Abstract
Naturally occurring hydrogen accumulations could be an important source of clean hydrogen for hard-to-abate industry use and energy, but societally important reserves have yet to be proven. In this Review, we explore the conditions that enable the development of natural hydrogen resources in the geological subsurface, by examining the processes of hydrogen generation, migration, accumulation and preservation. Natural hydrogen is generated within the continental crust by two key mechanisms, water–rock reactions where Fe2+, dominantly in ultramafic rocks, is oxidized to Fe3+, and by radiolysis of water via radioactive elements U, Th and K found in upper-crustal rocks. These two generation reactions operate on very different timescales, ranging from thousands to millions of years for water–rock reactions in highly fractured rocks, to tens to hundreds of millions of years for water-limited water–rock and radiolysis reactions. Different globally widespread terrane types have the potential for hydrogen accumulations: continental margin ophiolite complexes, alkaline granite terranes, large igneous provinces, and Archaean greenstone belts and tonalite–trondhjemite–granodiorite granitic batholiths. Exploitation of natural hydrogen would have a low-carbon footprint, but continental systems do not provide a regenerating system on decadal to centennial timescales, and should not be considered a renewable resource. Calculating hydrogen generation by water–rock reactions is subject to more uncertainty than radiolysis reactions, but improving these estimates should be a priority for future research.
Key points
-
Over the past billion years, the Archaean crust alone has generated volumes of hydrogen energy equivalent to ca 170,000 years of present-day societal oil use. However, it is not known how much of this hydrogen has been preserved in societally relevant accumulations.
-
Natural hydrogen accumulation requires a source rock, water within the source rock, transport and a trap to retain the hydrogen. The generation and preservation of a gas phase is essential for economic recovery.
-
Gas accumulations of high-purity (>90%) hydrogen are known to occur (such as the Bourakebougou reserve found in Mali), but hydrogen mixed with helium, nitrogen and other gases are predicted in many settings.
-
Helium, readily detected in near-surface fluids, provides a critical analogue to hydrogen, and can illustrate regional controls on deep gas release, transport and gas-phase formation.
-
A basic understanding of the geological controls of hydrogen generation by radiolytic and water–rock reaction pathways exists and enables exploration to find the most prospective regions.
-
The mantle is not a source of hydrogen gas found in the crust or near surface, as mantle-derived hydrogen is most stable as water at pressures and temperatures shallower than ca. 90 km depth.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
The fast-growing hydrogen energy industry (KPMG, 2022); https://assets.kpmg.com/content/dam/kpmg/cn/pdf/en/2022/09/understand-the-hydrogen-energy-industry-in-one-article.pdf.
International Energy Agency. Global hydrogen review (IEA, 2023); https://iea.blob.core.windows.net/assets/ecdfc3bb-d212-4a4c-9ff7-6ce5b1e19cef/GlobalHydrogenReview2023.pdf.
Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z. & Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 1, 636–639 (2008).
Gluyas, J. G. et al. Exploring for hydrogen, helium and lithium: is it as easy as 1, 2, 3? In Gill, C., Goffey, G., and Underhill, J.R. (eds) Powering the Energy Transition through Subsurface Collaboration: Proc. 1st Energy Geoscience Conference (The Geological Society of London, 2025).
Brandt, A. R. Greenhouse gas intensity of natural hydrogen produced from subsurface geologic accumulations. Joule 7, 1818–1831 (2023).
Organisation for Economic Co-operation and Development. Towards hydrogen definitions based on their emissions intensity (OECD, 2023); https://doi.org/10.1787/44618fd1-en.
Sherwood Lollar, B., Onstott, T. C., Lacrampe-Couloume, G. & Ballentine, C. J. The contribution of the Precambrian continental lithosphere to global H2 production. Nature 516, 379–382 (2014).
Ellis, G. S. & Gelman, S. E. Model predictions of global geologic hydrogen resources. Sci. Adv. 10, eado0955 (2024).
Templeton, A. S. et al. Low-temperature hydrogen production and consumption in partially-hydrated peridotites in Oman: implications for stimulated geological hydrogen production. Front. Geochem. 2, 1366268 (2024).
Sherwood Lollar, B. et al. Abiogenic methanogenesis in crystalline rocks. Geochim. Cosmochim. Acta 57, 5087–5097 (1993).
Sherwood Lollar, B. et al. Hydrogeologic controls on episodic H2 release from precambrian fractured rocks — energy for deep subsurface life on earth and mars. Astrobiology 7, 971–986 (2007).
Lin, L.-H. et al. Radiolytic H2 in continental crust: nuclear power for deep subsurface microbial communities. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2004GC000907 (2005).
Lin, L.-H., Slater, G. F., Sherwood Lollar, B., Lacrampe-Couloume, G. & Onstott, T. C. The yield and isotopic composition of radiolytic H2, a potential energy source for the deep subsurface biosphere. Geochim. Cosmochim. Acta 69, 893–903 (2005).
Etiope, G. & Sherwood Lollar, B. Abiotic methane on Earth. Rev. Geophys. 51, 276–299 (2013).
Truche, L., McCollom, T. M. & Martinez, I. Hydrogen and abiotic hydrocarbons: molecules that change the world. Elements 16, 13–18 (2020).
Truche, L. et al. A deep reservoir for hydrogen drives intense degassing in the Bulqizë ophiolite. Science 383, 618–621 (2024).
Zgonnik, V. The occurrence and geoscience of natural hydrogen: a comprehensive review. Earth Sci. Rev. 203, 103140 (2020).
Etiope, G. Massive release of natural hydrogen from a geological seep (Chimaera, Turkey): gas advection as a proxy of subsurface gas migration and pressurised accumulations. Int. J. Hydrog. Energy 48, 9172–9184 (2023).
Homer. Iliad Venetus A (Codex Marcianus Graecus 454; 900s CE).
Prinzhofer, A., Tahara Cissé, C. S. & Diallo, A. B. Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali). Int. J. Hydrog. Energy 43, 19315–19326 (2018).
Maiga, O., Deville, E., Laval, J., Prinzhofer, A. & Diallo, A. B. Characterization of the spontaneously recharging natural hydrogen reservoirs of Bourakebougou in Mali. Sci. Rep. 13, 11876 (2023).
Mathur, Y., Moise, H., Aydin, Y. & Mukerji, T. Techno-economic analysis of natural and stimulated geological hydrogen. Preprint at https://doi.org/10.31223/X5599G (2025).
Mahlstedt, N. et al. Molecular hydrogen from organic sources in geological systems. J. Nat. Gas Sci. Eng. 105, 104704 (2022).
Hanson, J. & Hanson, H. Hydrogen’s organic genesis. Unconv. Resour. 4, 100057 (2024).
Horsfield, B. et al. Molecular hydrogen from organic sources in the deep Songliao Basin, P.R. China. Int. J. Hydrog. Energy 47, 16750–16774 (2022).
Boreham, C. J. et al. Modelling of hydrogen gas generation from overmature organic matter in the Cooper Basin, Australia. APPEA J. 63, S351–S356 (2023).
Boreham, C. J. et al. Hydrogen in Australian natural gas: occurrences, sources and resources. APPEA J. 61, 163–191 (2021).
Milkov, A. V. Molecular hydrogen in surface and subsurface natural gases: abundance, origins and ideas for deliberate exploration. Earth Sci. Rev. 230, 104063 (2022).
Stalker, L., Talukder, A., Strand, J., Josh, M. & Faiz, M. Gold (hydrogen) rush: risks and uncertainties in exploring for naturally occurring hydrogen. APPEA J. 62, 361–380 (2022).
Lévy, D. et al. Natural H2 exploration: tools and workflows to characterize a play. Sci. Technol. Energy Transit. 78, 27 (2023).
Global oil production in metric tons 2023. Statista https://www.statista.com/statistics/265229/global-oil-production-in-million-metric-tons/ (2023).
Klein, F. et al. Iron partitioning and hydrogen generation during serpentinization of abyssal peridotites from 15° N on the Mid-Atlantic Ridge. Geochim. Cosmochim. Acta 73, 6868–6893 (2009).
McCollom, T. M. & Bach, W. Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks. Geochim. Cosmochim. Acta 73, 856–875 (2009).
Ely, T. D., Leong, J. M., Canovas, P. A. & Shock, E. L. Huge variation in H2 generation during seawater alteration of ultramafic rocks. Geochem. Geophys. Geosyst 24, e2022GC010658 (2023).
Albers, E., Bach, W., Pérez-Gussinyé, M., McCammon, C. & Frederichs, T. Serpentinization-driven H2 production from continental break-up to mid-ocean ridge spreading: unexpected high rates at the West Iberia margin. Front. Earth Sci. 9, 673063 (2021).
Leong, J. A. M., Ely, T. & Shock, E. L. Decreasing extents of Archean serpentinization contributed to the rise of an oxidized atmosphere. Nat. Commun. 12, 7341 (2021).
Klein, F., Bach, W. & McCollom, T. M. Compositional controls on hydrogen generation during serpentinization of ultramafic rocks. Lithos 178, 55–69 (2013).
Sauvage, J. F. et al. The contribution of water radiolysis to marine sedimentary life. Nat. Commun. 12, 1297 (2021).
Gelman, S. E., Hearon, J. S. & Ellis, G. S. Prospectivity mapping for geologic hydrogen. Professional paper (USGS, 2025); https://pubs.usgs.gov/publication/pp1900.
Mayhew, L. E., Ellison, E. T., McCollom, T. M., Trainor, T. P. & Templeton, A. S. Hydrogen generation from low-temperature water–rock reactions. Nat. Geosci. 6, 478–484 (2013).
Reed, M. H., Palandri, J., Tohji, K., Tsuchiya, N. & Jeyadevan, B. Hydrogen produced by reduction of H2O in rock reaction: peridotite vs basalt. In AIP Conf. Proc. Vol. 987, 100–104 (AIP, 2008).
Wetzel, L. R. & Shock, E. L. Distinguishing ultramafic-from basalt-hosted submarine hydrothermal systems by comparing calculated vent fluid compositions. J. Geophys. Res. 105, 8319–8340 (2000).
McCollom, T. M. et al. Temperature trends for reaction rates, hydrogen generation, and partitioning of iron during experimental serpentinization of olivine. Geochim. Cosmochim. Acta 181, 175–200 (2016).
Bach, W. & Edwards, K. J. Iron and sulfide oxidation within the basaltic ocean crust: implications for chemolithoautotrophic microbial biomass production. Geochim. Cosmochim. Acta 67, 3871–3887 (2003).
Neal, C. & Stanger, G. Hydrogen generation from mantle source rocks in Oman. Earth Planet. Sci. Lett. 66, 315–320 (1983).
Tosca, N. J., Ahmed, I. A. M., Tutolo, B. M., Ashpitel, A. & Hurowitz, J. A. Magnetite authigenesis and the warming of early Mars. Nat. Geosci. 11, 635–639 (2018).
Geymond, U. et al. Reassessing the role of magnetite during natural hydrogen generation. Front. Earth Sci. https://doi.org/10.3389/feart.2023.1169356 (2023).
Moretti, I. et al. Long-term monitoring of natural hydrogen superficial emissions in a brazilian cratonic environment. Sporadic large pulses versus daily periodic emissions. Int. J. Hydrog. Energy 46, 3615–3628 (2021).
Geymond, U., Ramanaidou, E., Lévy, D., Ouaya, A. & Moretti, I. Can weathering of banded iron formations generate natural hydrogen? Evidence from Australia, Brazil and South Africa. Minerals 12, 163 (2022).
Klein, F. et al. Fluids in the crust. Experimental constraints on fluid-rock reactions during incipient serpentinization of harzburgite. Am. Mineral. 100, 991–1002 (2015).
Lamadrid, H. M., Zajacz, Z., Klein, F. & Bodnar, R. J. Synthetic fluid inclusions XXIII. Effect of temperature and fluid composition on rates of serpentinization of olivine. Geochim. Cosmochim. Acta 292, 285–308 (2021).
Schwarzenbach, E. M., Caddick, M. J., Beard, J. S. & Bodnar, R. J. Serpentinization, element transfer, and the progressive development of zoning in veins: evidence from a partially serpentinized harzburgite. Contrib. Miner. Pet. 171, 5 (2015).
Tutolo, B. M., Mildner, D. F. R., Gagnon, C. V. L., Saar, M. O. & Seyfried, W. E. Jr. Nanoscale constraints on porosity generation and fluid flow during serpentinization. Geology 44, 103–106 (2016).
Malvoisin, B., Podladchikov, Y. Y. & Myasnikov, A. V. Achieving complete reaction while the solid volume increases: a numerical model applied to serpentinisation. Earth Planet. Sci. Lett. 563, 116859 (2021).
Plümper, O., Røyne, A., Magrasó, A. & Jamtveit, B. The interface-scale mechanism of reaction-induced fracturing during serpentinization. Geology 40, 1103–1106 (2012).
McCollom, T. M., Klein, F., Solheid, P. & Moskowitz, B. The effect of pH on rates of reaction and hydrogen generation during serpentinization. Philos. Trans. R. Soc. A 378, 20180428 (2020).
Wolery, T. J. EQ3/6 - Software for Geochemical Modeling, v.8.0a. LLNL-CODE-2013-683958 (Lawrence Livermore National Laboratory, 2013).
Bethke, C. M. A numerical model of compaction-driven groundwater flow and heat transfer and its application to the paleohydrology of intracratonic sedimentary basins. J. Geophys. Res. 90, 6817–6828 (1985).
Ferguson, G., McIntosh, J., Warr, O. & Sherwood Lollar, B. The low permeability of the Earth’s Precambrian crust. Commun. Earth Env. 4, 1–8 (2023).
Lamadrid, H. M. et al. Effect of water activity on rates of serpentinization of olivine. Nat. Commun. 8, 16107 (2017).
Huang, R., Shang, X., Zhao, Y., Sun, W. & Liu, X. Effect of fluid salinity on reaction rate and molecular hydrogen (H2) formation during peridotite serpentinization at 300 °C. J. Geophys. Res. 128, e2022JB025218 (2023).
Rudnick, R. L. & Fountain, D. M. Nature and composition of the continental crust: a lower crustal perspective. Rev. Geophys. 33, 267–309 (1995).
Cowart, J. B. & Burnett, W. C. The distribution of uranium and thorium decay-series radionuclides in the environment — a review. J. Environ. Qual. 23, 651–662 (1994).
Warr, O., Song, M. & Sherwood Lollar, B. The application of Monte Carlo modelling to quantify in situ hydrogen and associated element production in the deep subsurface. Front. Earth Sci. https://doi.org/10.3389/feart.2023.1150740 (2023).
Karolytė, R. et al. The role of porosity in H2/He production ratios in fracture fluids from the Witwatersrand Basin, South Africa. Chem. Geol. 595, 120788 (2022).
D’Hondt, S. et al. Subseafloor sedimentary life in the South Pacific Gyre. Proc. Natl Acad. Sci. USA 106, 11651–11656 (2009).
Blair, C. C., D’Hondt, S., Spivack, A. J. & Kingsley, R. H. Radiolytic hydrogen and microbial respiration in subsurface sediments. Astrobiology 7, 951–970 (2007).
Dzaugis, M. E., Spivack, A. J., Dunlea, A. G., Murray, R. W. & D’Hondt, S. Radiolytic hydrogen production in the subseafloor basaltic aquifer. Front. Microbiol. 7, 76 (2016).
Adamiec, G. & Aitken, M. Dose-rate conversion factors: update. Ancient TL 16, 37–50 (1998).
DeWitt, J., McMahon, S. & Parnell, J. The effect of grain size on porewater radiolysis. Earth Space Sci. 9, e2021EA002024 (2022).
Le Caër, S. Water radiolysis: influence of oxide surfaces on H2 production under ionizing radiation. Water 3, 235–253 (2011).
Smetannikov, A. F. Hydrogen generation during the radiolysis of crystallization water in carnallite and possible consequences of this process. Geochem. Int. 49, 916–924 (2011).
Warr, O., Giunta, T., Ballentine, C. J. & Sherwood Lollar, B. Mechanisms and rates of 4He, 40Ar, and H2 production and accumulation in fracture fluids in Precambrian Shield environments. Chem. Geol. 530, 119322 (2019).
Lin, L.-H. et al. Long-term sustainability of a high-energy, low-diversity crustal biome. science 314, 479–482 (2006).
Renergen — South African LNG and helium play (Edison Group, 2018); https://www.edisongroup.com/research/south-african-lng-and-helium-play/20574/.
Oxburgh, E. R., O’Nions, R. K. & Hill, R. I. Helium isotopes in sedimentary basins. Nature 324, 632–635 (1986).
O’Nions, R. K. & Oxburgh, E. R. Helium, volatile fluxes and the development of continental crust. Earth Planet. Sci. Lett. 90, 331–347 (1988).
Ballentine, C. J., Burgess, R. & Marty, B. Tracing fluid origin, transport and interaction in the crust. Rev. Mineral. Geochem. 47, 539–614 (2002).
Holland, G. et al. Deep fracture fluids isolated in the crust since the Precambrian era. Nature 497, 357–360 (2013).
Kietäväinen, R., Ahonen, L., Kukkonen, I. T., Niedermann, S. & Wiersberg, T. Noble gas residence times of saline waters within crystalline bedrock, Outokumpu Deep Drill Hole, Finland. Geochim. Cosmochim. Acta 145, 159–174 (2014).
Kendrick, M. A., Honda, M., Walshe, J. & Petersen, K. Fluid sources and the role of abiogenic–CH4 in Archean gold mineralization: constraints from noble gases and halogens. Precambrian Res. 189, 313–327 (2011).
Leong, J. A. et al. H2 and CH4 outgassing rates in the Samail ophiolite, Oman: implications for low-temperature, continental serpentinization rates. Geochim. Cosmochim. Acta 347, 1–15 (2023).
Warr, O. et al. Tracing ancient hydrogeological fracture network age and compartmentalisation using noble gases. Geochim. Cosmochim. Acta 222, 340–362 (2018).
Warr, O. et al. 86Kr excess and other noble gases identify a billion-year-old radiogenically-enriched groundwater system. Nat. Commun. 13, 3768 (2022).
Ballhaus, C. Redox states of lithospheric and asthenospheric upper mantle. Contrib. Mineral. Petrol. 114, 331–348 (1993).
Frost, D. J. & McCammon, C. A. The redox state of Earth’s mantle. Annu. Rev. Earth Planet. Sci. 36, 389–420 (2008).
Dixon, J. E., Stolper, E. & Delaney, J. R. Infrared spectroscopic measurements of CO2 and H2O in Juan de Fuca Ridge basaltic glasses. Earth Planet. Sci. Lett. 90, 87–104 (1988).
Ingrin, J. & Skogby, H. Hydrogen in nominally anhydrous upper-mantle minerals: concentration levels and implications. Eur. J. Mineral. https://doi.org/10.1127/ejm/12/3/0543 (2000).
Holland, G. & Ballentine, C. J. Seawater subduction controls the heavy noble gas composition of the mantle. Nature 441, 186–191 (2006).
Mukhopadhyay, S. & Parai, R. Noble gases: a record of Earth’s evolution and mantle dynamics. Annu. Rev. Earth Planet. Sci. 47, 389–419 (2019).
Hirth, G. & Kohlstedt, D. L. Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett. 144, 93–108 (1996).
Dasgupta, R. & Aubaud, C. in Treatise on Geochemistry 3rd edn, Vol. 1, 381–423 (Elsevier, 2025).
Hirschmann, M. M., Withers, A. C., Ardia, P. & Foley, N. T. Solubility of molecular hydrogen in silicate melts and consequences for volatile evolution of terrestrial planets. Earth Planet. Sci. Lett. 345–348, 38–48 (2012).
Yang, X., Keppler, H. & Li, Y. Molecular hydrogen in mantle minerals. Geochem. Perspect. Lett. 2, 160–168 (2016).
Vlasov, K., Audétat, A. & Keppler, H. H2–H2O immiscibility in Earth’s upper mantle. Contrib. Mineral. Petrol. 178, 36 (2023).
Fischer, T. P. et al. Upper-mantle volatile chemistry at Oldoinyo Lengai volcano and the origin of carbonatites. Nature 459, 77–80 (2009).
Hilton, D. R., Fischer, T. P. & Marty, B.Noble gases and volatile recycling at subduction zones. Rev. Mineral. Geochem. 47, 319–370 (2002).
Broadley, M. W., Barry, P. H., Ballentine, C. J., Taylor, L. A. & Burgess, R. End-Permian extinction amplified by plume-induced release of recycled lithospheric volatiles. Nat. Geosci. 11, 682–687 (2018).
Porcelli, D. & Ballentine, C. J. Models for distribution of terrestrial noble gases and evolution of the atmosphere. Rev. Mineral. Geochem. 47, 411–480 (2002).
Kulongoski, J. T. et al. Volatile fluxes through the big bend section of the San Andreas Fault, California: helium and carbon-dioxide systematics. Chem. Geol. 339, 92–102 (2013).
Sano, Y., Wakita, H. & Huang, C.-W. Helium flux in a continental land area estimated from 3He/4He ratio in northern Taiwan. Nature 323, 55–57 (1986).
Stute, M., Sonntag, C., Deák, J. & Schlosser, P. Helium in deep circulating groundwater in the Great Hungarian Plain: flow dynamics and crustal and mantle helium fluxes. Geochim. Cosmochim. Acta 56, 2051–2067 (1992).
Gautheron, C. & Moreira, M. Helium signature of the subcontinental lithospheric mantle. Earth Planet. Sci. Lett. 199, 39–47 (2002).
Glasby, G. P. Abiogenic origin of hydrocarbons: an historical overview. Resour. Geol. 56, 83–96 (2006).
Sherwood Lollar, B., Warr, O. & Higgins, P. M. The hidden hydrogeosphere: the contribution of deep groundwater to the planetary water cycle. Annu. Rev. Earth Planet. Sci. 52, 443–466 (2024).
Lollar, G. S., Warr, O., Telling, J., Osburn, M. R. & Sherwood Lollar, B. ‘Follow the water’: hydrogeochemical constraints on microbial investigations 2.4 km below surface at the Kidd Creek deep fluid and deep life observatory. Geomicrobiol. J. 36, 859–872 (2019).
Ferguson, G. et al. Crustal groundwater volumes greater than previously thought. Geophys. Res. Lett. 48, e2021GL093549 (2021).
Bethke, C. M. & Johnson, T. M. Groundwater age and groundwater age dating. Annu. Rev. Earth Planet. Sci. 36, 121–152 (2008).
Ingebritsen, S. & Gleeson, T. Crustal permeability. Hydrogeol. J. 25, 2221–2224 (2017).
Greene, S., Battye, N., Clark, I., Kotzer, T. & Bottomley, D. Canadian Shield brine from the Con Mine, Yellowknife, NT, Canada: noble gas evidence for an evaporated Palaeozoic seawater origin mixed with glacial meltwater and Holocene recharge. Geochim. Cosmochim. Acta 72, 4008–4019 (2008).
Bottomley, D. J., Ross, J. D. & Clarke, W. B. Helium and neon isotope geochemistry of some ground waters from the Canadian Precambrian Shield. Geochim. Cosmochim. Acta 48, 1973–1985 (1984).
Bottomley, D. J., Clark, I. D., Battye, N. & Kotzer, T. Geochemical and isotopic evidence for a genetic link between Canadian Shield brines, dolomitization in the Western Canada Sedimentary Basin, and Devonian calcium–chloridic seawater. Can. J. Earth Sci. 42, 2059–2071 (2005).
Lippmann, J. et al. Dating ultra-deep mine waters with noble gases and 36Cl, Witwatersrand Basin, South Africa. Geochim. Cosmochim. Acta 67, 4597–4619 (2003).
Heard, A. W. et al. South African crustal fracture fluids preserve paleometeoric water signatures for up to tens of millions of years. Chem. Geol. 493, 379–395 (2018).
Trinchero, P., Delos, A., Molinero, J., Dentz, M. & Pitkänen, P. Understanding and modelling dissolved gas transport in the bedrock of three Fennoscandian sites. J. Hydrol. 512, 506–517 (2014).
Manning, C. E. & Ingebritsen, S. E. Permeability of the continental crust: implications of geothermal data and metamorphic systems. Rev. Geophys. 37, 127–150 (1999).
Stober, I. & Bucher, K. Hydraulic properties of the crystalline basement. Hydrogeol. J. 15, 213–224 (2007).
Achtziger-Zupančič, P., Loew, S. & Mariéthoz, G. A new global database to improve predictions of permeability distribution in crystalline rocks at site scale. J. Geophys. Res. 122, 3513–3539 (2017).
Snowdon, A. P., Normani, S. D. & Sykes, J. F. Analysis of crystalline rock permeability versus depth in a Canadian Precambrian rock setting. J. Geophys. Res. 126, e2020JB020998 (2021).
Drake, H. et al. Biosignatures of ancient microbial life are present across the igneous crust of the Fennoscandian shield. Commun. Earth Env. 2, 1–13 (2021).
Sherwood Lollar, B., Weise, S. M., Frape, S. K. & Barker, J. F. Isotopic constraints on the migration of hydrocarbon and helium gases of southwestern Ontario. Bull. Can. Pet. Geol. 42, 283–295 (1994).
Danabalan, D. et al. The principles of helium exploration. Pet. Geosci. 28, petgeo2021 (2022).
Cheng, A., Sherwood Lollar, B., Gluyas, J. G. & Ballentine, C. J. Primary N2–He gas field formation in intracratonic sedimentary basins. Nature 615, 94–99 (2023).
Ward, J. A. et al. Microbial hydrocarbon gases in the Witwatersrand Basin, South Africa: implications for the deep biosphere1. Geochim. Cosmochim. Acta 68, 3239–3250 (2004).
Ballentine, C. J. & Burnard, P. G. Production, release and transport of noble gases in the continental crust. Rev. Mineral. Geochem. 47, 481–538 (2002).
Lippmann-Pipke, J. et al. Neon identifies two billion year old fluid component in Kaapvaal Craton. Chem. Geol. 283, 287–296 (2011).
Torgersen, T., Kennedy, B. M. & van Soest, M. C. Diffusive separation of noble gases and noble gas abundance patterns in sedimentary rocks. Earth Planet. Sci. Lett. 226, 477–489 (2004).
Barry, P. H. et al. Determining fluid migration and isolation times in multiphase crustal domains using noble gases. Geology 45, 775–778 (2017).
Byrne, D. J., Barry, P., Lawson, M. & Ballentine, C. Noble gases in conventional and unconventional petroleum systems. Geol. Soc. Spec. Publ. 468, 127–149 (2018).
Bach, W., Naumann, D. & Erzinger, J. A helium, argon, and nitrogen record of the upper continental crust (KTB drill holes, Oberpfalz, Germany): implications for crustal degassing. Chem. Geol. 160, 81–101 (1999).
Warr, O. et al. The role of low-temperature 18O exchange in the isotopic evolution of deep subsurface fluids. Chem. Geol. 561, 120027 (2021).
Neretnieks, I. Some aspects of release and transport of gases in deep granitic rocks: possible implications for nuclear waste repositories. Hydrogeol. J. 8, 1701–1716 (2013).
Cook, M. C. et al. A geochemical comparison of three terrestrial sites of serpentinization: the tablelands, the cedars, and aqua de ney. J. Geophys. Res. 126, e2021JG006316 (2021).
Paukert Vankeuren, A. N., Matter, J. M., Stute, M. & Kelemen, P. B. Multitracer determination of apparent groundwater ages in peridotite aquifers within the Samail ophiolite, Sultanate of Oman. Earth Planet. Sci. Lett. 516, 37–48 (2019).
Sleep, N. H. & Zoback, M. D. Did earthquakes keep the early crust habitable? Astrobiology 7, 1023–1032 (2007).
Cheng, A. et al. Determining the role of diffusion and basement flux in controlling 4He distribution in sedimentary basin fluids. Earth Planet. Sci. Lett. 574, 117175 (2021).
Torgersen, T. & Clarke, W. B. Helium accumulation in groundwater, I: an evaluation of sources and the continental flux of crustal 4He in the Great Artesian Basin, Australia. Geochim. Cosmochim. Acta 49, 1211–1218 (1985).
Torgersen, T. & Ivey, G. N. Helium accumulation in groundwater. II: a model for the accumulation of the crustal 4He degassing flux. Geochim. Cosmochim. Acta 49, 2445–2452 (1985).
Torgersen, T. Continental degassing flux of 4He and its variability. Geochem. Geophys. Geosyst. 11, Q06002 (2010).
Torgersen, T. & Clarke, W. B. Geochemical constraints on formation fluid ages, hydrothermal heat flux, and crustal mass transport mechanisms at Cajon Pass. J. Geophys. Res. 97, 5031–5038 (1992).
Ballentine, C. J. & Sherwood Lollar, B. Regional groundwater focusing of nitrogen and noble gases into the Hugoton-Panhandle giant gas field, USA. Geochim. Cosmochim. Acta 66, 2483–2497 (2002).
Kulongoski, J. T., Hilton, D. R. & Izbicki, J. A. Source and movement of helium in the eastern Morongo groundwater basin: the influence of regional tectonics on crustal and mantle helium fluxes. Geochim. Cosmochim. Acta 69, 3857–3872 (2005).
Andrews, J. N. et al. A radiochemical, hydrochemical and dissolved gas study of groundwaters in the Molasse Basin of Upper Austria. Earth Planet. Sci. Lett. 73, 317–332 (1985).
Tolstikhin, I. et al. Production, redistribution and loss of helium and argon isotopes in a thick sedimentary aquitard–aquifer system (Molasse Basin, Switzerland). Chem. Geol. 286, 48–58 (2011).
Torgersen, T., Top, Z., Clarke, W. B., Jenkins, W. J. & Broecker, W. S. A new method for physical limnology — tritium-helium-3 ages — results for Lakes Erie, Huron, and Ontario. Limnol. Oceanogr. 22, 181–193 (1977).
Buttitta, D. et al. Continental degassing of helium in an active tectonic setting (northern Italy): the role of seismicity. Sci. Rep. 10, 162 (2020).
Lowenstern, J. B., Evans, W. C., Bergfeld, D. & Hunt, A. G. Prodigious degassing of a billion years of accumulated radiogenic helium at Yellowstone. Nature 506, 355–358 (2014).
Halford, D. T. et al. Probabilistic determination of the role of faults and intrusions in helium-rich gas fields formation. Geochem. Geophys. Geosyst. 25, e2024GC011522 (2024).
Byrne, D. J., Barry, P. H., Lawson, M. & Ballentine, C. J. The use of noble gas isotopes to constrain subsurface fluid flow and hydrocarbon migration in the East Texas Basin. Geochim. Cosmochim. Acta 268, 186–208 (2020).
Caracausi, A., Buttitta, D., Picozzi, M., Paternoster, M. & Stabile, T. A. Earthquakes control the impulsive nature of crustal helium degassing to the atmosphere. Commun. Earth Env. 3, 1–8 (2022).
Halford, D. T. et al. High helium reservoirs in the Four Corners area of the Colorado Plateau, USA. Chem. Geol. 596, 120790 (2022).
Hutchinson, I. P., Jackson, O., Stocks, A. E., Barnicoat, A. C. & Lawrence, S. R. Greenstones as a source of hydrogen in cratonic sedimentary basins. Geol. Soc. Spec. Publ. 547, SP547–SP2023 (2024).
Tyne, R. L. et al. Basin architecture controls on the chemical evolution and 4He distribution of groundwater in the Paradox Basin. Earth Planet. Sci. Lett. 589, 117580 (2022).
Leila, M., Loiseau, K. & Moretti, I. Controls on generation and accumulation of blended gases (CH4/H2/He) in the Neoproterozoic Amadeus Basin, Australia. Mar. Pet. Geol. 140, 105643 (2022).
Kamber, B. S. The evolving nature of terrestrial crust from the Hadean, through the Archaean, into the Proterozoic. Precambrian Res. 258, 48–82 (2015).
Trosdtorf, I. Jr et al. Phanerozoic magmatism in the Parnaíba Basin: characterization of igneous bodies (well logs and 2D seismic sections), geometry, distribution and sill emplacement patterns. Geol. Soc. Spec. Publ. 472, 321–340 (2018).
Cawood, P. A. et al. Secular evolution of continents and the Earth system. Rev. Geophys. 60, e2022RG000789 (2022).
Hawkesworth, C. J., Cawood, P. A. & Dhuime, B. The evolution of the continental crust and the onset of plate tectonics. Front. Earth Sci. 8, 326 (2020).
Kietäväinen, R. & Purkamo, L. The origin, source, and cycling of methane in deep crystalline rock biosphere. Front. Microbiol. 6, 725 (2015).
Daly, M. C., Lawrence, S., Diemu-Tshiband, K. & Matouana, B. Tectonic evolution of the cuvette centrale, Zaire. J. Geol. Soc. 149, 539–546 (1992).
White, R. & McKenzie, D. Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J. Geophys. Res. 94, 7685–7729 (1989).
Chen, Q. et al. Intraplate continental basalts over the past billion years track cooling of the mantle and the onset of modern plate tectonics. Earth Planet. Sci. Lett. 597, 117804 (2022).
Bryan, S. E., Riley, T. R., Jerram, D. A., Stephens, C. J. & Leat, P. T. in Volcanic Rifted Margins (eds Menzies, M. A. et al.) (Geological Society of America, 2002); https://doi.org/10.1130/0-8137-2362-0.97.
Campbell, I. H. & Griffiths, R. W. Did the formation of D″ cause the Archaean–Proterozoic transition? Earth Planet. Sci. Lett. 388, 1–8 (2014).
Wang, H., van Hunen, J. & Pearson, D. G. The thinning of subcontinental lithosphere: the roles of plume impact and metasomatic weakening. Geochem. Geophys. Geosyst. 16, 1156–1171 (2015).
Goebel, E., Coveney, R., Angino, E., Zeller, E. & DRESCHHOFF, G. M. Geology, composition, isotopes of naturally occurring rich gas from wells near Junction City, Kans. Oil Gas J. 82, 215–222 (1984).
Angino, E., Zeller, E., Dreschhoff, G., Goebel, E. & Coveney, R. Jr. in Geochemistry of Gaseous Elements and Compounds (ed. Durrance, E. M.) 485–493 (Theophrastus, 1990).
Johnsgard, S. K. The Fracture Pattern of North-Central Kansas and its Relation to Hydrogen Soil Gas Anomalies Over the Midcontinent Rift System. MSc Thesis, Univ. Kansas (1988).
Newell, K. D. et al. H2-rich and hydrocarbon gas recovered in a deep precambrian well in Northeastern Kansas. Nat. Resour. Res. 16, 277–292 (2007).
Guélard, J. et al. Natural H2 in Kansas: deep or shallow origin? Geochem. Geophys. Geosyst. 18, 1841–1865 (2017).
Coveney, J. Serpentinization and the origin of hydrogen gas in kansas. AAPG Bull. 71, 39–48 (1987).
Keller, C. B. & Schoene, B. Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago. Nature 485, 490–493 (2012).
McInnes, B. et al. Investigations into the highest reported He concentration in a natural gas sample: Mt Kitty, Amadeus Basin, Northern Territory. In 2017 Goldschmidt Conference Abstract (European Association of Geochemistry, Geochemical Society, 2017); goldschmidtabstracts.info/2017/2661.pdf.
Breton, J.-P., Béchennec, F., Le Métour, J., Moen-Maurel, L. & Razin, P. Eoalpine (Cretaceous) evolution of the Oman Tethyan continental margin: insights from a structural field study in Jabal Akhdar (Oman Mountains). GeoArabia 9, 41–58 (2004).
Miller, R. G. The global oil system: the relationship between oil generation, loss, half-life, and the world crude oil resource. AAPG Bull. 76, 489–500 (1992).
Sherwood Lollar, B. et al. Unravelling abiogenic and biogenic sources of methane in the Earth’s deep subsurface. Chem. Geol. 226, 328–339 (2006).
Kietäväinen, R., Ahonen, L., Niinikoski, P., Nykänen, H. & Kukkonen, I. T. Abiotic and biotic controls on methane formation down to 2.5 km depth within the Precambrian Fennoscandian Shield. Geochim. Cosmochim. Acta 202, 124–145 (2017).
Onstott, T. C. et al. The origin and age of biogeochemical trends in deep fracture water of the Witwatersrand Basin, South Africa. Geomicrobiol. J. 23, 369–414 (2006).
Ward, J. A. et al. Microbial hydrocarbon gases in the Witwatersrand Basin, South Africa: implications for the deep biosphere. Geochim. Cosmochim. Acta 68, 3239–3250 (2004).
Magnabosco, C. et al. The biomass and biodiversity of the continental subsurface. Nat. Geosci. 11, 707–717 (2018).
Merino, N. et al. Living at the extremes: extremophiles and the limits of life in a planetary context. Front. Microbiol. 10, 780 (2019).
Templeton, A. S. & Caro, T. A. The rock-hosted biosphere. Annu. Rev. Earth Planet. Sci. 51, 493–519 (2023).
Trembath-Reichert, E. et al. Multiple carbon incorporation strategies support microbial survival in cold subseafloor crustal fluids. Sci. Adv. 7, eabg0153 (2021).
Hoehler, T. M. Biogeochemistry of dihydrogen (H2). Metal Ions in Biological Systems. 43, 9-48 (2005).
Hoehler, T. M., Alperin, M. J., Albert, D. B. & Martens, C. S. Thermodynamic control on hydrogen concentrations in anoxic sediments. Geochim. Cosmochim. Acta 62, 1745–1756 (1998).
Tyne, R. L. et al. Investigating the effect of enhanced oil recovery on the noble gas signature of casing gases and produced waters from selected California oil fields. Chem. Geol. 584, 120540 (2021).
Tyne, R. L. et al. Identifying and understanding microbial methanogenesis in CO2 storage. Environ. Sci. Technol. 57, 9459–9473 (2023).
Pratt, W. E. Hydrogenation and the origin of oil: part II. Origin and evolution of petroleum: group 3. Variation in physical properties. 69, 235–245 (1934).
Truche, L. et al. Experimental reduction of aqueous sulphate by hydrogen under hydrothermal conditions: implication for the nuclear waste storage. Geochim. Cosmochim. Acta 73, 4824–4835 (2009).
Truche, L., Berger, G., Destrigneville, C., Guillaume, D. & Giffaut, E. Kinetics of pyrite to pyrrhotite reduction by hydrogen in calcite buffered solutions between 90 and 180 °C: Implications for nuclear waste disposal. Geochim. Cosmochim. Acta 74, 2894–2914 (2010).
Lefeuvre, N. et al. Natural hydrogen migration along thrust faults in foothill basins: the North Pyrenean Frontal Thrust case study. Appl. Geochem. 145, 105396 (2022).
Tominaga, M. et al. Multi-scale magnetic mapping of serpentinite carbonation. Nat. Commun. 8, 1870 (2017).
Lefeuvre, N. et al. Native H2 exploration in the western pyrenean foothills. Geochem. Geophys. Geosyst. 22, e2021GC009917 (2021).
Vaughan, A. P. M. & Scarrow, J. H. Ophiolite obduction pulses as a proxy indicator of superplume events? Earth Planet. Sci. Lett. 213, 407–416 (2003).
Johansson, L., Zahirovic, S. & Müller, R. D. The interplay between the eruption and weathering of large igneous provinces and the deep‐time carbon cycle. Geophys. Res. Lett. 45, 5380–5389 (2018).
Hasterok, D. et al. New maps of global geological provinces and tectonic plates. Earth Sci. Rev. 231, 104069 (2022).
Robertson C. G. G. Sedimentary basins of the world (ArcGIS, 2019); https://hub.arcgis.com/datasets/9845f1f30a1641efbe54dd1f9c8c668b/about.
Evenick, J. C. Glimpses into Earth’s history using a revised global sedimentary basin map. Earth Sci. Rev. 215, 103564 (2021).
Gold, T. & Soter, S. Abiogenic methane and the origin of petroleum. Energy Explor. Exploit. 1, 89–104 (1982).
Gold, T. Terrestrial sources of carbon and earthquake outgassing. J. Pet. Geol. 1, 3–19 (1979).
Sherwood Lollar, B. et al. Evidence for bacterially generated hydrocarbon gas in Canadian shield and fennoscandian shield rocks. Geochim. Cosmochim. Acta 57, 5073–5085 (1993).
Sherwood Lollar, B., Westgate, T. D., Ward, J. A., Slater, G. F. & Lacrampe-Couloume, G. Abiogenic formation of alkanes in the Earth’s crust as a minor source for global hydrocarbon reservoirs. Nature 416, 522–524 (2002).
Acknowledgements
C.J.B. and B.S.L. acknowledge the support of the CIFAR E4D programme.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding author
Ethics declarations
Competing interests
C.J.B. founded Snowfox Discovery Ltd, a hydrogen exploration company, and provides technical advice. J.G. is a co-founder of Snowfox Discovery Ltd and provides technical advice. B.S.L. provides technical advice to Snowfox Discovery Ltd. M.C.D. is a co-founder and Director of Snowfox Discovery Ltd and provides technical advice. A.C. and R.K. are employees of Snowfox Discovery Ltd. The commercial value and carbon footprint details described in this review are derived from the authors, and do not necessarily reflect the internal corporate perspective of Snowfox Discovery Ltd.
Peer review
Peer review information
Nature Reviews Earth & Environment thanks Zhijun Jin, Linda Stalker and Laurent Truche, for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Ballentine, C.J., Karolytė, R., Cheng, A. et al. Natural hydrogen resource accumulation in the continental crust. Nat Rev Earth Environ 6, 342–356 (2025). https://doi.org/10.1038/s43017-025-00670-1
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s43017-025-00670-1