909–920 (2012).

    Article  Google Scholar 

  113. Haberl, H. et al. A systematic review of the evidence on decoupling of GDP, resource use and GHG emissions, part II: synthesizing the insights. Environ. Res. Lett. 15, 065003 (2020).

    Article  Google Scholar 

  114. Hickel, J. & Kallis, G. Is green growth possible? N. Polit. Econ. 25, 469–486 (2020).

    Article  Google Scholar 

  115. Hubacek, K., Chen, X., Feng, K., Wiedmann, T. & Shan, Y. Evidence of decoupling consumption-based CO2 emissions from economic growth. Adv. Appl. Energy 4, 100074 (2021).

    Article  CAS  Google Scholar 

  116. Jackson, T. & Victor, P. A. Unraveling the claims for (and against) green growth. Science 366, 950–951 (2019).

    Article  CAS  Google Scholar 

  117. Stafford-Smith, M. et al. Integration: the key to implementing the Sustainable Development Goals. Sustain. Sci. 12, 911–919 (2017).

    Article  Google Scholar 

  118. Bowen, K. J. et al. Implementing the ‘Sustainable Development Goals’: towards addressing three key governance challenges — collective action, trade-offs, and accountability. Curr. Opin. Environ. Sustain. 26–27, 90–96 (2017).

    Google Scholar 

  119. Folke, C., Biggs, R., Norström, A. V., Reyers, B. & Rockström, J. Social-ecological resilience and biosphere-based sustainability science. Ecol. Soc. 21, art41 (2016).

    Article  Google Scholar 

  120. Keppner, B. & Hoff, H. Planetary Boundaries: Challenges for Science, Civil Society and Politics. https://www.umweltbundesamt.de/en/publikationen/planetary-boundaries-challenges-for-science-civil (Umweltbundesamt, 2020).

  121. Bai, X. et al. How to stop cities and companies causing planetary harm. Nature 609, 463–466 (2022).

    Article  CAS  Google Scholar 

  122. Meyer, K. & Newman, P. The Planetary Accounting Framework: a novel, quota-based approach to understanding the impacts of any scale of human activity in the context of the planetary boundaries. Sustain. Earth 1, 4 (2018).

    Article  Google Scholar 

  123. Ryberg, M. W., Owsianiak, M., Richardson, K. & Hauschild, M. Z. Development of a life-cycle impact assessment methodology linked to the planetary boundaries framework. Ecol. Indic. 88, 250–262 (2018).

    Article  Google Scholar 

  124. Hellweg, S., Benetto, E., Huijbregts, M. A. J., Verones, F. & Wood, R. Life-cycle assessment to guide solutions for the triple planetary crisis. Nat. Rev. Earth Environ. 4, 471–486 (2023).

    Article  Google Scholar 

  125. Parsonsová, A. Downscaling planetary boundaries to the national level: a review of methods and indicators. J. Landsc. Ecol. 14, 39–45 (2021).

    Article  Google Scholar 

  126. Häyhä, T., Lucas, P. L., van Vuuren, D. P., Cornell, S. E. & Hoff, H. From planetary boundaries to national fair shares of the global safe operating space — How can the scales be bridged? Glob. Environ. Change 40, 60–72 (2016).

    Article  Google Scholar 

  127. Hachaichi, M. & Baouni, T. Downscaling the planetary boundaries (PBs) framework to city scale-level: de-risking MENA region’s environment future. Environ. Sustain. Indic. 5, 100023 (2020).

    Google Scholar 

  128. Horton, R. & Lo, S. Planetary health: a new science for exceptional action. Lancet 386, 1921–1922 (2015).

    Article  Google Scholar 

  129. Whitmee, S. et al. Safeguarding human health in the Anthropocene epoch: report of the Rockefeller Foundation–Lancet Commission on planetary health. Lancet 386, 1973–2028 (2015).

    Article  Google Scholar 

  130. WHO Council on the Economics of Health for All. Health for All — Transforming Economies to Deliver What Matters: Final Report of the WHO Council on the Economics of Health for All (WHO, 2023).

  131. Planetary Health. An Emerging Field to Be Developed (Royal Netherlands Academy of Arts and Sciences, 2023).

  132. Brand, U. et al. From planetary to societal boundaries: an argument for collectively defined self-limitation. Sustain. Sci. Pract. Policy 17, 264–291 (2021).

    Google Scholar 

  133. Blühdorn, I. Planetary boundaries, societal boundaries, and collective self-limitation: moving beyond the post-Marxist comfort zone. Sustain. Sci. Pract. Policy 18, 576–589 (2022).

    Google Scholar 

  134. UN DESA. Transforming Our World: The 2030 Agenda for Sustainable Development. https://wedocs.unep.org/20.500.11822/11125 (UNEP, 2016).

  135. Obura, D. O. et al. Achieving a nature- and people-positive future. One Earth 6, 105–117 (2023).

    Article  Google Scholar 

  136. UNEP. Global Environment Outlook 5 (GEO 5): Environment for the Future We Want. https://wedocs.unep.org/20.500.11822/8021 (UNEP, 2012).

  137. UNEP. Global Environment Outlook 6 (GEO 6): Healthy Planet, Healthy People. https://wedocs.unep.org/20.500.11822/27539 (UNEP, 2019).

  138. UNDRR. Thematic Study: Planetary Boundaries. http://sendaiframework-mtr.undrr.org/quick/76149 (UNDRR, 2022).

  139. UN DESA. The Sustainable Development Goals Report 2018. https://unstats.un.org/sdgs/report/2018/ (UN, 2018).

  140. Folke, C. & Rockström, J. 3rd Nobel Laureate symposium on global sustainability: transforming the world in an era of global change. AMBIO 40, 717–718 (2011).

    Article  Google Scholar 

  141. Kunming–Montreal Global Biodiversity Framework: Convention on Biological Diversity (2022).

  142. IFI. Safeguarding the Global Commons for Human Prosperity and Environmental Sustainability. https://policycommons.net/artifacts/2455478/safeguarding-the-global-commons-for-human-prosperity-and-environmental-sustainability/3477275/ (2022).

  143. EAA, Wugt Larsen, F. & Lung, T. Is Europe Living within the Limits of Our Planet? An Assessment of Europe’s Environmental Footprints in Relation to Planetary Boundaries. https://doi.org/10.2800/890673 (Publications Office of the EU, 2020).

  144. Living within the Limits of Our Planet — A Swedish Perspective. https://www.naturvardsverket.se/publikationer/7000/978-91-620-7092-2/ (The Swedish Environmental Protection Agency, 2023).

  145. Lucas, P. & Wilting, H. Towards a Safe Operating Space for the Netherlands: Using Planetary Boundaries to Support National Implementation of Environment-Related SDGs (PBL Netherlands Environmental Assessment Agency, 2019).

  146. Dao, H., Peduzzi, P. & Friot, D. National environmental limits and footprints based on the Planetary Boundaries framework: the case of Switzerland. Glob. Environ. Change 52, 49–57 (2018).

    Article  Google Scholar 

  147. Vision 2050: Time to Transform. https://www.wbcsd.org/contentwbc/download/11765/177145/1 (WBCSD, 2021).

  148. Watson, R. Pathways to Net-Zero — SBTi Technical Summary Version 1.0 (SBTi, 2021).

  149. Tilsted, J. P., Palm, E., Bjørn, A. & Lund, J. F. Corporate climate futures in the making: why we need research on the politics of science-based targets. Energy Res. Soc. Sci. 103, 103229 (2023).

    Article  Google Scholar 

  150. Latour, B. & Lenton, T. M. Extending the domain of freedom, or why Gaia is so hard to understand. Crit. Inq. 45, 659–680 (2019).

    Article  Google Scholar 

  151. Olsson, P. & Moore, M.-L. in Positive Tipping Points Towards Sustainability: Understanding the Conditions and Strategies for Fast Decarbonization in Regions (eds Tàbara, J. D. et al.) 59–77 (Springer, 2024).

  152. Folke, C. & Gunderson, L. Reconnecting to the biosphere: a social-ecological renaissance. Ecol. Soc. https://doi.org/10.5751/ES-05517-170455 (2012).

  153. Latour, B. Down to Earth: Politics in the New Climatic Regime (Polity, 2018).

  154. Westley, F. et al. Tipping toward sustainability: emerging pathways of transformation. Ambio 40, 762–780 (2011).

    Article  Google Scholar 

  155. Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. & Ludwig, C. The trajectory of the Anthropocene: the great acceleration. Anthr. Rev. 2, 81–98 (2015).

    Google Scholar 

  156. Leach, M. et al. Transforming innovation for sustainability. Ecol. Soc. https://doi.org/10.5751/ES-04933-170211 (2012).

  157. Fanning, A. L., O’Neill, D. W. & Büchs, M. Provisioning systems for a good life within planetary boundaries. Glob. Environ. Change 64, 102135 (2020).

    Article  Google Scholar 

  158. Sachs, J. D. et al. Six transformations to achieve the sustainable development goals. Nat. Sustain. 2, 805–814 (2019).

    Article  Google Scholar 

  159. Gerst, M. D., Raskin, P. D. & Rockström, J. Contours of a resilient global future. Sustainability 6, 123–135 (2013).

    Article  Google Scholar 

  160. van Vuuren, D. P. et al. Pathways to achieve a set of ambitious global sustainability objectives by 2050: explorations using the IMAGE integrated assessment model. Technol. Forecast. Soc. Change 98, 303–323 (2015).

    Article  Google Scholar 

  161. van Vuuren, D. P. et al. Defining a sustainable development target space for 2030 and 2050. One Earth 5, 142–156 (2022).

    Article  Google Scholar 

  162. Soergel, B. et al. A sustainable development pathway for climate action within the UN 2030 Agenda. Nat. Clim. Change 11, 656–664 (2021).

    Article  Google Scholar 

  163. Campbell, B. et al. Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecol. Soc. 22, 8 (2017).

    Article  Google Scholar 

  164. Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018).

    Article  CAS  Google Scholar 

  165. Murray, C. J. L. The global burden of disease study at 30 years. Nat. Med. 28, 2019–2026 (2022).

    Article  CAS  Google Scholar 

  166. Conijn, J. G., Bindraban, P. S., Schröder, J. J. & Jongschaap, R. E. E. Can our global food system meet food demand within planetary boundaries? Agric. Ecosyst. Environ. 251, 244–256 (2018).

    Article  CAS  Google Scholar 

  167. Chrysafi, A. et al. Quantifying Earth system interactions for sustainable food production via expert elicitation. Nat. Sustain. 5, 830–842 (2022).

    Article  Google Scholar 

  168. Ruben, R., Cavatassi, R., Lipper, L., Smaling, E. & Winters, P. Towards food systems transformation — five paradigm shifts for healthy, inclusive and sustainable food systems. Food Secur. 13, 1423–1430 (2021).

    Article  Google Scholar 

  169. Fan, S. Economics in food systems transformation. Nat. Food 2, 218–219 (2021).

    Article  Google Scholar 

  170. Webb, P. et al. The urgency of food system transformation is now irrefutable. Nat. Food 1, 584–585 (2020).

    Article  Google Scholar 

  171. Sperling, F., Rumbaitis del Rio, C. & Laurien, F. Resilience and the Transformation of Food and Land Use Systems. Discussion paper prepared for the Food and Land Use Coalition (FOLU). https://iiasa.dev.local/ (2022).

  172. Abrahão, G. et al. Transforming Human Systems to Safeguard the Global Commons: A Report by PIK and CGC. https://cgc.ifi.u-tokyo.ac.jp/wp-content/uploads/2024/03/GCS_report_2024.pdf (PIK/CGC, 2024).

  173. Dixson-Declève, S. et al. Earth for All: A Survival Guide for Humanity (New Society, 2022).

  174. Otto, I. M. et al. Social tipping dynamics for stabilizing Earth’s climate by 2050. Proc. Natl. Acad. Sci. USA 117, 2354–2365 (2020).

    Article  CAS  Google Scholar 

  175. Lenton, T. M. et al. (eds) The Global Tipping Points Report 2023 (Univ. Exeter, 2023).

  176. Zipper, S. C. et al. Integrating the water planetary boundary with water management from local to global scales. Earths Future 8, e2019EF001377 (2020).

    Article  Google Scholar 

  177. Donges, J. F. et al. Taxonomies for structuring models for World–Earth systems analysis of the Anthropocene: subsystems, their interactions and social–ecological feedback loops. Earth Syst. Dyn. 12, 1115–1137 (2021).

    Article  Google Scholar 

  178. Anderies, J. et al. A modeling framework for World-Earth system resilience: exploring social inequality and Earth system tipping points. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ace91d (2023).

    Article  Google Scholar 

  179. Strnad, F. M., Barfuss, W., Donges, J. F. & Heitzig, J. Deep reinforcement learning in World-Earth system models to discover sustainable management strategies. Chaos Interdiscip. J. Nonlinear Sci. 29, 123122 (2019).

    Article  Google Scholar 

  180. Beckage, B., Moore, F. C. & Lacasse, K. Incorporating human behaviour into Earth system modelling. Nat. Hum. Behav. 6, 1493–1502 (2022).

    Article  Google Scholar 

  181. Qin, Y. et al. Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon. Nat. Clim. Change 11, 442–448 (2021).

    Article  Google Scholar 

  182. Rockström, J. et al. Identifying a safe and just corridor for people and the planet. Earths Future 9, e2020EF001866 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the European Research Council through the grant ERC-2016-ADG-743080 (the Earth Resilience in the Anthropocene project). J.F.D. is grateful for financial support by the German Federal Ministry for Education and Research (BMBF) within the project ‘PIK_Change’ under grant 01LS2001A. L.W.E. further acknowledges financial support from Formas (2022-02089; 2019-01220), Horizon Europe (101081661) and the IKEA Foundation. The authors thank S. Cornell, who contributed advice and insights especially during the early stages of the manuscript, and L. Warszawski, who proofread the manuscript and provided advice. F. Pharand-Deschênes and J. Kaiser contributed to producing the figures.

Author information

Authors and Affiliations

Authors

Contributions

J.R. developed the concept for this Review. I.F. and M.A.M. researched the data for the illustrations. J.R., J.F.D., I.F., M.A.M., L.W.E. and K.R. substantially contributed to the discussion of the content. J.R., J.F.D., M.A.M., L.W.E. and K.R. participated in writing and reviewing/editing the manuscript before submission.

Corresponding authors

Correspondence to Johan Rockström or Maria A. Martin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Andrew Fanning, Xuemei Bai and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rockström, J., Donges, J.F., Fetzer, I. et al. Planetary Boundaries guide humanity’s future on Earth. Nat Rev Earth Environ 5, 773–788 (2024). https://doi.org/10.1038/s43017-024-00597-z

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43017-024-00597-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing