Abstract
Magmatic systems are composed of many nonlinearly interacting components that operate across various scales; thus, these systems can be modelled as complex systems. In this Perspective, we examine efforts to recognize and model complexity in magmatic systems and suggest the direction for building a global integrated model to investigate volcanic and igneous processes. Magmatic systems are complex, as they operate on time and spatial scales ranging from seconds to millions of years and micrometres to kilometres, respectively, organized as networks of interacting components. These networks drain magmas and volatiles from deep sources towards plutons, dykes, sills, and volcanoes. Statistical analyses suggest power-law relationships in magmatic and volcanic processes, from the geometrical feature of melt extraction network at the source, to magma mingling, to the distribution of eruption intensity. These findings serve as evidence for self-organized criticality, suggesting that magmatic systems respond to small disturbances in unpredictable ways. The behaviours of complex systems emerge from the connections between the parts of the system and cannot be predicted by separate investigation of the individual parts. Therefore, Earth science should follow the example of fields such as climate sciences and take advantage of tools developed in complex system science to build an integrated model to test the validity of conceptual models and advance understanding of magmatic systems.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Lucci, F. et al. Anatomy of the magmatic plumbing system of Los Humeros Caldera (Mexico): implications for geothermal systems. Solid. Earth 11, 125–159 (2020).
Bianconi, G. et al. Complex systems in the spotlight: next steps after the 2021 Nobel prize in physics. J. Phys. Complex. 4, 010201 (2023).
Cruden, A. R. & Weinberg, R. F. in Volcanic and Igneous Plumbing Systems (ed. Burchardt, S.) 13–53 (Elsevier, 2018); https://doi.org/10.1016/B978-0-12-809749-6.00002-9.
Sparks, R. S. J. et al. Formation and dynamics of magma reservoirs. Philos. Trans. R. Soc. A 377, 20180019 (2019).
Pelletier, J. D. Statistical self-similarity of magmatism and volcanism. J. Geophys. Res. Solid Earth 104, 15425–15438 (1999).
Black, B. A. & Manga, M. Volatiles and the tempo of flood basalt magmatism. Earth Planet. Sci. Lett. 458, 130–140 (2017).
Castelvecchi, D. & Gaind, N. Climate modellers and theorist of complex systems share physics Nobel. Nature 598, 246–247 (2021).
Cruden, A., Moore, D. & Weinberg, R. Small and nimble or big and mushy? On the nature of granitic magma plumbing systems in Victoria, SE Australia. In 10th Hutton Symposium on Granites and Related Rocks 94 (Baveno, 2018).
Karlstrom, L., Paterson, S. R. & Jellinek, A. M. A reverse energy cascade for crustal magma transport. Nat. Geosci. 10, 604 (2017).
Odbert, H. M., Stewart, R. C. & Wadge, G. Chapter 2 cyclic phenomena at the Soufrière Hills Volcano, Montserrat. Geol. Soc. Lond. Mem. 39, 41–60 (2014).
Harford, C. L., Pringle, M. S., Sparks, R. S. J. & Young, S. R. in The Eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 1999 (eds Druitt, T. H. & Kokelaar, B. P.) 93–113 (Geological Society of London, 2002).
Le Friant, A. et al. Late pleistocene tephrochronology of marine sediments adjacent to Montserrat, Lesser Antilles volcanic arc. J. Geol. Soc. 165, 279–289 (2008).
de Silva, S. L., Riggs, N. R. & Barth, A. P. Quickening the pulse: fractal tempos in continental arc magmatism. Elements 11, 113–118 (2015).
Annen, C., Blundy, J. D., Leuthold, J. & Sparks, R. S. J. Construction and evolution of igneous bodies: towards an integrated perspective of crustal magmatism. Lithos 230, 206–221 (2015).
Schoene, B. U–Th–Pb Geochronology. In Treatise on Geochemistry (eds Holland, H. D. & Turekian, K. K.) Vol. 4, 341–378 (Elsevier, 2014); https://doi.org/10.1016/B978-0-08-095975-7.00310-7.
Schaltegger, U. et al. Long-term repeatability and interlaboratory reproducibility of high-precision ID-TIMS U–Pb geochronology. J. Anal. At. Spectrom. 36, 1466–1477 (2021).
Eddy, M. P., Pamukçu, A., Schoene, B., Steiner-Leach, T. & Bell, E. A. Constraints on the timescales and processes that led to high-SiO2 rhyolite production in the Searchlight pluton, Nevada, USA. Geosphere 18, 1000–1019 (2022).
Coleman, D. S., Gray, W. & Glazner, A. F. Rethinking the emplacement and evolution of zoned plutons: geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California. Geology 32, 433–436 (2004).
Leuthold, J. et al. Time resolved construction of a bimodal laccolith (Torres del Paine, Patagonia). Earth Planet. Sci. Lett. 325–326, 85–92 (2012).
Chambers, M., Memeti, V., Eddy, M. P. & Schoene, B. Half a million years of magmatic history recorded in a K-feldspar megacryst of the Tuolumne Intrusive Complex, California, USA. Geology 48, 400–404 (2020).
Michel, J., Baumgartner, L. P., Putlitz, B., Schaltegger, U. & Ovtcharova, M. Incremental growth of the Patagonian Torres del Paine laccolith over 90 k.y. Geology 36, 459–462 (2008).
de Saint Blanquat, M. et al. Multiscale magmatic cyclicity, duration of pluton construction, and the paradoxical relationship between tectonism and plutonism in continental arcs. Tectonophysics 500, 20–33 (2011).
Clemens, J. D. & Stevens, G. What controls chemical variation in granitic magmas? Lithos 134–135, 317–329 (2012).
Clemens, J. D., Stevens, G. & Mayne, M. J. Do arc silicic magmas form by fluid-fluxed melting of older arc crust or fractionation of basaltic magmas? Contrib. Miner. Pet. 176, 44 (2021).
Cruden, A. R. & McCaffrey, K. J. W. Growth of plutons by floor subsidence: implications for rates of emplacement, intrusion spacing and melt-extraction mechanisms. Phys. Chem. Earth Pt. A 26, 303–315 (2001).
Marchildon, N. & Brown, M. Spatial distribution of melt-bearing structures in anatectic rocks from Southern Brittany, France: implications for melt transfer at grain- to orogen-scale. Tectonophysics 364, 215–235 (2003).
Soesoo, A. & Bons, P. From migmatites to plutons: power law relationships in the evolution of magmatic bodies. Pure Appl. Geophys. 172, 1787–1801 (2015).
Tanner, D. The scale-invariant nature of migmatite from the Oberpfalz, NE Bavaria and its significance for melt transport. Tectonophysics 302, 297–305 (1999).
Bons, P. D. et al. Melt extraction and accumulation from partially molten rocks. Lithos 78, 25–42 (2004).
Reichardt, H. & Weinberg, R. The dike swarm of the Karakoram shear zone, Ladakh, NW India: linking granite source to batholith. Geol. Soc. Am. Bull. 124, 89–103 (2012).
Weinberg, R. F., Mark, G. & Reichardt, H. Magma ponding in the Karakoram shear zone, Ladakh, NW India. GSA Bull. 121, 278–285 (2009).
Cashman, K. V. & Giordano, G. Calderas and magma reservoirs. J. Volcanol. Geotherm. Res. 288, 28–45 (2014).
Cashman, K. V., Sparks, R. S. J. & Blundy, J. D. Vertically extensive and unstable magmatic systems: a unified view of igneous processes. Science 355, eaag3055 (2017).
Reiss, M. C., De Siena, L. & Muirhead, J. D. The interconnected magmatic plumbing system of the Natron Rift. Geophys. Res. Lett. 49, e2022GL098922 (2022).
Reiss, M. C. et al. The impact of complex volcanic plumbing on the nature of seismicity in the developing magmatic Natron Rift, Tanzania. Front. Earth Sci. 8, 609805 (2021).
Allan, A. S. R., Wilson, C. J. N., Millet, M.-A. & Wysoczanski, R. J. The invisible hand: tectonic triggering and modulation of a rhyolitic supereruption. Geology 40, 563–566 (2012).
Gualda, G. R. & Ghiorso, M. The Bishop Tuff giant magma body: an alternative to the standard model. Contrib. Mineral. Petrol. 166, 755–775 (2013).
Cooper, G. F., Wilson, C. J. N., Millet, M.-A., Baker, J. A. & Smith, E. G. C. Systematic tapping of independent magma chambers during the 1 Ma Kidnappers supereruption. Earth Planet. Sci. Lett. 313–314, 23–33 (2012).
Ginibre, C. & Wörner, G. Variable parent magmas and recharge regimes of the Parinacota magma system (N. Chile) revealed by Fe, Mg and Sr zoning in plagioclase. Lithos 98, 118–140 (2007).
Edmonds, M. & Woods, A. W. Exsolved volatiles in magma reservoirs. J. Volcanol. Geotherm. Res. 368, 13–30 (2018).
Oppenheimer, J., Rust, A. C., Cashman, K. V. & Sandnes, B. Gas migration regimes and outgassing in particle-rich suspensions. Front. Phys. 3, 60 (2015).
Sparks, R. S. J. Dynamics of magma degassing. Geol. Soc. Lond. Spec. Publ. 213, 5–22 (2003).
Parmigiani, A., Degruyter, W., Leclaire, S., Huber, C. & Bachmann, O. The mechanics of shallow magma reservoir outgassing. Geochem. Geophys. Geosyst. 18, 2887–2905 (2017).
Pistone, M., Blundy, J. D., Brooker, R. A. & EIMF. Textural and chemical consequences of interaction between hydrous mafic and felsic magmas: an experimental study. Contrib. Miner. Pet. 171, 8 (2015).
Weinberg, R. F. & Hasalová, P. Water-fluxed melting of the continental crust: a review. Lithos 212–215, 158–188 (2015).
Scaillet, B. The role of gas flushing on magma reservoir crystallization and its consequences for the growth of planetary crust. Lithos 428–429, 106811 (2022).
Caricchi, L., Sheldrake, T. E. & Blundy, J. Modulation of magmatic processes by CO2 flushing. Earth Planet. Sci. Lett. 491, 160–171 (2018).
Sparks, R. S. J. & Cashman, K. V. Dynamic magma systems: implications for forecasting volcanic activity. Elements 13, 35–40 (2017).
Bons, P. D. & van Milligen, B. P. New experiment to model self-organized critical transport and accumulation of melt and hydrocarbons from their source rocks. Geology 29, 919–922 (2001).
Karlstrom, L., Dufek, J. & Manga, M. Organization of volcanic plumbing through magmatic lensing by magma chambers and volcanic loads. J. Geophys. Res. Solid Earth 114, B10204 (2009).
Karlstrom, L., Wright, H. M. & Bacon, C. R. The effect of pressurized magma chamber growth on melt migration and pre-caldera vent locations through time at Mount Mazama, Crater Lake, Oregon. Earth Planet. Sci. Lett. 412, 209–219 (2015).
van Zalinge, M. E. et al. Timescales for pluton growth, magma-chamber formation and super-eruptions. Nature 608, 87–92 (2022).
Malfait, W. J. et al. Supervolcano eruptions driven by melt buoyancy in large silicic magma chambers. Nat. Geosci. 7, 122–125 (2014).
Caricchi, L., Annen, C., Blundy, J., Simpson, G. & Pinel, V. Frequency and magnitude of volcanic eruptions controlled by magma injection and buoyancy. Nat. Geosci. 7, 126–130 (2014).
Grasso, J. R. & Bachélery, P. Hierarchical organization as a diagnostic approach to volcano mechanisms: validation at Piton de la Fournaise. Geophys. Res. Lett. 22, 2897–2900 (1995).
Chouet, B. & Shaw, H. R. Fractal properties of tremor and gas piston events observed at Kilauea Volcano, Hawaii. J. Geophys. Res. Solid. Earth 96, 10177–10189 (1991).
Cortini, M., Cilento, L. & Rullo, A. Vertical ground motion in the Campi Flegrei caldera as a chaotic dynamic phenomenon. J. Volcanol. Geotherm. Res. 48, 103–113 (1991).
Diodati, P., Marchesoni, F. & Piazza, S. Acoustic emission from volcanic rocks: an example of self-organized criticality. Phys. Rev. Lett. 67, 2239–2243 (1991).
Papale, P. Global time-size distribution of volcanic eruptions on Earth. Sci. Rep. 8, 6838 (2018).
Bak, P., Tang, C. & Wiesenfeld, K. Self-organized criticality. Phys. Rev. A 38, 364–374 (1988).
Sornette, D. Predictability of catastrophic events: material rupture, earthquakes, turbulence, financial crashes, and human birth. Proc. Natl. Acad. Sci. USA 99, 2522–2529 (2002).
San Miguel, M. et al. Challenges in complex systems science. Eur. Phys. J. Spec. Top. 214, 245–271 (2012).
Sornette, D. Dragon-kings, black swans and the prediction of crises. SSRN Scholarly Paper https://doi.org/10.2139/ssrn.1470006 (2009).
Bouvet de Maisonneuve, C., Forni, F. & Bachmann, O. Magma reservoir evolution during the build up to and recovery from caldera-forming eruptions — a generalizable model? Earth Sci. Rev. 218, 103684 (2021).
Deligne, N. I., Coles, S. G. & Sparks, R. S. J. Recurrence rates of large explosive volcanic eruptions. J. Geophys. Res. 115, B06203 (2010).
Janousek, V., Moyen, J. -F., Martin, H., Erban, V. & Farrow, C. Geochemical Modelling of Igneous Processes — Principles and Recipes in R Language. Bringing the Power of R to a Geochemical Community (Springer, 2015); https://doi.org/10.1007/978-3-662-46792-3.
Allègre, C. J. & Lewin, E. Scaling laws and geochemical distributions. Earth Planet. Sci. Lett. 132, 1–13 (1995).
Ahrens, L. H. Lognormal-type distributions in igneous rocks — V. Geochimica et. Cosmochimica Acta 27, 877–890 (1963).
Baratoux, D. et al. The impact of measurement scale on the univariate statistics of K, Th, and U in the Earth crust. Earth Space Sci. 8, e2021EA001786 (2021).
Newman, M. Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46, 323–351 (2005).
Jacomy, M. Epistemic clashes in network science: mapping the tensions between idiographic and nomothetic subcultures. Big Data Soc. 7, 205395172094957 (2020).
Stumpf, M. P. H. & Porter, M. A. Critical truths about power laws. Science 335, 665–666 (2012).
Hergarten, S. in Self-Organized Criticality in Earth Systems (ed. Hergarten, S.) 1–24 (Springer, 2002); https://doi.org/10.1007/978-3-662-04390-5_1.
Clauset, A., Shalizi, C. R. & Newman, M. E. J. Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009).
Cannavò, F. & Nunnari, G. On a possible unified scaling law for volcanic eruption durations. Sci. Rep. 6, 22289 (2016).
Petford, N. & Koenders, M. A. Self-organisation and fracture connectivity in rapidly heated continental crust. J. Struct. Geol. 20, 1425–1434 (1998).
Wiebe, R. A. & Collins, W. J. Depositional features and stratigraphic sections in granitic plutons: implications for the emplacement and crystallization of granitic magma. J. Struct. Geol. 20, 1273–1289 (1998).
Perugini, D. in The Mixing of Magmas 29–37 (Springer International Publishing, 2021); https://doi.org/10.1007/978-3-030-81811-1_3.
Perugini, D., De Campos, C. P., Ertel-Ingrisch, W. & Dingwell, D. B. The space and time complexity of chaotic mixing of silicate melts: implications for igneous petrology. Lithos 155, 326–340 (2012).
Cazabet, R., Annen, C., Moyen, J. -F. & Weinberg, R. F. A toy model for approaching volcanic plumbing systems as complex systems. in 3rd French Regional Conference on Complex Systems (FRCCS 2023) 109–111 (2023); https://doi.org/10.5281/zenodo.7943009.
Emmert-Streib, F., Cherifi, H., Kaski, K., Kauffman, S. & Yli-Harja, O. Complexity data science: a spin-off from digital twins. PNAS Nexus 3, pgae456 (2024).
Caldarelli, G. et al. The role of complexity for digital twins of cities. Nat. Comput. Sci. 3, 374–381 (2023).
Laubenbacher, R., Sluka, J. P. & Glazier, J. A. Using digital twins in viral infection. Science 371, 1105–1106 (2021).
Hurrell, J. W. et al. The Community Earth System Model: a framework for collaborative research. Bull. Am. Meteorol. Soc. 94, 1339–1360 (2013).
Dunne, J. P. et al. GFDL’s ESM2 global coupled climate–carbon Earth System Models. Part I: physical formulation and baseline simulation characteristics. J. Clim. 25, 6646–6665 (2012).
Manabe, S., Smagorinsky, J. & Strickler, R. F. Simulated climatology of a general circulation model with a hydrologic cycle. Monthly Weather. Rev. 93, 769–798 (1965).
Brown, M. & Solar, G. S. Shear-zone systems and melts: feedback relations and self-organization in orogenic belts. J. Struct. Geol. 20, 211–227 (1998).
Weinberg, R. & Mark, G. Magma migration, folding, and disaggregation of migmatites in the Karakoram Shear zone, Ladakh, NW India. Geol. Soc. Am. Bull. 120, 994–1009 (2008).
Weinberg, R. F., Hasalová, P., Ward, L. & Fanning, C. M. Interaction between deformation and magma extraction in migmatites: examples from Kangaroo Island, South Australia. GSA Bull. 125, 1282–1300 (2013).
Lesage, P., Carrara, A., Pinel, V. & Arámbula-Mendoza, R. Absence of detectable precursory deformation and velocity variation before the large dome collapse of July 2015 at Volcán de Colima, Mexico. Front. Earth Sci. https://doi.org/10.3389/feart.2018.00093 (2018).
Sigmundsson, F. et al. Unexpected large eruptions from buoyant magma bodies within viscoelastic crust. Nat. Commun. 11, 2403 (2020).
Biggs, J. et al. Global link between deformation and volcanic eruption quantified by satellite imagery. Nat. Commun. 5, 3471 (2014).
Espín Bedón, P. A. et al. Unrest at Cayambe Volcano revealed by SAR imagery and seismic activity after the Pedernales subduction earthquake, Ecuador (2016). J. Volcanol. Geotherm. Res. 428, 107577 (2022).
Lundgren, P. et al. The dynamics of large silicic systems from satellite remote sensing observations: the intriguing case of Domuyo volcano, Argentina. Sci. Rep. 10, 11642 (2020).
Shaw, H. R. & Chouet, B. Fractal hierarchies of magma transport in Hawaii and critical self-organization of tremor. J. Geophys. Res. Solid. Earth 96, 10191–10207 (1991).
Geller, R. J., Jackson, D. D., Kagan, Y. Y. & Mulargia, F. Earthquakes cannot be predicted. Science 275, 1616–1616 (1997).
Nathwani, C. et al. Controls on zircon age distributions in volcanic, porphyry and plutonic rocks. Geochronology 7, 15–33 (2025).
Rougier, J., Sparks, S. R. & Cashman, K. V. Global recording rates for large eruptions. J. Appl. Volcanol. 5, 11 (2016).
Magee, C. et al. Magma plumbing systems: a geophysical perspective. J. Petrol. 59, 1217–1251 (2018).
Maguire, R. et al. Resolving continental magma reservoirs with 3D surface wave tomography. Geochem. Geophys. Geosystems 23, e2022GC010446 (2022).
Paulatto, M. et al. Advances in seismic imaging of magma and crystal mush. Front. Earth Sci. 10, 970131 (2022).
Paulatto, M. et al. Magma chamber properties from integrated seismic tomography and thermal modeling at Montserrat. Geochem. Geophys. Geosystems 13, Q01014 (2012).
Kriegsman, L. M. Partial melting, partial melt extraction and partial back reaction in anatectic migmatites. Lithos 56, 75–96 (2001).
Nicoli, G., Stevens, G., Moyen, J., Vezinet, A. & Mayne, M. Insights into the complexity of crustal differentiation: K2O‐poor leucosomes within metasedimentary migmatites from the Southern Marginal zone of the Limpopo Belt, South Africa. J. Metamorp. Geol. 35, 999–1022 (2017).
Morfin, S., Sawyer, E. W. & Bandyayera, D. Large volumes of anatectic melt retained in granulite facies migmatites: an injection complex in northern Quebec. Lithos 168–169, 200–218 (2013).
Kuhn, T. S. Objectivity, value judgment, and theory choice. In Arguing About Science 74–86 (Routledge, 2012).
Peixoto, T. P. Parsimonious module inference in large networks. Phys. Rev. Lett. 110, 148701 (2013).
Nativi, S., Mazzetti, P. & Craglia, M. Digital ecosystems for developing digital twins of the Earth: the Destination Earth case. Remote. Sens. 13, 2119 (2021).
DeFelipe, I. et al. Towards a digital twin of the Earth system: Geo-Soft-CoRe, a geoscientific software and code repository. Front. Earth Sci. 10, 828005 (2022).
Crisp, J. A. Rates of magma emplacement and volcanic output. J. Volcanol. Geotherm. Res. 20, 177–211 (1984).
Hildreth, W. & Moorbath, S. Crustal contribution to arc magmatism in the Andes of Central Chile. Contrib. Mineral. Petrol. 98, 455–489 (1988).
Annen, C., Blundy, J. D. & Sparks, R. S. J. The genesis of intermediate and silicic magmas in deep crustal hot zones. J. Petrol. 47, 505–539 (2006).
Zellmer, G. F., Iizuka, Y. & Straub, S. M. Origin of crystals in mafic to intermediate magmas from circum-Pacific continental arcs: transcrustal magmatic systems versus transcrustal plutonic systems. J. Petrol. https://doi.org/10.1093/petrology/egae013 (2024).
Bachmann, O., Miller, C. F. & de Silva, S. L. The volcanic-plutonic connection as a stage for understanding crustal magmatism. J. Volcanol. Geotherm. Res. 167, 1–23 (2007).
Lundstrom, C. C. & Glazner, A. F. Silicic magmatism and the volcanic–plutonic connection. Elements 12, 91–96 (2016).
Moyen, J.-F. et al. Crustal melting vs. fractionation of basaltic magmas: part 1, granites and paradigms. Lithos 402–403, 106291 (2021).
Weinberg, R. F. & Regenauer-Lieb, K. Ductile fractures and magma migration from source. Geology 38, 363–366 (2010).
Bons, P., Becker, J., Elburg, M. & Urtson, K. Granite formation: stepwise accumulation of melt or connected networks? Earth Environ. Sci. Trans. R. Soc. Edinb. 100, 105–115 (2009).
Brown, M. Synergistic effects of melting and deformation: an example from the Variscan belt, western France. Geol. Soc. Lond. Spec. Publ. 243, 205–226 (2005).
Raymond, O. L., Liu, S., Gallagher, R., Zhang, W. & Highet, L. M. Surface geology of Australia 1:1 million scale dataset 2012 edition. Commonwealth of Australia (Geoscience Australia) https://doi.org/10.26186/74619 (2012).
Annen, C., Paulatto, M., Sparks, R. S. J., Minshull, T. A. & Kiddley, E. J. Quantification of the intrusive magma fluxes during magma chamber growth at Soufriere Hills Volcano (Montserrat, Lesser Antilles). J. Petrol. 55, 529–548 (2014).
Schmeling, H., Marquart, G., Weinberg, R. & Wallner, H. Modelling melting and melt segregation by two-phase flow: new insights into the dynamics of magmatic systems in the continental crust. Geophys. J. Int. 217, 422–450 (2019).
Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998).
Barabási, A.-L. Network science. Phil. Trans. R. Soc. A. 371, 20120375 (2013).
Vigneresse, J. & Burg, J. Continuous vs. discontinuous melt segregation in migmatites: insights from a cellular automaton model. Terra Nova 12, 188–192 (2000).
Jumadi, Carver, S. & Quincey, D. A conceptual design of spatio-temporal agent-based model for volcanic evacuation. Systems 5, 53 (2017).
Chen, G., Kusky, T., Luo, L., Li, Q. & Cheng, Q. Hadean tectonics: insights from machine learning. Geology 51, 718–722 (2023).
Zhou, Y., Zhang, Z., Yang, J., Ge, Y. & Cheng, Q. Machine learning and singularity analysis reveal zircon fertility and magmatic intensity: implications for porphyry copper potential. Nat. Resour. Res. 31, 3061–3078 (2022).
Zhong, S. H. et al. A machine learning method for distinguishing detrital zircon provenance. Contrib. Miner. Pet. 178, 35 (2023).
Petrelli, M., Caricchi, L. & Perugini, D. Machine learning thermo-barometry: application to clinopyroxene-bearing magmas. J. Geophys. Res. Solid. Earth 125, e2020JB020130 (2020).
Boschetty, F. O. et al. Insights into magma storage beneath a frequently erupting arc volcano (Villarrica, Chile) from unsupervised machine learning analysis of mineral compositions. Geochem. Geophys. Geosystems 23, e2022GC010333 (2022).
Roscher, R., Bohn, B., Duarte, M. F. & Garcke, J. Explainable machine learning for scientific insights and discoveries. IEEE Access. 8, 42200–42216 (2020).
Kashinath, K. et al. Physics-informed machine learning: case studies for weather and climate modelling. Phil. Trans. R. Soc. A. 379, 20200093 (2021).
Qi, D. & Majda, A. J. Using machine learning to predict extreme events in complex systems. Proc. Natl. Acad. Sci. USA 117, 52–59 (2020).
Acknowledgements
C.A. thanks C. Lesieur for triggering her interest in complex systems and for early discussions and building of ideas. J.-F.M. thanks D. Baratoux for ideas and data on the spatial distribution of chemical elements in igneous rocks, how to describe them and what they mean.
Author information
Authors and Affiliations
Contributions
All authors researched the literature and contributed with data for the article. All authors contributed substantially to discussion of the content. All authors contributed to writing and reviewing the article with relative contributions expressed in the author list.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Earth & Environment thanks Leif Karlstrom and Luca Caricchi for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Annen, C., Weinberg, R.F., Moyen, JF. et al. A complex system approach to magmatism. Nat Rev Earth Environ 6, 535–548 (2025). https://doi.org/10.1038/s43017-025-00697-4
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s43017-025-00697-4