Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A landscape-scale view of soil organic matter dynamics

An Author Correction to this article was published on 17 January 2025

This article has been updated

Abstract

Soil carbon is an important component of the terrestrial carbon cycle and could be augmented through improved soil management to mitigate climate change. However, data gaps for numerous regions and a lack of understanding of the heterogeneity of biogeochemical processes across diverse soil landscapes hinder the development of large-scale representations of soil organic matter (SOM) dynamics. In this Perspective, we outline how understanding soil formation processes and complexity at the landscape scale can inform predictions of soil organic matter (SOM) cycling and soil carbon sequestration. Long-term alterations of the soil matrix caused by weathering and soil redistribution vary across climate zones and ecosystems, but particularly with the structure of landscapes at the regional scale. Thus, oversimplified generalizations that assume that the drivers of SOM dynamics can be scaled directly from local to global regimes and vice versa leads to large uncertainties in global projections of soil C stocks. Data-driven models with enhanced coverage of underrepresented regions, particularly where soils are physicochemically distinct and environmental change is most rapid, are key to understanding C turnover and stabilization at landscape scales to better predict global soil carbon dynamics.

Key points

  • Lack of high-resolution soil data for many regions and poor understanding of biogeochemical processes across diverse soil landscapes lead to uncertainties in estimates of soil organic matter (SOM) loss and carbon sequestration potential.

  • Plant C input, microbial turnover and organic matter stabilization are influenced by soil heterogeneities that arise from soil formation and degradation processes operating and interacting across various spatial scales, ranging from large-scale controls, such as geology and climate, to localized ones, such as topography and biology.

  • Human activities such as agriculture have influenced soil development for millennia. The pace, magnitude and breadth of these impacts has increased throughout the twentieth and twenty-first centuries owing to the growing use of mechanized agriculture and synthetic fertilizers to produce food.

  • Approaches to represent and predict SOM dynamics that neglect landscape complexity, and instead scale information from plot-level measurements to regional and global contexts, lead to biased interpretations and uncertainties.

  • Accounting for long-term alteration of the soil matrix at the landscape scale is key to improving forecasts of the soil C cycle in regions experiencing rapid environmental changes (such as polar and tropical regions) and regions with soil properties distinct from those assumed by existing Earth system models. Integrating global datasets with data from field and laboratory experiments can support such developments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global-scale patterns of soil formation and limiting weathering force.
Fig. 2: Carbon dynamics and controls during soil development.
Fig. 3: Impact of land conversion on hillslope sink carbon cycling.
Fig. 4: Soil organic matter recovery after disturbance.
Fig. 5: Soil organic matter dynamics across spatial and temporal scales.

Similar content being viewed by others

Change history

References

  1. Metzger, M. J., Bunce, R. G. H., Jongman, R. H. G., Mücher, C. A. & Watkins, J. W. A climatic stratification of the environment of Europe. Glob. Ecol. Biogeogr. 14, 549–563 (2005).

    Article  Google Scholar 

  2. Smith, P. Carbon sequestration in croplands: the potential in Europe and the global context. Eur. J. Agron. 20, 229–236 (2004).

    Article  CAS  Google Scholar 

  3. Hayes, D. et al. in Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report (ed. Cavallaro, N. et al.) 71–108 (US Global Change Research Program, 2018).

  4. Wang, Z. et al. Human-induced erosion has offset one-third of carbon emissions from land cover change. Nat. Clim. Change 7, 345–349 (2017).

    Article  CAS  Google Scholar 

  5. Konings, A. G. et al. Global satellite-driven estimates of heterotrophic respiration. Biogeosciences 16, 2269–2284 (2019).

    Article  CAS  Google Scholar 

  6. Friedlingstein, P. et al. Global carbon budget 2022. Earth Syst. Sci. Data 14, 4811–4900 (2022).

    Article  Google Scholar 

  7. Minasny, B. et al. Soil carbon 4 per mille. Geoderma 292, 59–86 (2017).

    Article  Google Scholar 

  8. Haaf, D., Six, J. & Doetterl, S. Global patterns of geo-ecological controls on the response of soil respiration to warming. Nat. Clim. Change 11, 623–627 (2021).

    Article  Google Scholar 

  9. Kögel-Knabner, I. & Amelung, W. Soil organic matter in major pedogenic soil groups. Geoderma 384, 114785 (2021).

    Article  Google Scholar 

  10. Begill, N., Don, A. & Poeplau, C. No detectable upper limit of mineral-associated organic carbon in temperate agricultural soils. Glob. Change Biol. 29, 4662–4669 (2023).

    Article  CAS  Google Scholar 

  11. Cotrufo, M. F., Lavallee, J. M., Six, J. & Lugato, E. The robust concept of mineral-associated organic matter saturation: a letter to Begill et al., 2023. Glob. Change Biol. 29, 5986–5987 (2023).

    Article  CAS  Google Scholar 

  12. Reichenbach, M. et al. Soil carbon stocks in stable tropical landforms are dominated by geochemical controls and not by land use. Glob. Change Biol. 29, 2591–2607 (2023).

    Article  CAS  Google Scholar 

  13. Six, J., Doetterl, S., Laub, M., Müller, C. R. & Van de Broek, M. The six rights of how and when to test for soil C saturation. EGUsphere 2023, 1–8 (2023).

    Google Scholar 

  14. Bailey, V. L., Pries, C. H. & Lajtha, K. What do we know about soil carbon destabilization? Environ. Res. Lett. 14, 083004 (2019).

    Article  CAS  Google Scholar 

  15. Leewis, M.-C. et al. The influence of soil development on the depth distribution and structure of soil microbial communities. Soil. Biol. Biochem. 174, 108808 (2022).

    Article  CAS  Google Scholar 

  16. Mishra, U. et al. Spatial heterogeneity and environmental predictors of permafrost region soil organic carbon stocks. Sci. Adv. 7, eaaz5236 (2021).

    Article  CAS  Google Scholar 

  17. Schlesinger, W. H. et al. Biological feedbacks in global desertification. Science 247, 1043–1048 (1990).

    Article  CAS  Google Scholar 

  18. Brantley, S. L., Goldhaber, M. B. & Ragnarsdottir, K. V. Crossing disciplines and scales to understand the critical zone. Elements 3, 307–314 (2007).

    Article  CAS  Google Scholar 

  19. Guo, L. & Lin, H. Critical zone research and observatories: current status and future perspectives. Vadose Zone J. 15, 1–14 (2016).

    Article  Google Scholar 

  20. National Resarch Council Basic Research Opportunities in Earth Science (National Academies Press, 2001).

  21. Jungkunst, H. F., Göpel, J., Horvath, T., Ott, S. & Brunn, M. Global soil organic carbon–climate interactions: why scales matter. WIREs Clim. Change 13, e780 (2022).

    Article  Google Scholar 

  22. Han, L., Sun, K., Jin, J. & Xing, B. Some concepts of soil organic carbon characteristics and mineral interaction from a review of literature. Soil. Biol. Biochem. 94, 107–121 (2016).

    Article  CAS  Google Scholar 

  23. Lawrence, C. R., Schulz, M. S., Masiello, C. A., Chadwick, O. A. & Harden, J. W. The trajectory of soil development and its relationship to soil carbon dynamics. Geoderma 403, 115378 (2021).

    Article  CAS  Google Scholar 

  24. von Liebig, J. F. Organic Chemistry in Its Application to Agriculture and Physiology (ed. Playfair, L.) (James Munroe & Company, 1840).

  25. Dokuchaev, V. V. Russian Chernozen: Selected Works of V.V. Dokuchaev (Israel Program for Scientific Translations, 1967).

  26. Jenny, H. Factors of Soil Formation: A System of Quantitative Pedology (McGraw-Hill, 1941).

  27. van Oost, K. et al. Legacy of human-induced C erosion and burial on soil–atmosphere C exchange. Proc. Natl Acad. Sci. USA 109, 19492–19497 (2012).

    Article  Google Scholar 

  28. McLauchlan, K. The nature and longevity of agricultural impacts on soil carbon and nutrients: a review. Ecosystems 9, 1364–1382 (2006).

    Article  CAS  Google Scholar 

  29. Schulp, C. J. E. & Veldkamp, A. Long-term landscape – land use interactions as explaining factor for soil organic matter variability in Dutch agricultural landscapes. Geoderma 146, 457–465 (2008).

    Article  CAS  Google Scholar 

  30. Simpson, I., Dockrill, S. & Lancaster, S. in Old Scatness Broch, Shetland; Retrospect and Prospect (eds Nicolson, R. & Dockrill, S.) 111–126 (Univ. Bradford, Shetland Amenity Trust and North Atlantic Biocultural Organisation, 1998).

  31. Dunne, K. & Willmott, C. J. Global distribution of plant‐extractable water capacity of soil. Int. J. Climatol. 16, 841–859 (1996).

    Article  Google Scholar 

  32. Lawrence, C., Harden, J. & Maher, K. Modeling the influence of organic acids on soil weathering. Geochim. Cosmochim. Acta 139, 487–507 (2014).

    Article  CAS  Google Scholar 

  33. Kleber, M. et al. Old and stable soil organic matter is not necessarily chemically recalcitrant: implications for modeling concepts and temperature sensitivity. Glob. Change Biol. 17, 1097–1107 (2011).

    Article  Google Scholar 

  34. Schmidt, M. W. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).

    Article  CAS  Google Scholar 

  35. Hemingway, J. D. et al. Mineral protection regulates long-term global preservation of natural organic carbon. Nature 570, 228–231 (2019).

    Article  CAS  Google Scholar 

  36. Bruun, T. B., Elberling, B. & Christensen, B. T. Lability of soil organic carbon in tropical soils with different clay minerals. Soil. Biol. Biochem. 42, 888–895 (2010).

    Article  CAS  Google Scholar 

  37. Mikutta, R. et al. Biogeochemistry of mineral–organic associations across a long-term mineralogical soil gradient (0.3–4100 kyr), Hawaiian Islands. Geochim. Cosmochim. Acta 73, 2034–2060 (2009).

    Article  CAS  Google Scholar 

  38. Kramer, M. G., Sanderman, J., Chadwick, O. A., Chorover, J. & Vitousek, P. M. Long‐term carbon storage through retention of dissolved aromatic acids by reactive particles in soil. Glob. Change Biol. 18, 2594–2605 (2012).

    Article  Google Scholar 

  39. Lawrence, C. R., Harden, J. W., Xu, X., Schulz, M. S. & Trumbore, S. E. Long-term controls on soil organic carbon with depth and time: a case study from the Cowlitz River chronosequence, WA USA. Geoderma 247–248, 73–87 (2015).

    Article  Google Scholar 

  40. Doetterl, S. et al. Links among warming, carbon and microbial dynamics mediated by soil mineral weathering. Nat. Geosci. 11, 589–593 (2018).

    Article  CAS  Google Scholar 

  41. Reichenbach, M. et al. The role of geochemistry in organic carbon stabilization against microbial decomposition in tropical rainforest soils. SOIL 7, 453–475 (2021).

    Article  CAS  Google Scholar 

  42. Slessarev, E. W., Chadwick, O. A., Sokol, N. W., Nuccio, E. E. & Pett-Ridge, J. Rock weathering controls the potential for soil carbon storage at a continental scale. Biogeochemistry 157, 1–13 (2022).

    Article  CAS  Google Scholar 

  43. Dietrich, W. E. & Perron, J. T. The search for a topographic signature of life. Nature 439, 411–418 (2006).

    Article  CAS  Google Scholar 

  44. Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl Acad. Sci. USA 103, 626–631 (2006).

    Article  CAS  Google Scholar 

  45. van Breemen, N. Soils as biotic constructs favouring net primary productivity. Geoderma 57, 183–211 (1993).

    Article  Google Scholar 

  46. Qafoku, N. P. Climate-change effects on soils: accelerated weathering, soil carbon, and elemental cycling. Adv. Agron. 131, 111–172 (2015).

    Article  Google Scholar 

  47. Torn, M. S., Trumbore, S. E., Chadwick, O. A., Vitousek, P. M. & Hendricks, D. M. Mineral control of soil organic carbon storage and turnover. Nature 389, 170–173 (1997).

    Article  CAS  Google Scholar 

  48. Lilienfein, J., Qualls, R. G., Uselman, S. M. & Bridgham, S. D. Soil formation and organic matter accretion in a young andesitic chronosequence at Mt. Shasta, California. Geoderma 116, 249–264 (2003).

    Article  CAS  Google Scholar 

  49. Masiello, C. A., Chadwick, O. A., Southon, J., Torn, M. S. & Harden, J. W. Weathering controls on mechanisms of carbon storage in grassland soils. Glob. Biogeochem. Cycles 18, GB4023 (2004).

    Article  Google Scholar 

  50. Heckman, K. et al. Beyond bulk: density fractions explain heterogeneity in global soil carbon abundance and persistence. Glob. Change Biol. 28, 1178–1196 (2022).

    Article  CAS  Google Scholar 

  51. Rumpel, C., Kögel-Knabner, I. & Bruhn, F. Vertical distribution, age, and chemical composition of organic carbon in two forest soils of different pedogenesis. Org. Geochem. 33, 1131–1142 (2002).

    Article  CAS  Google Scholar 

  52. Doetterl, S. et al. Soil carbon storage controlled by interactions between geochemistry and climate. Nat. Geosci. 8, 780–783 (2015).

    Article  CAS  Google Scholar 

  53. Li, Y., Shi, W., Aydin, A., Beroya-Eitner, M. A. & Gao, G. Loess genesis and worldwide distribution. Earth Sci. Rev. 201, 102947 (2020).

    Article  Google Scholar 

  54. Lehmkuhl, F. et al. Loess landscapes of Europe — mapping, geomorphology, and zonal differentiation. Earth Sci. Rev. 215, 103496 (2021).

    Article  Google Scholar 

  55. Zhu, Y., Jia, X. & Shao, M. Loess thickness variations across the loess plateau of China. Surv. Geophys. 39, 715–727 (2018).

    Article  Google Scholar 

  56. Post, E. et al. The polar regions in a 2 °C warmer world. Sci. Adv. 5, eaaw9883 (2019).

    Article  CAS  Google Scholar 

  57. Hugelius, G. et al. The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions. Earth Syst. Sci. Data 5, 3–13 (2013).

    Article  Google Scholar 

  58. Donhauser, J. & Frey, B. Alpine soil microbial ecology in a changing world. FEMS Microbiol. Ecol. 94, fiy099 (2018).

    Article  CAS  Google Scholar 

  59. Martens, J. et al. Stabilization of mineral-associated organic carbon in Pleistocene permafrost. Nat. Commun. 14, 2120 (2023).

    Article  CAS  Google Scholar 

  60. Patzner, M. S. et al. Iron mineral dissolution releases iron and associated organic carbon during permafrost thaw. Nat. Commun. 11, 6329 (2020).

    Article  CAS  Google Scholar 

  61. Sistla, S. A. et al. Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature 497, 615–618 (2013).

    Article  CAS  Google Scholar 

  62. Doetterl, S. et al. Will accelerated soil development be a driver of Arctic Greening in the late 21st century? J. Plant. Nutr. Soil. Sci. 185, 19–23 (2022).

    Article  CAS  Google Scholar 

  63. Liebmann, P. et al. Permafrost degradation and its consequences for carbon storage in soils of Interior Alaska. Biogeochemistry 167, 199–223 (2024).

    Article  CAS  Google Scholar 

  64. Berner, L. T. et al. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nat. Commun. 11, 4621 (2020).

    Article  CAS  Google Scholar 

  65. Grimes, M., Carrivick, J. L., Smith, M. W. & Comber, A. J. Land cover changes across Greenland dominated by a doubling of vegetation in three decades. Sci. Rep. 14, 3120 (2024).

    Article  CAS  Google Scholar 

  66. von Fromm, S. F. et al. Controls on timescales of soil organic carbon persistence across sub-Saharan Africa. Glob. Change Biol. 30, e17089 (2023).

    Article  Google Scholar 

  67. Vitousek, P. M. & Sanford, R. Jr Nutrient cycling in moist tropical forest. Annu. Rev. Ecol. Syst. 17, 137–167 (1986).

    Article  Google Scholar 

  68. Kitayama, K. & Aiba, S.-I. Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo. J. Ecol. 90, 37–51 (2002).

    Article  Google Scholar 

  69. Lal, R. Soil Erosion in the Tropics: Principles and Management (McGraw-Hill, 1990).

  70. Labrière, N., Locatelli, B., Laumonier, Y., Freycon, V. & Bernoux, M. Soil erosion in the humid tropics: a systematic quantitative review. Agric. Ecosyst. Environ. 203, 127–139 (2015).

    Article  Google Scholar 

  71. Bauters, M. et al. Soil nutrient depletion and tree functional composition shift following repeated clearing in secondary forests of the Congo basin. Ecosystems 24, 1422–1435 (2021).

    Article  CAS  Google Scholar 

  72. Bauters, M. et al. Increasing calcium scarcity along Afrotropical forest succession. Nat. Ecol. Evol. 6, 1122–1131 (2022).

    Article  Google Scholar 

  73. Pendrill, F. et al. Disentangling the numbers behind agriculture-driven tropical deforestation. Science 377, eabm9267 (2022).

    Article  CAS  Google Scholar 

  74. Giller, K. E. et al. Small farms and development in sub-Saharan Africa: farming for food, for income or for lack of better options? Food Secur. 13, 1431–1454 (2021).

    Article  Google Scholar 

  75. Lowder, S. K., Skoet, J. & Raney, T. The number, size, and distribution of farms, smallholder farms, and family farms worldwide. World Dev. 87, 16–29 (2016).

    Article  Google Scholar 

  76. García-Ruiz, J. M. et al. A meta-analysis of soil erosion rates across the world. Geomorphology 239, 160–173 (2015).

    Article  Google Scholar 

  77. Berhe, A. A., Barnes, R. T., Six, J. & Marín-Spiotta, E. Role of soil erosion in biogeochemical cycling of essential elements: carbon, nitrogen, and phosphorus. Annu. Rev. Earth Planet. Sci. 46, 521–548 (2018).

    Article  CAS  Google Scholar 

  78. Sanderman, J. & Berhe, A. A. The soil carbon erosion paradox. Nat. Clim. Change 7, 317–319 (2017).

    Article  Google Scholar 

  79. Gregorich, E. G., Greer, K. J., Anderson, D. W. & Liang, B. C. Carbon distribution and losses: erosion and deposition effects. Soil. Tillage Res. 47, 291–302 (1998).

    Article  Google Scholar 

  80. Wang, X., Cammeraat, E. L. H., Cerli, C. & Kalbitz, K. Soil aggregation and the stabilization of organic carbon as affected by erosion and deposition. Soil. Biol. Biochem. 72, 55–65 (2014).

    Article  CAS  Google Scholar 

  81. Berhe, A. A., Harden, J. W., Torn, M. S. & Harte, J. Linking soil organic matter dynamics and erosion-induced terrestrial carbon sequestration at different landform positions. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2008JG000751 (2008).

  82. Quinton, J. N., Govers, G., Van Oost, K. & Bardgett, R. D. The impact of agricultural soil erosion on biogeochemical cycling. Nat. Geosci. 3, 311–314 (2010).

    Article  CAS  Google Scholar 

  83. Lugato, E. et al. Soil erosion is unlikely to drive a future carbon sink in Europe. Sci. Adv. 4, eaau3523 (2018).

    Article  CAS  Google Scholar 

  84. Li, P. et al. Wind erosion enhanced by land use changes significantly reduces ecosystem carbon storage and carbon sequestration potentials in semiarid grasslands. Land. Degrad. Dev. 29, 3469–3478 (2018).

    Article  Google Scholar 

  85. Doetterl, S. et al. Erosion, deposition and soil carbon: a review of process-level controls, experimental tools and models to address C cycling in dynamic landscapes. Earth Sci. Rev. 154, 102–122 (2016).

    Article  CAS  Google Scholar 

  86. Harden, J. W. et al. Dynamic replacement and loss of soil carbon on eroding cropland. Glob. Biogeochem. Cycles 13, 885–901 (1999).

    Article  CAS  Google Scholar 

  87. van Oost, K. et al. The impact of agricultural soil erosion on the global carbon cycle. Science 318, 626–629 (2007).

    Article  Google Scholar 

  88. Doetterl, S., Six, J., Van Wesemael, B. & Van Oost, K. Carbon cycling in eroding landscapes: geomorphic controls on soil organic C pool composition and C stabilization. Glob. Change Biol. 18, 2218–2232 (2012).

    Article  Google Scholar 

  89. Berhe, A. A. et al. Persistence of soil organic matter in eroding versus depositional landform positions. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2011JG001790 (2012).

  90. Berhe, A. A. & Kleber, M. Erosion, deposition, and the persistence of soil organic matter: mechanistic considerations and problems with terminology. Earth Surf. Process. Landf. 38, 908–912 (2013).

    Article  CAS  Google Scholar 

  91. Lawrence, C. R., Neff, J. C. & Farmer, G. L. The accretion of aeolian dust in soils of the San Juan Mountains, Colorado, USA. J. Geophys. Res. Earth Surf. https://doi.org/10.1029/2010JF001899 (2011).

  92. Vogel, C. et al. Microspectroscopy reveals dust-derived apatite grains in acidic, highly-weathered Hawaiian soils. Geoderma 381, 114681 (2021).

    Article  CAS  Google Scholar 

  93. Bai, Y. & Cotrufo, M. F. Grassland soil carbon sequestration: current understanding, challenges, and solutions. Science 377, 603–608 (2022).

    Article  CAS  Google Scholar 

  94. Plaza, C. et al. Soil resources and element stocks in drylands to face global issues. Sci. Rep. 8, 13788 (2018).

    Article  Google Scholar 

  95. Hély, C., Alleaume, S. & Runyan, C. W. in Dryland Ecohydrology (eds d’Odorico, P. et al.) 367–399 (Springer, 2019).

  96. Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. Proc. Natl Acad. Sci. USA 114, 9575–9580 (2017).

    Article  CAS  Google Scholar 

  97. Govers, G., Vandaele, K., Desmet, P., Poesen, J. & Bunte, K. The role of tillage in soil redistribution on hillslopes. Eur. J. Soil. Sci. 45, 469–478 (1994).

    Article  Google Scholar 

  98. Ruysschaert, G., Poesen, J., Verstraeten, G. & Govers, G. Soil loss due to harvesting of various crop types in contrasting agro-ecological environments. Agric. Ecosyst. Environ. 120, 153–165 (2007).

    Article  Google Scholar 

  99. Carozza, J. M. et al. Landuse and soil degradation in the southern Maya lowlands, from pre-Classic to post-Classic times: the case of La Joyanca (Petén, Guatemala). Geodinam. Acta 20, 195–207 (2007).

    Article  Google Scholar 

  100. Birks, H. H. The Cultural Landscape: Past, Present and Future (Cambridge Univ. Press, 1988).

  101. Alcántara, V., Don, A., Well, R. & Nieder, R. Legacy of medieval ridge and furrow cultivation on soil organic carbon distribution and stocks in forests. CATENA 154, 85–94 (2017).

    Article  Google Scholar 

  102. Foster, D. et al. The importance of land-use legacies to ecology and conservation. BioScience 53, 77–88 (2003).

    Article  Google Scholar 

  103. Hagmann, R. K. et al. Evidence for widespread changes in the structure, composition, and fire regimes of western North American forests. Ecol. Appl. 31, e02431 (2021).

    Article  CAS  Google Scholar 

  104. Krupski, M. et al. Evidence of prehistoric and early medieval agriculture and its impact on soil and land relief transformation in the Białowieża natural forest (NE Poland). Geoderma 410, 115668 (2022).

    Article  CAS  Google Scholar 

  105. Farrell, E. P. et al. European forest ecosystems: building the future on the legacy of the past. For. Ecol. Manag. 132, 5–20 (2000).

    Article  Google Scholar 

  106. Schelhaas, M. J. et al. Actual European forest management by region, tree species and owner based on 714,000 re-measured trees in national forest inventories. PLoS ONE 13, e0207151 (2018).

    Article  Google Scholar 

  107. Kaiser, K., Theuerkauf, M. & Hieke, F. Holocene forest and land-use history of the Erzgebirge, central Europe: a review of palynological data. EG Quatern. Sci. J. 72, 127–161 (2023).

    Google Scholar 

  108. Montgomery, D. R. Soil erosion and agricultural sustainability. Proc. Natl Acad. Sci. USA 104, 13268–13272 (2007).

    Article  CAS  Google Scholar 

  109. Kopittke, P. M., Menzies, N. W., Wang, P., McKenna, B. A. & Lombi, E. Soil and the intensification of agriculture for global food security. Environ. Int. 132, 105078 (2019).

    Article  Google Scholar 

  110. Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).

    Article  CAS  Google Scholar 

  111. Muñoz-Rojas, M. et al. Impact of land use and land cover changes on organic carbon stocks in Mediterranean soils (1956–2007). Land. Degrad. Dev. 26, 168–179 (2015).

    Article  Google Scholar 

  112. Pimentel, D. & Kounang, N. Ecology of soil erosion in ecosystems. Ecosystems 1, 416–426 (1998).

    Article  CAS  Google Scholar 

  113. Pimentel, D. et al. Environmental and economic costs of soil erosion and conservation benefits. Science 267, 1117–1123 (1995).

    Article  CAS  Google Scholar 

  114. Alewell, C., Egli, M. & Meusburger, K. An attempt to estimate tolerable soil erosion rates by matching soil formation with denudation in Alpine grasslands. J. Soils Sediment. 15, 1383–1399 (2015).

    Article  Google Scholar 

  115. Kirkels, F. M. S. A., Cammeraat, L. H. & Kuhn, N. J. The fate of soil organic carbon upon erosion, transport and deposition in agricultural landscapes — a review of different concepts. Geomorphology 226, 94–105 (2014).

    Article  Google Scholar 

  116. van Oost, K. & Six, J. Reconciling the paradox of soil organic carbon erosion by water. Biogeosciences 20, 635–646 (2023).

    Article  Google Scholar 

  117. Wilkinson, B. H. Humans as geologic agents: a deep-time perspective. Geology 33, 161–164, (2005).

    Article  Google Scholar 

  118. Syvitski, J. et al. Earth’s sediment cycle during the Anthropocene. Nat. Rev. Earth Environ. 3, 179–196 (2022).

    Article  Google Scholar 

  119. O’Rourke, S. M., Angers, D. A., Holden, N. M. & McBratney, A. B. Soil organic carbon across scales. Glob. Change Biol. 21, 3561–3574 (2015).

    Article  Google Scholar 

  120. Kleber, M. et al. in Advances in Agronomy Vol. 130 (ed. Sparks, D. L.) 1–140 (Academic, 2015).

  121. Kleber, M. et al. Dynamic interactions at the mineral–organic matter interface. Nat. Rev. Earth Environ. 2, 402–421 (2021).

    Article  Google Scholar 

  122. Robinson, N. P. et al. Terrestrial primary production for the conterminous United States derived from Landsat 30 m and MODIS 250 m. Remote. Sens. Ecol. Conserv. 4, 264–280 (2018).

    Article  Google Scholar 

  123. Xiao, J., Fisher, J. B., Hashimoto, H., Ichii, K. & Parazoo, N. C. Emerging satellite observations for diurnal cycling of ecosystem processes. Nat. Plants 7, 877–887 (2021).

    Article  CAS  Google Scholar 

  124. Luo, Z., Wang, G. & Wang, E. Global subsoil organic carbon turnover times dominantly controlled by soil properties rather than climate. Nat. Commun. 10, 3688 (2019).

    Article  Google Scholar 

  125. Simo, I., Schulte, R., O’Sullivan, L. & Creamer, R. Digging deeper: understanding the contribution of subsoil carbon for climate mitigation, a case study of Ireland. Environ. Sci. Policy 98, 61–69 (2019).

    Article  CAS  Google Scholar 

  126. Inagaki, T. M. et al. Subsoil organo-mineral associations under contrasting climate conditions. Geochim. Cosmochim. Acta 270, 244–263 (2020).

    Article  CAS  Google Scholar 

  127. Kramer, M. G. & Chadwick, O. A. Climate-driven thresholds in reactive mineral retention of soil carbon at the global scale. Nat. Clim. Change 8, 1104–1108 (2018).

    Article  CAS  Google Scholar 

  128. von Fromm, S. F. et al. Continental-scale controls on soil organic carbon across sub-Saharan Africa. SOIL 7, 305–332 (2021).

    Article  Google Scholar 

  129. Rasmussen, C. et al. Beyond clay: towards an improved set of variables for predicting soil organic matter content. Biogeochemistry 137, 297–306 (2018).

    Article  CAS  Google Scholar 

  130. Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).

    Article  Google Scholar 

  131. Minasny, B., McBratney, A. B., Malone, B. P. & Wheeler, I. in Advances in Agronomy Vol. 118 (ed. Sparks, D. L.) 1–47 (Academic, 2013).

  132. Smith, P. et al. Climate change cannot be entirely responsible for soil carbon loss observed in England and Wales, 1978–2003. Glob. Change Biol. 13, 2605–2609 (2007).

    Article  Google Scholar 

  133. Ottoy, S. et al. An exponential change decline function to estimate soil organic carbon stocks and their changes from topsoil measurements. Eur. J. Soil. Sci. 67, 816–826 (2016).

    Article  CAS  Google Scholar 

  134. Hong, Y. et al. Potential of globally distributed topsoil mid-infrared spectral library for organic carbon estimation. Catena 235, 107628 (2024).

    Article  CAS  Google Scholar 

  135. Vågen, T.-G. et al. Mid-infrared spectra (MIRS) from ICRAF soil and plant spectroscopy laboratory: Africa Soil Information Service (AfSIS) Phase I 2009–2013. https://doi.org/10.34725/DVN/QXCWP1 (World Agroforestry (ICRAF), 2020).

  136. Summerauer, L. et al. The central African soil spectral library: a new soil infrared repository and a geographical prediction analysis. Soil 7, 693–715 (2021).

    Article  CAS  Google Scholar 

  137. Mendes, Wd. S. et al. The Brazilian soil mid-infrared spectral library: the power of the fundamental range. Geoderma 415, 115776 (2022).

    Article  CAS  Google Scholar 

  138. Ma, Y. et al. A soil spectral library of New Zealand. Geoderma Reg. 35, e00726 (2023).

    Article  Google Scholar 

  139. Barra, I., Haefele, S. M., Sakrabani, R. & Kebede, F. Soil spectroscopy with the use of chemometrics, machine learning and pre-processing techniques in soil diagnosis: recent advances–a review. TrAC. Trends Anal. Chem. 135, 116166 (2021).

    Article  CAS  Google Scholar 

  140. Seybold, C. A. et al. Application of mid-infrared spectroscopy in soil survey. Soil. Sci. Soc. Am. J. 83, 1746–1759 (2019).

    Article  CAS  Google Scholar 

  141. Doetterl, S., Stevens, A., Van Oost, K. & van Wesemael, B. Soil organic carbon assessment at high vertical resolution using closed-tube sampling and vis-NIR spectroscopy. Soil. Sci. Soc. Am. J. 77, 1430–1435 (2013).

    Article  CAS  Google Scholar 

  142. Nocita, M. et al. Soil spectroscopy: an opportunity to be seized. Glob. Change Biol. 21, 10–11 (2015).

    Article  Google Scholar 

  143. Lin, Z. et al. On the magnitude and uncertainties of global and regional soil organic carbon: a comparative analysis using multiple estimates. Earth Syst. Sci. Data Discuss. 2022, 1–24 (2022).

    CAS  Google Scholar 

  144. Stell, E., Warner, D., Jian, J., Bond-Lamberty, B. & Vargas, R. Spatial biases of information influence global estimates of soil respiration: how can we improve global predictions? Glob. Change Biol. 27, 3923–3938 (2021).

    Article  CAS  Google Scholar 

  145. Minasny, B. & McBratney, A. B. A conditioned Latin hypercube method for sampling in the presence of ancillary information. Comput, Geosci. 32, 1378–1388 (2006).

    Article  Google Scholar 

  146. Yang, L. et al. Evaluation of conditioned Latin hypercube sampling for soil mapping based on a machine learning method. Geoderma 369, 114337 (2020).

    Article  Google Scholar 

  147. Vargas, R. & Le, V. H. The paradox of assessing greenhouse gases from soils for nature-based solutions. Biogeosciences 20, 15–26 (2023).

    Article  CAS  Google Scholar 

  148. Le, V. H. & Vargas, R. An autocorrelated conditioned Latin hypercube method for temporal or spatial sampling and predictions. Computers Geosci. 184, 105539 (2024).

    Article  Google Scholar 

  149. Finke, P. A., Jafari, A., Zwertvaegher, A. & Thas, O. Quantifying the uncertainty of a model-reconstructed soilscape for archaeological land evaluation. Geoderma 320, 74–81 (2018).

    Article  Google Scholar 

  150. Keyvanshokouhi, S. et al. Effects of soil process formalisms and forcing factors on simulated organic carbon depth-distributions in soils. Sci. Total. Environ. 652, 523–537 (2019).

    Article  CAS  Google Scholar 

  151. Bond-Lamberty, B. et al. Twenty years of progress, challenges, and opportunities in measuring and understanding soil respiration. J. Geophys. Res. Biogeosci. 129, e2023JG007637 (2024).

    Article  Google Scholar 

  152. Warner, D. L., Bond-Lamberty, B., Jian, J., Stell, E. & Vargas, R. Spatial predictions and associated uncertainty of annual soil respiration at the global scale. Glob. Biogeochem. Cycles 33, 1733–1745 (2019).

    Article  CAS  Google Scholar 

  153. Batjes, N. H., Calisto, L. & de Sousa, L. M. Providing quality-assessed and standardised soil data to support global mapping and modelling (WoSIS snapshot 2023). Earth Syst. Sci. Data Discuss. 2024, 1–46 (2024).

    Google Scholar 

  154. Lawrence, C. R. et al. An open-source database for the synthesis of soil radiocarbon data: International Soil Radiocarbon Database (ISRaD) version 1.0. Earth Syst. Sci. Data 12, 61–76 (2020).

    Article  Google Scholar 

  155. Jian, J. et al. A restructured and updated global soil respiration database (SRDB-V5). Earth Syst. Sci. Data 13, 255–267 (2021).

    Article  Google Scholar 

  156. Baveye, P. C. Ecosystem-scale modelling of soil carbon dynamics: time for a radical shift of perspective? Soil. Biol. Biochem. 184, 109112 (2023).

    Article  CAS  Google Scholar 

  157. Patton, N. R., Lohse, K. A., Seyfried, M. S., Godsey, S. E. & Parsons, S. B. Topographic controls of soil organic carbon on soil-mantled landscapes. Sci. Rep. 9, 6390 (2019).

    Article  Google Scholar 

  158. Barré, P. et al. Geological control of soil organic carbon and nitrogen stocks at the landscape scale. Geoderma 285, 50–56 (2017).

    Article  Google Scholar 

  159. Luo, Z., Viscarra-Rossel, R. A. & Qian, T. Similar importance of edaphic and climatic factors for controlling soil organic carbon stocks of the world. Biogeosciences 18, 2063–2073 (2021).

    Article  CAS  Google Scholar 

  160. Bradford, M. A. et al. Managing uncertainty in soil carbon feedbacks to climate change. Nat. Clim. Change 6, 751–758 (2016).

    Article  Google Scholar 

  161. Walker, T. W. & Syers, J. K. The fate of phosphorus during pedogenesis. Geoderma 15, 1–19 (1976).

    Article  CAS  Google Scholar 

  162. Chadwick, O. A., Derry, L. A., Vitousek, P. M., Huebert, B. J. & Hedin, L. O. Changing sources of nutrients during four million years of ecosystem development. Nature 397, 491–497 (1999).

    Article  CAS  Google Scholar 

  163. Torn, M. S., Vitousek, P. M. & Trumbore, S. E. The influence of nutrient availability on soil organic matter turnover estimated by incubations and radiocarbon modeling. Ecosystems 8, 352–372 (2005).

    Article  CAS  Google Scholar 

  164. Lilienfein, J., Qualls, R. G., Uselman, S. M. & Bridgham, S. D. Adsorption of dissolved organic carbon and nitrogen in soils of a weathering chronosequence. Soil. Sci. Soc. Am. J. 68, 292–305 (2004).

    Article  CAS  Google Scholar 

  165. Tao, F. et al. Microbial carbon use efficiency promotes global soil carbon storage. Nature 618, 981–985 (2023).

    Article  CAS  Google Scholar 

  166. Groffman, P., Tiedje, J., Robertson, G. & Christensen, S. in Advances in Nitrogen Cycling in Agricultural Ecosystems (ed. Wilson, R.) 174–192 (CAB International, 1988).

  167. Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017).

    Article  CAS  Google Scholar 

  168. Chadwick, O. A. & Chorover, J. The chemistry of pedogenic thresholds. Geoderma 100, 321–353 (2001).

    Article  CAS  Google Scholar 

  169. Chadwick, O. A. et al. The impact of climate on the biogeochemical functioning of volcanic soils. Chem. Geol. 202, 195–223 (2003).

    Article  CAS  Google Scholar 

  170. Ewing, S. A. et al. A threshold in soil formation at Earth’s arid–hyperarid transition. Geochim. Cosmochim. Acta 70, 5293–5322 (2006).

    Article  CAS  Google Scholar 

  171. Borrelli, P. et al. Soil erosion modelling: a global review and statistical analysis. Sci. Total. Environ. 780, 146494 (2021).

    Article  CAS  Google Scholar 

  172. Williams, J. et al. Using soil erosion models for global change studies. J. Soil. Water Conserv. 51, 381 (1996).

    Google Scholar 

  173. Chappell, A., Baldock, J. & Sanderman, J. The global significance of omitting soil erosion from soil organic carbon cycling schemes. Nat. Clim. Change 6, 187–191 (2016).

    Article  CAS  Google Scholar 

  174. Pennock, D. J. in Developments in Soil Science Vol. 25 (eds Gregorich, E. G. & Carter, M. R.) 167–185 (Elsevier, 1997).

  175. Wilken, F., Fiener, P. & Van Oost, K. Modelling a century of soil redistribution processes and carbon delivery from small watersheds using a multi-class sediment transport model. Earth Surf. Dynam. 5, 113–124 (2017).

    Article  Google Scholar 

  176. Cerdan, O. et al. Rates and spatial variations of soil erosion in Europe: a study based on erosion plot data. Geomorphology 122, 167–177 (2010).

    Article  Google Scholar 

  177. Naipal, V. et al. Global soil organic carbon removal by water erosion under climate change and land use change during AD 1850–2005. Biogeosciences 15, 4459–4480 (2018).

    Article  CAS  Google Scholar 

  178. Smith, S. V., Renwick, W. H., Buddemeier, R. W. & Crossland, C. J. Budgets of soil erosion and deposition for sediments and sedimentary organic carbon across the conterminous United States. Glob. Biogeochem. Cycles 15, 697–707 (2001).

    Article  CAS  Google Scholar 

  179. Lal, R. Soil degradation by erosion. Land Degrad. Dev. 12, 519–539 (2001).

    Article  Google Scholar 

  180. Liu, C. et al. Modeling organic matter sources of sediment fluxes in eroding landscapes: review, key challenges, and new perspectives. Geoderma 383, 114704 (2021).

    Article  CAS  Google Scholar 

  181. Gaspar, L., Lizaga, I. & Navas, A. Spatial distribution of fallout and lithogenic radionuclides controlled by soil carbon and water erosion in an agroforestry South-Pyrenean catchment. Geoderma 391, 114941 (2021).

    Article  CAS  Google Scholar 

  182. Wilken, F., Ketterer, M., Koszinski, S., Sommer, M. & Fiener, P. Understanding the role of water and tillage erosion from 239+240Pu tracer measurements using inverse modelling. SOIL 6, 549–564 (2020).

    Article  CAS  Google Scholar 

  183. Chen, F. X., Fang, N. F., Wang, Y. X., Tong, L. S. & Shi, Z. H. Biomarkers in sedimentary sequences: indicators to track sediment sources over decadal timescales. Geomorphology 278, 1–11 (2017).

    Article  Google Scholar 

  184. Nilsson, S. & Schopfhauser, W. The carbon-sequestration potential of a global afforestation program. Clim. Change 30, 267–293 (1995).

    Article  CAS  Google Scholar 

  185. Doelman, J. C. et al. Afforestation for climate change mitigation: potentials, risks and trade-offs. Glob. Change Biol. 26, 1576–1591 (2020).

    Article  Google Scholar 

  186. Le, H. D., Smith, C., Herbohn, J. & Harrison, S. More than just trees: assessing reforestation success in tropical developing countries. J. Rural. Stud. 28, 5–19 (2012).

    Article  Google Scholar 

  187. Zhou, Y. et al. Limited increases in savanna carbon stocks over decades of fire suppression. Nature 603, 445–449 (2022).

    Article  CAS  Google Scholar 

  188. White, L. J. et al. Congo Basin rainforest — invest US $150 million in science. Nature 598, 411–414 (2021).

    Article  CAS  Google Scholar 

  189. Szatmári, G. et al. Countrywide mapping and assessment of organic carbon saturation in the topsoil using machine learning-based pedotransfer function with uncertainty propagation. Catena 227, 107086 (2023).

    Article  Google Scholar 

  190. Rogelj, J. et al. Scenarios towards limiting global mean temperature increase below 1.5 °C. Nat. Clim. Change 8, 325–332 (2018).

    Article  CAS  Google Scholar 

  191. Scheffer, M. & Carpenter, S. R. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol. Evol. 18, 648–656 (2003).

    Article  Google Scholar 

  192. Vargas, R., Detto, M., Baldocchi, D. D. & Allen, M. F. Multiscale analysis of temporal variability of soil CO2 production as influenced by weather and vegetation. Glob. Change Biol. 16, 1589–1605 (2010).

    Article  Google Scholar 

  193. Kuzyakov, Y. & Razavi, B. S. Rhizosphere size and shape: temporal dynamics and spatial stationarity. Soil. Biol. Biochem. 135, 343–360 (2019).

    Article  CAS  Google Scholar 

  194. Franklin, S. M. et al. The unexplored role of preferential flow in soil carbon dynamics. Soil. Biol. Biochem. 161, 108398 (2021).

    Article  CAS  Google Scholar 

  195. Torsvik, V. & Øvreås, L. Microbial diversity and function in soil: from genes to ecosystems. Curr. Opin. Microbiol. 5, 240–245 (2002).

    Article  CAS  Google Scholar 

  196. Kim, D. G., Vargas, R., Bond-Lamberty, B. & Turetsky, M. R. Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research. Biogeosciences 9, 2459–2483 (2012).

    Article  CAS  Google Scholar 

  197. Schulp, C. J. E. & Verburg, P. H. Effect of land use history and site factors on spatial variation of soil organic carbon across a physiographic region. Agric. Ecosyst. Environ. 133, 86–97 (2009).

    Article  Google Scholar 

  198. Bradford, M. A. et al. Quantifying microbial control of soil organic matter dynamics at macrosystem scales. Biogeochemistry 156, 19–40 (2021).

    Article  Google Scholar 

  199. Schwanghart, W. & Jarmer, T. Linking spatial patterns of soil organic carbon to topography — a case study from south-eastern Spain. Geomorphology 126, 252–263 (2011).

    Article  Google Scholar 

  200. Potter, C. et al. Global teleconnections of climate to terrestrial carbon flux. J. Geophys. Res. Atmos. https://doi.org/10.1029/2002JD002979 (2003).

  201. Heimann, M. & Reichstein, M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451, 289–292 (2008).

    Article  CAS  Google Scholar 

  202. Rillig, M. C. et al. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366, 886–890 (2019).

    Article  CAS  Google Scholar 

  203. Guevara, M. et al. No silver bullet for digital soil mapping: country-specific soil organic carbon estimates across Latin America. Soil 4, 173–193 (2018).

    Article  Google Scholar 

  204. Bradford, M. A. et al. Climate fails to predict wood decomposition at regional scales. Nat. Clim. Change 4, 625–630 (2014).

    Article  CAS  Google Scholar 

  205. Harden, J. W. et al. Networking our science to characterize the state, vulnerabilities, and management opportunities of soil organic matter. Glob. Change Biol. 24, e705–e718 (2018).

    Article  Google Scholar 

  206. Chenu, C. et al. Increasing organic stocks in agricultural soils: knowledge gaps and potential innovations. Soil. Tillage Res. 188, 41–52 (2019).

    Article  Google Scholar 

  207. Jandl, R. et al. Current status, uncertainty and future needs in soil organic carbon monitoring. Sci. Total. Environ. 468-469, 376–383 (2014).

    Article  CAS  Google Scholar 

  208. Petrakis, S., Barba, J., Bond-Lamberty, B. & Vargas, R. Using greenhouse gas fluxes to define soil functional types. Plant. Soil. 423, 285–294 (2018).

    Article  CAS  Google Scholar 

  209. Xiong, X. et al. Holistic environmental soil-landscape modeling of soil organic carbon. Environ. Model. Softw. 57, 202–215 (2014).

    Article  Google Scholar 

  210. Lawrence, D. M. et al. The community land model version 5: description of new features, benchmarking, and impact of forcing uncertainty. J. Adv. Model. Earth Syst. 11, 4245–4287 (2019).

    Article  Google Scholar 

  211. Luo, Y. et al. Toward more realistic projections of soil carbon dynamics by Earth system models. Glob. Biogeochem. Cycles 30, 40–56 (2016).

    Article  CAS  Google Scholar 

  212. Todd-Brown, K. E. O. et al. Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations. Biogeosciences 10, 1717–1736 (2013).

    Article  Google Scholar 

  213. Fatichi, S. et al. Soil structure is an important omission in Earth system models. Nat. Commun. 11, 522 (2020).

    Article  CAS  Google Scholar 

  214. Cook, B. I. et al. Twenty-first century drought projections in the CMIP6 forcing scenarios. Earth’s Future 8, e2019EF001461 (2020).

    Article  Google Scholar 

  215. Wieder, W. R., Bonan, G. B. & Allison, S. D. Global soil carbon projections are improved by modelling microbial processes. Nat. Clim. Change 3, 909–912 (2013).

    Article  CAS  Google Scholar 

  216. Tang, J. & Riley, W. J. Weaker soil carbon–climate feedbacks resulting from microbial and abiotic interactions. Nat. Clim. Change 5, 56–60 (2015).

    Article  CAS  Google Scholar 

  217. Dignac, M.-F. et al. Increasing soil carbon storage: mechanisms, effects of agricultural practices and proxies. A review. Agron. Sustain. Dev. 37, 14 (2017).

    Article  Google Scholar 

  218. Angst, G. et al. Unlocking complex soil systems as carbon sinks: multi-pool management as the key. Nat. Commun. 14, 2967 (2023).

    Article  CAS  Google Scholar 

  219. Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Article  Google Scholar 

  220. Strakhov, N. M. Principles of Lithogenesis (Springer, 2014).

  221. Pope, G. A., Dorn, R. I. & Dixon, J. C. A new conceptual model for understanding geographical variations in weathering. Ann. Assoc. Am. Geogr. 85, 38–64 (1995).

    Google Scholar 

  222. Hartmann, J., Moosdorf, N., Lauerwald, R., Hinderer, M. & West, A. J. Global chemical weathering and associated P-release — the role of lithology, temperature and soil properties. Chem. Geol. 363, 145–163 (2014).

    Article  CAS  Google Scholar 

  223. Doetterl, S. et al. in Understanding Soil Organic Carbon Dynamics at Larger Scales (ed. Rumpel, C.) 115–182 (Burleigh Dodds, 2022).

  224. Heckman, K. & Rasmussen, C. in Developments in Soil Science Vol. 35, 93–110 (Elsevier, 2018).

  225. Wakatsuki, T. & Masunaga, T. Ecological engineering for sustainable food production and the restoration of degraded watersheds in tropics of low pH soils: focus on West Africa. Soil Sci. Plant Nutr. 51, 629–636 (2005).

    Article  CAS  Google Scholar 

  226. Dossou-Yovo, E. R. et al. Thirty years of water management research for rice in sub-Saharan Africa: achievement and perspectives. Field Crop. Res. 283, 108548 (2022).

    Article  Google Scholar 

  227. van Oort, P. A. J. et al. Assessment of rice self-sufficiency in 2025 in eight African countries. Glob. Food Security 5, 39–49 (2015).

    Article  Google Scholar 

  228. Ofori, J., Hisatomi, Y., Kamidouzono, A., Masunaga, T. & Wakatsuki, T. Performance of rice cultivars in various sawah ecosystems developed in inland valleys, Ashanti region, Ghana. Soil. Sci. Plant. Nutr. 51, 469–476 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S.D., K.H., C.L., R.V. and R.W. researched data for the article. All authors contributed substantially to discussion of the content. S.D., K.H., C.L., R.V. and R.W. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Sebastian Doetterl.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Samantha Weintraub-Leff, Zhongkui Luo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doetterl, S., Berhe, A.A., Heckman, K. et al. A landscape-scale view of soil organic matter dynamics. Nat Rev Earth Environ 6, 67–81 (2025). https://doi.org/10.1038/s43017-024-00621-2

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43017-024-00621-2

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene