Abstract
Much of Earth’s magma is stored as extensive crystal mush systems, yet the prevalence of physical processes operating within mushes and their importance in volcanically active regions remain enigmatic. In this Review, we explore the physical properties and key processes of crystal mush systems. The initiation, evolution and decline of volcanic systems, modulated by heat supply and loss, could generate differences in the prevalence of mush processes through space and time. Additionally, regional tectonics alter mush properties, with mushes in cool wet settings having persistent residual melt, permitting more effective melt segregation than in hot dry settings. Disaggregation of mushes results in crystal mush material being mobilized or entrained into lavas and erupted, presenting opportunities to define the timescales and chemistry of some mush processes in volcanically active regions. Mush systems can be observed on length scales ranging from kilometres (using geological mapping) to micrometres (using crystal textures). Therefore, it is difficult to integrate data and interpretations across different fields. Improved integration of thermodynamics, textural analysis, geochemistry, modelling and experiments, alongside inputs from adjacent fields such as porous media dynamics, engineering and metallurgy will help to advance understanding of mush systems and ultimately improve hazard evaluation at active and dormant volcanic systems.
Key points
-
All magmas transition through a mush stage during solidification, when there is an interconnected solid framework that can transmit stress with an interconnected liquid in the pore spaces.
-
Long-lived crystal mushes are the site for the enrichment, segregation and deposition of many mineral deposits and are important for productive geothermal systems. Additionally, mush instability is closely linked to volcanic eruption.
-
The physical behaviour of mushes depends primarily on porosity, melt viscosity, permeability, and crystal shape and size distribution. These properties can vary substantially across different length scales.
-
Cumulates represent the crystalline residue left over after the segregation of crystals or the extraction or migration of silicate melt during igneous differentiation. Cumulates are complementary to erupted magmas.
-
Melt migration in crystal mushes can occur by grain-scale porous flow or channelization. Reactive melt migration can affect crystal mush porosity, permeability and composition, and therefore alter the chemical evolution of the residual liquid.
-
The thermal maturation of volcanic systems enhances crystal–melt segregation in the crust and is expected to increase the migration, reaction and extraction of melt from mush. Disaggregation of mush can transfer crystal cargo to erupting magmas.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Marsh, B. D. Solidification fronts and magmatic evolution. Mineral. Mag. 60, 5–40 (1996).
Magee, C. et al. Magma plumbing systems: a geophysical perspective. J. Petrol. 59, 1217–1251 (2018).
Ward, K. M., Zandt, G., Beck, S. L., Christensen, D. H. & McFarlin, H. Seismic imaging of the magmatic underpinnings beneath the Altiplano-Puna volcanic complex from the joint inversion of surface wave dispersion and receiver functions. Earth Planet. Sci. Lett. 404, 43–53 (2014).
Paulatto, M. et al. Advances in seismic imaging of magma and crystal mush. Front. Earth Sci. https://doi.org/10.3389/feart.2022.970131 (2022).
Cashman, K. V., Sparks, R. S. J. & Blundy, J. D. Vertically extensive and unstable magmatic systems: a unified view of igneous processes. Science 355, eaag3055 (2017).
Bachmann, O. & Bergantz, G. W. On the origin of crystal-poor rhyolites: extracted from batholithic crystal mushes. J. Petrol. 45, 1565–1582 (2004).
Annen, C., Blundy, J. & Sparks, R. The genesis of intermediate and silicic magmas in deep crustal hot zones. J. Petrol. 47, 505–539 (2006).
Sparks, R. et al. Formation and dynamics of magma reservoirs. Philos. Trans. R. Soc. A 377, 20180019 (2019).
Weinberg, R. F., Vernon, R. H. & Schmeling, H. Processes in mushes and their role in the differentiation of granitic rocks. Earth Sci. Rev. 220, 103665 (2021).
Mueller, S., Llewellin, E. & Mader, H. The rheology of suspensions of solid particles. Proc. R. Soc. A 466, 1201–1228 (2010).
Vigneresse, J. L., Barbey, P. & Cuney, M. Rheological transitions during partial melting and crystallization with application to felsic magma segregation and transfer. J. Petrol. 37, 1579–1600 (1996).
Bohrson, W. A. et al. Thermodynamic model for energy-constrained open-system evolution of crustal magma bodies undergoing simultaneous recharge, assimilation and crystallization: the magma chamber simulator. J. Petrol. 55, 1685–1717 (2014).
Mangler, M. F. et al. Crystal resorption as a driver for mush maturation: an experimental Investigation. J. Petrol. 65, egae088 (2024).
Marsh, B. D. On the crystallinity, probability of occurrence, and rheology of lava and magma. Contrib. Mineral. Petrol. 78, 85–98 (1981).
Eichelberger, J. Distribution and transport of thermal energy within magma–hydrothermal systems. Geosciences 10, 212 (2020).
O’Driscoll, B., Emeleus, C. H., Donaldson, C. H. & Daly, J. S. Cr-spinel seam petrogenesis in the Rum Layered Suite, NW Scotland: cumulate assimilation and in situ crystallization in a deforming crystal mush. J. Petrol. 51, 1171–1201 (2010).
Larsen, L. M. & Sørensen, H. The Ilímaussaq intrusion — progressive crystallization and formation of layering in an agpaitic magma. Geol. Soc. Spec. Publ. 30, 473–488 (1987).
Nielsen, T. F. et al. The Skaergaard PGE and gold deposit: the result of in situ fractionation, sulphide saturation, and magma chamber-scale precious metal redistribution by immiscible Fe-rich melt. J. Petrol. 56, 1643–1676 (2015).
Buret, Y. et al. From a long-lived upper-crustal magma chamber to rapid porphyry copper emplacement: reading the geochemistry of zircon crystals at Bajo de la Alumbrera (NW Argentina). Earth Planet. Sci. Lett. 450, 120–131 (2016).
Iyer, H. M. Geophysical evidence for the locations, shapes and sizes, and internal structures of magma chambers beneath regions of Quaternary volcanism. Phil. Trans. R. Soc. A 310, 473–510 (1984).
Karakas, O. & Dufek, J. Melt evolution and residence in extending crust: thermal modeling of the crust and crustal magmas. Earth Planet. Sci. Lett. 425, 131–144 (2015).
Mullet, B. & Segall, P. The surface deformation signature of a transcrustal, crystal mush‐dominant magma system. JGR Solid Earth 127, e2022JB024178 (2022).
Arculus, R. J. & Wills, K. J. A. The petrology of plutonic blocks and inclusions from the Lesser Antilles Island arc. J. Petrol. 21, 743–799 (1980).
Bennett, E. N., Lissenberg, C. J. & Cashman, K. V. The significance of plagioclase textures in mid-ocean ridge basalt (Gakkel Ridge, Arctic Ocean). Contrib. Mineral. Petrol. 174, 1–22 (2019).
Tait, S. R., Wörner, G., Van Den Bogaard, P. & Schmincke, H.-U. Cumulate nodules as evidence for convective fractionation in a phonolite magma chamber. J. Volcanol. Geotherm. Res. 37, 21–37 (1989).
Holness, M. B. et al. Textures in partially solidified crystalline nodules: a window into the pore structure of slowly cooled mafic intrusions. J. Petrol. 48, 1243–1264 (2007).
Horn, E. L., Taylor, R. N., Gernon, T. M., Stock, M. J. & Farley, E. R. Composition and petrology of a mush-bearing magma reservoir beneath Tenerife. J. Petrol. 63, egac095 (2022).
Kiddle, E. et al. Crustal structure beneath Montserrat, Lesser Antilles, constrained by xenoliths, seismic velocity structure and petrology. Geophys. Res. Lett. 37, L00E11 (2010).
Holness, M. B., Stock, M. J. & Geist, D. Magma chambers versus mush zones: constraining the architecture of sub-volcanic plumbing systems from microstructural analysis of crystalline enclaves. Philos. Trans. R. Soc. A 377, 20180006 (2019).
Cooper, G. F., Davidson, J. P. & Blundy, J. D. Plutonic xenoliths from Martinique, Lesser Antilles: evidence for open system processes and reactive melt flow in island arc crust. Contrib. Mineral. Petrol. 171, 87 (2016).
Neave, D. A., Buisman, I. & Maclennan, J. Continuous mush disaggregation during the long-lasting Laki fissure eruption, Iceland. Am. Min. 102, 2007–2021 (2017).
Holness, M. B., Humphreys, M. C., Sides, R., Helz, R. T. & Tegner, C. Toward an understanding of disequilibrium dihedral angles in mafic rocks. J. Geophys. Res. Solid Earth 117, B06207 (2012).
Helz, R. T. Crystallization history of Kilauea Iki lava lake as seen in drill core recovered in 1967–1979. Bull. Volcanol. 43, 675–701 (1980).
Lesher, C. E. & Walker, D. Cumulate maturation and melt migration in a temperature gradient. J. Geophys. Res. 93, 10295–10311 (1988).
Wallrich, B. et al. Volcano–pluton connection: perspectives on material and process linkages, searchlight pluton and Highland Range volcanic sequence, Nevada, USA. Earth Sci. Rev. 238, 104361 (2023).
Holness, M. B. et al. Crystal mush growth and collapse on a steep wall: the marginal border series of the Skaergaard Intrusion, East Greenland. J. Petrol. 63, egab100 (2022).
Alasino, P. H., Ardill, K. E. & Paterson, S. R. Magmatic faults: challenges, progress, and possibilities. Earth Sci. Rev. 260, 104992 (2025).
Vernon, R. & Collins, W. Structural criteria for identifying granitic cumulates. J. Geol. 119, 127–142 (2011).
Garibaldi, N., Tikoff, B., Schaen, A. J. & Singer, B. S. Interpreting granitic fabrics in terms of rhyolitic melt segregation, accumulation, and escape via tectonic filter pressing in the Huemul Pluton, Chile. J. Geophys. Res. Solid Earth 123, 8548–8567 (2018).
Bédard, J. H. Cumulate recycling and crustal evolution in the Bay of Islands ophiolite. J. Geol. 99, 225–249 (1991).
Kerr, R. C. & Lister, J. R. The effects of shape on crystal settling and on the rheology of magmas. J. Geol. 99, 457–467 (1991).
Druitt, T. Settling behaviour of concentrated dispersions and some volcanological applications. J. Volcanol. Geotherm. Res. 65, 27–39 (1995).
Schwindinger, K. R. Particle dynamics and aggregation of crystals in a magma chamber with application to Kilauea Iki olivines. J. Volcanol. Geotherm. Res. 88, 209–238 (1999).
Suckale, J., Sethian, J. A., Yu, J. & Elkins-Tanton, L. T. Crystals stirred up: 1. Direct numerical simulations of crystal settling in nondilute magmatic suspensions. J. Geophys. Res. 117, E08004 (2012).
Bons, P. D. et al. Layered intrusions and traffic jams. Geology 43, 71–74 (2015).
Manoochehri, S. & Schmidt, M. W. Settling and compaction of chromite cumulates employing a centrifuging piston cylinder and application to layered mafic intrusions. Contrib. Mineral. Petrol. 168, 1–20 (2014).
Namur, O. et al. in Layered Intrusions (eds Charlier, B. et al.) 75–152 (Springer, 2015).
Snabre, P., Pouligny, B., Metayer, C. & Nadal, F. Size segregation and particle velocity fluctuations in settling concentrated suspensions. Rheol. Acta 48, 855–870 (2009).
Wong, Y.-Q. & Keller, T. A unified numerical model for two-phase porous, mush and suspension flow dynamics in magmatic systems. Geophys. J. Int. 233, 769–795 (2023).
Michioka, H. & Sumita, I. Rayleigh–Taylor instability of a particle packed viscous fluid: implications for a solidifying magma. Geophys. Res. Lett. 32, L03309 (2005).
Holness, M. B. Melt segregation from silicic crystal mushes: a critical appraisal of possible mechanisms and their microstructural record. Contrib. Mineral. Petrol. 173, 48 (2018).
Bachmann, O. & Huber, C. The inner workings of crustal distillation columns; the physical mechanisms and rates controlling phase separation in silicic magma reservoirs. J. Petrol. 60, 3–18 (2019).
Florez, D. et al. Repacking in compacting mushes at intermediate melt fractions: constraints from numerical modeling and phase separation experiments on granular media. JGR Solid Earth 129, e2024JB029077 (2024).
Couturier, É., Boyer, F., Pouliquen, O. & Guazzelli, É. Suspensions in a tilted trough: second normal stress difference. J. Fluid Mech. 686, 26–39 (2011).
Bergantz, G. W., Schleicher, J. M. & Burgisser, A. On the kinematics and dynamics of crystal‐rich systems. J. Geophys. Res. Solid Earth 122, 6131–6159 (2017).
Hoyos, S., Florez, D., Pec, M. & Huber, C. Crystal shape control on the repacking and jamming of crystal‐rich mushes. Geophys. Res. Lett. 49, e2022GL100040 (2022).
Renner, J., Viskupic, K., Hirth, G. & Evans, B. Melt extraction from partially molten peridotites. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2002GC000369 (2003).
Hartung, E. et al. Evidence for residual melt extraction in the takidani pluton, central Japan. J. Petrol. 58, 763–788 (2017).
Cuetos, A., Dennison, M., Masters, A. & Patti, A. Phase behaviour of hard board-like particles. Soft Matter 13, 4720–4732 (2017).
Meurer, W. & Boudreau, A. Compaction of igneous cumulates part I: geochemical consequences for cumulates and liquid fractionation trends. J. Geol. 106, 281–292 (1998).
Meurer, W. & Boudreau, A. Compaction of igneous cumulates part II: compaction and the development of igneous foliations. J. Geol. 106, 293–304 (1998).
Cooper, R. & Kohlstedt, D. Solution-precipitation enhanced diffusional creep of partially molten olivine-basalt aggregates during hot-pressing. Tectonophysics 107, 207–233 (1984).
Tharp, T. M., Loucks, R. R. & Sack, R. O. Modeling compaction of olivine cumulates in the Muskox intrusion. Am. J. Sci. 298, 758–790 (1998).
Ribe, N. M. Theory of melt segregation — a review. J. Volcanol. Geotherm. Res. 33, 241–253 (1987).
McKenzie, D. The generation and compaction of partially molten rock. J. Petrol. 25, 713–765 (1984).
McKenzie, D. Compaction and crystallization in magma chambers: towards a model of the skaergaard intrusion. J. Petrol. 52, 905–930 (2011).
Holness, M. B., Cheadle, M. J. & McKenzie, D. On the use of changes in dihedral angle to decode late-stage textural evolution in cumulates. J. Petrol. 46, 1565–1583 (2005).
Cheadle, M., Elliott, M. & McKenzie, D. Percolation threshold and permeability of crystallizing igneous rocks: the importance of textural equilibrium. Geology 32, 757–760 (2004).
Keller, T. & Suckale, J. A continuum model of multi-phase reactive transport in igneous systems. Geophys. J. Int. 219, 185–222 (2019).
Lee, C.-T. A. & Morton, D. M. High silica granites: terminal porosity and crystal settling in shallow magma chambers. Earth Planet. Sci. Lett. 409, 23–31 (2015).
Holness, M. B., Vukmanovic, Z. & Mariani, E. Assessing the role of compaction in the formation of adcumulates: a microstructural perspective. J. Petrol. 58, 643–673 (2017).
Boudreau, A. E. & McBirney, A. R. The Skaergaard layered series. Part III. Non-dynamic layering. J. Petrol. 38, 1003–1020 (1997).
Bertolett, E., Prior, D., Gravley, D., Hampton, S. & Kennedy, B. Compacted cumulates revealed by electron backscatter diffraction analysis of plutonic lithics. Geology 47, 445–448 (2019).
Namur, O. & Charlier, B. Efficiency of compaction and compositional convection during mafic crystal mush solidification: the Sept Iles layered intrusion, Canada. Contrib. Mineral. Petrol. 163, 1049–1068 (2012).
Lissenberg, C. J., MacLeod, C. J. & Bennett, E. N. Consequences of a crystal mush-dominated magma plumbing system: a mid-ocean ridge perspective. Philos. Trans. R. Soc. A 377, 20180014 (2019).
Yao, Z., Qin, K. & Xue, S. Kinetic processes for plastic deformation of olivine in the Poyi ultramafic intrusion, NW China: insights from the textural analysis of a ~1700 m fully cored succession. Lithos 284, 462–476 (2017).
Ferrando, C. et al. Role of compaction in melt extraction and accumulation at a slow spreading center: microstructures of olivine gabbros from the Atlantis Bank (IODP Hole U1473A, SWIR). Tectonophysics 815, 229001 (2021).
Vukmanovic, Z., Holness, M. B., Stock, M. J. & Roberts, R. J. The creation and evolution of crystal mush in the upper zone of the Rustenburg Layered Suite, Bushveld Complex, South Africa. J. Petrol. 60, 1523–1542 (2019).
Tait, S. R., Huppert, H. E. & Sparks, R. S. J. The role of compositional convection in the formation of adcumulate rocks. Lithos 17, 139–146 (1984).
Tait, S. & Jaupart, C. Compositional convection in a reactive crystalline mush and melt differentiation. J. Geophys. Res. 97, 6735–6756 (1992).
Kerr, R. C. & Tait, S. R. Crystallization and compositional convection in a porous medium with application to layered igneous intrusions. J. Geophys. Res. 91, 3591–3608 (1986).
Petford, N. in Flow and Creep in the Solar System: Observations, Modeling and Theory (eds Stone, D. B. & Runcorn, S. K.) 261–286 (Springer, 1993).
Wager, L. R., Brown, G. M. & Wadsworth, W. J. Types of igneous cumulates. J. Petrol. 1, 73–85 (1960).
Sparks, R. S. J., Huppert, H. E., Kerr, R., McKenzie, D. & Tait, S. R. Postcumulus processes in layered intrusions. Geol. Mag. 122, 555–568 (1985).
Vigneresse, J.-L., Truche, L. & Richard, A. How do metals escape from magmas to form porphyry-type ore deposits? Ore Geol. Rev. 105, 310–336 (2019).
Humphreys, M. C. et al. Rapid pre-eruptive mush reorganisation and atmospheric volatile emissions from the 12.9 ka Laacher See eruption, determined using apatite. Earth Planet. Sci. Lett. 576, 117198 (2021).
Pistone, M. et al. Gas-driven filter pressing in magmas: insights into in-situ melt segregation from crystal mushes. Geology 43, 699–702 (2015).
Boudreau, A. Bubble migration in a compacting crystal-liquid mush. Contrib. Mineral. Petrol. 171, 1–17 (2016).
Sisson, T. W. & Bacon, C. R. Gas-driven filter pressing in magmas. Geology 27, 613–616 (1999).
Parmigiani, A., Huber, C. & Bachmann, O. Mush microphysics and the reactivation of crystal‐rich magma reservoirs. J. Geophys. Res. Solid Earth 119, 6308–6322 (2014).
Degruyter, W., Parmigiani, A., Huber, C. & Bachmann, O. How do volatiles escape their shallow magmatic hearth? Philos. Trans. R. Soc. A 377, 20180017 (2019).
Belien, I. B., Cashman, K. V. & Rempel, A. W. Gas accumulation in particle-rich suspensions and implications for bubble populations in crystal-rich magma. Earth Planet. Sci. Lett. 297, 133–140 (2010).
Huber, C. & Parmigiani, A. A physical model for three‐phase compaction in silicic magma reservoirs. J. Geophys. Res. Solid Earth 123, 2685–2705 (2018).
Lenormand, R., Touboul, E. & Zarcone, C. Numerical models and experiments on immiscible displacements in porous media. J. Fluid Mech. 189, 165–187 (1988).
Jackson, M., Blundy, J. & Sparks, R. Chemical differentiation, cold storage and remobilization of magma in the Earth’s crust. Nature 564, 405–409 (2018).
Solano, J. M. S., Jackson, M. D., Sparks, R. S. J., Blundy, J. D. & Annen, C. Melt segregation in deep crustal hot zones: a mechanism for chemical differentiation, crustal assimilation and the formation of evolved magmas. J. Petrol. 53, 1999–2026 (2012).
Boudier, F., Nicolas, A. & Ildefonse, B. Magma chambers in the Oman ophiolite: fed from the top and the bottom. Earth Planet. Sci. Lett. 144, 239–250 (1996).
Carbotte, S. M. et al. Stacked sills forming a deep melt-mush feeder conduit beneath Axial Seamount. Geology 48, 693–697 (2020).
Bachmann, O. & Bergantz, G. W. Rhyolites and their source mushes across tectonic settings. J. Petrol. 49, 2277–2285 (2008).
Spiegelman, M., Kelemen, P. B. & Aharonov, E. Causes and consequences of flow organization during melt transport: the reaction infiltration instability in compactible media. J. Geophys. Res. Solid Earth 106, 2061–2077 (2001).
Lissenberg, C. J. & MacLeod, C. J. A reactive porous flow control on mid-ocean ridge magmatic evolution. J. Petrol. 57, 2195–2220 (2016).
Bouilhol, P., Schmidt, M. & Burg, J.-P. Magma transfer and evolution in channels within the arc crust: the pyroxenitic feeder pipes of Sapat (Kohistan, Pakistan). J. Petrol. 56, 1309–1342 (2015).
Sanfilippo, A., MacLeod, C. J., Tribuzio, R., Lissenberg, C. J. & Zanetti, A. Early-stage melt-rock reaction in a cooling crystal mush beneath a slow-spreading mid-ocean ridge (IODP Hole U1473A, Atlantis Bank, Southwest Indian Ridge). Front. Earth Sci. 8, 579138 (2020).
Chadam, J., Hoff, D., Merino, E., Ortoleva, P. & Sen, A. Reactive infiltration instabilities. IMA J. Appl. Math. 36, 207–221 (1986).
Spiegelman, M. Flow in deformable porous media. Part 1 simple analysis. J. Fluid Mech. 247, 17–38 (1993).
Ryan, A. G., Hansen, L. N., Zimmerman, M. E. & Pistone, M. Melt migration in crystal mushes by viscous fingering: insights from high‐temperature, high‐pressure experiments. JGR Solid Earth 127, e2022JB024447 (2022).
Richter, F. M. & McKenzie, D. Dynamical models for melt segregation from a deformable matrix. J. Geol. 92, 729–740 (1984).
Seropian, G., Rust, A. & Sparks, R. The gravitational stability of lenses in magma mushes: confined Rayleigh–Taylor instabilities. J. Geophys. Res. Solid Earth 123, 3593–3607 (2018).
Connolly, J. & Podladchikov, Y. Y. Decompaction weakening and channeling instability in ductile porous media: Implications for asthenospheric melt segregation. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2005JB004213 (2007).
Riel, N. et al. Interaction between mantle-derived magma and lower arc crust: quantitative reactive melt flow modelling using STyx. Geol. Soc. Spec. Publ. 478, 65–87 (2019).
Petford, N., Koenders, M. & Clemens, J. D. Igneous differentiation by deformation. Contrib. Mineral. Petrol. 175, 45 (2020).
Carrara, A., Burgisser, A. & Bergantz, G. W. Lubrication effects on magmatic mush dynamics. J. Volcanol. Geotherm. Res. 380, 19–30 (2019).
Van der Molen, I. & Paterson, M. Experimental deformation of partially-melted granite. Contrib. Mineral. Petrol. 70, 299–318 (1979).
Ryan, A. G. et al. Shear-induced dilation and dike formation during mush deformation. Earth Planet. Sci. Lett. 651, 119164 (2025).
Rosenberg, C. L. & Handy, M. R. Experimental deformation of partially melted granite revisited: implications for the continental crust. J. Metamorph. Geol. 23, 19–28 (2005).
Rummel, L., Kaus, B. J., Baumann, T. S., White, R. W. & Riel, N. Insights into the compositional evolution of crustal magmatic systems from coupled petrological–geodynamical models. J. Petrol. 61, egaa029 (2020).
Liu, B. & Lee, C.-T. Fast melt expulsion from crystal-rich mushes via induced anisotropic permeability. Earth Planet. Sci. Lett. 571, 117113 (2021).
Allan, A. S., Morgan, D. J., Wilson, C. J. & Millet, M.-A. From mush to eruption in centuries: assembly of the super-sized Oruanui magma body. Contrib. Mineral. Petrol. 166, 143–164 (2013).
Cembrano, J. & Lara, L. The link between volcanism and tectonics in the southern volcanic zone of the Chilean Andes: a review. Tectonophysics 471, 96–113 (2009).
Humphreys, M. & Holness, M. Melt-rich segregations in the Skaergaard Marginal Border Series: tearing of a vertical silicate mush. Lithos 119, 181–192 (2010).
Namur, O., Humphreys, M. C. & Holness, M. B. Lateral reactive infiltration in a vertical gabbroic crystal mush, Skaergaard intrusion, East Greenland. J. Petrol. 54, 985–1016 (2013).
Li, J.-Y., Wang, X.-L., Gu, Z.-D., Wang, D. & Du, D.-H. Geochemical diversity of continental arc basaltic mushy reservoirs driven by reactive melt infiltration. Commun. Earth Environ. 5, 109 (2024).
Boulanger, M. & France, L. Cumulate formation and melt extraction from mush-dominated magma reservoirs: the melt flush process exemplified at mid-ocean ridges. J. Petrol. 64, egad005 (2023).
Leuthold, J. et al. Partial melting of lower oceanic crust gabbro: constraints from poikilitic clinopyroxene primocrysts. Front. Earth Sci. 6, 15 (2018).
Huber, C., Bachmann, O. & Dufek, J. Thermo-mechanical reactivation of locked crystal mushes: melting-induced internal fracturing and assimilation processes in magmas. Earth Planet. Sci. Lett. 304, 443–454 (2011).
Hepworth, L. N., O’Driscoll, B., Gertisser, R., Daly, J. S. & Emeleus, C. H. Linking in situ crystallization and magma replenishment via sill intrusion in the Rum Western Layered Intrusion, NW Scotland. J. Petrol. 59, 1605–1642 (2018).
Hu, H., Jackson, M. D. & Blundy, J. Melting, compaction and reactive flow: controls on melt fraction and composition change in crustal mush reservoirs. J. Petrol. 63, egac097 (2022).
Kohlstedt, D. L. & Holtzman, B. K. Shearing melt out of the Earth: an experimentalist’s perspective on the influence of deformation on melt extraction. Annu. Rev. Earth Planet. Sci. 37, 561–593 (2009).
Smith, D. J. Clinopyroxene precursors to amphibole sponge in arc crust. Nat. Commun. 5, 4329 (2014).
Lissenberg, C. J., MacLeod, C. J., Howard, K. A. & Godard, M. Pervasive reactive melt migration through fast-spreading lower oceanic crust (Hess Deep, equatorial Pacific Ocean). Earth Planet. Sci. Lett. 361, 436–447 (2013).
Zhang, W.-Q. & Liu, C.-Z. Crust-scale reactive porous flow revealed by the brown amphibole in the IODP Hole U1473A gabbros, Southwest Indian Ridge. Lithos 450, 107209 (2023).
Gleeson, M. L., Lissenberg, C. J. & Antoshechkina, P. M. Porosity evolution of mafic crystal mush during reactive flow. Nat. Commun. 14, 3088 (2023).
Yang, A. Y., Wang, C., Liang, Y. & Lissenberg, C. J. Reaction between mid‐ocean ridge basalt and lower oceanic crust: an experimental study. Geochem. Geophys. Geosyst. 20, 4390–4407 (2019).
Blundy, J. Chemical differentiation by mineralogical buffering in crustal hot zones. J. Petrol. 63, egac054 (2022).
Müntener, O. & Ulmer, P. Arc crust formation and differentiation constrained by experimental petrology. Am. J. Sci. 318, 64–89 (2018).
Blatter, D. L., Sisson, T. W. & Hankins, W. B. Voluminous arc dacites as amphibole reaction-boundary liquids. Contrib. Mineral. Petrol. 172, 1–37 (2017).
Ulmer, P., Kaegi, R. & Müntener, O. Experimentally derived intermediate to silica-rich arc magmas by fractional and equilibrium crystallization at 1·0 GPa: an evaluation of phase relationships, compositions, liquid lines of descent and oxygen fugacity. J. Petrol. 59, 11–58 (2018).
Hepworth, L. N. et al. Rapid crystallization of precious-metal-mineralized layers in mafic magmatic systems. Nat. Geosci. 13, 375–381 (2020).
Lissenberg, C. J. & Dick, H. J. Melt–rock reaction in the lower oceanic crust and its implications for the genesis of mid-ocean ridge basalt. Earth Planet. Sci. Lett. 271, 311–325 (2008).
Gudmundsson, A. The mechanics of large volcanic eruptions. Earth Sci. Rev. 163, 72–93 (2016).
Cooper, K. M. Time scales and temperatures of crystal storage in magma reservoirs: implications for magma reservoir dynamics. Philos. Trans. R. Soc. A 377, 20180009 (2019).
Cooper, K. M. & Kent, A. J. Rapid remobilization of magmatic crystals kept in cold storage. Nature 506, 480–483 (2014).
Molina, P. G. et al. Protracted late magmatic stage of the Caleu pluton (central Chile) as a consequence of heat redistribution by diking: Insights from zircon data and thermal modeling. Lithos 227, 255–268 (2015).
Bachmann, O., Dungan, M. A. & Lipman, P. W. The Fish Canyon magma body, San Juan volcanic field, Colorado: rejuvenation and eruption of an upper-crustal batholith. J. Petrol. 43, 1469–1503 (2002).
Spera, F. J. & Bohrson, W. A. Rejuvenation of crustal magma mush: a tale of multiply nested processes and timescales. Am. J. Sci. 318, 90–140 (2018).
Huber, C., Bachmann, O. & Manga, M. Two competing effects of volatiles on heat transfer in crystal-rich magmas: thermal insulation vs defrosting. J. Petrol. 51, 847–867 (2010).
Huber, C., Bachmann, O. & Dufek, J. The limitations of melting on the reactivation of silicic mushes. J. Volcanol. Geotherm. Res. 195, 97–105 (2010).
Passmore, E., Maclennan, J., Fitton, G. & Thordarson, T. Mush disaggregation in basaltic magma chambers: evidence from the AD 1783 Laki eruption. J. Petrol. 53, 2593–2623 (2012).
Moore, A., Coogan, L., Costa, F. & Perfit, M. Primitive melt replenishment and crystal-mush disaggregation in the weeks preceding the 2005–2006 eruption 9 50′ N, EPR. Earth Planet. Sci. Lett. 403, 15–26 (2014).
Christopher, T. E. et al. Crustal-scale degassing due to magma system destabilization and magma-gas decoupling at Soufriere Hills Volcano, Montserrat. Geochem. Geophys. Geosyst. 16, 2797–2811 (2015).
Carrara, A. & Bergantz, G. W. Numerical simulations of the mingling caused by a magma intruding a resident mush. Volcanica 7, 89–104 (2024).
Bachmann, O. & Bergantz, G. W. Gas percolation in upper-crustal silicic crystal mushes as a mechanism for upward heat advection and rejuvenation of near-solidus magma bodies. J. Volcanol. Geotherm. Res. 149, 85–102 (2006).
Connolly, J. A. D. & Podladchikov, Y. Y. in Metasomatism and the Chemical Transformation of Rock (eds Harlov, D. E. & Austrheim, H.) 599–658 (Springer, 2013); https://doi.org/10.1007/978-3-642-28394-9_14.
Spera, F. J. & Bohrson, W. A. Energy-constrained open-system magmatic processes I: general model and energy-constrained assimilation and fractional crystallization (EC-AFC) formulation. J. Petrol. 42, 999–1018 (2001).
Burgisser, A. & Bergantz, G. W. A rapid mechanism to remobilize and homogenize highly crystalline magma bodies. Nature 471, 212–215 (2011).
Hickey-Vargas, R., Abdollahi, M. J., Parada, M. A., López-Escobar, L. & Frey, F. A. Crustal xenoliths from Calbuco Volcano, Andean Southern Volcanic Zone: implications for crustal composition and magma–crust interaction. Contrib. Mineral. Petrol. 119, 331–344 (1995).
Costa, F., Dungan, M. A. & Singer, B. S. Hornblende- and phlogopite-bearing gabbroic xenoliths from Volcán San Pedro (36°S), Chilean Andes: evidence for melt and fluid migration and reactions in subduction-related plutons. J. Petrol. 43, 219–241 (2002).
Clemens, J., Stevens, G., Frei, D. & Joseph, C. Origins of cryptic variation in the ediacaran–fortunian rhyolitic ignimbrites of the Saldanha Bay Volcanic Complex, Western Cape, South Africa. Contrib. Mineral. Petrol. 172, 1–23 (2017).
Humphreys, M. C. et al. Unravelling the complexity of magma plumbing at Mount St. Helens: a new trace element partitioning scheme for amphibole. Contrib. Mineral. Petrol. 174, 1–15 (2019).
Hughes, G. E., Petrone, C. M., Downes, H., Varley, N. R. & Hammond, S. J. Mush remobilisation and mafic recharge: a study of the crystal cargo of the 2013–17 eruption at Volcán de Colima, Mexico. J. Volcanol. Geotherm. Res. 416, 107296 (2021).
Klaver, M., Blundy, J. D. & Vroon, P. Z. Generation of arc rhyodacites through cumulate–melt reactions in a deep crustal hot zone: evidence from Nisyros volcano. Earth Planet. Sci. Lett. 497, 169–180 (2018).
Erdmann, S., Scaillet, B. & Kellett, D. Textures of peritectic crystals as guides to reactive minerals in magmatic systems: new insights from melting experiments. J. Petrol. 53, 2231–2258 (2012).
Watts, K. E., Bindeman, I. N. & Schmitt, A. K. Crystal scale anatomy of a dying supervolcano: an isotope and geochronology study of individual phenocrysts from voluminous rhyolites of the Yellowstone caldera. Contrib. Mineral. Petrol. 164, 45–67 (2012).
Claiborne, L. L. et al. Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: an example from the Spirit Mountain batholith, Nevada. Mineral. Mag. 70, 517–543 (2006).
Cooper, K. M. Timescales of crustal magma reservoir processes: insights from U-series crystal ages. Geol. Soc. Spec. Publ. 422, 141–174 (2015).
Andersen, N. L., Jicha, B. R., Singer, B. S. & Hildreth, W. Incremental heating of Bishop Tuff sanidine reveals preeruptive radiogenic Ar and rapid remobilization from cold storage. Proc. Natl Acad. Sci. USA 114, 12407–12412 (2017).
Cooper, G. F., Morgan, D. J. & Wilson, C. J. Rapid assembly and rejuvenation of a large silicic magmatic system: insights from mineral diffusive profiles in the Kidnappers and Rocky Hill deposits, New Zealand. Earth Planet. Sci. Lett. 473, 1–13 (2017).
Jollands, M. C., Bloch, E. & Müntener, O. New Ti-in-quartz diffusivities reconcile natural Ti zoning with time scales and temperatures of upper crustal magma reservoirs. Geology 48, 654–657 (2020).
Chamberlain, K. J., Morgan, D. J. & Wilson, C. J. N. Timescales of mixing and mobilisation in the Bishop Tuff magma body: perspectives from diffusion chronometry. Contrib. Mineral. Petrol. 168, 1034 (2014).
Weber, G., Blundy, J. & Bevan, D. Mush amalgamation, short residence, and sparse detectability of eruptible magma before andean super‐eruptions. Geochem. Geophys. Geosyst. 24, e2022GC010732 (2023).
Grocolas, T., Bloch, E. M., Bouvier, A.-S. & Müntener, O. Diffusion of Sr and Ba in plagioclase: composition and silica activity dependencies, and application to volcanic rocks. Earth Planet. Sci. Lett. 651, 119141 (2025).
Costa, F., Andreastuti, S., de Maisonneuve, C. B. & Pallister, J. S. Petrological insights into the storage conditions, and magmatic processes that yielded the centennial 2010 Merapi explosive eruption. J. Volcanol. Geotherm. Res. 261, 209–235 (2013).
Morgado, E. et al. Old magma and a new, intrusive trigger: using diffusion chronometry to understand the rapid-onset Calbuco eruption, April 2015 (Southern Chile). Contrib. Mineral. Petrol. 174, 1–11 (2019).
Barboni, M. et al. Warm storage for arc magmas. Proc. Natl. Acad. Sci. USA. 113, 13959–13964 (2016).
Cooper, G. F., Wilson, C. J., Millet, M.-A., Baker, J. A. & Smith, E. G. Systematic tapping of independent magma chambers during the 1 Ma Kidnappers supereruption. Earth Planet. Sci. Lett. 313, 23–33 (2012).
Mallea-Lillo, F., Parada, M. A., Morgado, E., Contreras, C. & Hübner, D. Contrasting sources and conditions of shallow magmatic reservoirs of the Fui Group small eruptive centres associated with the Liquiñe-Ofqui Fault Zone (Chilean Andes). J. South Am. Earth Sci. 117, 103875 (2022).
Huber, C., Bachmann, O. & Manga, M. Homogenization processes in silicic magma chambers by stirring and mushification (latent heat buffering). Earth Planet. Sci. Lett. 283, 38–47 (2009).
Booth, C. A., Jackson, M. D., Sparks, R. S. J. & Rust, A. C. Source reservoir controls on the size, frequency, and composition of large-scale volcanic eruptions. Sci. Adv. 10, eadd1595 (2024).
Spera, F. Thermal evolution of plutons: a parameterized approach. Science 207, 299–301 (1980).
Farner, M. J. & Lee, C.-T. A. Effects of crustal thickness on magmatic differentiation in subduction zone volcanism: a global study. Earth Planet. Sci. Lett. 470, 96–107 (2017).
Bea, F. The sources of energy for crustal melting and the geochemistry of heat-producing elements. Lithos 153, 278–291 (2012).
Schaen, A. J. et al. Transient rhyolite melt extraction to produce a shallow granitic pluton. Sci. Adv. 7, eabf0604 (2021).
Walker, B. A., Grunder, A. L. & Wooden, J. L. Organization and thermal maturation of long-lived arc systems: evidence from zircons at the Aucanquilcha Volcanic Cluster, northern Chile. Geology 38, 1007–1010 (2010).
Grunder, A. L., Klemetti, E. W., Feeley, T. C. & McKee, C. M. Eleven million years of arc volcanism at the Aucanquilcha Volcanic Cluster, northern Chilean Andes: implications for the life span and emplacement of plutons. Trans. Roy. Soc. Edinb. Earth Sci. 97, 415–436 (2008).
Dufek, J. & Bergantz, G. Lower crustal magma genesis and preservation: a stochastic framework for the evaluation of basalt–crust interaction. J. Petrol. 46, 2167–2195 (2005).
Hawkesworth, C. et al. Time scales of crystal fractionation in magma chambers — integrating physical, isotopic and geochemical perspectives. J. Petrol. 41, 991–1006 (2000).
Lissenberg, C. J., Rioux, M., Shimizu, N., Bowring, S. A. & Mével, C. Zircon dating of oceanic crustal accretion. Science 323, 1048–1050 (2009).
Laporte, D., Rapaille, C. & Provost, A. in Granite: from Segregation of Melt to Emplacement Fabrics (eds Laporte, D. et al.) 31–54 (Springer, 1997).
Walker, B. A. Jr, Bergantz, G. W., Otamendi, J. E., Ducea, M. N. & Cristofolini, E. A. A MASH zone revealed: the mafic complex of the Sierra Valle Fértil. J. Petrol. 56, 1863–1896 (2015).
Schaltegger, U. et al. Zircon petrochronology and 40Ar/39Ar thermochronology of the Adamello Intrusive Suite, N. Italy: monitoring the growth and decay of an incrementally assembled magmatic system. J. Petrol. 60, 701–722 (2019).
Morgan, C., Morgado, E., Parada, M.-Á., Brahm, R. & Mallea-Lillo, F. Two-stage evolution of a bimodal reservoir: the case of Holocene lavas of the Lanín composite volcano, Southern Volcanic Zone, Chile. J. South Am. Earth Sci. 133, 104697 (2024).
Gutiérrez, F. & Parada, M. A. Numerical modeling of time-dependent fluid dynamics and differentiation of a shallow basaltic magma chamber. J. Petrol. 51, 731–762 (2010).
Wark, D., Kempter, K. & McDowell, F. Evolution of waning, subduction-related magmatism, northern Sierra Madre Occidental, Mexico. Geol. Soc. Am. Bull. 102, 1555–1564 (1990).
Godoy, B. et al. Linking the mafic volcanism with the magmatic stages during the last 1 Ma in the main volcanic arc of the Altiplano-Puna Volcanic Complex (Central Andes). J. South Am. Earth Sci. 95, 102295 (2019).
Moore, N. E., Grunder, A. L., Bohrson, W. A., Carlson, R. W. & Bindeman, I. N. Changing mantle sources and the effects of crustal passage on the steens basalt, SE Oregon: chemical and isotopic constraints. Geochem. Geophys. Geosyst. 21, e2020GC008910 (2020).
Broderick, C. et al. Linking the thermal evolution and emplacement history of an upper-crustal pluton to its lower-crustal roots using zircon geochronology and geochemistry (southern Adamello batholith, N. Italy). Contrib. Mineral. Petrol. 170, 28 (2015).
Loucks, R. R. Deep entrapment of buoyant magmas by orogenic tectonic stress: its role in producing continental crust, adakites, and porphyry copper deposits. Earth Sci. Rev. 220, 103744 (2021).
Hartung, E., Weber, G. & Caricchi, L. The role of H2O on the extraction of melt from crystallising magmas. Earth Planet. Sci. Lett. 508, 85–96 (2019).
Boulanger, M. et al. Magma reservoir formation and evolution at a slow-spreading center (Atlantis Bank, Southwest Indian Ridge). Front. Earth Sci. 8, 554598 (2020).
Riel, N., Kaus, B. J. P., Green, E. C. R. & Berlie, N. MAGEMin, an efficient gibbs energy minimizer: application to igneous systems. Geochem. Geophys. Geosyst. 23, e2022GC010427 (2022).
Holland, T. J. B., Green, E. C. R. & Powell, R. Melting of peridotites through to granites: a simple thermodynamic model in the system KNCFMASHTOCr. J. Petrol. 59, 881–900 (2018).
Grove, T. L. & Kinzler, R. J. Petrogenesis of andesites. Annu. Rev. Earth Planet. Sci. 14, 417–454 (1986).
Gale, A., Dalton, C. A., Langmuir, C. H., Su, Y. & Schilling, J. The mean composition of ocean ridge basalts. Geochem. Geophys. Geosyst. 14, 489–518 (2013).
Plank, T. & Langmuir, C. H. An evaluation of the global variations in the major element chemistry of arc basalts. Earth Planet. Sci. Lett. 90, 349–370 (1988).
Villiger, S., Ulmer, P. & Muntener, O. Equilibrium and fractional crystallization experiments at 0·7 GPa; the effect of pressure on phase relations and liquid compositions of tholeiitic magmas. J. Petrol. 48, 159–184 (2006).
Villiger, S. The liquid line of descent of anhydrous, mantle-derived, tholeiitic liquids by fractional and equilibrium crystallization-an experimental study at 1·0 GPa. J. Petrol. 45, 2369–2388 (2004).
Nandedkar, R. H., Ulmer, P. & Müntener, O. Fractional crystallization of primitive, hydrous arc magmas: an experimental study at 0.7 GPa. Contrib. Mineral. Petrol. 167, 1015 (2014).
Jerram, D. A., Cheadle, M. J. & Philpotts, A. R. Quantifying the building blocks of igneous rocks: are clustered crystal frameworks the foundation? J. Petrol. 44, 2033–2051 (2003).
Philpotts, A. R., Shi, J. & Brustman, C. Role of plagioclase crystal chains in the differentiation of partly crystallized basaltic magma. Nature 395, 343–346 (1998).
Rudge, J. F., Holness, M. B. & Smith, G. C. Quantitative textural analysis of packings of elongate crystals. Contrib. Mineral. Petrol. 156, 413–429 (2008).
Saar, M. O., Manga, M., Cashman, K. V. & Fremouw, S. Numerical models of the onset of yield strength in crystal–melt suspensions. Earth Planet. Sci. Lett. 187, 367–379 (2001).
Nolan, G. & Kavanagh, P. Computer simulation of random packings of spheres with log-normal distributions. Powder Technol. 76, 309–316 (1993).
He, D., Ekere, N. N. & Cai, L. Computer simulation of random packing of unequal particles. Phys. Rev. E 60, 7098 (1999).
Nield, D. A. & Bejan, A. Convection in Porous Media Vol. 3 (Springer, 2006).
Zakirov, T. R. & Khramchenkov, M. G. Prediction of permeability and tortuosity in heterogeneous porous media using a disorder parameter. Chem. Eng. Sci. 227, 115893 (2020).
Hersum, T. Consequences of crystal shape and fabric on anisotropic permeability in magmatic mush. Contrib. Mineral. Petrol. 157, 285–300 (2009).
Vasseur, J., Wadsworth, F. B., Coumans, J. P. & Dingwell, D. B. Permeability of packs of polydisperse hard spheres. Phys. Rev. E 103, 062613 (2021).
Bretagne, E., Wadsworth, F. B., Vasseur, J. & Dobson, K. J. A scaling for the permeability of loose magma mush validated using X‐ray computed tomography of packed confectionary in 3D and estimation methods from 2D crystal shapes. J. Geophys. Res. Solid Earth 128, e2023JB026795 (2023).
Vasseur, J., Wadsworth, F. B., Bretagne, E. & Dingwell, D. B. Universal scaling for the permeability of random packs of overlapping and nonoverlapping particles. Phys. Rev. E 105, L043301 (2022).
Röding, M., Ma, Z. & Torquato, S. Predicting permeability via statistical learning on higher-order microstructural information. Sci. Rep. 10, 1–17 (2020).
Rosenberg, N. & Spera, F. Role of anisotropic and/or layered permeability in hydrothermal convection. Geophys. Res. Lett. 17, 235–238 (1990).
Hunter, R. H. in Origins of Igneous Layering (ed. Parsons, I.) 473–503 (Springer, 1987).
Holness, M., Clemens, J. & Vernon, R. How deceptive are microstructures in granitic rocks? Answers from integrated physical theory, phase equilibrium, and direct observations. Contrib. Mineral. Petrol. 173, 1–18 (2018).
Acknowledgements
M.C.S.H. has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 864923), and also acknowledges support from the UK Natural Environment Research Council (grant NE/T000430/1). M.C.S.H. thanks F. Wadsworth, E. Llewellin, M. Holness and members of the mush group at Durham for helpful comments on the manuscript, and C. Annen for useful discussions. O.N. acknowledges support from Fonds Wetenschappelijk Onderzoek for multiple projects. O.N. thanks M. Holness for very useful suggestions. C.H. acknowledges support from NSF EAR-2021328. W.A.B. acknowledges support from the US National Science Foundation. P.B. acknowledges funding from INSU and OTElo and fruitful discussions with L. France. G.F.C. is funded by a Royal Society University Research Fellowship 2022. K.C. acknowledges support from the US National Science Foundation for multiple projects that contributed to the development of these ideas. C.J.L. was supported by the Natural Environment Research Council. F.S. gratefully acknowledges funding by the US National Science Foundation and the US Department of Energy over many years for studies of magmatic systems.
Author information
Authors and Affiliations
Contributions
All authors contributed to discussion of the content, and to the writing, reviewing and editing of the manuscript before submission.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Earth & Environment thanks George Bergantz, Othmar Müntener and the other, anonymous, reviewer for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Adcumulate rocks
-
rocks dominated by unzoned, interstitial overgrowths of the primocryst phases with minimal amounts of trapped pore material.
- Assimilation
-
the incorporation of surrounding crust into magma.
- Compaction length scale
-
the characteristic distance over which the compaction rate decreases by a factor e.
- Diffusion chronometry
-
the process of extracting time information about magmatic processes from diffusive changes in chemical gradients.
- Force chain
-
a network of linked particles that carry more than the average load in a mush.
- Glomerocryst
-
a texturally distinct polycrystalline aggregate of macroscopic crystals within a volcanic rock.
- Igneous differentiation
-
any process by which magmas can change their bulk composition.
- Loosely packed mush
-
a loose aggregate of solid particles that can be densified if the particles are rearranged.
- Maximum packing
-
a dense packing of particles that cannot be densified without deformation of the particles.
- Percolation threshold
-
the porosity limit above which percolative flow can no longer occur through a porous medium.
- Primocryst
-
a crystal formed in the early stages of fractionation that makes up part of the crystal mush framework.
- Rayleigh number
-
a dimensionless number that describes the ratio between thermal buoyancy and diffusion, and thus the likelihood of convection.
- Rejuvenation
-
the mobilization of mushy material through the addition of heat or changes in porosity.
- Rheology
-
the study of material deformation and flow.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Humphreys, M.C.S., Namur, O., Bohrson, W.A. et al. Crystal mush processes and crustal magmatism. Nat Rev Earth Environ 6, 401–416 (2025). https://doi.org/10.1038/s43017-025-00682-x
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s43017-025-00682-x