Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A complex system approach to magmatism

Abstract

Magmatic systems are composed of many nonlinearly interacting components that operate across various scales; thus, these systems can be modelled as complex systems. In this Perspective, we examine efforts to recognize and model complexity in magmatic systems and suggest the direction for building a global integrated model to investigate volcanic and igneous processes. Magmatic systems are complex, as they operate on time and spatial scales ranging from seconds to millions of years and micrometres to kilometres, respectively, organized as networks of interacting components. These networks drain magmas and volatiles from deep sources towards plutons, dykes, sills, and volcanoes. Statistical analyses suggest power-law relationships in magmatic and volcanic processes, from the geometrical feature of melt extraction network at the source, to magma mingling, to the distribution of eruption intensity. These findings serve as evidence for self-organized criticality, suggesting that magmatic systems respond to small disturbances in unpredictable ways. The behaviours of complex systems emerge from the connections between the parts of the system and cannot be predicted by separate investigation of the individual parts. Therefore, Earth science should follow the example of fields such as climate sciences and take advantage of tools developed in complex system science to build an integrated model to test the validity of conceptual models and advance understanding of magmatic systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Two examples of conceptual models of magmatic systems.
Fig. 2: Size distribution of magma bodies.
Fig. 3: Complex system models of magmatic processes.
Fig. 4: Building a complex system model.
Fig. 5: Multiscale modelling.

Similar content being viewed by others

References

  1. Lucci, F. et al. Anatomy of the magmatic plumbing system of Los Humeros Caldera (Mexico): implications for geothermal systems. Solid. Earth 11, 125–159 (2020).

    Article  Google Scholar 

  2. Bianconi, G. et al. Complex systems in the spotlight: next steps after the 2021 Nobel prize in physics. J. Phys. Complex. 4, 010201 (2023).

    Article  Google Scholar 

  3. Cruden, A. R. & Weinberg, R. F. in Volcanic and Igneous Plumbing Systems (ed. Burchardt, S.) 13–53 (Elsevier, 2018); https://doi.org/10.1016/B978-0-12-809749-6.00002-9.

  4. Sparks, R. S. J. et al. Formation and dynamics of magma reservoirs. Philos. Trans. R. Soc. A 377, 20180019 (2019).

    Article  CAS  Google Scholar 

  5. Pelletier, J. D. Statistical self-similarity of magmatism and volcanism. J. Geophys. Res. Solid Earth 104, 15425–15438 (1999).

    Article  Google Scholar 

  6. Black, B. A. & Manga, M. Volatiles and the tempo of flood basalt magmatism. Earth Planet. Sci. Lett. 458, 130–140 (2017).

    Article  CAS  Google Scholar 

  7. Castelvecchi, D. & Gaind, N. Climate modellers and theorist of complex systems share physics Nobel. Nature 598, 246–247 (2021).

    Article  CAS  Google Scholar 

  8. Cruden, A., Moore, D. & Weinberg, R. Small and nimble or big and mushy? On the nature of granitic magma plumbing systems in Victoria, SE Australia. In 10th Hutton Symposium on Granites and Related Rocks 94 (Baveno, 2018).

  9. Karlstrom, L., Paterson, S. R. & Jellinek, A. M. A reverse energy cascade for crustal magma transport. Nat. Geosci. 10, 604 (2017).

    Article  CAS  Google Scholar 

  10. Odbert, H. M., Stewart, R. C. & Wadge, G. Chapter 2 cyclic phenomena at the Soufrière Hills Volcano, Montserrat. Geol. Soc. Lond. Mem. 39, 41–60 (2014).

    Article  Google Scholar 

  11. Harford, C. L., Pringle, M. S., Sparks, R. S. J. & Young, S. R. in The Eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 1999 (eds Druitt, T. H. & Kokelaar, B. P.) 93–113 (Geological Society of London, 2002).

  12. Le Friant, A. et al. Late pleistocene tephrochronology of marine sediments adjacent to Montserrat, Lesser Antilles volcanic arc. J. Geol. Soc. 165, 279–289 (2008).

    Article  Google Scholar 

  13. de Silva, S. L., Riggs, N. R. & Barth, A. P. Quickening the pulse: fractal tempos in continental arc magmatism. Elements 11, 113–118 (2015).

    Article  Google Scholar 

  14. Annen, C., Blundy, J. D., Leuthold, J. & Sparks, R. S. J. Construction and evolution of igneous bodies: towards an integrated perspective of crustal magmatism. Lithos 230, 206–221 (2015).

    Article  CAS  Google Scholar 

  15. Schoene, B. U–Th–Pb Geochronology. In Treatise on Geochemistry (eds Holland, H. D. & Turekian, K. K.) Vol. 4, 341–378 (Elsevier, 2014); https://doi.org/10.1016/B978-0-08-095975-7.00310-7.

  16. Schaltegger, U. et al. Long-term repeatability and interlaboratory reproducibility of high-precision ID-TIMS U–Pb geochronology. J. Anal. At. Spectrom. 36, 1466–1477 (2021).

    Article  CAS  Google Scholar 

  17. Eddy, M. P., Pamukçu, A., Schoene, B., Steiner-Leach, T. & Bell, E. A. Constraints on the timescales and processes that led to high-SiO2 rhyolite production in the Searchlight pluton, Nevada, USA. Geosphere 18, 1000–1019 (2022).

    Article  Google Scholar 

  18. Coleman, D. S., Gray, W. & Glazner, A. F. Rethinking the emplacement and evolution of zoned plutons: geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California. Geology 32, 433–436 (2004).

    Article  Google Scholar 

  19. Leuthold, J. et al. Time resolved construction of a bimodal laccolith (Torres del Paine, Patagonia). Earth Planet. Sci. Lett. 325–326, 85–92 (2012).

    Article  Google Scholar 

  20. Chambers, M., Memeti, V., Eddy, M. P. & Schoene, B. Half a million years of magmatic history recorded in a K-feldspar megacryst of the Tuolumne Intrusive Complex, California, USA. Geology 48, 400–404 (2020).

    Article  CAS  Google Scholar 

  21. Michel, J., Baumgartner, L. P., Putlitz, B., Schaltegger, U. & Ovtcharova, M. Incremental growth of the Patagonian Torres del Paine laccolith over 90 k.y. Geology 36, 459–462 (2008).

    Article  Google Scholar 

  22. de Saint Blanquat, M. et al. Multiscale magmatic cyclicity, duration of pluton construction, and the paradoxical relationship between tectonism and plutonism in continental arcs. Tectonophysics 500, 20–33 (2011).

    Article  Google Scholar 

  23. Clemens, J. D. & Stevens, G. What controls chemical variation in granitic magmas? Lithos 134–135, 317–329 (2012).

    Article  Google Scholar 

  24. Clemens, J. D., Stevens, G. & Mayne, M. J. Do arc silicic magmas form by fluid-fluxed melting of older arc crust or fractionation of basaltic magmas? Contrib. Miner. Pet. 176, 44 (2021).

    Article  CAS  Google Scholar 

  25. Cruden, A. R. & McCaffrey, K. J. W. Growth of plutons by floor subsidence: implications for rates of emplacement, intrusion spacing and melt-extraction mechanisms. Phys. Chem. Earth Pt. A 26, 303–315 (2001).

    Article  Google Scholar 

  26. Marchildon, N. & Brown, M. Spatial distribution of melt-bearing structures in anatectic rocks from Southern Brittany, France: implications for melt transfer at grain- to orogen-scale. Tectonophysics 364, 215–235 (2003).

    Article  Google Scholar 

  27. Soesoo, A. & Bons, P. From migmatites to plutons: power law relationships in the evolution of magmatic bodies. Pure Appl. Geophys. 172, 1787–1801 (2015).

    Article  Google Scholar 

  28. Tanner, D. The scale-invariant nature of migmatite from the Oberpfalz, NE Bavaria and its significance for melt transport. Tectonophysics 302, 297–305 (1999).

    Article  Google Scholar 

  29. Bons, P. D. et al. Melt extraction and accumulation from partially molten rocks. Lithos 78, 25–42 (2004).

    Article  CAS  Google Scholar 

  30. Reichardt, H. & Weinberg, R. The dike swarm of the Karakoram shear zone, Ladakh, NW India: linking granite source to batholith. Geol. Soc. Am. Bull. 124, 89–103 (2012).

    Article  CAS  Google Scholar 

  31. Weinberg, R. F., Mark, G. & Reichardt, H. Magma ponding in the Karakoram shear zone, Ladakh, NW India. GSA Bull. 121, 278–285 (2009).

    Google Scholar 

  32. Cashman, K. V. & Giordano, G. Calderas and magma reservoirs. J. Volcanol. Geotherm. Res. 288, 28–45 (2014).

    Article  CAS  Google Scholar 

  33. Cashman, K. V., Sparks, R. S. J. & Blundy, J. D. Vertically extensive and unstable magmatic systems: a unified view of igneous processes. Science 355, eaag3055 (2017).

    Article  Google Scholar 

  34. Reiss, M. C., De Siena, L. & Muirhead, J. D. The interconnected magmatic plumbing system of the Natron Rift. Geophys. Res. Lett. 49, e2022GL098922 (2022).

    Article  Google Scholar 

  35. Reiss, M. C. et al. The impact of complex volcanic plumbing on the nature of seismicity in the developing magmatic Natron Rift, Tanzania. Front. Earth Sci. 8, 609805 (2021).

    Article  Google Scholar 

  36. Allan, A. S. R., Wilson, C. J. N., Millet, M.-A. & Wysoczanski, R. J. The invisible hand: tectonic triggering and modulation of a rhyolitic supereruption. Geology 40, 563–566 (2012).

    Article  CAS  Google Scholar 

  37. Gualda, G. R. & Ghiorso, M. The Bishop Tuff giant magma body: an alternative to the standard model. Contrib. Mineral. Petrol. 166, 755–775 (2013).

    Article  CAS  Google Scholar 

  38. Cooper, G. F., Wilson, C. J. N., Millet, M.-A., Baker, J. A. & Smith, E. G. C. Systematic tapping of independent magma chambers during the 1 Ma Kidnappers supereruption. Earth Planet. Sci. Lett. 313–314, 23–33 (2012).

    Article  Google Scholar 

  39. Ginibre, C. & Wörner, G. Variable parent magmas and recharge regimes of the Parinacota magma system (N. Chile) revealed by Fe, Mg and Sr zoning in plagioclase. Lithos 98, 118–140 (2007).

    Article  CAS  Google Scholar 

  40. Edmonds, M. & Woods, A. W. Exsolved volatiles in magma reservoirs. J. Volcanol. Geotherm. Res. 368, 13–30 (2018).

    Article  CAS  Google Scholar 

  41. Oppenheimer, J., Rust, A. C., Cashman, K. V. & Sandnes, B. Gas migration regimes and outgassing in particle-rich suspensions. Front. Phys. 3, 60 (2015).

    Article  Google Scholar 

  42. Sparks, R. S. J. Dynamics of magma degassing. Geol. Soc. Lond. Spec. Publ. 213, 5–22 (2003).

    Article  Google Scholar 

  43. Parmigiani, A., Degruyter, W., Leclaire, S., Huber, C. & Bachmann, O. The mechanics of shallow magma reservoir outgassing. Geochem. Geophys. Geosyst. 18, 2887–2905 (2017).

    Article  Google Scholar 

  44. Pistone, M., Blundy, J. D., Brooker, R. A. & EIMF. Textural and chemical consequences of interaction between hydrous mafic and felsic magmas: an experimental study. Contrib. Miner. Pet. 171, 8 (2015).

    Article  Google Scholar 

  45. Weinberg, R. F. & Hasalová, P. Water-fluxed melting of the continental crust: a review. Lithos 212–215, 158–188 (2015).

    Article  Google Scholar 

  46. Scaillet, B. The role of gas flushing on magma reservoir crystallization and its consequences for the growth of planetary crust. Lithos 428–429, 106811 (2022).

    Article  Google Scholar 

  47. Caricchi, L., Sheldrake, T. E. & Blundy, J. Modulation of magmatic processes by CO2 flushing. Earth Planet. Sci. Lett. 491, 160–171 (2018).

    Article  CAS  Google Scholar 

  48. Sparks, R. S. J. & Cashman, K. V. Dynamic magma systems: implications for forecasting volcanic activity. Elements 13, 35–40 (2017).

    Article  Google Scholar 

  49. Bons, P. D. & van Milligen, B. P. New experiment to model self-organized critical transport and accumulation of melt and hydrocarbons from their source rocks. Geology 29, 919–922 (2001).

    Article  CAS  Google Scholar 

  50. Karlstrom, L., Dufek, J. & Manga, M. Organization of volcanic plumbing through magmatic lensing by magma chambers and volcanic loads. J. Geophys. Res. Solid Earth 114, B10204 (2009).

    Article  Google Scholar 

  51. Karlstrom, L., Wright, H. M. & Bacon, C. R. The effect of pressurized magma chamber growth on melt migration and pre-caldera vent locations through time at Mount Mazama, Crater Lake, Oregon. Earth Planet. Sci. Lett. 412, 209–219 (2015).

    Article  CAS  Google Scholar 

  52. van Zalinge, M. E. et al. Timescales for pluton growth, magma-chamber formation and super-eruptions. Nature 608, 87–92 (2022).

    Article  Google Scholar 

  53. Malfait, W. J. et al. Supervolcano eruptions driven by melt buoyancy in large silicic magma chambers. Nat. Geosci. 7, 122–125 (2014).

    Article  CAS  Google Scholar 

  54. Caricchi, L., Annen, C., Blundy, J., Simpson, G. & Pinel, V. Frequency and magnitude of volcanic eruptions controlled by magma injection and buoyancy. Nat. Geosci. 7, 126–130 (2014).

    Article  CAS  Google Scholar 

  55. Grasso, J. R. & Bachélery, P. Hierarchical organization as a diagnostic approach to volcano mechanisms: validation at Piton de la Fournaise. Geophys. Res. Lett. 22, 2897–2900 (1995).

    Article  Google Scholar 

  56. Chouet, B. & Shaw, H. R. Fractal properties of tremor and gas piston events observed at Kilauea Volcano, Hawaii. J. Geophys. Res. Solid. Earth 96, 10177–10189 (1991).

    Article  Google Scholar 

  57. Cortini, M., Cilento, L. & Rullo, A. Vertical ground motion in the Campi Flegrei caldera as a chaotic dynamic phenomenon. J. Volcanol. Geotherm. Res. 48, 103–113 (1991).

    Article  Google Scholar 

  58. Diodati, P., Marchesoni, F. & Piazza, S. Acoustic emission from volcanic rocks: an example of self-organized criticality. Phys. Rev. Lett. 67, 2239–2243 (1991).

    Article  CAS  Google Scholar 

  59. Papale, P. Global time-size distribution of volcanic eruptions on Earth. Sci. Rep. 8, 6838 (2018).

    Article  Google Scholar 

  60. Bak, P., Tang, C. & Wiesenfeld, K. Self-organized criticality. Phys. Rev. A 38, 364–374 (1988).

    Article  CAS  Google Scholar 

  61. Sornette, D. Predictability of catastrophic events: material rupture, earthquakes, turbulence, financial crashes, and human birth. Proc. Natl. Acad. Sci. USA 99, 2522–2529 (2002).

    Article  Google Scholar 

  62. San Miguel, M. et al. Challenges in complex systems science. Eur. Phys. J. Spec. Top. 214, 245–271 (2012).

    Article  Google Scholar 

  63. Sornette, D. Dragon-kings, black swans and the prediction of crises. SSRN Scholarly Paper https://doi.org/10.2139/ssrn.1470006 (2009).

  64. Bouvet de Maisonneuve, C., Forni, F. & Bachmann, O. Magma reservoir evolution during the build up to and recovery from caldera-forming eruptions — a generalizable model? Earth Sci. Rev. 218, 103684 (2021).

    Article  Google Scholar 

  65. Deligne, N. I., Coles, S. G. & Sparks, R. S. J. Recurrence rates of large explosive volcanic eruptions. J. Geophys. Res. 115, B06203 (2010).

    Google Scholar 

  66. Janousek, V., Moyen, J. -F., Martin, H., Erban, V. & Farrow, C. Geochemical Modelling of Igneous Processes — Principles and Recipes in R Language. Bringing the Power of R to a Geochemical Community (Springer, 2015); https://doi.org/10.1007/978-3-662-46792-3.

  67. Allègre, C. J. & Lewin, E. Scaling laws and geochemical distributions. Earth Planet. Sci. Lett. 132, 1–13 (1995).

    Article  Google Scholar 

  68. Ahrens, L. H. Lognormal-type distributions in igneous rocks — V. Geochimica et. Cosmochimica Acta 27, 877–890 (1963).

    Article  CAS  Google Scholar 

  69. Baratoux, D. et al. The impact of measurement scale on the univariate statistics of K, Th, and U in the Earth crust. Earth Space Sci. 8, e2021EA001786 (2021).

    Article  Google Scholar 

  70. Newman, M. Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46, 323–351 (2005).

    Article  Google Scholar 

  71. Jacomy, M. Epistemic clashes in network science: mapping the tensions between idiographic and nomothetic subcultures. Big Data Soc. 7, 205395172094957 (2020).

    Article  Google Scholar 

  72. Stumpf, M. P. H. & Porter, M. A. Critical truths about power laws. Science 335, 665–666 (2012).

    Article  CAS  Google Scholar 

  73. Hergarten, S. in Self-Organized Criticality in Earth Systems (ed. Hergarten, S.) 1–24 (Springer, 2002); https://doi.org/10.1007/978-3-662-04390-5_1.

  74. Clauset, A., Shalizi, C. R. & Newman, M. E. J. Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009).

    Article  Google Scholar 

  75. Cannavò, F. & Nunnari, G. On a possible unified scaling law for volcanic eruption durations. Sci. Rep. 6, 22289 (2016).

    Article  Google Scholar 

  76. Petford, N. & Koenders, M. A. Self-organisation and fracture connectivity in rapidly heated continental crust. J. Struct. Geol. 20, 1425–1434 (1998).

    Article  Google Scholar 

  77. Wiebe, R. A. & Collins, W. J. Depositional features and stratigraphic sections in granitic plutons: implications for the emplacement and crystallization of granitic magma. J. Struct. Geol. 20, 1273–1289 (1998).

    Article  Google Scholar 

  78. Perugini, D. in The Mixing of Magmas 29–37 (Springer International Publishing, 2021); https://doi.org/10.1007/978-3-030-81811-1_3.

  79. Perugini, D., De Campos, C. P., Ertel-Ingrisch, W. & Dingwell, D. B. The space and time complexity of chaotic mixing of silicate melts: implications for igneous petrology. Lithos 155, 326–340 (2012).

    Article  CAS  Google Scholar 

  80. Cazabet, R., Annen, C., Moyen, J. -F. & Weinberg, R. F. A toy model for approaching volcanic plumbing systems as complex systems. in 3rd French Regional Conference on Complex Systems (FRCCS 2023) 109–111 (2023); https://doi.org/10.5281/zenodo.7943009.

  81. Emmert-Streib, F., Cherifi, H., Kaski, K., Kauffman, S. & Yli-Harja, O. Complexity data science: a spin-off from digital twins. PNAS Nexus 3, pgae456 (2024).

    Article  Google Scholar 

  82. Caldarelli, G. et al. The role of complexity for digital twins of cities. Nat. Comput. Sci. 3, 374–381 (2023).

    Article  CAS  Google Scholar 

  83. Laubenbacher, R., Sluka, J. P. & Glazier, J. A. Using digital twins in viral infection. Science 371, 1105–1106 (2021).

    Article  CAS  Google Scholar 

  84. Hurrell, J. W. et al. The Community Earth System Model: a framework for collaborative research. Bull. Am. Meteorol. Soc. 94, 1339–1360 (2013).

    Article  Google Scholar 

  85. Dunne, J. P. et al. GFDL’s ESM2 global coupled climate–carbon Earth System Models. Part I: physical formulation and baseline simulation characteristics. J. Clim. 25, 6646–6665 (2012).

    Article  Google Scholar 

  86. Manabe, S., Smagorinsky, J. & Strickler, R. F. Simulated climatology of a general circulation model with a hydrologic cycle. Monthly Weather. Rev. 93, 769–798 (1965).

    Article  Google Scholar 

  87. Brown, M. & Solar, G. S. Shear-zone systems and melts: feedback relations and self-organization in orogenic belts. J. Struct. Geol. 20, 211–227 (1998).

    Article  Google Scholar 

  88. Weinberg, R. & Mark, G. Magma migration, folding, and disaggregation of migmatites in the Karakoram Shear zone, Ladakh, NW India. Geol. Soc. Am. Bull. 120, 994–1009 (2008).

    Article  Google Scholar 

  89. Weinberg, R. F., Hasalová, P., Ward, L. & Fanning, C. M. Interaction between deformation and magma extraction in migmatites: examples from Kangaroo Island, South Australia. GSA Bull. 125, 1282–1300 (2013).

    Article  CAS  Google Scholar 

  90. Lesage, P., Carrara, A., Pinel, V. & Arámbula-Mendoza, R. Absence of detectable precursory deformation and velocity variation before the large dome collapse of July 2015 at Volcán de Colima, Mexico. Front. Earth Sci. https://doi.org/10.3389/feart.2018.00093 (2018).

  91. Sigmundsson, F. et al. Unexpected large eruptions from buoyant magma bodies within viscoelastic crust. Nat. Commun. 11, 2403 (2020).

    Article  CAS  Google Scholar 

  92. Biggs, J. et al. Global link between deformation and volcanic eruption quantified by satellite imagery. Nat. Commun. 5, 3471 (2014).

    Article  CAS  Google Scholar 

  93. Espín Bedón, P. A. et al. Unrest at Cayambe Volcano revealed by SAR imagery and seismic activity after the Pedernales subduction earthquake, Ecuador (2016). J. Volcanol. Geotherm. Res. 428, 107577 (2022).

    Article  Google Scholar 

  94. Lundgren, P. et al. The dynamics of large silicic systems from satellite remote sensing observations: the intriguing case of Domuyo volcano, Argentina. Sci. Rep. 10, 11642 (2020).

    Article  CAS  Google Scholar 

  95. Shaw, H. R. & Chouet, B. Fractal hierarchies of magma transport in Hawaii and critical self-organization of tremor. J. Geophys. Res. Solid. Earth 96, 10191–10207 (1991).

    Article  Google Scholar 

  96. Geller, R. J., Jackson, D. D., Kagan, Y. Y. & Mulargia, F. Earthquakes cannot be predicted. Science 275, 1616–1616 (1997).

    Article  CAS  Google Scholar 

  97. Nathwani, C. et al. Controls on zircon age distributions in volcanic, porphyry and plutonic rocks. Geochronology 7, 15–33 (2025).

    Article  CAS  Google Scholar 

  98. Rougier, J., Sparks, S. R. & Cashman, K. V. Global recording rates for large eruptions. J. Appl. Volcanol. 5, 11 (2016).

    Article  Google Scholar 

  99. Magee, C. et al. Magma plumbing systems: a geophysical perspective. J. Petrol. 59, 1217–1251 (2018).

    Article  CAS  Google Scholar 

  100. Maguire, R. et al. Resolving continental magma reservoirs with 3D surface wave tomography. Geochem. Geophys. Geosystems 23, e2022GC010446 (2022).

    Article  Google Scholar 

  101. Paulatto, M. et al. Advances in seismic imaging of magma and crystal mush. Front. Earth Sci. 10, 970131 (2022).

    Article  Google Scholar 

  102. Paulatto, M. et al. Magma chamber properties from integrated seismic tomography and thermal modeling at Montserrat. Geochem. Geophys. Geosystems 13, Q01014 (2012).

    Article  Google Scholar 

  103. Kriegsman, L. M. Partial melting, partial melt extraction and partial back reaction in anatectic migmatites. Lithos 56, 75–96 (2001).

    Article  CAS  Google Scholar 

  104. Nicoli, G., Stevens, G., Moyen, J., Vezinet, A. & Mayne, M. Insights into the complexity of crustal differentiation: K2O‐poor leucosomes within metasedimentary migmatites from the Southern Marginal zone of the Limpopo Belt, South Africa. J. Metamorp. Geol. 35, 999–1022 (2017).

    Article  CAS  Google Scholar 

  105. Morfin, S., Sawyer, E. W. & Bandyayera, D. Large volumes of anatectic melt retained in granulite facies migmatites: an injection complex in northern Quebec. Lithos 168–169, 200–218 (2013).

    Article  Google Scholar 

  106. Kuhn, T. S. Objectivity, value judgment, and theory choice. In Arguing About Science 74–86 (Routledge, 2012).

  107. Peixoto, T. P. Parsimonious module inference in large networks. Phys. Rev. Lett. 110, 148701 (2013).

    Article  Google Scholar 

  108. Nativi, S., Mazzetti, P. & Craglia, M. Digital ecosystems for developing digital twins of the Earth: the Destination Earth case. Remote. Sens. 13, 2119 (2021).

    Article  Google Scholar 

  109. DeFelipe, I. et al. Towards a digital twin of the Earth system: Geo-Soft-CoRe, a geoscientific software and code repository. Front. Earth Sci. 10, 828005 (2022).

    Article  Google Scholar 

  110. Crisp, J. A. Rates of magma emplacement and volcanic output. J. Volcanol. Geotherm. Res. 20, 177–211 (1984).

    Article  Google Scholar 

  111. Hildreth, W. & Moorbath, S. Crustal contribution to arc magmatism in the Andes of Central Chile. Contrib. Mineral. Petrol. 98, 455–489 (1988).

    Article  CAS  Google Scholar 

  112. Annen, C., Blundy, J. D. & Sparks, R. S. J. The genesis of intermediate and silicic magmas in deep crustal hot zones. J. Petrol. 47, 505–539 (2006).

    Article  CAS  Google Scholar 

  113. Zellmer, G. F., Iizuka, Y. & Straub, S. M. Origin of crystals in mafic to intermediate magmas from circum-Pacific continental arcs: transcrustal magmatic systems versus transcrustal plutonic systems. J. Petrol. https://doi.org/10.1093/petrology/egae013 (2024).

  114. Bachmann, O., Miller, C. F. & de Silva, S. L. The volcanic-plutonic connection as a stage for understanding crustal magmatism. J. Volcanol. Geotherm. Res. 167, 1–23 (2007).

    Article  CAS  Google Scholar 

  115. Lundstrom, C. C. & Glazner, A. F. Silicic magmatism and the volcanic–plutonic connection. Elements 12, 91–96 (2016).

    Article  CAS  Google Scholar 

  116. Moyen, J.-F. et al. Crustal melting vs. fractionation of basaltic magmas: part 1, granites and paradigms. Lithos 402–403, 106291 (2021).

    Article  Google Scholar 

  117. Weinberg, R. F. & Regenauer-Lieb, K. Ductile fractures and magma migration from source. Geology 38, 363–366 (2010).

    Article  Google Scholar 

  118. Bons, P., Becker, J., Elburg, M. & Urtson, K. Granite formation: stepwise accumulation of melt or connected networks? Earth Environ. Sci. Trans. R. Soc. Edinb. 100, 105–115 (2009).

    Google Scholar 

  119. Brown, M. Synergistic effects of melting and deformation: an example from the Variscan belt, western France. Geol. Soc. Lond. Spec. Publ. 243, 205–226 (2005).

    Article  Google Scholar 

  120. Raymond, O. L., Liu, S., Gallagher, R., Zhang, W. & Highet, L. M. Surface geology of Australia 1:1 million scale dataset 2012 edition. Commonwealth of Australia (Geoscience Australia) https://doi.org/10.26186/74619 (2012).

  121. Annen, C., Paulatto, M., Sparks, R. S. J., Minshull, T. A. & Kiddley, E. J. Quantification of the intrusive magma fluxes during magma chamber growth at Soufriere Hills Volcano (Montserrat, Lesser Antilles). J. Petrol. 55, 529–548 (2014).

    Article  CAS  Google Scholar 

  122. Schmeling, H., Marquart, G., Weinberg, R. & Wallner, H. Modelling melting and melt segregation by two-phase flow: new insights into the dynamics of magmatic systems in the continental crust. Geophys. J. Int. 217, 422–450 (2019).

    Article  CAS  Google Scholar 

  123. Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998).

    Article  CAS  Google Scholar 

  124. Barabási, A.-L. Network science. Phil. Trans. R. Soc. A. 371, 20120375 (2013).

    Article  Google Scholar 

  125. Vigneresse, J. & Burg, J. Continuous vs. discontinuous melt segregation in migmatites: insights from a cellular automaton model. Terra Nova 12, 188–192 (2000).

    Article  Google Scholar 

  126. Jumadi, Carver, S. & Quincey, D. A conceptual design of spatio-temporal agent-based model for volcanic evacuation. Systems 5, 53 (2017).

    Article  Google Scholar 

  127. Chen, G., Kusky, T., Luo, L., Li, Q. & Cheng, Q. Hadean tectonics: insights from machine learning. Geology 51, 718–722 (2023).

    Article  CAS  Google Scholar 

  128. Zhou, Y., Zhang, Z., Yang, J., Ge, Y. & Cheng, Q. Machine learning and singularity analysis reveal zircon fertility and magmatic intensity: implications for porphyry copper potential. Nat. Resour. Res. 31, 3061–3078 (2022).

    Article  CAS  Google Scholar 

  129. Zhong, S. H. et al. A machine learning method for distinguishing detrital zircon provenance. Contrib. Miner. Pet. 178, 35 (2023).

    Article  CAS  Google Scholar 

  130. Petrelli, M., Caricchi, L. & Perugini, D. Machine learning thermo-barometry: application to clinopyroxene-bearing magmas. J. Geophys. Res. Solid. Earth 125, e2020JB020130 (2020).

    Article  CAS  Google Scholar 

  131. Boschetty, F. O. et al. Insights into magma storage beneath a frequently erupting arc volcano (Villarrica, Chile) from unsupervised machine learning analysis of mineral compositions. Geochem. Geophys. Geosystems 23, e2022GC010333 (2022).

    Article  Google Scholar 

  132. Roscher, R., Bohn, B., Duarte, M. F. & Garcke, J. Explainable machine learning for scientific insights and discoveries. IEEE Access. 8, 42200–42216 (2020).

    Article  Google Scholar 

  133. Kashinath, K. et al. Physics-informed machine learning: case studies for weather and climate modelling. Phil. Trans. R. Soc. A. 379, 20200093 (2021).

    Article  CAS  Google Scholar 

  134. Qi, D. & Majda, A. J. Using machine learning to predict extreme events in complex systems. Proc. Natl. Acad. Sci. USA 117, 52–59 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C.A. thanks C. Lesieur for triggering her interest in complex systems and for early discussions and building of ideas. J.-F.M. thanks D. Baratoux for ideas and data on the spatial distribution of chemical elements in igneous rocks, how to describe them and what they mean.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the literature and contributed with data for the article. All authors contributed substantially to discussion of the content. All authors contributed to writing and reviewing the article with relative contributions expressed in the author list.

Corresponding author

Correspondence to Catherine Annen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Leif Karlstrom and Luca Caricchi for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Annen, C., Weinberg, R.F., Moyen, JF. et al. A complex system approach to magmatism. Nat Rev Earth Environ 6, 535–548 (2025). https://doi.org/10.1038/s43017-025-00697-4

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43017-025-00697-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing