Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Natural hydrogen resource accumulation in the continental crust

Abstract

Naturally occurring hydrogen accumulations could be an important source of clean hydrogen for hard-to-abate industry use and energy, but societally important reserves have yet to be proven. In this Review, we explore the conditions that enable the development of natural hydrogen resources in the geological subsurface, by examining the processes of hydrogen generation, migration, accumulation and preservation. Natural hydrogen is generated within the continental crust by two key mechanisms, water–rock reactions where Fe2+, dominantly in ultramafic rocks, is oxidized to Fe3+, and by radiolysis of water via radioactive elements U, Th and K found in upper-crustal rocks. These two generation reactions operate on very different timescales, ranging from thousands to millions of years for water–rock reactions in highly fractured rocks, to tens to hundreds of millions of years for water-limited water–rock and radiolysis reactions. Different globally widespread terrane types have the potential for hydrogen accumulations: continental margin ophiolite complexes, alkaline granite terranes, large igneous provinces, and Archaean greenstone belts and tonalite–trondhjemite–granodiorite granitic batholiths. Exploitation of natural hydrogen would have a low-carbon footprint, but continental systems do not provide a regenerating system on decadal to centennial timescales, and should not be considered a renewable resource. Calculating hydrogen generation by water–rock reactions is subject to more uncertainty than radiolysis reactions, but improving these estimates should be a priority for future research.

Key points

  • Over the past billion years, the Archaean crust alone has generated volumes of hydrogen energy equivalent to ca 170,000 years of present-day societal oil use. However, it is not known how much of this hydrogen has been preserved in societally relevant accumulations.

  • Natural hydrogen accumulation requires a source rock, water within the source rock, transport and a trap to retain the hydrogen. The generation and preservation of a gas phase is essential for economic recovery.

  • Gas accumulations of high-purity (>90%) hydrogen are known to occur (such as the Bourakebougou reserve found in Mali), but hydrogen mixed with helium, nitrogen and other gases are predicted in many settings.

  • Helium, readily detected in near-surface fluids, provides a critical analogue to hydrogen, and can illustrate regional controls on deep gas release, transport and gas-phase formation.

  • A basic understanding of the geological controls of hydrogen generation by radiolytic and water–rock reaction pathways exists and enables exploration to find the most prospective regions.

  • The mantle is not a source of hydrogen gas found in the crust or near surface, as mantle-derived hydrogen is most stable as water at pressures and temperatures shallower than ca. 90 km depth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of commercial hydrogen with natural hydrogen.
Fig. 2: Hydrogen generation in ultramafic rocks from water–rock reactions.
Fig. 3: Water–rock and radiolytic hydrogen generation as a function of depth.
Fig. 4: Tectonic setting controls deep-crustal degassing and helium flux.
Fig. 5: Five potential source-to-sink natural hydrogen systems.
Fig. 6: The global distribution of hydrogen-potential terranes.

Similar content being viewed by others

References

  1. The fast-growing hydrogen energy industry (KPMG, 2022); https://assets.kpmg.com/content/dam/kpmg/cn/pdf/en/2022/09/understand-the-hydrogen-energy-industry-in-one-article.pdf.

  2. International Energy Agency. Global hydrogen review (IEA, 2023); https://iea.blob.core.windows.net/assets/ecdfc3bb-d212-4a4c-9ff7-6ce5b1e19cef/GlobalHydrogenReview2023.pdf.

  3. Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z. & Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 1, 636–639 (2008).

    Article  CAS  Google Scholar 

  4. Gluyas, J. G. et al. Exploring for hydrogen, helium and lithium: is it as easy as 1, 2, 3? In Gill, C., Goffey, G., and Underhill, J.R. (eds) Powering the Energy Transition through Subsurface Collaboration: Proc. 1st Energy Geoscience Conference (The Geological Society of London, 2025).

  5. Brandt, A. R. Greenhouse gas intensity of natural hydrogen produced from subsurface geologic accumulations. Joule 7, 1818–1831 (2023).

    Article  CAS  Google Scholar 

  6. Organisation for Economic Co-operation and Development. Towards hydrogen definitions based on their emissions intensity (OECD, 2023); https://doi.org/10.1787/44618fd1-en.

  7. Sherwood Lollar, B., Onstott, T. C., Lacrampe-Couloume, G. & Ballentine, C. J. The contribution of the Precambrian continental lithosphere to global H2 production. Nature 516, 379–382 (2014).

    Article  Google Scholar 

  8. Ellis, G. S. & Gelman, S. E. Model predictions of global geologic hydrogen resources. Sci. Adv. 10, eado0955 (2024).

    Article  CAS  Google Scholar 

  9. Templeton, A. S. et al. Low-temperature hydrogen production and consumption in partially-hydrated peridotites in Oman: implications for stimulated geological hydrogen production. Front. Geochem. 2, 1366268 (2024).

    Article  Google Scholar 

  10. Sherwood Lollar, B. et al. Abiogenic methanogenesis in crystalline rocks. Geochim. Cosmochim. Acta 57, 5087–5097 (1993).

    Article  Google Scholar 

  11. Sherwood Lollar, B. et al. Hydrogeologic controls on episodic H2 release from precambrian fractured rocks — energy for deep subsurface life on earth and mars. Astrobiology 7, 971–986 (2007).

    Article  CAS  Google Scholar 

  12. Lin, L.-H. et al. Radiolytic H2 in continental crust: nuclear power for deep subsurface microbial communities. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2004GC000907 (2005).

  13. Lin, L.-H., Slater, G. F., Sherwood Lollar, B., Lacrampe-Couloume, G. & Onstott, T. C. The yield and isotopic composition of radiolytic H2, a potential energy source for the deep subsurface biosphere. Geochim. Cosmochim. Acta 69, 893–903 (2005).

    Article  CAS  Google Scholar 

  14. Etiope, G. & Sherwood Lollar, B. Abiotic methane on Earth. Rev. Geophys. 51, 276–299 (2013).

    Article  Google Scholar 

  15. Truche, L., McCollom, T. M. & Martinez, I. Hydrogen and abiotic hydrocarbons: molecules that change the world. Elements 16, 13–18 (2020).

    Article  CAS  Google Scholar 

  16. Truche, L. et al. A deep reservoir for hydrogen drives intense degassing in the Bulqizë ophiolite. Science 383, 618–621 (2024).

    Article  CAS  Google Scholar 

  17. Zgonnik, V. The occurrence and geoscience of natural hydrogen: a comprehensive review. Earth Sci. Rev. 203, 103140 (2020).

    Article  CAS  Google Scholar 

  18. Etiope, G. Massive release of natural hydrogen from a geological seep (Chimaera, Turkey): gas advection as a proxy of subsurface gas migration and pressurised accumulations. Int. J. Hydrog. Energy 48, 9172–9184 (2023).

    Article  CAS  Google Scholar 

  19. Homer. Iliad Venetus A (Codex Marcianus Graecus 454; 900s CE).

  20. Prinzhofer, A., Tahara Cissé, C. S. & Diallo, A. B. Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali). Int. J. Hydrog. Energy 43, 19315–19326 (2018).

    Article  CAS  Google Scholar 

  21. Maiga, O., Deville, E., Laval, J., Prinzhofer, A. & Diallo, A. B. Characterization of the spontaneously recharging natural hydrogen reservoirs of Bourakebougou in Mali. Sci. Rep. 13, 11876 (2023).

    Article  CAS  Google Scholar 

  22. Mathur, Y., Moise, H., Aydin, Y. & Mukerji, T. Techno-economic analysis of natural and stimulated geological hydrogen. Preprint at https://doi.org/10.31223/X5599G (2025).

  23. Mahlstedt, N. et al. Molecular hydrogen from organic sources in geological systems. J. Nat. Gas Sci. Eng. 105, 104704 (2022).

    Article  CAS  Google Scholar 

  24. Hanson, J. & Hanson, H. Hydrogen’s organic genesis. Unconv. Resour. 4, 100057 (2024).

    Google Scholar 

  25. Horsfield, B. et al. Molecular hydrogen from organic sources in the deep Songliao Basin, P.R. China. Int. J. Hydrog. Energy 47, 16750–16774 (2022).

    Article  CAS  Google Scholar 

  26. Boreham, C. J. et al. Modelling of hydrogen gas generation from overmature organic matter in the Cooper Basin, Australia. APPEA J. 63, S351–S356 (2023).

    Article  Google Scholar 

  27. Boreham, C. J. et al. Hydrogen in Australian natural gas: occurrences, sources and resources. APPEA J. 61, 163–191 (2021).

    Article  Google Scholar 

  28. Milkov, A. V. Molecular hydrogen in surface and subsurface natural gases: abundance, origins and ideas for deliberate exploration. Earth Sci. Rev. 230, 104063 (2022).

    Article  CAS  Google Scholar 

  29. Stalker, L., Talukder, A., Strand, J., Josh, M. & Faiz, M. Gold (hydrogen) rush: risks and uncertainties in exploring for naturally occurring hydrogen. APPEA J. 62, 361–380 (2022).

    Article  Google Scholar 

  30. Lévy, D. et al. Natural H2 exploration: tools and workflows to characterize a play. Sci. Technol. Energy Transit. 78, 27 (2023).

    Article  Google Scholar 

  31. Global oil production in metric tons 2023. Statista https://www.statista.com/statistics/265229/global-oil-production-in-million-metric-tons/ (2023).

  32. Klein, F. et al. Iron partitioning and hydrogen generation during serpentinization of abyssal peridotites from 15° N on the Mid-Atlantic Ridge. Geochim. Cosmochim. Acta 73, 6868–6893 (2009).

    Article  CAS  Google Scholar 

  33. McCollom, T. M. & Bach, W. Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks. Geochim. Cosmochim. Acta 73, 856–875 (2009).

    Article  CAS  Google Scholar 

  34. Ely, T. D., Leong, J. M., Canovas, P. A. & Shock, E. L. Huge variation in H2 generation during seawater alteration of ultramafic rocks. Geochem. Geophys. Geosyst 24, e2022GC010658 (2023).

    Article  CAS  Google Scholar 

  35. Albers, E., Bach, W., Pérez-Gussinyé, M., McCammon, C. & Frederichs, T. Serpentinization-driven H2 production from continental break-up to mid-ocean ridge spreading: unexpected high rates at the West Iberia margin. Front. Earth Sci. 9, 673063 (2021).

    Article  Google Scholar 

  36. Leong, J. A. M., Ely, T. & Shock, E. L. Decreasing extents of Archean serpentinization contributed to the rise of an oxidized atmosphere. Nat. Commun. 12, 7341 (2021).

    Article  CAS  Google Scholar 

  37. Klein, F., Bach, W. & McCollom, T. M. Compositional controls on hydrogen generation during serpentinization of ultramafic rocks. Lithos 178, 55–69 (2013).

    Article  CAS  Google Scholar 

  38. Sauvage, J. F. et al. The contribution of water radiolysis to marine sedimentary life. Nat. Commun. 12, 1297 (2021).

    Article  CAS  Google Scholar 

  39. Gelman, S. E., Hearon, J. S. & Ellis, G. S. Prospectivity mapping for geologic hydrogen. Professional paper (USGS, 2025); https://pubs.usgs.gov/publication/pp1900.

  40. Mayhew, L. E., Ellison, E. T., McCollom, T. M., Trainor, T. P. & Templeton, A. S. Hydrogen generation from low-temperature water–rock reactions. Nat. Geosci. 6, 478–484 (2013).

    Article  CAS  Google Scholar 

  41. Reed, M. H., Palandri, J., Tohji, K., Tsuchiya, N. & Jeyadevan, B. Hydrogen produced by reduction of H2O in rock reaction: peridotite vs basalt. In AIP Conf. Proc. Vol. 987, 100–104 (AIP, 2008).

  42. Wetzel, L. R. & Shock, E. L. Distinguishing ultramafic-from basalt-hosted submarine hydrothermal systems by comparing calculated vent fluid compositions. J. Geophys. Res. 105, 8319–8340 (2000).

    Article  CAS  Google Scholar 

  43. McCollom, T. M. et al. Temperature trends for reaction rates, hydrogen generation, and partitioning of iron during experimental serpentinization of olivine. Geochim. Cosmochim. Acta 181, 175–200 (2016).

    Article  CAS  Google Scholar 

  44. Bach, W. & Edwards, K. J. Iron and sulfide oxidation within the basaltic ocean crust: implications for chemolithoautotrophic microbial biomass production. Geochim. Cosmochim. Acta 67, 3871–3887 (2003).

    Article  CAS  Google Scholar 

  45. Neal, C. & Stanger, G. Hydrogen generation from mantle source rocks in Oman. Earth Planet. Sci. Lett. 66, 315–320 (1983).

    Article  CAS  Google Scholar 

  46. Tosca, N. J., Ahmed, I. A. M., Tutolo, B. M., Ashpitel, A. & Hurowitz, J. A. Magnetite authigenesis and the warming of early Mars. Nat. Geosci. 11, 635–639 (2018).

    Article  CAS  Google Scholar 

  47. Geymond, U. et al. Reassessing the role of magnetite during natural hydrogen generation. Front. Earth Sci. https://doi.org/10.3389/feart.2023.1169356 (2023).

  48. Moretti, I. et al. Long-term monitoring of natural hydrogen superficial emissions in a brazilian cratonic environment. Sporadic large pulses versus daily periodic emissions. Int. J. Hydrog. Energy 46, 3615–3628 (2021).

    Article  CAS  Google Scholar 

  49. Geymond, U., Ramanaidou, E., Lévy, D., Ouaya, A. & Moretti, I. Can weathering of banded iron formations generate natural hydrogen? Evidence from Australia, Brazil and South Africa. Minerals 12, 163 (2022).

    Article  CAS  Google Scholar 

  50. Klein, F. et al. Fluids in the crust. Experimental constraints on fluid-rock reactions during incipient serpentinization of harzburgite. Am. Mineral. 100, 991–1002 (2015).

    Article  Google Scholar 

  51. Lamadrid, H. M., Zajacz, Z., Klein, F. & Bodnar, R. J. Synthetic fluid inclusions XXIII. Effect of temperature and fluid composition on rates of serpentinization of olivine. Geochim. Cosmochim. Acta 292, 285–308 (2021).

    Article  CAS  Google Scholar 

  52. Schwarzenbach, E. M., Caddick, M. J., Beard, J. S. & Bodnar, R. J. Serpentinization, element transfer, and the progressive development of zoning in veins: evidence from a partially serpentinized harzburgite. Contrib. Miner. Pet. 171, 5 (2015).

    Article  Google Scholar 

  53. Tutolo, B. M., Mildner, D. F. R., Gagnon, C. V. L., Saar, M. O. & Seyfried, W. E. Jr. Nanoscale constraints on porosity generation and fluid flow during serpentinization. Geology 44, 103–106 (2016).

    Article  CAS  Google Scholar 

  54. Malvoisin, B., Podladchikov, Y. Y. & Myasnikov, A. V. Achieving complete reaction while the solid volume increases: a numerical model applied to serpentinisation. Earth Planet. Sci. Lett. 563, 116859 (2021).

    Article  CAS  Google Scholar 

  55. Plümper, O., Røyne, A., Magrasó, A. & Jamtveit, B. The interface-scale mechanism of reaction-induced fracturing during serpentinization. Geology 40, 1103–1106 (2012).

    Article  Google Scholar 

  56. McCollom, T. M., Klein, F., Solheid, P. & Moskowitz, B. The effect of pH on rates of reaction and hydrogen generation during serpentinization. Philos. Trans. R. Soc. A 378, 20180428 (2020).

    Article  CAS  Google Scholar 

  57. Wolery, T. J. EQ3/6 - Software for Geochemical Modeling, v.8.0a. LLNL-CODE-2013-683958 (Lawrence Livermore National Laboratory, 2013).

  58. Bethke, C. M. A numerical model of compaction-driven groundwater flow and heat transfer and its application to the paleohydrology of intracratonic sedimentary basins. J. Geophys. Res. 90, 6817–6828 (1985).

    Article  Google Scholar 

  59. Ferguson, G., McIntosh, J., Warr, O. & Sherwood Lollar, B. The low permeability of the Earth’s Precambrian crust. Commun. Earth Env. 4, 1–8 (2023).

    Article  Google Scholar 

  60. Lamadrid, H. M. et al. Effect of water activity on rates of serpentinization of olivine. Nat. Commun. 8, 16107 (2017).

    Article  CAS  Google Scholar 

  61. Huang, R., Shang, X., Zhao, Y., Sun, W. & Liu, X. Effect of fluid salinity on reaction rate and molecular hydrogen (H2) formation during peridotite serpentinization at 300 °C. J. Geophys. Res. 128, e2022JB025218 (2023).

    Article  CAS  Google Scholar 

  62. Rudnick, R. L. & Fountain, D. M. Nature and composition of the continental crust: a lower crustal perspective. Rev. Geophys. 33, 267–309 (1995).

    Article  Google Scholar 

  63. Cowart, J. B. & Burnett, W. C. The distribution of uranium and thorium decay-series radionuclides in the environment — a review. J. Environ. Qual. 23, 651–662 (1994).

    Article  CAS  Google Scholar 

  64. Warr, O., Song, M. & Sherwood Lollar, B. The application of Monte Carlo modelling to quantify in situ hydrogen and associated element production in the deep subsurface. Front. Earth Sci. https://doi.org/10.3389/feart.2023.1150740 (2023).

  65. Karolytė, R. et al. The role of porosity in H2/He production ratios in fracture fluids from the Witwatersrand Basin, South Africa. Chem. Geol. 595, 120788 (2022).

    Article  Google Scholar 

  66. D’Hondt, S. et al. Subseafloor sedimentary life in the South Pacific Gyre. Proc. Natl Acad. Sci. USA 106, 11651–11656 (2009).

    Article  Google Scholar 

  67. Blair, C. C., D’Hondt, S., Spivack, A. J. & Kingsley, R. H. Radiolytic hydrogen and microbial respiration in subsurface sediments. Astrobiology 7, 951–970 (2007).

    Article  CAS  Google Scholar 

  68. Dzaugis, M. E., Spivack, A. J., Dunlea, A. G., Murray, R. W. & D’Hondt, S. Radiolytic hydrogen production in the subseafloor basaltic aquifer. Front. Microbiol. 7, 76 (2016).

    Article  Google Scholar 

  69. Adamiec, G. & Aitken, M. Dose-rate conversion factors: update. Ancient TL 16, 37–50 (1998).

    Article  CAS  Google Scholar 

  70. DeWitt, J., McMahon, S. & Parnell, J. The effect of grain size on porewater radiolysis. Earth Space Sci. 9, e2021EA002024 (2022).

    Article  Google Scholar 

  71. Le Caër, S. Water radiolysis: influence of oxide surfaces on H2 production under ionizing radiation. Water 3, 235–253 (2011).

    Article  Google Scholar 

  72. Smetannikov, A. F. Hydrogen generation during the radiolysis of crystallization water in carnallite and possible consequences of this process. Geochem. Int. 49, 916–924 (2011).

    Article  CAS  Google Scholar 

  73. Warr, O., Giunta, T., Ballentine, C. J. & Sherwood Lollar, B. Mechanisms and rates of 4He, 40Ar, and H2 production and accumulation in fracture fluids in Precambrian Shield environments. Chem. Geol. 530, 119322 (2019).

    Article  CAS  Google Scholar 

  74. Lin, L.-H. et al. Long-term sustainability of a high-energy, low-diversity crustal biome. science 314, 479–482 (2006).

    Article  CAS  Google Scholar 

  75. Renergen — South African LNG and helium play (Edison Group, 2018); https://www.edisongroup.com/research/south-african-lng-and-helium-play/20574/.

  76. Oxburgh, E. R., O’Nions, R. K. & Hill, R. I. Helium isotopes in sedimentary basins. Nature 324, 632–635 (1986).

    Article  CAS  Google Scholar 

  77. O’Nions, R. K. & Oxburgh, E. R. Helium, volatile fluxes and the development of continental crust. Earth Planet. Sci. Lett. 90, 331–347 (1988).

    Article  Google Scholar 

  78. Ballentine, C. J., Burgess, R. & Marty, B. Tracing fluid origin, transport and interaction in the crust. Rev. Mineral. Geochem. 47, 539–614 (2002).

    Article  CAS  Google Scholar 

  79. Holland, G. et al. Deep fracture fluids isolated in the crust since the Precambrian era. Nature 497, 357–360 (2013).

    Article  CAS  Google Scholar 

  80. Kietäväinen, R., Ahonen, L., Kukkonen, I. T., Niedermann, S. & Wiersberg, T. Noble gas residence times of saline waters within crystalline bedrock, Outokumpu Deep Drill Hole, Finland. Geochim. Cosmochim. Acta 145, 159–174 (2014).

    Article  Google Scholar 

  81. Kendrick, M. A., Honda, M., Walshe, J. & Petersen, K. Fluid sources and the role of abiogenic–CH4 in Archean gold mineralization: constraints from noble gases and halogens. Precambrian Res. 189, 313–327 (2011).

    Article  CAS  Google Scholar 

  82. Leong, J. A. et al. H2 and CH4 outgassing rates in the Samail ophiolite, Oman: implications for low-temperature, continental serpentinization rates. Geochim. Cosmochim. Acta 347, 1–15 (2023).

    Article  CAS  Google Scholar 

  83. Warr, O. et al. Tracing ancient hydrogeological fracture network age and compartmentalisation using noble gases. Geochim. Cosmochim. Acta 222, 340–362 (2018).

    Article  CAS  Google Scholar 

  84. Warr, O. et al. 86Kr excess and other noble gases identify a billion-year-old radiogenically-enriched groundwater system. Nat. Commun. 13, 3768 (2022).

    Article  CAS  Google Scholar 

  85. Ballhaus, C. Redox states of lithospheric and asthenospheric upper mantle. Contrib. Mineral. Petrol. 114, 331–348 (1993).

    Article  CAS  Google Scholar 

  86. Frost, D. J. & McCammon, C. A. The redox state of Earth’s mantle. Annu. Rev. Earth Planet. Sci. 36, 389–420 (2008).

    Article  CAS  Google Scholar 

  87. Dixon, J. E., Stolper, E. & Delaney, J. R. Infrared spectroscopic measurements of CO2 and H2O in Juan de Fuca Ridge basaltic glasses. Earth Planet. Sci. Lett. 90, 87–104 (1988).

    Article  CAS  Google Scholar 

  88. Ingrin, J. & Skogby, H. Hydrogen in nominally anhydrous upper-mantle minerals: concentration levels and implications. Eur. J. Mineral. https://doi.org/10.1127/ejm/12/3/0543 (2000).

  89. Holland, G. & Ballentine, C. J. Seawater subduction controls the heavy noble gas composition of the mantle. Nature 441, 186–191 (2006).

    Article  CAS  Google Scholar 

  90. Mukhopadhyay, S. & Parai, R. Noble gases: a record of Earth’s evolution and mantle dynamics. Annu. Rev. Earth Planet. Sci. 47, 389–419 (2019).

    Article  CAS  Google Scholar 

  91. Hirth, G. & Kohlstedt, D. L. Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett. 144, 93–108 (1996).

    Article  CAS  Google Scholar 

  92. Dasgupta, R. & Aubaud, C. in Treatise on Geochemistry 3rd edn, Vol. 1, 381–423 (Elsevier, 2025).

  93. Hirschmann, M. M., Withers, A. C., Ardia, P. & Foley, N. T. Solubility of molecular hydrogen in silicate melts and consequences for volatile evolution of terrestrial planets. Earth Planet. Sci. Lett. 345–348, 38–48 (2012).

    Article  Google Scholar 

  94. Yang, X., Keppler, H. & Li, Y. Molecular hydrogen in mantle minerals. Geochem. Perspect. Lett. 2, 160–168 (2016).

    Article  Google Scholar 

  95. Vlasov, K., Audétat, A. & Keppler, H. H2–H2O immiscibility in Earth’s upper mantle. Contrib. Mineral. Petrol. 178, 36 (2023).

    Article  CAS  Google Scholar 

  96. Fischer, T. P. et al. Upper-mantle volatile chemistry at Oldoinyo Lengai volcano and the origin of carbonatites. Nature 459, 77–80 (2009).

    Article  CAS  Google Scholar 

  97. Hilton, D. R., Fischer, T. P. & Marty, B.Noble gases and volatile recycling at subduction zones. Rev. Mineral. Geochem. 47, 319–370 (2002).

    Article  CAS  Google Scholar 

  98. Broadley, M. W., Barry, P. H., Ballentine, C. J., Taylor, L. A. & Burgess, R. End-Permian extinction amplified by plume-induced release of recycled lithospheric volatiles. Nat. Geosci. 11, 682–687 (2018).

    Article  CAS  Google Scholar 

  99. Porcelli, D. & Ballentine, C. J. Models for distribution of terrestrial noble gases and evolution of the atmosphere. Rev. Mineral. Geochem. 47, 411–480 (2002).

    Article  CAS  Google Scholar 

  100. Kulongoski, J. T. et al. Volatile fluxes through the big bend section of the San Andreas Fault, California: helium and carbon-dioxide systematics. Chem. Geol. 339, 92–102 (2013).

    Article  CAS  Google Scholar 

  101. Sano, Y., Wakita, H. & Huang, C.-W. Helium flux in a continental land area estimated from 3He/4He ratio in northern Taiwan. Nature 323, 55–57 (1986).

    Article  CAS  Google Scholar 

  102. Stute, M., Sonntag, C., Deák, J. & Schlosser, P. Helium in deep circulating groundwater in the Great Hungarian Plain: flow dynamics and crustal and mantle helium fluxes. Geochim. Cosmochim. Acta 56, 2051–2067 (1992).

    Article  CAS  Google Scholar 

  103. Gautheron, C. & Moreira, M. Helium signature of the subcontinental lithospheric mantle. Earth Planet. Sci. Lett. 199, 39–47 (2002).

    Article  CAS  Google Scholar 

  104. Glasby, G. P. Abiogenic origin of hydrocarbons: an historical overview. Resour. Geol. 56, 83–96 (2006).

    Article  CAS  Google Scholar 

  105. Sherwood Lollar, B., Warr, O. & Higgins, P. M. The hidden hydrogeosphere: the contribution of deep groundwater to the planetary water cycle. Annu. Rev. Earth Planet. Sci. 52, 443–466 (2024).

    Article  CAS  Google Scholar 

  106. Lollar, G. S., Warr, O., Telling, J., Osburn, M. R. & Sherwood Lollar, B. ‘Follow the water’: hydrogeochemical constraints on microbial investigations 2.4 km below surface at the Kidd Creek deep fluid and deep life observatory. Geomicrobiol. J. 36, 859–872 (2019).

    Article  CAS  Google Scholar 

  107. Ferguson, G. et al. Crustal groundwater volumes greater than previously thought. Geophys. Res. Lett. 48, e2021GL093549 (2021).

    Article  Google Scholar 

  108. Bethke, C. M. & Johnson, T. M. Groundwater age and groundwater age dating. Annu. Rev. Earth Planet. Sci. 36, 121–152 (2008).

    Article  CAS  Google Scholar 

  109. Ingebritsen, S. & Gleeson, T. Crustal permeability. Hydrogeol. J. 25, 2221–2224 (2017).

    Article  Google Scholar 

  110. Greene, S., Battye, N., Clark, I., Kotzer, T. & Bottomley, D. Canadian Shield brine from the Con Mine, Yellowknife, NT, Canada: noble gas evidence for an evaporated Palaeozoic seawater origin mixed with glacial meltwater and Holocene recharge. Geochim. Cosmochim. Acta 72, 4008–4019 (2008).

    Article  CAS  Google Scholar 

  111. Bottomley, D. J., Ross, J. D. & Clarke, W. B. Helium and neon isotope geochemistry of some ground waters from the Canadian Precambrian Shield. Geochim. Cosmochim. Acta 48, 1973–1985 (1984).

    Article  CAS  Google Scholar 

  112. Bottomley, D. J., Clark, I. D., Battye, N. & Kotzer, T. Geochemical and isotopic evidence for a genetic link between Canadian Shield brines, dolomitization in the Western Canada Sedimentary Basin, and Devonian calcium–chloridic seawater. Can. J. Earth Sci. 42, 2059–2071 (2005).

    Article  CAS  Google Scholar 

  113. Lippmann, J. et al. Dating ultra-deep mine waters with noble gases and 36Cl, Witwatersrand Basin, South Africa. Geochim. Cosmochim. Acta 67, 4597–4619 (2003).

    Article  CAS  Google Scholar 

  114. Heard, A. W. et al. South African crustal fracture fluids preserve paleometeoric water signatures for up to tens of millions of years. Chem. Geol. 493, 379–395 (2018).

    Article  CAS  Google Scholar 

  115. Trinchero, P., Delos, A., Molinero, J., Dentz, M. & Pitkänen, P. Understanding and modelling dissolved gas transport in the bedrock of three Fennoscandian sites. J. Hydrol. 512, 506–517 (2014).

    Article  CAS  Google Scholar 

  116. Manning, C. E. & Ingebritsen, S. E. Permeability of the continental crust: implications of geothermal data and metamorphic systems. Rev. Geophys. 37, 127–150 (1999).

    Article  Google Scholar 

  117. Stober, I. & Bucher, K. Hydraulic properties of the crystalline basement. Hydrogeol. J. 15, 213–224 (2007).

    Article  CAS  Google Scholar 

  118. Achtziger-Zupančič, P., Loew, S. & Mariéthoz, G. A new global database to improve predictions of permeability distribution in crystalline rocks at site scale. J. Geophys. Res. 122, 3513–3539 (2017).

    Article  Google Scholar 

  119. Snowdon, A. P., Normani, S. D. & Sykes, J. F. Analysis of crystalline rock permeability versus depth in a Canadian Precambrian rock setting. J. Geophys. Res. 126, e2020JB020998 (2021).

    Article  Google Scholar 

  120. Drake, H. et al. Biosignatures of ancient microbial life are present across the igneous crust of the Fennoscandian shield. Commun. Earth Env. 2, 1–13 (2021).

    Article  Google Scholar 

  121. Sherwood Lollar, B., Weise, S. M., Frape, S. K. & Barker, J. F. Isotopic constraints on the migration of hydrocarbon and helium gases of southwestern Ontario. Bull. Can. Pet. Geol. 42, 283–295 (1994).

    Google Scholar 

  122. Danabalan, D. et al. The principles of helium exploration. Pet. Geosci. 28, petgeo2021 (2022).

    Article  Google Scholar 

  123. Cheng, A., Sherwood Lollar, B., Gluyas, J. G. & Ballentine, C. J. Primary N2–He gas field formation in intracratonic sedimentary basins. Nature 615, 94–99 (2023).

    Article  CAS  Google Scholar 

  124. Ward, J. A. et al. Microbial hydrocarbon gases in the Witwatersrand Basin, South Africa: implications for the deep biosphere1. Geochim. Cosmochim. Acta 68, 3239–3250 (2004).

    Article  CAS  Google Scholar 

  125. Ballentine, C. J. & Burnard, P. G. Production, release and transport of noble gases in the continental crust. Rev. Mineral. Geochem. 47, 481–538 (2002).

    Article  CAS  Google Scholar 

  126. Lippmann-Pipke, J. et al. Neon identifies two billion year old fluid component in Kaapvaal Craton. Chem. Geol. 283, 287–296 (2011).

    Article  CAS  Google Scholar 

  127. Torgersen, T., Kennedy, B. M. & van Soest, M. C. Diffusive separation of noble gases and noble gas abundance patterns in sedimentary rocks. Earth Planet. Sci. Lett. 226, 477–489 (2004).

    Article  CAS  Google Scholar 

  128. Barry, P. H. et al. Determining fluid migration and isolation times in multiphase crustal domains using noble gases. Geology 45, 775–778 (2017).

    Article  Google Scholar 

  129. Byrne, D. J., Barry, P., Lawson, M. & Ballentine, C. Noble gases in conventional and unconventional petroleum systems. Geol. Soc. Spec. Publ. 468, 127–149 (2018).

    Article  Google Scholar 

  130. Bach, W., Naumann, D. & Erzinger, J. A helium, argon, and nitrogen record of the upper continental crust (KTB drill holes, Oberpfalz, Germany): implications for crustal degassing. Chem. Geol. 160, 81–101 (1999).

    Article  CAS  Google Scholar 

  131. Warr, O. et al. The role of low-temperature 18O exchange in the isotopic evolution of deep subsurface fluids. Chem. Geol. 561, 120027 (2021).

    Article  CAS  Google Scholar 

  132. Neretnieks, I. Some aspects of release and transport of gases in deep granitic rocks: possible implications for nuclear waste repositories. Hydrogeol. J. 8, 1701–1716 (2013).

    Article  Google Scholar 

  133. Cook, M. C. et al. A geochemical comparison of three terrestrial sites of serpentinization: the tablelands, the cedars, and aqua de ney. J. Geophys. Res. 126, e2021JG006316 (2021).

    Article  CAS  Google Scholar 

  134. Paukert Vankeuren, A. N., Matter, J. M., Stute, M. & Kelemen, P. B. Multitracer determination of apparent groundwater ages in peridotite aquifers within the Samail ophiolite, Sultanate of Oman. Earth Planet. Sci. Lett. 516, 37–48 (2019).

    Article  CAS  Google Scholar 

  135. Sleep, N. H. & Zoback, M. D. Did earthquakes keep the early crust habitable? Astrobiology 7, 1023–1032 (2007).

    Article  CAS  Google Scholar 

  136. Cheng, A. et al. Determining the role of diffusion and basement flux in controlling 4He distribution in sedimentary basin fluids. Earth Planet. Sci. Lett. 574, 117175 (2021).

    Article  CAS  Google Scholar 

  137. Torgersen, T. & Clarke, W. B. Helium accumulation in groundwater, I: an evaluation of sources and the continental flux of crustal 4He in the Great Artesian Basin, Australia. Geochim. Cosmochim. Acta 49, 1211–1218 (1985).

    Article  CAS  Google Scholar 

  138. Torgersen, T. & Ivey, G. N. Helium accumulation in groundwater. II: a model for the accumulation of the crustal 4He degassing flux. Geochim. Cosmochim. Acta 49, 2445–2452 (1985).

    Article  CAS  Google Scholar 

  139. Torgersen, T. Continental degassing flux of 4He and its variability. Geochem. Geophys. Geosyst. 11, Q06002 (2010).

    Article  Google Scholar 

  140. Torgersen, T. & Clarke, W. B. Geochemical constraints on formation fluid ages, hydrothermal heat flux, and crustal mass transport mechanisms at Cajon Pass. J. Geophys. Res. 97, 5031–5038 (1992).

    Article  Google Scholar 

  141. Ballentine, C. J. & Sherwood Lollar, B. Regional groundwater focusing of nitrogen and noble gases into the Hugoton-Panhandle giant gas field, USA. Geochim. Cosmochim. Acta 66, 2483–2497 (2002).

    Article  CAS  Google Scholar 

  142. Kulongoski, J. T., Hilton, D. R. & Izbicki, J. A. Source and movement of helium in the eastern Morongo groundwater basin: the influence of regional tectonics on crustal and mantle helium fluxes. Geochim. Cosmochim. Acta 69, 3857–3872 (2005).

    Article  CAS  Google Scholar 

  143. Andrews, J. N. et al. A radiochemical, hydrochemical and dissolved gas study of groundwaters in the Molasse Basin of Upper Austria. Earth Planet. Sci. Lett. 73, 317–332 (1985).

    Article  CAS  Google Scholar 

  144. Tolstikhin, I. et al. Production, redistribution and loss of helium and argon isotopes in a thick sedimentary aquitard–aquifer system (Molasse Basin, Switzerland). Chem. Geol. 286, 48–58 (2011).

    Article  CAS  Google Scholar 

  145. Torgersen, T., Top, Z., Clarke, W. B., Jenkins, W. J. & Broecker, W. S. A new method for physical limnology — tritium-helium-3 ages — results for Lakes Erie, Huron, and Ontario. Limnol. Oceanogr. 22, 181–193 (1977).

    Article  CAS  Google Scholar 

  146. Buttitta, D. et al. Continental degassing of helium in an active tectonic setting (northern Italy): the role of seismicity. Sci. Rep. 10, 162 (2020).

    Article  CAS  Google Scholar 

  147. Lowenstern, J. B., Evans, W. C., Bergfeld, D. & Hunt, A. G. Prodigious degassing of a billion years of accumulated radiogenic helium at Yellowstone. Nature 506, 355–358 (2014).

    Article  CAS  Google Scholar 

  148. Halford, D. T. et al. Probabilistic determination of the role of faults and intrusions in helium-rich gas fields formation. Geochem. Geophys. Geosyst. 25, e2024GC011522 (2024).

    Article  CAS  Google Scholar 

  149. Byrne, D. J., Barry, P. H., Lawson, M. & Ballentine, C. J. The use of noble gas isotopes to constrain subsurface fluid flow and hydrocarbon migration in the East Texas Basin. Geochim. Cosmochim. Acta 268, 186–208 (2020).

    Article  CAS  Google Scholar 

  150. Caracausi, A., Buttitta, D., Picozzi, M., Paternoster, M. & Stabile, T. A. Earthquakes control the impulsive nature of crustal helium degassing to the atmosphere. Commun. Earth Env. 3, 1–8 (2022).

    Article  Google Scholar 

  151. Halford, D. T. et al. High helium reservoirs in the Four Corners area of the Colorado Plateau, USA. Chem. Geol. 596, 120790 (2022).

    Article  CAS  Google Scholar 

  152. Hutchinson, I. P., Jackson, O., Stocks, A. E., Barnicoat, A. C. & Lawrence, S. R. Greenstones as a source of hydrogen in cratonic sedimentary basins. Geol. Soc. Spec. Publ. 547, SP547–SP2023 (2024).

    Article  Google Scholar 

  153. Tyne, R. L. et al. Basin architecture controls on the chemical evolution and 4He distribution of groundwater in the Paradox Basin. Earth Planet. Sci. Lett. 589, 117580 (2022).

    Article  CAS  Google Scholar 

  154. Leila, M., Loiseau, K. & Moretti, I. Controls on generation and accumulation of blended gases (CH4/H2/He) in the Neoproterozoic Amadeus Basin, Australia. Mar. Pet. Geol. 140, 105643 (2022).

    Article  CAS  Google Scholar 

  155. Kamber, B. S. The evolving nature of terrestrial crust from the Hadean, through the Archaean, into the Proterozoic. Precambrian Res. 258, 48–82 (2015).

    Article  CAS  Google Scholar 

  156. Trosdtorf, I. Jr et al. Phanerozoic magmatism in the Parnaíba Basin: characterization of igneous bodies (well logs and 2D seismic sections), geometry, distribution and sill emplacement patterns. Geol. Soc. Spec. Publ. 472, 321–340 (2018).

    Article  Google Scholar 

  157. Cawood, P. A. et al. Secular evolution of continents and the Earth system. Rev. Geophys. 60, e2022RG000789 (2022).

    Article  Google Scholar 

  158. Hawkesworth, C. J., Cawood, P. A. & Dhuime, B. The evolution of the continental crust and the onset of plate tectonics. Front. Earth Sci. 8, 326 (2020).

    Article  Google Scholar 

  159. Kietäväinen, R. & Purkamo, L. The origin, source, and cycling of methane in deep crystalline rock biosphere. Front. Microbiol. 6, 725 (2015).

    Article  Google Scholar 

  160. Daly, M. C., Lawrence, S., Diemu-Tshiband, K. & Matouana, B. Tectonic evolution of the cuvette centrale, Zaire. J. Geol. Soc. 149, 539–546 (1992).

    Article  Google Scholar 

  161. White, R. & McKenzie, D. Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J. Geophys. Res. 94, 7685–7729 (1989).

    Article  Google Scholar 

  162. Chen, Q. et al. Intraplate continental basalts over the past billion years track cooling of the mantle and the onset of modern plate tectonics. Earth Planet. Sci. Lett. 597, 117804 (2022).

    Article  CAS  Google Scholar 

  163. Bryan, S. E., Riley, T. R., Jerram, D. A., Stephens, C. J. & Leat, P. T. in Volcanic Rifted Margins (eds Menzies, M. A. et al.) (Geological Society of America, 2002); https://doi.org/10.1130/0-8137-2362-0.97.

  164. Campbell, I. H. & Griffiths, R. W. Did the formation of D″ cause the Archaean–Proterozoic transition? Earth Planet. Sci. Lett. 388, 1–8 (2014).

    Article  CAS  Google Scholar 

  165. Wang, H., van Hunen, J. & Pearson, D. G. The thinning of subcontinental lithosphere: the roles of plume impact and metasomatic weakening. Geochem. Geophys. Geosyst. 16, 1156–1171 (2015).

    Article  Google Scholar 

  166. Goebel, E., Coveney, R., Angino, E., Zeller, E. & DRESCHHOFF, G. M. Geology, composition, isotopes of naturally occurring rich gas from wells near Junction City, Kans. Oil Gas J. 82, 215–222 (1984).

    CAS  Google Scholar 

  167. Angino, E., Zeller, E., Dreschhoff, G., Goebel, E. & Coveney, R. Jr. in Geochemistry of Gaseous Elements and Compounds (ed. Durrance, E. M.) 485–493 (Theophrastus, 1990).

  168. Johnsgard, S. K. The Fracture Pattern of North-Central Kansas and its Relation to Hydrogen Soil Gas Anomalies Over the Midcontinent Rift System. MSc Thesis, Univ. Kansas (1988).

  169. Newell, K. D. et al. H2-rich and hydrocarbon gas recovered in a deep precambrian well in Northeastern Kansas. Nat. Resour. Res. 16, 277–292 (2007).

    Article  CAS  Google Scholar 

  170. Guélard, J. et al. Natural H2 in Kansas: deep or shallow origin? Geochem. Geophys. Geosyst. 18, 1841–1865 (2017).

    Article  Google Scholar 

  171. Coveney, J. Serpentinization and the origin of hydrogen gas in kansas. AAPG Bull. 71, 39–48 (1987).

    CAS  Google Scholar 

  172. Keller, C. B. & Schoene, B. Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago. Nature 485, 490–493 (2012).

    Article  CAS  Google Scholar 

  173. McInnes, B. et al. Investigations into the highest reported He concentration in a natural gas sample: Mt Kitty, Amadeus Basin, Northern Territory. In 2017 Goldschmidt Conference Abstract (European Association of Geochemistry, Geochemical Society, 2017); goldschmidtabstracts.info/2017/2661.pdf.

  174. Breton, J.-P., Béchennec, F., Le Métour, J., Moen-Maurel, L. & Razin, P. Eoalpine (Cretaceous) evolution of the Oman Tethyan continental margin: insights from a structural field study in Jabal Akhdar (Oman Mountains). GeoArabia 9, 41–58 (2004).

    Article  Google Scholar 

  175. Miller, R. G. The global oil system: the relationship between oil generation, loss, half-life, and the world crude oil resource. AAPG Bull. 76, 489–500 (1992).

    CAS  Google Scholar 

  176. Sherwood Lollar, B. et al. Unravelling abiogenic and biogenic sources of methane in the Earth’s deep subsurface. Chem. Geol. 226, 328–339 (2006).

    Article  CAS  Google Scholar 

  177. Kietäväinen, R., Ahonen, L., Niinikoski, P., Nykänen, H. & Kukkonen, I. T. Abiotic and biotic controls on methane formation down to 2.5 km depth within the Precambrian Fennoscandian Shield. Geochim. Cosmochim. Acta 202, 124–145 (2017).

    Article  Google Scholar 

  178. Onstott, T. C. et al. The origin and age of biogeochemical trends in deep fracture water of the Witwatersrand Basin, South Africa. Geomicrobiol. J. 23, 369–414 (2006).

    Article  CAS  Google Scholar 

  179. Ward, J. A. et al. Microbial hydrocarbon gases in the Witwatersrand Basin, South Africa: implications for the deep biosphere. Geochim. Cosmochim. Acta 68, 3239–3250 (2004).

    Article  CAS  Google Scholar 

  180. Magnabosco, C. et al. The biomass and biodiversity of the continental subsurface. Nat. Geosci. 11, 707–717 (2018).

    Article  CAS  Google Scholar 

  181. Merino, N. et al. Living at the extremes: extremophiles and the limits of life in a planetary context. Front. Microbiol. 10, 780 (2019).

    Article  Google Scholar 

  182. Templeton, A. S. & Caro, T. A. The rock-hosted biosphere. Annu. Rev. Earth Planet. Sci. 51, 493–519 (2023).

    Article  CAS  Google Scholar 

  183. Trembath-Reichert, E. et al. Multiple carbon incorporation strategies support microbial survival in cold subseafloor crustal fluids. Sci. Adv. 7, eabg0153 (2021).

    Article  CAS  Google Scholar 

  184. Hoehler, T. M. Biogeochemistry of dihydrogen (H2). Metal Ions in Biological Systems. 43, 9-48 (2005).

    Article  CAS  Google Scholar 

  185. Hoehler, T. M., Alperin, M. J., Albert, D. B. & Martens, C. S. Thermodynamic control on hydrogen concentrations in anoxic sediments. Geochim. Cosmochim. Acta 62, 1745–1756 (1998).

    Article  CAS  Google Scholar 

  186. Tyne, R. L. et al. Investigating the effect of enhanced oil recovery on the noble gas signature of casing gases and produced waters from selected California oil fields. Chem. Geol. 584, 120540 (2021).

    Article  CAS  Google Scholar 

  187. Tyne, R. L. et al. Identifying and understanding microbial methanogenesis in CO2 storage. Environ. Sci. Technol. 57, 9459–9473 (2023).

    Article  CAS  Google Scholar 

  188. Pratt, W. E. Hydrogenation and the origin of oil: part II. Origin and evolution of petroleum: group 3. Variation in physical properties. 69, 235–245 (1934).

  189. Truche, L. et al. Experimental reduction of aqueous sulphate by hydrogen under hydrothermal conditions: implication for the nuclear waste storage. Geochim. Cosmochim. Acta 73, 4824–4835 (2009).

    Article  CAS  Google Scholar 

  190. Truche, L., Berger, G., Destrigneville, C., Guillaume, D. & Giffaut, E. Kinetics of pyrite to pyrrhotite reduction by hydrogen in calcite buffered solutions between 90 and 180 °C: Implications for nuclear waste disposal. Geochim. Cosmochim. Acta 74, 2894–2914 (2010).

    Article  CAS  Google Scholar 

  191. Lefeuvre, N. et al. Natural hydrogen migration along thrust faults in foothill basins: the North Pyrenean Frontal Thrust case study. Appl. Geochem. 145, 105396 (2022).

    Article  CAS  Google Scholar 

  192. Tominaga, M. et al. Multi-scale magnetic mapping of serpentinite carbonation. Nat. Commun. 8, 1870 (2017).

    Article  Google Scholar 

  193. Lefeuvre, N. et al. Native H2 exploration in the western pyrenean foothills. Geochem. Geophys. Geosyst. 22, e2021GC009917 (2021).

    Article  CAS  Google Scholar 

  194. Vaughan, A. P. M. & Scarrow, J. H. Ophiolite obduction pulses as a proxy indicator of superplume events? Earth Planet. Sci. Lett. 213, 407–416 (2003).

    Article  CAS  Google Scholar 

  195. Johansson, L., Zahirovic, S. & Müller, R. D. The interplay between the eruption and weathering of large igneous provinces and the deep‐time carbon cycle. Geophys. Res. Lett. 45, 5380–5389 (2018).

    Article  CAS  Google Scholar 

  196. Hasterok, D. et al. New maps of global geological provinces and tectonic plates. Earth Sci. Rev. 231, 104069 (2022).

    Article  Google Scholar 

  197. Robertson C. G. G. Sedimentary basins of the world (ArcGIS, 2019); https://hub.arcgis.com/datasets/9845f1f30a1641efbe54dd1f9c8c668b/about.

  198. Evenick, J. C. Glimpses into Earth’s history using a revised global sedimentary basin map. Earth Sci. Rev. 215, 103564 (2021).

    Article  Google Scholar 

  199. Gold, T. & Soter, S. Abiogenic methane and the origin of petroleum. Energy Explor. Exploit. 1, 89–104 (1982).

    Article  CAS  Google Scholar 

  200. Gold, T. Terrestrial sources of carbon and earthquake outgassing. J. Pet. Geol. 1, 3–19 (1979).

    Article  CAS  Google Scholar 

  201. Sherwood Lollar, B. et al. Evidence for bacterially generated hydrocarbon gas in Canadian shield and fennoscandian shield rocks. Geochim. Cosmochim. Acta 57, 5073–5085 (1993).

    Article  Google Scholar 

  202. Sherwood Lollar, B., Westgate, T. D., Ward, J. A., Slater, G. F. & Lacrampe-Couloume, G. Abiogenic formation of alkanes in the Earth’s crust as a minor source for global hydrocarbon reservoirs. Nature 416, 522–524 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C.J.B. and B.S.L. acknowledge the support of the CIFAR E4D programme.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Chris J. Ballentine.

Ethics declarations

Competing interests

C.J.B. founded Snowfox Discovery Ltd, a hydrogen exploration company, and provides technical advice. J.G. is a co-founder of Snowfox Discovery Ltd and provides technical advice. B.S.L. provides technical advice to Snowfox Discovery Ltd. M.C.D. is a co-founder and Director of Snowfox Discovery Ltd and provides technical advice. A.C. and R.K. are employees of Snowfox Discovery Ltd. The commercial value and carbon footprint details described in this review are derived from the authors, and do not necessarily reflect the internal corporate perspective of Snowfox Discovery Ltd.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Zhijun Jin, Linda Stalker and Laurent Truche, for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ballentine, C.J., Karolytė, R., Cheng, A. et al. Natural hydrogen resource accumulation in the continental crust. Nat Rev Earth Environ 6, 342–356 (2025). https://doi.org/10.1038/s43017-025-00670-1

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43017-025-00670-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing