Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Crystal mush processes and crustal magmatism

Abstract

Much of Earth’s magma is stored as extensive crystal mush systems, yet the prevalence of physical processes operating within mushes and their importance in volcanically active regions remain enigmatic. In this Review, we explore the physical properties and key processes of crystal mush systems. The initiation, evolution and decline of volcanic systems, modulated by heat supply and loss, could generate differences in the prevalence of mush processes through space and time. Additionally, regional tectonics alter mush properties, with mushes in cool wet settings having persistent residual melt, permitting more effective melt segregation than in hot dry settings. Disaggregation of mushes results in crystal mush material being mobilized or entrained into lavas and erupted, presenting opportunities to define the timescales and chemistry of some mush processes in volcanically active regions. Mush systems can be observed on length scales ranging from kilometres (using geological mapping) to micrometres (using crystal textures). Therefore, it is difficult to integrate data and interpretations across different fields. Improved integration of thermodynamics, textural analysis, geochemistry, modelling and experiments, alongside inputs from adjacent fields such as porous media dynamics, engineering and metallurgy will help to advance understanding of mush systems and ultimately improve hazard evaluation at active and dormant volcanic systems.

Key points

  • All magmas transition through a mush stage during solidification, when there is an interconnected solid framework that can transmit stress with an interconnected liquid in the pore spaces.

  • Long-lived crystal mushes are the site for the enrichment, segregation and deposition of many mineral deposits and are important for productive geothermal systems. Additionally, mush instability is closely linked to volcanic eruption.

  • The physical behaviour of mushes depends primarily on porosity, melt viscosity, permeability, and crystal shape and size distribution. These properties can vary substantially across different length scales.

  • Cumulates represent the crystalline residue left over after the segregation of crystals or the extraction or migration of silicate melt during igneous differentiation. Cumulates are complementary to erupted magmas.

  • Melt migration in crystal mushes can occur by grain-scale porous flow or channelization. Reactive melt migration can affect crystal mush porosity, permeability and composition, and therefore alter the chemical evolution of the residual liquid.

  • The thermal maturation of volcanic systems enhances crystal–melt segregation in the crust and is expected to increase the migration, reaction and extraction of melt from mush. Disaggregation of mush can transfer crystal cargo to erupting magmas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic mush cross-section.
Fig. 2: Mush compaction.
Fig. 3: Reactive melt infiltration.
Fig. 4: Mush disaggregation at different scales.
Fig. 5: Conceptual life cycle of a crustal magmatic system.
Fig. 6: The relationship between temperature and melt fraction.

Similar content being viewed by others

References

  1. Marsh, B. D. Solidification fronts and magmatic evolution. Mineral. Mag. 60, 5–40 (1996).

    Article  CAS  Google Scholar 

  2. Magee, C. et al. Magma plumbing systems: a geophysical perspective. J. Petrol. 59, 1217–1251 (2018).

    Article  CAS  Google Scholar 

  3. Ward, K. M., Zandt, G., Beck, S. L., Christensen, D. H. & McFarlin, H. Seismic imaging of the magmatic underpinnings beneath the Altiplano-Puna volcanic complex from the joint inversion of surface wave dispersion and receiver functions. Earth Planet. Sci. Lett. 404, 43–53 (2014).

    Article  CAS  Google Scholar 

  4. Paulatto, M. et al. Advances in seismic imaging of magma and crystal mush. Front. Earth Sci. https://doi.org/10.3389/feart.2022.970131 (2022).

  5. Cashman, K. V., Sparks, R. S. J. & Blundy, J. D. Vertically extensive and unstable magmatic systems: a unified view of igneous processes. Science 355, eaag3055 (2017).

    Article  Google Scholar 

  6. Bachmann, O. & Bergantz, G. W. On the origin of crystal-poor rhyolites: extracted from batholithic crystal mushes. J. Petrol. 45, 1565–1582 (2004).

    Article  CAS  Google Scholar 

  7. Annen, C., Blundy, J. & Sparks, R. The genesis of intermediate and silicic magmas in deep crustal hot zones. J. Petrol. 47, 505–539 (2006).

    Article  CAS  Google Scholar 

  8. Sparks, R. et al. Formation and dynamics of magma reservoirs. Philos. Trans. R. Soc. A 377, 20180019 (2019).

    Article  CAS  Google Scholar 

  9. Weinberg, R. F., Vernon, R. H. & Schmeling, H. Processes in mushes and their role in the differentiation of granitic rocks. Earth Sci. Rev. 220, 103665 (2021).

    Article  Google Scholar 

  10. Mueller, S., Llewellin, E. & Mader, H. The rheology of suspensions of solid particles. Proc. R. Soc. A 466, 1201–1228 (2010).

    Article  CAS  Google Scholar 

  11. Vigneresse, J. L., Barbey, P. & Cuney, M. Rheological transitions during partial melting and crystallization with application to felsic magma segregation and transfer. J. Petrol. 37, 1579–1600 (1996).

    Article  CAS  Google Scholar 

  12. Bohrson, W. A. et al. Thermodynamic model for energy-constrained open-system evolution of crustal magma bodies undergoing simultaneous recharge, assimilation and crystallization: the magma chamber simulator. J. Petrol. 55, 1685–1717 (2014).

    Article  CAS  Google Scholar 

  13. Mangler, M. F. et al. Crystal resorption as a driver for mush maturation: an experimental Investigation. J. Petrol. 65, egae088 (2024).

    Article  CAS  Google Scholar 

  14. Marsh, B. D. On the crystallinity, probability of occurrence, and rheology of lava and magma. Contrib. Mineral. Petrol. 78, 85–98 (1981).

    Article  CAS  Google Scholar 

  15. Eichelberger, J. Distribution and transport of thermal energy within magma–hydrothermal systems. Geosciences 10, 212 (2020).

    Article  CAS  Google Scholar 

  16. O’Driscoll, B., Emeleus, C. H., Donaldson, C. H. & Daly, J. S. Cr-spinel seam petrogenesis in the Rum Layered Suite, NW Scotland: cumulate assimilation and in situ crystallization in a deforming crystal mush. J. Petrol. 51, 1171–1201 (2010).

    Article  Google Scholar 

  17. Larsen, L. M. & Sørensen, H. The Ilímaussaq intrusion — progressive crystallization and formation of layering in an agpaitic magma. Geol. Soc. Spec. Publ. 30, 473–488 (1987).

    Article  Google Scholar 

  18. Nielsen, T. F. et al. The Skaergaard PGE and gold deposit: the result of in situ fractionation, sulphide saturation, and magma chamber-scale precious metal redistribution by immiscible Fe-rich melt. J. Petrol. 56, 1643–1676 (2015).

    Article  CAS  Google Scholar 

  19. Buret, Y. et al. From a long-lived upper-crustal magma chamber to rapid porphyry copper emplacement: reading the geochemistry of zircon crystals at Bajo de la Alumbrera (NW Argentina). Earth Planet. Sci. Lett. 450, 120–131 (2016).

    Article  CAS  Google Scholar 

  20. Iyer, H. M. Geophysical evidence for the locations, shapes and sizes, and internal structures of magma chambers beneath regions of Quaternary volcanism. Phil. Trans. R. Soc. A 310, 473–510 (1984).

    Google Scholar 

  21. Karakas, O. & Dufek, J. Melt evolution and residence in extending crust: thermal modeling of the crust and crustal magmas. Earth Planet. Sci. Lett. 425, 131–144 (2015).

    Article  CAS  Google Scholar 

  22. Mullet, B. & Segall, P. The surface deformation signature of a transcrustal, crystal mush‐dominant magma system. JGR Solid Earth 127, e2022JB024178 (2022).

    Article  Google Scholar 

  23. Arculus, R. J. & Wills, K. J. A. The petrology of plutonic blocks and inclusions from the Lesser Antilles Island arc. J. Petrol. 21, 743–799 (1980).

    Article  Google Scholar 

  24. Bennett, E. N., Lissenberg, C. J. & Cashman, K. V. The significance of plagioclase textures in mid-ocean ridge basalt (Gakkel Ridge, Arctic Ocean). Contrib. Mineral. Petrol. 174, 1–22 (2019).

    Article  CAS  Google Scholar 

  25. Tait, S. R., Wörner, G., Van Den Bogaard, P. & Schmincke, H.-U. Cumulate nodules as evidence for convective fractionation in a phonolite magma chamber. J. Volcanol. Geotherm. Res. 37, 21–37 (1989).

    Article  CAS  Google Scholar 

  26. Holness, M. B. et al. Textures in partially solidified crystalline nodules: a window into the pore structure of slowly cooled mafic intrusions. J. Petrol. 48, 1243–1264 (2007).

    Article  CAS  Google Scholar 

  27. Horn, E. L., Taylor, R. N., Gernon, T. M., Stock, M. J. & Farley, E. R. Composition and petrology of a mush-bearing magma reservoir beneath Tenerife. J. Petrol. 63, egac095 (2022).

    Article  Google Scholar 

  28. Kiddle, E. et al. Crustal structure beneath Montserrat, Lesser Antilles, constrained by xenoliths, seismic velocity structure and petrology. Geophys. Res. Lett. 37, L00E11 (2010).

    Article  Google Scholar 

  29. Holness, M. B., Stock, M. J. & Geist, D. Magma chambers versus mush zones: constraining the architecture of sub-volcanic plumbing systems from microstructural analysis of crystalline enclaves. Philos. Trans. R. Soc. A 377, 20180006 (2019).

    Article  CAS  Google Scholar 

  30. Cooper, G. F., Davidson, J. P. & Blundy, J. D. Plutonic xenoliths from Martinique, Lesser Antilles: evidence for open system processes and reactive melt flow in island arc crust. Contrib. Mineral. Petrol. 171, 87 (2016).

    Article  Google Scholar 

  31. Neave, D. A., Buisman, I. & Maclennan, J. Continuous mush disaggregation during the long-lasting Laki fissure eruption, Iceland. Am. Min. 102, 2007–2021 (2017).

    Article  Google Scholar 

  32. Holness, M. B., Humphreys, M. C., Sides, R., Helz, R. T. & Tegner, C. Toward an understanding of disequilibrium dihedral angles in mafic rocks. J. Geophys. Res. Solid Earth 117, B06207 (2012).

    Article  Google Scholar 

  33. Helz, R. T. Crystallization history of Kilauea Iki lava lake as seen in drill core recovered in 1967–1979. Bull. Volcanol. 43, 675–701 (1980).

    Article  CAS  Google Scholar 

  34. Lesher, C. E. & Walker, D. Cumulate maturation and melt migration in a temperature gradient. J. Geophys. Res. 93, 10295–10311 (1988).

    Article  Google Scholar 

  35. Wallrich, B. et al. Volcano–pluton connection: perspectives on material and process linkages, searchlight pluton and Highland Range volcanic sequence, Nevada, USA. Earth Sci. Rev. 238, 104361 (2023).

    Article  CAS  Google Scholar 

  36. Holness, M. B. et al. Crystal mush growth and collapse on a steep wall: the marginal border series of the Skaergaard Intrusion, East Greenland. J. Petrol. 63, egab100 (2022).

    Article  Google Scholar 

  37. Alasino, P. H., Ardill, K. E. & Paterson, S. R. Magmatic faults: challenges, progress, and possibilities. Earth Sci. Rev. 260, 104992 (2025).

    Article  Google Scholar 

  38. Vernon, R. & Collins, W. Structural criteria for identifying granitic cumulates. J. Geol. 119, 127–142 (2011).

    Article  Google Scholar 

  39. Garibaldi, N., Tikoff, B., Schaen, A. J. & Singer, B. S. Interpreting granitic fabrics in terms of rhyolitic melt segregation, accumulation, and escape via tectonic filter pressing in the Huemul Pluton, Chile. J. Geophys. Res. Solid Earth 123, 8548–8567 (2018).

    Article  Google Scholar 

  40. Bédard, J. H. Cumulate recycling and crustal evolution in the Bay of Islands ophiolite. J. Geol. 99, 225–249 (1991).

    Article  Google Scholar 

  41. Kerr, R. C. & Lister, J. R. The effects of shape on crystal settling and on the rheology of magmas. J. Geol. 99, 457–467 (1991).

    Article  CAS  Google Scholar 

  42. Druitt, T. Settling behaviour of concentrated dispersions and some volcanological applications. J. Volcanol. Geotherm. Res. 65, 27–39 (1995).

    Article  CAS  Google Scholar 

  43. Schwindinger, K. R. Particle dynamics and aggregation of crystals in a magma chamber with application to Kilauea Iki olivines. J. Volcanol. Geotherm. Res. 88, 209–238 (1999).

    Article  CAS  Google Scholar 

  44. Suckale, J., Sethian, J. A., Yu, J. & Elkins-Tanton, L. T. Crystals stirred up: 1. Direct numerical simulations of crystal settling in nondilute magmatic suspensions. J. Geophys. Res. 117, E08004 (2012).

    Google Scholar 

  45. Bons, P. D. et al. Layered intrusions and traffic jams. Geology 43, 71–74 (2015).

    Article  Google Scholar 

  46. Manoochehri, S. & Schmidt, M. W. Settling and compaction of chromite cumulates employing a centrifuging piston cylinder and application to layered mafic intrusions. Contrib. Mineral. Petrol. 168, 1–20 (2014).

    Article  CAS  Google Scholar 

  47. Namur, O. et al. in Layered Intrusions (eds Charlier, B. et al.) 75–152 (Springer, 2015).

  48. Snabre, P., Pouligny, B., Metayer, C. & Nadal, F. Size segregation and particle velocity fluctuations in settling concentrated suspensions. Rheol. Acta 48, 855–870 (2009).

    Article  CAS  Google Scholar 

  49. Wong, Y.-Q. & Keller, T. A unified numerical model for two-phase porous, mush and suspension flow dynamics in magmatic systems. Geophys. J. Int. 233, 769–795 (2023).

    Article  CAS  Google Scholar 

  50. Michioka, H. & Sumita, I. Rayleigh–Taylor instability of a particle packed viscous fluid: implications for a solidifying magma. Geophys. Res. Lett. 32, L03309 (2005).

    Article  Google Scholar 

  51. Holness, M. B. Melt segregation from silicic crystal mushes: a critical appraisal of possible mechanisms and their microstructural record. Contrib. Mineral. Petrol. 173, 48 (2018).

    Article  Google Scholar 

  52. Bachmann, O. & Huber, C. The inner workings of crustal distillation columns; the physical mechanisms and rates controlling phase separation in silicic magma reservoirs. J. Petrol. 60, 3–18 (2019).

    Article  CAS  Google Scholar 

  53. Florez, D. et al. Repacking in compacting mushes at intermediate melt fractions: constraints from numerical modeling and phase separation experiments on granular media. JGR Solid Earth 129, e2024JB029077 (2024).

    Article  Google Scholar 

  54. Couturier, É., Boyer, F., Pouliquen, O. & Guazzelli, É. Suspensions in a tilted trough: second normal stress difference. J. Fluid Mech. 686, 26–39 (2011).

    Article  Google Scholar 

  55. Bergantz, G. W., Schleicher, J. M. & Burgisser, A. On the kinematics and dynamics of crystal‐rich systems. J. Geophys. Res. Solid Earth 122, 6131–6159 (2017).

    Article  Google Scholar 

  56. Hoyos, S., Florez, D., Pec, M. & Huber, C. Crystal shape control on the repacking and jamming of crystal‐rich mushes. Geophys. Res. Lett. 49, e2022GL100040 (2022).

    Article  Google Scholar 

  57. Renner, J., Viskupic, K., Hirth, G. & Evans, B. Melt extraction from partially molten peridotites. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2002GC000369 (2003).

  58. Hartung, E. et al. Evidence for residual melt extraction in the takidani pluton, central Japan. J. Petrol. 58, 763–788 (2017).

    Article  CAS  Google Scholar 

  59. Cuetos, A., Dennison, M., Masters, A. & Patti, A. Phase behaviour of hard board-like particles. Soft Matter 13, 4720–4732 (2017).

    Article  CAS  Google Scholar 

  60. Meurer, W. & Boudreau, A. Compaction of igneous cumulates part I: geochemical consequences for cumulates and liquid fractionation trends. J. Geol. 106, 281–292 (1998).

    Article  CAS  Google Scholar 

  61. Meurer, W. & Boudreau, A. Compaction of igneous cumulates part II: compaction and the development of igneous foliations. J. Geol. 106, 293–304 (1998).

    Article  Google Scholar 

  62. Cooper, R. & Kohlstedt, D. Solution-precipitation enhanced diffusional creep of partially molten olivine-basalt aggregates during hot-pressing. Tectonophysics 107, 207–233 (1984).

    Article  CAS  Google Scholar 

  63. Tharp, T. M., Loucks, R. R. & Sack, R. O. Modeling compaction of olivine cumulates in the Muskox intrusion. Am. J. Sci. 298, 758–790 (1998).

    Article  CAS  Google Scholar 

  64. Ribe, N. M. Theory of melt segregation — a review. J. Volcanol. Geotherm. Res. 33, 241–253 (1987).

    Article  Google Scholar 

  65. McKenzie, D. The generation and compaction of partially molten rock. J. Petrol. 25, 713–765 (1984).

    Article  CAS  Google Scholar 

  66. McKenzie, D. Compaction and crystallization in magma chambers: towards a model of the skaergaard intrusion. J. Petrol. 52, 905–930 (2011).

    Article  CAS  Google Scholar 

  67. Holness, M. B., Cheadle, M. J. & McKenzie, D. On the use of changes in dihedral angle to decode late-stage textural evolution in cumulates. J. Petrol. 46, 1565–1583 (2005).

    Article  CAS  Google Scholar 

  68. Cheadle, M., Elliott, M. & McKenzie, D. Percolation threshold and permeability of crystallizing igneous rocks: the importance of textural equilibrium. Geology 32, 757–760 (2004).

    Article  Google Scholar 

  69. Keller, T. & Suckale, J. A continuum model of multi-phase reactive transport in igneous systems. Geophys. J. Int. 219, 185–222 (2019).

    Article  Google Scholar 

  70. Lee, C.-T. A. & Morton, D. M. High silica granites: terminal porosity and crystal settling in shallow magma chambers. Earth Planet. Sci. Lett. 409, 23–31 (2015).

    Article  CAS  Google Scholar 

  71. Holness, M. B., Vukmanovic, Z. & Mariani, E. Assessing the role of compaction in the formation of adcumulates: a microstructural perspective. J. Petrol. 58, 643–673 (2017).

    Article  CAS  Google Scholar 

  72. Boudreau, A. E. & McBirney, A. R. The Skaergaard layered series. Part III. Non-dynamic layering. J. Petrol. 38, 1003–1020 (1997).

    Article  CAS  Google Scholar 

  73. Bertolett, E., Prior, D., Gravley, D., Hampton, S. & Kennedy, B. Compacted cumulates revealed by electron backscatter diffraction analysis of plutonic lithics. Geology 47, 445–448 (2019).

    Article  CAS  Google Scholar 

  74. Namur, O. & Charlier, B. Efficiency of compaction and compositional convection during mafic crystal mush solidification: the Sept Iles layered intrusion, Canada. Contrib. Mineral. Petrol. 163, 1049–1068 (2012).

    Article  CAS  Google Scholar 

  75. Lissenberg, C. J., MacLeod, C. J. & Bennett, E. N. Consequences of a crystal mush-dominated magma plumbing system: a mid-ocean ridge perspective. Philos. Trans. R. Soc. A 377, 20180014 (2019).

    Article  Google Scholar 

  76. Yao, Z., Qin, K. & Xue, S. Kinetic processes for plastic deformation of olivine in the Poyi ultramafic intrusion, NW China: insights from the textural analysis of a ~1700 m fully cored succession. Lithos 284, 462–476 (2017).

    Article  Google Scholar 

  77. Ferrando, C. et al. Role of compaction in melt extraction and accumulation at a slow spreading center: microstructures of olivine gabbros from the Atlantis Bank (IODP Hole U1473A, SWIR). Tectonophysics 815, 229001 (2021).

    Article  Google Scholar 

  78. Vukmanovic, Z., Holness, M. B., Stock, M. J. & Roberts, R. J. The creation and evolution of crystal mush in the upper zone of the Rustenburg Layered Suite, Bushveld Complex, South Africa. J. Petrol. 60, 1523–1542 (2019).

    Article  CAS  Google Scholar 

  79. Tait, S. R., Huppert, H. E. & Sparks, R. S. J. The role of compositional convection in the formation of adcumulate rocks. Lithos 17, 139–146 (1984).

    Article  CAS  Google Scholar 

  80. Tait, S. & Jaupart, C. Compositional convection in a reactive crystalline mush and melt differentiation. J. Geophys. Res. 97, 6735–6756 (1992).

    Article  CAS  Google Scholar 

  81. Kerr, R. C. & Tait, S. R. Crystallization and compositional convection in a porous medium with application to layered igneous intrusions. J. Geophys. Res. 91, 3591–3608 (1986).

    Article  CAS  Google Scholar 

  82. Petford, N. in Flow and Creep in the Solar System: Observations, Modeling and Theory (eds Stone, D. B. & Runcorn, S. K.) 261–286 (Springer, 1993).

  83. Wager, L. R., Brown, G. M. & Wadsworth, W. J. Types of igneous cumulates. J. Petrol. 1, 73–85 (1960).

    Article  CAS  Google Scholar 

  84. Sparks, R. S. J., Huppert, H. E., Kerr, R., McKenzie, D. & Tait, S. R. Postcumulus processes in layered intrusions. Geol. Mag. 122, 555–568 (1985).

    Article  CAS  Google Scholar 

  85. Vigneresse, J.-L., Truche, L. & Richard, A. How do metals escape from magmas to form porphyry-type ore deposits? Ore Geol. Rev. 105, 310–336 (2019).

    Article  Google Scholar 

  86. Humphreys, M. C. et al. Rapid pre-eruptive mush reorganisation and atmospheric volatile emissions from the 12.9 ka Laacher See eruption, determined using apatite. Earth Planet. Sci. Lett. 576, 117198 (2021).

    Article  CAS  Google Scholar 

  87. Pistone, M. et al. Gas-driven filter pressing in magmas: insights into in-situ melt segregation from crystal mushes. Geology 43, 699–702 (2015).

    Article  CAS  Google Scholar 

  88. Boudreau, A. Bubble migration in a compacting crystal-liquid mush. Contrib. Mineral. Petrol. 171, 1–17 (2016).

    Article  CAS  Google Scholar 

  89. Sisson, T. W. & Bacon, C. R. Gas-driven filter pressing in magmas. Geology 27, 613–616 (1999).

    Article  CAS  Google Scholar 

  90. Parmigiani, A., Huber, C. & Bachmann, O. Mush microphysics and the reactivation of crystal‐rich magma reservoirs. J. Geophys. Res. Solid Earth 119, 6308–6322 (2014).

    Article  Google Scholar 

  91. Degruyter, W., Parmigiani, A., Huber, C. & Bachmann, O. How do volatiles escape their shallow magmatic hearth? Philos. Trans. R. Soc. A 377, 20180017 (2019).

    Article  CAS  Google Scholar 

  92. Belien, I. B., Cashman, K. V. & Rempel, A. W. Gas accumulation in particle-rich suspensions and implications for bubble populations in crystal-rich magma. Earth Planet. Sci. Lett. 297, 133–140 (2010).

    Article  CAS  Google Scholar 

  93. Huber, C. & Parmigiani, A. A physical model for three‐phase compaction in silicic magma reservoirs. J. Geophys. Res. Solid Earth 123, 2685–2705 (2018).

    Article  CAS  Google Scholar 

  94. Lenormand, R., Touboul, E. & Zarcone, C. Numerical models and experiments on immiscible displacements in porous media. J. Fluid Mech. 189, 165–187 (1988).

    Article  CAS  Google Scholar 

  95. Jackson, M., Blundy, J. & Sparks, R. Chemical differentiation, cold storage and remobilization of magma in the Earth’s crust. Nature 564, 405–409 (2018).

    Article  CAS  Google Scholar 

  96. Solano, J. M. S., Jackson, M. D., Sparks, R. S. J., Blundy, J. D. & Annen, C. Melt segregation in deep crustal hot zones: a mechanism for chemical differentiation, crustal assimilation and the formation of evolved magmas. J. Petrol. 53, 1999–2026 (2012).

    Article  CAS  Google Scholar 

  97. Boudier, F., Nicolas, A. & Ildefonse, B. Magma chambers in the Oman ophiolite: fed from the top and the bottom. Earth Planet. Sci. Lett. 144, 239–250 (1996).

    Article  CAS  Google Scholar 

  98. Carbotte, S. M. et al. Stacked sills forming a deep melt-mush feeder conduit beneath Axial Seamount. Geology 48, 693–697 (2020).

    Article  Google Scholar 

  99. Bachmann, O. & Bergantz, G. W. Rhyolites and their source mushes across tectonic settings. J. Petrol. 49, 2277–2285 (2008).

    Article  CAS  Google Scholar 

  100. Spiegelman, M., Kelemen, P. B. & Aharonov, E. Causes and consequences of flow organization during melt transport: the reaction infiltration instability in compactible media. J. Geophys. Res. Solid Earth 106, 2061–2077 (2001).

    Article  Google Scholar 

  101. Lissenberg, C. J. & MacLeod, C. J. A reactive porous flow control on mid-ocean ridge magmatic evolution. J. Petrol. 57, 2195–2220 (2016).

    Article  CAS  Google Scholar 

  102. Bouilhol, P., Schmidt, M. & Burg, J.-P. Magma transfer and evolution in channels within the arc crust: the pyroxenitic feeder pipes of Sapat (Kohistan, Pakistan). J. Petrol. 56, 1309–1342 (2015).

    Article  CAS  Google Scholar 

  103. Sanfilippo, A., MacLeod, C. J., Tribuzio, R., Lissenberg, C. J. & Zanetti, A. Early-stage melt-rock reaction in a cooling crystal mush beneath a slow-spreading mid-ocean ridge (IODP Hole U1473A, Atlantis Bank, Southwest Indian Ridge). Front. Earth Sci. 8, 579138 (2020).

    Article  Google Scholar 

  104. Chadam, J., Hoff, D., Merino, E., Ortoleva, P. & Sen, A. Reactive infiltration instabilities. IMA J. Appl. Math. 36, 207–221 (1986).

    Article  Google Scholar 

  105. Spiegelman, M. Flow in deformable porous media. Part 1 simple analysis. J. Fluid Mech. 247, 17–38 (1993).

    Article  CAS  Google Scholar 

  106. Ryan, A. G., Hansen, L. N., Zimmerman, M. E. & Pistone, M. Melt migration in crystal mushes by viscous fingering: insights from high‐temperature, high‐pressure experiments. JGR Solid Earth 127, e2022JB024447 (2022).

    Article  Google Scholar 

  107. Richter, F. M. & McKenzie, D. Dynamical models for melt segregation from a deformable matrix. J. Geol. 92, 729–740 (1984).

    Article  CAS  Google Scholar 

  108. Seropian, G., Rust, A. & Sparks, R. The gravitational stability of lenses in magma mushes: confined Rayleigh–Taylor instabilities. J. Geophys. Res. Solid Earth 123, 3593–3607 (2018).

    Article  Google Scholar 

  109. Connolly, J. & Podladchikov, Y. Y. Decompaction weakening and channeling instability in ductile porous media: Implications for asthenospheric melt segregation. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2005JB004213 (2007).

  110. Riel, N. et al. Interaction between mantle-derived magma and lower arc crust: quantitative reactive melt flow modelling using STyx. Geol. Soc. Spec. Publ. 478, 65–87 (2019).

    Article  Google Scholar 

  111. Petford, N., Koenders, M. & Clemens, J. D. Igneous differentiation by deformation. Contrib. Mineral. Petrol. 175, 45 (2020).

    Article  CAS  Google Scholar 

  112. Carrara, A., Burgisser, A. & Bergantz, G. W. Lubrication effects on magmatic mush dynamics. J. Volcanol. Geotherm. Res. 380, 19–30 (2019).

    Article  CAS  Google Scholar 

  113. Van der Molen, I. & Paterson, M. Experimental deformation of partially-melted granite. Contrib. Mineral. Petrol. 70, 299–318 (1979).

    Article  Google Scholar 

  114. Ryan, A. G. et al. Shear-induced dilation and dike formation during mush deformation. Earth Planet. Sci. Lett. 651, 119164 (2025).

    Article  CAS  Google Scholar 

  115. Rosenberg, C. L. & Handy, M. R. Experimental deformation of partially melted granite revisited: implications for the continental crust. J. Metamorph. Geol. 23, 19–28 (2005).

    Article  Google Scholar 

  116. Rummel, L., Kaus, B. J., Baumann, T. S., White, R. W. & Riel, N. Insights into the compositional evolution of crustal magmatic systems from coupled petrological–geodynamical models. J. Petrol. 61, egaa029 (2020).

    Article  CAS  Google Scholar 

  117. Liu, B. & Lee, C.-T. Fast melt expulsion from crystal-rich mushes via induced anisotropic permeability. Earth Planet. Sci. Lett. 571, 117113 (2021).

    Article  CAS  Google Scholar 

  118. Allan, A. S., Morgan, D. J., Wilson, C. J. & Millet, M.-A. From mush to eruption in centuries: assembly of the super-sized Oruanui magma body. Contrib. Mineral. Petrol. 166, 143–164 (2013).

    Article  CAS  Google Scholar 

  119. Cembrano, J. & Lara, L. The link between volcanism and tectonics in the southern volcanic zone of the Chilean Andes: a review. Tectonophysics 471, 96–113 (2009).

    Article  Google Scholar 

  120. Humphreys, M. & Holness, M. Melt-rich segregations in the Skaergaard Marginal Border Series: tearing of a vertical silicate mush. Lithos 119, 181–192 (2010).

    Article  CAS  Google Scholar 

  121. Namur, O., Humphreys, M. C. & Holness, M. B. Lateral reactive infiltration in a vertical gabbroic crystal mush, Skaergaard intrusion, East Greenland. J. Petrol. 54, 985–1016 (2013).

    Article  CAS  Google Scholar 

  122. Li, J.-Y., Wang, X.-L., Gu, Z.-D., Wang, D. & Du, D.-H. Geochemical diversity of continental arc basaltic mushy reservoirs driven by reactive melt infiltration. Commun. Earth Environ. 5, 109 (2024).

    Article  CAS  Google Scholar 

  123. Boulanger, M. & France, L. Cumulate formation and melt extraction from mush-dominated magma reservoirs: the melt flush process exemplified at mid-ocean ridges. J. Petrol. 64, egad005 (2023).

    Article  Google Scholar 

  124. Leuthold, J. et al. Partial melting of lower oceanic crust gabbro: constraints from poikilitic clinopyroxene primocrysts. Front. Earth Sci. 6, 15 (2018).

    Article  Google Scholar 

  125. Huber, C., Bachmann, O. & Dufek, J. Thermo-mechanical reactivation of locked crystal mushes: melting-induced internal fracturing and assimilation processes in magmas. Earth Planet. Sci. Lett. 304, 443–454 (2011).

    Article  CAS  Google Scholar 

  126. Hepworth, L. N., O’Driscoll, B., Gertisser, R., Daly, J. S. & Emeleus, C. H. Linking in situ crystallization and magma replenishment via sill intrusion in the Rum Western Layered Intrusion, NW Scotland. J. Petrol. 59, 1605–1642 (2018).

    Article  CAS  Google Scholar 

  127. Hu, H., Jackson, M. D. & Blundy, J. Melting, compaction and reactive flow: controls on melt fraction and composition change in crustal mush reservoirs. J. Petrol. 63, egac097 (2022).

    Article  Google Scholar 

  128. Kohlstedt, D. L. & Holtzman, B. K. Shearing melt out of the Earth: an experimentalist’s perspective on the influence of deformation on melt extraction. Annu. Rev. Earth Planet. Sci. 37, 561–593 (2009).

    Article  CAS  Google Scholar 

  129. Smith, D. J. Clinopyroxene precursors to amphibole sponge in arc crust. Nat. Commun. 5, 4329 (2014).

    Article  CAS  Google Scholar 

  130. Lissenberg, C. J., MacLeod, C. J., Howard, K. A. & Godard, M. Pervasive reactive melt migration through fast-spreading lower oceanic crust (Hess Deep, equatorial Pacific Ocean). Earth Planet. Sci. Lett. 361, 436–447 (2013).

    Article  CAS  Google Scholar 

  131. Zhang, W.-Q. & Liu, C.-Z. Crust-scale reactive porous flow revealed by the brown amphibole in the IODP Hole U1473A gabbros, Southwest Indian Ridge. Lithos 450, 107209 (2023).

    Article  Google Scholar 

  132. Gleeson, M. L., Lissenberg, C. J. & Antoshechkina, P. M. Porosity evolution of mafic crystal mush during reactive flow. Nat. Commun. 14, 3088 (2023).

    Article  CAS  Google Scholar 

  133. Yang, A. Y., Wang, C., Liang, Y. & Lissenberg, C. J. Reaction between mid‐ocean ridge basalt and lower oceanic crust: an experimental study. Geochem. Geophys. Geosyst. 20, 4390–4407 (2019).

    Article  CAS  Google Scholar 

  134. Blundy, J. Chemical differentiation by mineralogical buffering in crustal hot zones. J. Petrol. 63, egac054 (2022).

    Article  Google Scholar 

  135. Müntener, O. & Ulmer, P. Arc crust formation and differentiation constrained by experimental petrology. Am. J. Sci. 318, 64–89 (2018).

    Article  Google Scholar 

  136. Blatter, D. L., Sisson, T. W. & Hankins, W. B. Voluminous arc dacites as amphibole reaction-boundary liquids. Contrib. Mineral. Petrol. 172, 1–37 (2017).

    Article  CAS  Google Scholar 

  137. Ulmer, P., Kaegi, R. & Müntener, O. Experimentally derived intermediate to silica-rich arc magmas by fractional and equilibrium crystallization at 1·0 GPa: an evaluation of phase relationships, compositions, liquid lines of descent and oxygen fugacity. J. Petrol. 59, 11–58 (2018).

    Article  CAS  Google Scholar 

  138. Hepworth, L. N. et al. Rapid crystallization of precious-metal-mineralized layers in mafic magmatic systems. Nat. Geosci. 13, 375–381 (2020).

    Article  CAS  Google Scholar 

  139. Lissenberg, C. J. & Dick, H. J. Melt–rock reaction in the lower oceanic crust and its implications for the genesis of mid-ocean ridge basalt. Earth Planet. Sci. Lett. 271, 311–325 (2008).

    Article  CAS  Google Scholar 

  140. Gudmundsson, A. The mechanics of large volcanic eruptions. Earth Sci. Rev. 163, 72–93 (2016).

    Article  CAS  Google Scholar 

  141. Cooper, K. M. Time scales and temperatures of crystal storage in magma reservoirs: implications for magma reservoir dynamics. Philos. Trans. R. Soc. A 377, 20180009 (2019).

    Article  CAS  Google Scholar 

  142. Cooper, K. M. & Kent, A. J. Rapid remobilization of magmatic crystals kept in cold storage. Nature 506, 480–483 (2014).

    Article  CAS  Google Scholar 

  143. Molina, P. G. et al. Protracted late magmatic stage of the Caleu pluton (central Chile) as a consequence of heat redistribution by diking: Insights from zircon data and thermal modeling. Lithos 227, 255–268 (2015).

    Article  CAS  Google Scholar 

  144. Bachmann, O., Dungan, M. A. & Lipman, P. W. The Fish Canyon magma body, San Juan volcanic field, Colorado: rejuvenation and eruption of an upper-crustal batholith. J. Petrol. 43, 1469–1503 (2002).

    Article  CAS  Google Scholar 

  145. Spera, F. J. & Bohrson, W. A. Rejuvenation of crustal magma mush: a tale of multiply nested processes and timescales. Am. J. Sci. 318, 90–140 (2018).

    Article  Google Scholar 

  146. Huber, C., Bachmann, O. & Manga, M. Two competing effects of volatiles on heat transfer in crystal-rich magmas: thermal insulation vs defrosting. J. Petrol. 51, 847–867 (2010).

    Article  CAS  Google Scholar 

  147. Huber, C., Bachmann, O. & Dufek, J. The limitations of melting on the reactivation of silicic mushes. J. Volcanol. Geotherm. Res. 195, 97–105 (2010).

    Article  CAS  Google Scholar 

  148. Passmore, E., Maclennan, J., Fitton, G. & Thordarson, T. Mush disaggregation in basaltic magma chambers: evidence from the AD 1783 Laki eruption. J. Petrol. 53, 2593–2623 (2012).

    Article  CAS  Google Scholar 

  149. Moore, A., Coogan, L., Costa, F. & Perfit, M. Primitive melt replenishment and crystal-mush disaggregation in the weeks preceding the 2005–2006 eruption 9 50′ N, EPR. Earth Planet. Sci. Lett. 403, 15–26 (2014).

    Article  CAS  Google Scholar 

  150. Christopher, T. E. et al. Crustal-scale degassing due to magma system destabilization and magma-gas decoupling at Soufriere Hills Volcano, Montserrat. Geochem. Geophys. Geosyst. 16, 2797–2811 (2015).

    Article  CAS  Google Scholar 

  151. Carrara, A. & Bergantz, G. W. Numerical simulations of the mingling caused by a magma intruding a resident mush. Volcanica 7, 89–104 (2024).

    Article  Google Scholar 

  152. Bachmann, O. & Bergantz, G. W. Gas percolation in upper-crustal silicic crystal mushes as a mechanism for upward heat advection and rejuvenation of near-solidus magma bodies. J. Volcanol. Geotherm. Res. 149, 85–102 (2006).

    Article  CAS  Google Scholar 

  153. Connolly, J. A. D. & Podladchikov, Y. Y. in Metasomatism and the Chemical Transformation of Rock (eds Harlov, D. E. & Austrheim, H.) 599–658 (Springer, 2013); https://doi.org/10.1007/978-3-642-28394-9_14.

  154. Spera, F. J. & Bohrson, W. A. Energy-constrained open-system magmatic processes I: general model and energy-constrained assimilation and fractional crystallization (EC-AFC) formulation. J. Petrol. 42, 999–1018 (2001).

    Article  CAS  Google Scholar 

  155. Burgisser, A. & Bergantz, G. W. A rapid mechanism to remobilize and homogenize highly crystalline magma bodies. Nature 471, 212–215 (2011).

    Article  CAS  Google Scholar 

  156. Hickey-Vargas, R., Abdollahi, M. J., Parada, M. A., López-Escobar, L. & Frey, F. A. Crustal xenoliths from Calbuco Volcano, Andean Southern Volcanic Zone: implications for crustal composition and magma–crust interaction. Contrib. Mineral. Petrol. 119, 331–344 (1995).

    Article  CAS  Google Scholar 

  157. Costa, F., Dungan, M. A. & Singer, B. S. Hornblende- and phlogopite-bearing gabbroic xenoliths from Volcán San Pedro (36°S), Chilean Andes: evidence for melt and fluid migration and reactions in subduction-related plutons. J. Petrol. 43, 219–241 (2002).

    Article  CAS  Google Scholar 

  158. Clemens, J., Stevens, G., Frei, D. & Joseph, C. Origins of cryptic variation in the ediacaran–fortunian rhyolitic ignimbrites of the Saldanha Bay Volcanic Complex, Western Cape, South Africa. Contrib. Mineral. Petrol. 172, 1–23 (2017).

    Article  Google Scholar 

  159. Humphreys, M. C. et al. Unravelling the complexity of magma plumbing at Mount St. Helens: a new trace element partitioning scheme for amphibole. Contrib. Mineral. Petrol. 174, 1–15 (2019).

    Article  CAS  Google Scholar 

  160. Hughes, G. E., Petrone, C. M., Downes, H., Varley, N. R. & Hammond, S. J. Mush remobilisation and mafic recharge: a study of the crystal cargo of the 2013–17 eruption at Volcán de Colima, Mexico. J. Volcanol. Geotherm. Res. 416, 107296 (2021).

    Article  CAS  Google Scholar 

  161. Klaver, M., Blundy, J. D. & Vroon, P. Z. Generation of arc rhyodacites through cumulate–melt reactions in a deep crustal hot zone: evidence from Nisyros volcano. Earth Planet. Sci. Lett. 497, 169–180 (2018).

    Article  CAS  Google Scholar 

  162. Erdmann, S., Scaillet, B. & Kellett, D. Textures of peritectic crystals as guides to reactive minerals in magmatic systems: new insights from melting experiments. J. Petrol. 53, 2231–2258 (2012).

    Article  CAS  Google Scholar 

  163. Watts, K. E., Bindeman, I. N. & Schmitt, A. K. Crystal scale anatomy of a dying supervolcano: an isotope and geochronology study of individual phenocrysts from voluminous rhyolites of the Yellowstone caldera. Contrib. Mineral. Petrol. 164, 45–67 (2012).

    Article  CAS  Google Scholar 

  164. Claiborne, L. L. et al. Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: an example from the Spirit Mountain batholith, Nevada. Mineral. Mag. 70, 517–543 (2006).

    Article  CAS  Google Scholar 

  165. Cooper, K. M. Timescales of crustal magma reservoir processes: insights from U-series crystal ages. Geol. Soc. Spec. Publ. 422, 141–174 (2015).

    Article  Google Scholar 

  166. Andersen, N. L., Jicha, B. R., Singer, B. S. & Hildreth, W. Incremental heating of Bishop Tuff sanidine reveals preeruptive radiogenic Ar and rapid remobilization from cold storage. Proc. Natl Acad. Sci. USA 114, 12407–12412 (2017).

    Article  CAS  Google Scholar 

  167. Cooper, G. F., Morgan, D. J. & Wilson, C. J. Rapid assembly and rejuvenation of a large silicic magmatic system: insights from mineral diffusive profiles in the Kidnappers and Rocky Hill deposits, New Zealand. Earth Planet. Sci. Lett. 473, 1–13 (2017).

    Article  CAS  Google Scholar 

  168. Jollands, M. C., Bloch, E. & Müntener, O. New Ti-in-quartz diffusivities reconcile natural Ti zoning with time scales and temperatures of upper crustal magma reservoirs. Geology 48, 654–657 (2020).

    Article  CAS  Google Scholar 

  169. Chamberlain, K. J., Morgan, D. J. & Wilson, C. J. N. Timescales of mixing and mobilisation in the Bishop Tuff magma body: perspectives from diffusion chronometry. Contrib. Mineral. Petrol. 168, 1034 (2014).

    Article  Google Scholar 

  170. Weber, G., Blundy, J. & Bevan, D. Mush amalgamation, short residence, and sparse detectability of eruptible magma before andean super‐eruptions. Geochem. Geophys. Geosyst. 24, e2022GC010732 (2023).

    Article  Google Scholar 

  171. Grocolas, T., Bloch, E. M., Bouvier, A.-S. & Müntener, O. Diffusion of Sr and Ba in plagioclase: composition and silica activity dependencies, and application to volcanic rocks. Earth Planet. Sci. Lett. 651, 119141 (2025).

    Article  CAS  Google Scholar 

  172. Costa, F., Andreastuti, S., de Maisonneuve, C. B. & Pallister, J. S. Petrological insights into the storage conditions, and magmatic processes that yielded the centennial 2010 Merapi explosive eruption. J. Volcanol. Geotherm. Res. 261, 209–235 (2013).

    Article  CAS  Google Scholar 

  173. Morgado, E. et al. Old magma and a new, intrusive trigger: using diffusion chronometry to understand the rapid-onset Calbuco eruption, April 2015 (Southern Chile). Contrib. Mineral. Petrol. 174, 1–11 (2019).

    Article  CAS  Google Scholar 

  174. Barboni, M. et al. Warm storage for arc magmas. Proc. Natl. Acad. Sci. USA. 113, 13959–13964 (2016).

    Article  CAS  Google Scholar 

  175. Cooper, G. F., Wilson, C. J., Millet, M.-A., Baker, J. A. & Smith, E. G. Systematic tapping of independent magma chambers during the 1 Ma Kidnappers supereruption. Earth Planet. Sci. Lett. 313, 23–33 (2012).

    Article  Google Scholar 

  176. Mallea-Lillo, F., Parada, M. A., Morgado, E., Contreras, C. & Hübner, D. Contrasting sources and conditions of shallow magmatic reservoirs of the Fui Group small eruptive centres associated with the Liquiñe-Ofqui Fault Zone (Chilean Andes). J. South Am. Earth Sci. 117, 103875 (2022).

    Article  CAS  Google Scholar 

  177. Huber, C., Bachmann, O. & Manga, M. Homogenization processes in silicic magma chambers by stirring and mushification (latent heat buffering). Earth Planet. Sci. Lett. 283, 38–47 (2009).

    Article  CAS  Google Scholar 

  178. Booth, C. A., Jackson, M. D., Sparks, R. S. J. & Rust, A. C. Source reservoir controls on the size, frequency, and composition of large-scale volcanic eruptions. Sci. Adv. 10, eadd1595 (2024).

    Article  Google Scholar 

  179. Spera, F. Thermal evolution of plutons: a parameterized approach. Science 207, 299–301 (1980).

    Article  CAS  Google Scholar 

  180. Farner, M. J. & Lee, C.-T. A. Effects of crustal thickness on magmatic differentiation in subduction zone volcanism: a global study. Earth Planet. Sci. Lett. 470, 96–107 (2017).

    Article  CAS  Google Scholar 

  181. Bea, F. The sources of energy for crustal melting and the geochemistry of heat-producing elements. Lithos 153, 278–291 (2012).

    Article  CAS  Google Scholar 

  182. Schaen, A. J. et al. Transient rhyolite melt extraction to produce a shallow granitic pluton. Sci. Adv. 7, eabf0604 (2021).

    Article  CAS  Google Scholar 

  183. Walker, B. A., Grunder, A. L. & Wooden, J. L. Organization and thermal maturation of long-lived arc systems: evidence from zircons at the Aucanquilcha Volcanic Cluster, northern Chile. Geology 38, 1007–1010 (2010).

    Article  CAS  Google Scholar 

  184. Grunder, A. L., Klemetti, E. W., Feeley, T. C. & McKee, C. M. Eleven million years of arc volcanism at the Aucanquilcha Volcanic Cluster, northern Chilean Andes: implications for the life span and emplacement of plutons. Trans. Roy. Soc. Edinb. Earth Sci. 97, 415–436 (2008).

    Article  Google Scholar 

  185. Dufek, J. & Bergantz, G. Lower crustal magma genesis and preservation: a stochastic framework for the evaluation of basalt–crust interaction. J. Petrol. 46, 2167–2195 (2005).

    Article  CAS  Google Scholar 

  186. Hawkesworth, C. et al. Time scales of crystal fractionation in magma chambers — integrating physical, isotopic and geochemical perspectives. J. Petrol. 41, 991–1006 (2000).

    Article  CAS  Google Scholar 

  187. Lissenberg, C. J., Rioux, M., Shimizu, N., Bowring, S. A. & Mével, C. Zircon dating of oceanic crustal accretion. Science 323, 1048–1050 (2009).

    Article  CAS  Google Scholar 

  188. Laporte, D., Rapaille, C. & Provost, A. in Granite: from Segregation of Melt to Emplacement Fabrics (eds Laporte, D. et al.) 31–54 (Springer, 1997).

  189. Walker, B. A. Jr, Bergantz, G. W., Otamendi, J. E., Ducea, M. N. & Cristofolini, E. A. A MASH zone revealed: the mafic complex of the Sierra Valle Fértil. J. Petrol. 56, 1863–1896 (2015).

    Article  CAS  Google Scholar 

  190. Schaltegger, U. et al. Zircon petrochronology and 40Ar/39Ar thermochronology of the Adamello Intrusive Suite, N. Italy: monitoring the growth and decay of an incrementally assembled magmatic system. J. Petrol. 60, 701–722 (2019).

    Article  CAS  Google Scholar 

  191. Morgan, C., Morgado, E., Parada, M.-Á., Brahm, R. & Mallea-Lillo, F. Two-stage evolution of a bimodal reservoir: the case of Holocene lavas of the Lanín composite volcano, Southern Volcanic Zone, Chile. J. South Am. Earth Sci. 133, 104697 (2024).

    Article  CAS  Google Scholar 

  192. Gutiérrez, F. & Parada, M. A. Numerical modeling of time-dependent fluid dynamics and differentiation of a shallow basaltic magma chamber. J. Petrol. 51, 731–762 (2010).

    Article  Google Scholar 

  193. Wark, D., Kempter, K. & McDowell, F. Evolution of waning, subduction-related magmatism, northern Sierra Madre Occidental, Mexico. Geol. Soc. Am. Bull. 102, 1555–1564 (1990).

    Article  Google Scholar 

  194. Godoy, B. et al. Linking the mafic volcanism with the magmatic stages during the last 1 Ma in the main volcanic arc of the Altiplano-Puna Volcanic Complex (Central Andes). J. South Am. Earth Sci. 95, 102295 (2019).

    Article  CAS  Google Scholar 

  195. Moore, N. E., Grunder, A. L., Bohrson, W. A., Carlson, R. W. & Bindeman, I. N. Changing mantle sources and the effects of crustal passage on the steens basalt, SE Oregon: chemical and isotopic constraints. Geochem. Geophys. Geosyst. 21, e2020GC008910 (2020).

    Article  CAS  Google Scholar 

  196. Broderick, C. et al. Linking the thermal evolution and emplacement history of an upper-crustal pluton to its lower-crustal roots using zircon geochronology and geochemistry (southern Adamello batholith, N. Italy). Contrib. Mineral. Petrol. 170, 28 (2015).

    Article  Google Scholar 

  197. Loucks, R. R. Deep entrapment of buoyant magmas by orogenic tectonic stress: its role in producing continental crust, adakites, and porphyry copper deposits. Earth Sci. Rev. 220, 103744 (2021).

    Article  CAS  Google Scholar 

  198. Hartung, E., Weber, G. & Caricchi, L. The role of H2O on the extraction of melt from crystallising magmas. Earth Planet. Sci. Lett. 508, 85–96 (2019).

    Article  CAS  Google Scholar 

  199. Boulanger, M. et al. Magma reservoir formation and evolution at a slow-spreading center (Atlantis Bank, Southwest Indian Ridge). Front. Earth Sci. 8, 554598 (2020).

    Article  Google Scholar 

  200. Riel, N., Kaus, B. J. P., Green, E. C. R. & Berlie, N. MAGEMin, an efficient gibbs energy minimizer: application to igneous systems. Geochem. Geophys. Geosyst. 23, e2022GC010427 (2022).

    Article  Google Scholar 

  201. Holland, T. J. B., Green, E. C. R. & Powell, R. Melting of peridotites through to granites: a simple thermodynamic model in the system KNCFMASHTOCr. J. Petrol. 59, 881–900 (2018).

    Article  CAS  Google Scholar 

  202. Grove, T. L. & Kinzler, R. J. Petrogenesis of andesites. Annu. Rev. Earth Planet. Sci. 14, 417–454 (1986).

    Article  CAS  Google Scholar 

  203. Gale, A., Dalton, C. A., Langmuir, C. H., Su, Y. & Schilling, J. The mean composition of ocean ridge basalts. Geochem. Geophys. Geosyst. 14, 489–518 (2013).

    Article  CAS  Google Scholar 

  204. Plank, T. & Langmuir, C. H. An evaluation of the global variations in the major element chemistry of arc basalts. Earth Planet. Sci. Lett. 90, 349–370 (1988).

    Article  CAS  Google Scholar 

  205. Villiger, S., Ulmer, P. & Muntener, O. Equilibrium and fractional crystallization experiments at 0·7 GPa; the effect of pressure on phase relations and liquid compositions of tholeiitic magmas. J. Petrol. 48, 159–184 (2006).

    Article  Google Scholar 

  206. Villiger, S. The liquid line of descent of anhydrous, mantle-derived, tholeiitic liquids by fractional and equilibrium crystallization-an experimental study at 1·0 GPa. J. Petrol. 45, 2369–2388 (2004).

    Article  CAS  Google Scholar 

  207. Nandedkar, R. H., Ulmer, P. & Müntener, O. Fractional crystallization of primitive, hydrous arc magmas: an experimental study at 0.7 GPa. Contrib. Mineral. Petrol. 167, 1015 (2014).

    Article  Google Scholar 

  208. Jerram, D. A., Cheadle, M. J. & Philpotts, A. R. Quantifying the building blocks of igneous rocks: are clustered crystal frameworks the foundation? J. Petrol. 44, 2033–2051 (2003).

    Article  CAS  Google Scholar 

  209. Philpotts, A. R., Shi, J. & Brustman, C. Role of plagioclase crystal chains in the differentiation of partly crystallized basaltic magma. Nature 395, 343–346 (1998).

    Article  CAS  Google Scholar 

  210. Rudge, J. F., Holness, M. B. & Smith, G. C. Quantitative textural analysis of packings of elongate crystals. Contrib. Mineral. Petrol. 156, 413–429 (2008).

    Article  CAS  Google Scholar 

  211. Saar, M. O., Manga, M., Cashman, K. V. & Fremouw, S. Numerical models of the onset of yield strength in crystal–melt suspensions. Earth Planet. Sci. Lett. 187, 367–379 (2001).

    Article  CAS  Google Scholar 

  212. Nolan, G. & Kavanagh, P. Computer simulation of random packings of spheres with log-normal distributions. Powder Technol. 76, 309–316 (1993).

    Article  Google Scholar 

  213. He, D., Ekere, N. N. & Cai, L. Computer simulation of random packing of unequal particles. Phys. Rev. E 60, 7098 (1999).

    Article  CAS  Google Scholar 

  214. Nield, D. A. & Bejan, A. Convection in Porous Media Vol. 3 (Springer, 2006).

  215. Zakirov, T. R. & Khramchenkov, M. G. Prediction of permeability and tortuosity in heterogeneous porous media using a disorder parameter. Chem. Eng. Sci. 227, 115893 (2020).

    Article  CAS  Google Scholar 

  216. Hersum, T. Consequences of crystal shape and fabric on anisotropic permeability in magmatic mush. Contrib. Mineral. Petrol. 157, 285–300 (2009).

    Article  CAS  Google Scholar 

  217. Vasseur, J., Wadsworth, F. B., Coumans, J. P. & Dingwell, D. B. Permeability of packs of polydisperse hard spheres. Phys. Rev. E 103, 062613 (2021).

    Article  CAS  Google Scholar 

  218. Bretagne, E., Wadsworth, F. B., Vasseur, J. & Dobson, K. J. A scaling for the permeability of loose magma mush validated using X‐ray computed tomography of packed confectionary in 3D and estimation methods from 2D crystal shapes. J. Geophys. Res. Solid Earth 128, e2023JB026795 (2023).

    Article  Google Scholar 

  219. Vasseur, J., Wadsworth, F. B., Bretagne, E. & Dingwell, D. B. Universal scaling for the permeability of random packs of overlapping and nonoverlapping particles. Phys. Rev. E 105, L043301 (2022).

    Article  CAS  Google Scholar 

  220. Röding, M., Ma, Z. & Torquato, S. Predicting permeability via statistical learning on higher-order microstructural information. Sci. Rep. 10, 1–17 (2020).

    Article  Google Scholar 

  221. Rosenberg, N. & Spera, F. Role of anisotropic and/or layered permeability in hydrothermal convection. Geophys. Res. Lett. 17, 235–238 (1990).

    Article  Google Scholar 

  222. Hunter, R. H. in Origins of Igneous Layering (ed. Parsons, I.) 473–503 (Springer, 1987).

  223. Holness, M., Clemens, J. & Vernon, R. How deceptive are microstructures in granitic rocks? Answers from integrated physical theory, phase equilibrium, and direct observations. Contrib. Mineral. Petrol. 173, 1–18 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

M.C.S.H. has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 864923), and also acknowledges support from the UK Natural Environment Research Council (grant NE/T000430/1). M.C.S.H. thanks F. Wadsworth, E. Llewellin, M. Holness and members of the mush group at Durham for helpful comments on the manuscript, and C. Annen for useful discussions. O.N. acknowledges support from Fonds Wetenschappelijk Onderzoek for multiple projects. O.N. thanks M. Holness for very useful suggestions. C.H. acknowledges support from NSF EAR-2021328. W.A.B. acknowledges support from the US National Science Foundation. P.B. acknowledges funding from INSU and OTElo and fruitful discussions with L. France. G.F.C. is funded by a Royal Society University Research Fellowship 2022. K.C. acknowledges support from the US National Science Foundation for multiple projects that contributed to the development of these ideas. C.J.L. was supported by the Natural Environment Research Council. F.S. gratefully acknowledges funding by the US National Science Foundation and the US Department of Energy over many years for studies of magmatic systems.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to discussion of the content, and to the writing, reviewing and editing of the manuscript before submission.

Corresponding authors

Correspondence to Madeleine C. S. Humphreys or Olivier Namur.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks George Bergantz, Othmar Müntener and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Adcumulate rocks

rocks dominated by unzoned, interstitial overgrowths of the primocryst phases with minimal amounts of trapped pore material.

Assimilation

the incorporation of surrounding crust into magma.

Compaction length scale

the characteristic distance over which the compaction rate decreases by a factor e.

Diffusion chronometry

the process of extracting time information about magmatic processes from diffusive changes in chemical gradients.

Force chain

a network of linked particles that carry more than the average load in a mush.

Glomerocryst

a texturally distinct polycrystalline aggregate of macroscopic crystals within a volcanic rock.

Igneous differentiation

any process by which magmas can change their bulk composition.

Loosely packed mush

a loose aggregate of solid particles that can be densified if the particles are rearranged.

Maximum packing

a dense packing of particles that cannot be densified without deformation of the particles.

Percolation threshold

the porosity limit above which percolative flow can no longer occur through a porous medium.

Primocryst

a crystal formed in the early stages of fractionation that makes up part of the crystal mush framework.

Rayleigh number

a dimensionless number that describes the ratio between thermal buoyancy and diffusion, and thus the likelihood of convection.

Rejuvenation

the mobilization of mushy material through the addition of heat or changes in porosity.

Rheology

the study of material deformation and flow.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Humphreys, M.C.S., Namur, O., Bohrson, W.A. et al. Crystal mush processes and crustal magmatism. Nat Rev Earth Environ 6, 401–416 (2025). https://doi.org/10.1038/s43017-025-00682-x

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43017-025-00682-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing