Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The evolution of Earth’s early continental crust

Abstract

Continental crust is fundamental to planetary habitability, providing the geochemical reservoirs and physical interfaces that drive and regulate exchanges among the atmosphere, hydrosphere and biosphere. However, the evolution of Earth’s crust is uncertain owing to debate regarding the competing roles of internal versus external energetic drivers. In this Review, we examine the interplay between internal and external drivers of the production, modification and destruction of crust on the early Earth using geochemical, geological and geophysical data. Internal drivers are potentially linked to plate tectonics and processes such as subduction (dripping) or delamination. External drivers from large meteorite impacts likely influenced crust formation by inducing rapid decompression melting of the mantle to form basaltic protocratons, the early, mantle-derived crustal nuclei that preceded stable continental crust. On a planet covered by water, protocratons might have been transformed by intracrustal differentiation into evolved (continental) crust. Future research into the processes driving Earth’s early evolution and habitability should consider a wide range of temporal and spatial scales from seconds to millions of years and the subgrain to the galactic, to uncover the long-wavelength patterns, in mantle overturn rates and impact flux preserved in deep-time records.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The formation of the galaxy, the Solar System, the Earth and the Moon.
Fig. 2: Geological time series and derived models explaining crustal evolution.
Fig. 3: Styles of Archaean and early Earth crustal foundering.
Fig. 4: Temporal and spatial challenges in interpreting Earth’s early geological record.

Similar content being viewed by others

References

  1. Aarons, S. M., Johnson, A. C. & Rader, S. T. Forming Earth’s continental crust: a nontraditional stable isotope perspective. Elements 17, 413–418 (2021).

    Article  CAS  Google Scholar 

  2. Johnson, T. E. et al. An impact melt origin for Earth’s oldest known evolved rocks. Nat. Geosci. 11, 795–799 (2018).

    Article  CAS  Google Scholar 

  3. Reimink, J. R., Chacko, T., Stern, R. A. & Heaman, L. M. Earth’s earliest evolved crust generated in an Iceland-like setting. Nat. Geosci. 7, 529–533 (2014).

    Article  CAS  Google Scholar 

  4. Turner, S., Wilde, S., Wörner, G., Schaefer, B. & Lai, Y.-J. An andesitic source for Jack Hills zircon supports onset of plate tectonics in the Hadean. Nat. Commun. 11, 1241 (2020).

    Article  CAS  Google Scholar 

  5. Bell, E. A. & Harrison, T. M. Post-Hadean transitions in Jack Hills zircon provenance: a signal of the late heavy bombardment? Earth Planet. Sci. Lett. 364, 1–11 (2013).

    Article  CAS  Google Scholar 

  6. Gillman, M. & Erenler, H. Reconciling the Earth’s stratigraphic record with the structure of our galaxy. Geosci. Front. 10, 2147–2151 (2019).

    Article  Google Scholar 

  7. Gillman, M. & Zhang, R. Generation of a galactic chronology with impact ages and spiral arm tangents. Sci. Rep. 14, 5790 (2024).

    Article  CAS  Google Scholar 

  8. Kirkland, C. L. & Sutton, P. A geological telescope through the galaxy? J. Geol. Soc. 181, jgs2023–jgs2219 (2024).

    Article  Google Scholar 

  9. Kirkland, C. L. et al. Did transit through the galactic spiral arms seed crust production on the early Earth? Geology 50, 1312–1317 (2022).

    Article  CAS  Google Scholar 

  10. Allègre, C. J., Manhès, G. & Göpel, C. The age of the Earth. Geochim. Cosmochim. Acta 59, 1445–1456 (1995).

    Article  Google Scholar 

  11. Wood, B. J., Walter, M. J. & Wade, J. Accretion of the Earth and segregation of its core. Nature 441, 825–833 (2006).

    Article  CAS  Google Scholar 

  12. Piani, L. et al. Earth’s water may have been inherited from material similar to enstatite chondrite meteorites. Science 369, 1110–1113 (2020).

    Article  CAS  Google Scholar 

  13. Sleep, N. H., Zahnle, K. & Neuhoff, P. S. Initiation of clement surface conditions on the earliest Earth. Proc. Natl Acad. Sci. USA 98, 3666–3672 (2001).

    Article  CAS  Google Scholar 

  14. Smithies, R. H. et al. No evidence for high-pressure melting of Earth’s crust in the Archean. Nat. Commun. 10, 5559 (2019).

    Article  CAS  Google Scholar 

  15. Arndt, N. How did the continental crust form: no basalt, no water, no granite. Precambrian Res. 397, 107196 (2023).

    Article  CAS  Google Scholar 

  16. Campbell, I. H. & Taylor, S. R. No water, no granites — no oceans, no continents. Geophys. Res. Lett. 10, 1061–1064 (1983).

    Article  Google Scholar 

  17. Collins, W. J., Murphy, J. B., Johnson, T. E. & Huang, H.-Q. Critical role of water in the formation of continental crust. Nat. Geosci. 13, 331–338 (2020).

    Article  Google Scholar 

  18. Piccolo, A., Palin, R. M., Kaus, B. J. P. & White, R. W. Generation of Earth’s early continents from a relatively cool Archean mantle. Geochem. Geophys. Geosyst. 20, 1679–1697 (2019).

    Article  Google Scholar 

  19. Brown, M., Pearce, J. A. & Johnson, T. E. Is plate tectonics a post-Archean phenomenon? A petrological perspective. J. Geol. Soc. 181, jgs2024–jgs2091 (2024).

    Article  Google Scholar 

  20. Moyen, J.-F. & Stevens, G. Experimental constraints on TTG petrogenesis: implications for Archean geodynamics. In Archean Geodynamics and Environments, American Geophysical Union, Geophysical Monograph Series (eds Benn, K. et al.) Vol. 164, 149–175 (2006).

  21. Zhang, C. et al. Constraints from experimental melting of amphibolite on the depth of formation of garnet-rich restites, and implications for models of early Archean crustal growth. Precambrian Res. 231, 206–217 (2013).

    Article  CAS  Google Scholar 

  22. Rapp, R. P., Watson, E. B. & Miller, C. F. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Res. 51, 1–25 (1991).

    Article  CAS  Google Scholar 

  23. Johnson, T. E., Brown, M., Gardiner, N. J., Kirkland, C. L. & Smithies, R. H. Earth’s first stable continents did not form by subduction. Nature 543, 239–242 (2017).

    Article  CAS  Google Scholar 

  24. Johnson, T. E. et al. Giant impacts and the origin and evolution of continents. Nature 608, 330–335 (2022).

    Article  CAS  Google Scholar 

  25. Moyen, J.-F. & Laurent, O. Archaean tectonic systems: a view from igneous rocks. Lithos 302–303, 99–125 (2018).

    Article  Google Scholar 

  26. Hawkesworth, C., Cawood, P., Kemp, T., Storey, C. & Dhuime, B. A matter of preservation. Science 323, 49–50 (2009).

    Article  CAS  Google Scholar 

  27. Sundell, K. E. & Macdonald, F. A. The tectonic context of hafnium isotopes in zircon. Earth Planet. Sci. Lett. 584, 117426 (2022).

    Article  CAS  Google Scholar 

  28. Hawkesworth, C. J. & Brown, M. Earth dynamics and the development of plate tectonics. Philos. Trans. R. Soc. A 376, 20180228 (2018).

    Article  Google Scholar 

  29. Korenaga, J. Crustal evolution and mantle dynamics through Earth history. Philos. Trans. R. Soc. A 376, 20170408 (2018).

    Article  Google Scholar 

  30. Hopkins, M., Harrison, T. M. & Manning, C. E. Low heat flow inferred from >4 Gyr zircons suggests Hadean plate boundary interactions. Nature 456, 493–496 (2008).

    Article  CAS  Google Scholar 

  31. Yuan, Q., Gurnis, M., Asimow, P. D. & Li, Y. A giant impact origin for the first subduction on Earth. Geophys. Res. Lett. 51, e2023GL106723 (2024).

    Article  Google Scholar 

  32. Stern, R. J. & Gerya, T. Subduction initiation in nature and models: a review. Tectonophysics 746, 173–198 (2018).

    Article  Google Scholar 

  33. Bercovici, D. & Ricard, Y. Plate tectonics, damage and inheritance. Nature 508, 513–516 (2014).

    Article  CAS  Google Scholar 

  34. Hartnady, M. I. H. & Kirkland, C. L. A gradual transition to plate tectonics on Earth between 3.2 to 2.7 billion years ago. Terra Nova 31, 129–134 (2019).

    Article  CAS  Google Scholar 

  35. Holder, R. M., Viete, D. R., Brown, M. & Johnson, T. E. Metamorphism and the evolution of plate tectonics. Nature 572, 378–381 (2019).

    Article  CAS  Google Scholar 

  36. Brown M., Pearce J. A. & Johnson T.E. Is plate tectonics a post-Archean phenomenon? A petrological perspective. J. Geol. Soc. 181, jgs2024-091 (2024).

    Article  Google Scholar 

  37. Brenner, A. R. et al. Paleomagnetic evidence for modern-like plate motion velocities at 3.2 Ga. Sci. Adv. 6, eaaz8670 (2020).

    Article  Google Scholar 

  38. Brenner, A. R., Fu, R. R., Kylander-Clark, A. R. C., Hudak, G. J. & Foley, B. J. Plate motion and a dipolar geomagnetic field at 3.25 Ga. Proc. Natl Acad. Sci. USA 119, e2210258119 (2022).

    Article  CAS  Google Scholar 

  39. Kemp, A. I. S. et al. Hadean crustal evolution revisited: new constraints from Pb–Hf isotope systematics of the Jack Hills zircons. Earth Planet. Sci. Lett. 296, 45–56 (2010).

    Article  CAS  Google Scholar 

  40. Ptáček, M. P., Dauphas, N. & Greber, N. D. Chemical evolution of the continental crust from a data-driven inversion of terrigenous sediment compositions. Earth Planet. Sci. Lett. 539, 116090 (2020).

    Article  Google Scholar 

  41. Lenardic, A. The diversity of tectonic modes and thoughts about transitions between them. Philos. Trans. R. Soc. A 376, 20170416 (2018).

    Article  Google Scholar 

  42. Dauphas, N., Hopp, T. & Nesvorný, D. Bayesian inference on the isotopic building blocks of Mars and Earth. Icarus 408, 115805 (2024).

    Article  CAS  Google Scholar 

  43. Turner, S., Wood, B., Johnson, T., O’Neill, C. & Bourdon, B. Formation and composition of Earth’s Hadean protocrust. Nature 640, 1–5 (2025).

    Article  Google Scholar 

  44. Hartnady, M. et al. Incipient continent formation by shallow melting of an altered mafic protocrust. Nat. Commun. 16, 4557 (2025).

    Article  CAS  Google Scholar 

  45. Wilde, S. A., Valley, J. W., Peck, W. H. & Graham, C. M. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409, 175–178 (2001).

    Article  CAS  Google Scholar 

  46. Drabon, N. et al. Heterogeneous Hadean crust with ambient mantle affinity recorded in detrital zircons of the Green Sandstone Bed, South Africa. Proc. Natl Acad. Sci. USA 118, e2004370118 (2021).

    Article  CAS  Google Scholar 

  47. Paquette, J. L. et al. The geological roots of South America: 4.1 Ga and 3.7 Ga zircon crystals discovered in N.E. Brazil and N.W. Argentina. Precambrian Res. 271, 49–55 (2015).

    Article  CAS  Google Scholar 

  48. Froude, D. O. et al. Ion microprobe identification of 4,100–4,200 Myr-old terrestrial zircons. Nature 304, 616–618 (1983).

    Article  CAS  Google Scholar 

  49. Compston, W. & Pidgeon, R. T. Jack Hills, evidence of more very old detrital zircons in Western Australia. Nature 321, 766–769 (1986).

    Article  CAS  Google Scholar 

  50. Harrison, T. M., Bell, E. A. & Boehnke, P. Hadean zircon petrochronology. Rev. Mineral. Geochem. 83, 329–363 (2017).

    Article  CAS  Google Scholar 

  51. Byerly, B. L. et al. Hadean zircon from a 3.3 Ga sandstone, Barberton greenstone belt, South Africa. Geology 46, 967–970 (2018).

    Article  CAS  Google Scholar 

  52. Chaudhuri, T., Wan, Y., Mazumder, R., Ma, M. & Liu, D. Evidence of enriched, Hadean mantle reservoir from 4.2–4.0 Ga zircon xenocrysts from paleoarchean TTGs of the Singhbhum Craton, Eastern India. Sci. Rep. 8, 7069 (2018).

    Article  Google Scholar 

  53. Wan, Y. et al. Hadean to early mesoarchean rocks and zircons in the North China Craton: a review. Earth-Sci. Rev. 243, 104489 (2023).

    Article  CAS  Google Scholar 

  54. Bauer, A. M. et al. Hafnium isotopes in zircons document the gradual onset of mobile-lid tectonics. Geochem. Perspect. Lett. 14, 1–6 (2020).

    Article  Google Scholar 

  55. Drabon, N. et al. Destabilization of long-lived Hadean protocrust and the onset of pervasive hydrous melting at 3.8 Ga. AGU Adv. 3, e2021AV000520 (2022).

    Article  Google Scholar 

  56. Korenaga, J. Hadean geodynamics and the nature of early continental crust. Precambrian Res. 359, 106178 (2021).

    Article  CAS  Google Scholar 

  57. Mojzsis, S. J., Harrison, T. M. & Pidgeon, R. T. Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4,300 Myr ago. Nature 409, 178–181 (2001).

    Article  CAS  Google Scholar 

  58. Peck, W. H., Valley, J. W., Wilde, S. A. & Graham, C. M. Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: ion microprobe evidence for high δ18O continental crust and oceans in the early Archean. Geochim. Cosmochim. Acta 65, 4215–4229 (2001).

    Article  CAS  Google Scholar 

  59. Valley, J. W. et al. 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contrib. Mineral. Petrol. 150, 561–580 (2005).

    Article  CAS  Google Scholar 

  60. O’Neill, C. et al. A window for plate tectonics in terrestrial planet evolution? Phys. Earth Planet. Inter. 255, 80–92 (2016).

    Article  Google Scholar 

  61. O’Neill, C., Marchi, S., Zhang, S. & Bottke, W. Impact-driven subduction on the Hadean Earth. Nat. Geosci. 10, 793–797 (2017).

    Article  Google Scholar 

  62. van Hunen, J. & Moyen, J.-F. Archean subduction: fact or fiction? Annu. Rev. Earth Planet. Sci. 40, 195–219 (2012).

    Article  Google Scholar 

  63. Sizova, E., Gerya, T., Brown, M. & Perchuk, L. L. Subduction styles in the Precambrian: insight from numerical experiments. Lithos 116, 209–229 (2010).

    Article  CAS  Google Scholar 

  64. Foley, B. J. Generation of Archean TTGs via sluggish subduction. Geology 52, 656–660 (2024).

    Article  Google Scholar 

  65. Foley, B. J. The dependence of planetary tectonics on mantle thermal state: applications to early Earth evolution. Philos. Trans. R. Soc. A 376, 20170409 (2018).

    Article  Google Scholar 

  66. O’Neill, C. & Debaille, V. The evolution of Hadean–Eoarchaean geodynamics. Earth Planet. Sci. Lett. 406, 49–58 (2014).

    Article  Google Scholar 

  67. Bernadet, J. et al. Making continental crust on water-bearing terrestrial planets. Sci. Adv. 11, eads6746 (2025).

    Article  CAS  Google Scholar 

  68. Borisova, A. Y. et al. Hadean zircon formed due to hydrated ultramafic protocrust melting. Geology 50, 300–304 (2021).

    Article  Google Scholar 

  69. Kenny, G. G., Whitehouse, M. J. & Kamber, B. S. Differentiated impact melt sheets may be a potential source of Hadean detrital zircon. Geology 44, 435–438 (2016).

    Article  Google Scholar 

  70. Tusch, J. et al. Long-term preservation of Hadean protocrust in Earth’s mantle. Proc. Natl. Acad. Sci. USA 119, e2120241119 (2022).

    Article  CAS  Google Scholar 

  71. Bennett, V. C., Brandon, A. D. & Nutman, A. P. Coupled 142Nd-143Nd isotopic evidence for Hadean mantle dynamics. Science 318, 1907–1910 (2007).

    Article  CAS  Google Scholar 

  72. Debaille, V. et al. Stagnant-lid tectonics in early Earth revealed by 142Nd variations in late Archean rocks. Earth Planet. Sci. Lett. 373, 83–92 (2013).

    Article  CAS  Google Scholar 

  73. Fisher, C. M. & Vervoort, J. D. Using the magmatic record to constrain the growth of continental crust — the Eoarchean zircon Hf record of Greenland. Earth Planet. Sci. Lett. 488, 79–91 (2018).

    Article  CAS  Google Scholar 

  74. Vervoort, J. D. & Kemp, A. I. S. Isotope evolution of the depleted mantle. Annu. Rev. Earth Planet. Sci. https://doi.org/10.1146/annurev-earth-031621-112052 (2024).

    Article  Google Scholar 

  75. Dröllner, M., Kirkland, C. L., Barham, M., Evans, N. J. & McDonald, B. J. A persistent Hadean–Eoarchean protocrust in the western Yilgarn Craton, Western Australia. Terra Nova 34, 458–464 (2022).

    Article  Google Scholar 

  76. Kamber, B. S. The evolving nature of terrestrial crust from the Hadean, through the Archaean, into the Proterozoic. Precambrian Res. 258, 48–82 (2015).

    Article  CAS  Google Scholar 

  77. Bauer, A. M., Vervoort, J. D. & Fisher, C. M. Unraveling the complexity of zircons from the 4.0–2.9 Ga Acasta Gneiss Complex. Geochim. Cosmochim. Acta 283, 85–102 (2020).

    Article  CAS  Google Scholar 

  78. Nutman, A. P., Bennett, V. C., & Friend, C. R. L. The emergence of the Eoarchaean proto-arc: evolution of a c. 3700 Ma convergent plate boundary at Isua, southern West Greenland. Geol. Soc. 389, 113–133 (2015).

    Article  Google Scholar 

  79. Moyen, J.-F. & van Hunen, J. Short-term episodicity of Archaean plate tectonics. Geology 40, 451–454 (2012).

    Article  Google Scholar 

  80. Mole, D. R. et al. Time–space evolution of an Archean craton: a Hf-isotope window into continent formation. Earth-Sci. Rev. 196, 102831 (2019).

    Article  CAS  Google Scholar 

  81. Morris, P. A. & Kirkland, C. L. Melting of a subduction-modified mantle source: a case study from the Archean Marda Volcanic Complex, central Yilgarn Craton, Western Australia. Lithos 190–191, 403–419 (2014).

    Article  Google Scholar 

  82. Nutman, A. P., Friend, C. R. L. & Bennett, V. C. Evidence for 3650–3600 Ma assembly of the northern end of the Itsaq Gneiss Complex, Greenland: implication for early Archaean tectonics. Tectonics https://doi.org/10.1029/2000TC001203 (2002).

  83. Keller, B. & Schoene, B. Plate tectonics and continental basaltic geochemistry throughout Earth history. Earth Planet. Sci. Lett. 481, 290–304 (2018).

    Article  CAS  Google Scholar 

  84. Smithies, R. H. et al. Two distinct origins for Archean greenstone belts. Earth Planet. Sci. Lett. 487, 106–116 (2018).

    Article  CAS  Google Scholar 

  85. Johnson, T. E. et al. Secular change in TTG compositions: implications for the evolution of Archaean geodynamics. Earth Planet. Sci. Lett. 505, 65–75 (2019).

    Article  CAS  Google Scholar 

  86. Cawood, P. A. et al. Secular evolution of continents and the Earth system. Rev. Geophys. 60, e2022RG000789 (2022).

    Article  Google Scholar 

  87. Bindeman, I. N. et al. Rapid emergence of subaerial landmasses and onset of a modern hydrologic cycle 2.5 billion years ago. Nature 557, 545–548 (2018).

    Article  CAS  Google Scholar 

  88. Hawkesworth, C., Cawood, P. A. & Dhuime, B. Rates of generation and growth of the continental crust. Geosci. Front. 10, 165–173 (2019).

    Article  CAS  Google Scholar 

  89. Laurent, O., Martin, H., Moyen, J. F. & Doucelance, R. The diversity and evolution of late-Archean granitoids: evidence for the onset of ‘modern-style’ plate tectonics between 3.0 and 2.5Ga. Lithos 205, 208–235 (2014).

    Article  CAS  Google Scholar 

  90. Drabon, N. & Lowe, D. R. Progressive accretion recorded in sedimentary rocks of the 3.28–3.23 Ga Fig Tree Group, Barberton Greenstone Belt. GSA Bull. 134, 1258–1276 (2021).

    Article  Google Scholar 

  91. Wiemer, D., Schrank, C. E., Murphy, D. T., Wenham, L. & Allen, C. M. Earth’s oldest stable crust in the Pilbara Craton formed by cyclic gravitational overturns. Nat. Geosci. 11, 357–361 (2018).

    Article  CAS  Google Scholar 

  92. Kendrick, J. & Yakymchuk, C. Garnet fractionation, progressive melt loss and bulk composition variations in anatectic metabasites: complications for interpreting the geodynamic significance of TTGs. Geosci. Front. 11, 745–763 (2020).

    Article  CAS  Google Scholar 

  93. Vandenburg, E. D. et al. Spatial and temporal control of Archean tectonomagmatic regimes. Earth-Sci. Rev. 241, 104417 (2023).

    Article  CAS  Google Scholar 

  94. Sizova, E., Gerya, T., Stüwe, K. & Brown, M. Generation of felsic crust in the Archean: a geodynamic modeling perspective. Precambrian Res. 271, 198–224 (2015).

    Article  CAS  Google Scholar 

  95. Smithies, R. H. et al. Oxygen isotopes trace the origins of Earth’s earliest continental crust. Nature 592, 70–75 (2021).

    Article  CAS  Google Scholar 

  96. Hartnady, M. I. H. et al. Fluid processes in the early Earth and the growth of continents. Earth Planet. Sci. Lett. 594, 117695 (2022).

    Article  CAS  Google Scholar 

  97. André, L. et al. Early continental crust generated by reworking of basalts variably silicified by seawater. Nat. Geosci. 12, 769–773 (2019).

    Article  Google Scholar 

  98. Zhang, Q. et al. No evidence of supracrustal recycling in Si-O isotopes of Earth’s oldest rocks 4 Ga ago. Sci. Adv. 9, eadf0693 (2004).

    Article  Google Scholar 

  99. Murphy, M. E. et al. Silicon isotopes in an Archaean migmatite confirm seawater silicification of TTG sources. Geochim. Cosmochim. Acta 368, 34–49 (2024).

    Article  CAS  Google Scholar 

  100. Kaempf, J. et al. Paleoarchean metamorphism in the Acasta Gneiss complex: constraints from phase equilibrium modelling and in situ garnet Lu–Hf geochronology. J. Metamorph. Geol. 42, 373–394 (2024).

    Article  CAS  Google Scholar 

  101. Martin, E. & Sigmarsson, O. Thirteen million years of silicic magma production in Iceland: links between petrogenesis and tectonic settings. Lithos 116, 129–144 (2010).

    Article  CAS  Google Scholar 

  102. Marchi, S. et al. Widespread mixing and burial of Earth’s Hadean crust by asteroid impacts. Nature 511, 578–582 (2014).

    Article  CAS  Google Scholar 

  103. Wetherill, G. W. Late heavy bombardment of the moon and terrestrial planets. Lunar Planet. Sci. Conf. Proc. 2, 1539–1561 (1975).

    Google Scholar 

  104. Neukum, G., Ivanov, B. A. & Hartmann, W. K. Cratering records in the inner solar system in relation to the lunar reference system. Space Sci. Rev. 96, 55–86 (2001).

    Article  Google Scholar 

  105. Robbins, S. J. New crater calibrations for the lunar crater-age chronology. Earth Planet. Sci. Lett. 403, 188–198 (2014).

    Article  CAS  Google Scholar 

  106. Bottke, W. F. & Norman, M. D. The late heavy bombardment. Annu. Rev. Earth Planet. Sci. 45, 619–647 (2017).

    Article  CAS  Google Scholar 

  107. Boehnke, P. & Harrison, T. M. Illusory late heavy bombardments. Proc. Natl Acad. Sci. USA 113, 10802–10806 (2016).

    Article  CAS  Google Scholar 

  108. Morbidelli, A., Marchi, S., Bottke, W. F. & Kring, D. A. A sawtooth-like timeline for the first billion years of lunar bombardment. Earth Planet. Sci. Lett. 355, 144–151 (2012).

    Article  Google Scholar 

  109. Stöffler, D. et al. Cratering history and lunar chronology. Rev. Mineral. Geochem. 60, 519–596 (2006).

    Article  Google Scholar 

  110. Marchi, S. et al. Delayed and variable late Archaean atmospheric oxidation due to high collision rates on Earth. Nat. Geosci. 14, 827–831 (2021).

    Article  CAS  Google Scholar 

  111. O’Neill, C., Marchi, S., Bottke, W. & Fu, R. The role of impacts on Archaean tectonics. Geology 48, 174–178 (2019).

    Article  Google Scholar 

  112. Lowe, D. R., Byerly, G. R. & Kyte, F. T. Recently discovered 3.42–3.23 Ga impact layers, Barberton Belt, South Africa: 3.8 Ga detrital zircons, Archean impact history, and tectonic implications. Geology 42, 747–750 (2014).

    Article  Google Scholar 

  113. Kirkland, C. L. et al. A Paleoarchaean impact crater in the Pilbara Craton, Western Australia. Nat. Commun. 16, 2224 (2025).

    Article  CAS  Google Scholar 

  114. Abbott, S. S., Harrison, T. M., Schmitt, A. K. & Mojzsis, S. J. A search for thermal excursions from ancient extraterrestrial impacts using Hadean zircon Ti–U–Th–Pb depth profiles. Proc. Natl Acad. Sci. USA 109, 13486–13492 (2012).

    Article  Google Scholar 

  115. Abe, Y. Physical state of the very early Earth. Lithos 30, 223–235 (1993).

    Article  Google Scholar 

  116. Zhang, R. et al. Long-term periodicity of sedimentary basins in response to astronomical forcing: review and perspective. Earth-Sci. Rev. 244, 104533 (2023).

    Article  Google Scholar 

  117. Kirkland, C. L. et al. Bimodality in zircon oxygen isotopes and implications for crustal melting on the early Earth. Earth Planet. Sci. Lett. 625, 118491 (2024).

    Article  CAS  Google Scholar 

  118. Wu, Y. et al. Very long-term periodicity of episodic zircon production and Earth system evolution. Earth-Sci. Rev. 233, 104164 (2022).

    Article  CAS  Google Scholar 

  119. Vezinet, A. et al. Growth of continental crust and lithosphere subduction in the Hadean revealed by geochemistry and geodynamics. Nat. Commun. 16, 3850 (2025).

    Article  CAS  Google Scholar 

  120. Vallée, J. P. New velocimetry and revised cartography of the spiral arms in the Milky Way — a consistent symbiosis. Astron. J. 135, 1301 (2008).

    Article  Google Scholar 

  121. Rickman, H., Fouchard, M., Valsecchi, G. B. & Froeschlé, C. Algorithms for stellar perturbation computations on Oort cloud comets. Earth Moon Planets 97, 411–434 (2005).

    Article  Google Scholar 

  122. Roberts, W. W. Large-scale shock formation in spiral galaxies and its implications on star formation. Astrophys. J. 158, 123 (1969).

    Article  Google Scholar 

  123. Drolshagen, G., Koschny, D., Drolshagen, S., Kretschmer, J. & Poppe, B. Mass accumulation of earth from interplanetary dust, meteoroids, asteroids and comets. Planet. Space Sci. 143, 21–27 (2017).

    Article  Google Scholar 

  124. Terfelt, F. & Schmitz, B. Asteroid break-ups and meteorite delivery to Earth the past 500 million years. Proc. Natl Acad. Sci. USA 118, e2020977118 (2021).

    Article  CAS  Google Scholar 

  125. Yeomans, D. K. & Chamberlin, A. B. Comparing the Earth impact flux from comets and near-Earth asteroids. Acta Astronaut. 90, 3–5 (2013).

    Article  Google Scholar 

  126. O’Neill, C., Lenardic, A., Moresi, L., Torsvik, T. H. & Lee, C. T. A. Episodic Precambrian subduction. Earth Planet. Sci. Lett. 262, 552–562 (2007).

    Article  Google Scholar 

  127. Lowe, D. R. & Byerly, G. R. Geology of the Eastern Barberton Greenstone Belt, South Africa: early deformation and the role of large meteor impacts. Am. J. Sci. https://doi.org/10.2475/2001c.122938 (2024).

  128. Partnership, A. et al. The 2014 ALMA Long Baseline Campaign: first results from High Angular Resolution Observations toward the HL Tau region*. Astrophys. J. Lett. 808, L3 (2015).

    Article  Google Scholar 

  129. Byrne, P. K. et al. A globally fragmented and mobile lithosphere on Venus. Proc. Natl Acad. Sci. USA 118, e2025919118 (2021).

    Article  CAS  Google Scholar 

  130. Davaille, A., Smrekar, S. & Tomlinson, S. Experimental and observational evidence for plume-induced subduction on Venus. Nat. Geosci. 10, 349–355 (2017).

    Article  CAS  Google Scholar 

  131. Hirose, K., Wood, B. & Vočadlo, L. Light elements in the Earth’s core. Nat. Rev. Earth Environ. 2, 645–658 (2021).

    Article  CAS  Google Scholar 

  132. Puetz, S. J. A relational database of global U–Pb ages. Geosci. Front. 9, 877–891 (2018).

    Article  CAS  Google Scholar 

  133. Herzberg, C., Condie, K. & Korenaga, J. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292, 79–88 (2010).

    Article  CAS  Google Scholar 

  134. Chelle-Michou, C., McCarthy, A., Moyen, J.-F., Cawood, P. A. & Capitanio, F. A. Make subductions diverse again. Earth-Sci. Rev. 226, 103966 (2022).

    Article  Google Scholar 

  135. McKay, C. P. Requirements and limits for life in the context of exoplanets. Proc. Natl Acad. Sci. USA 111, 12628–12633 (2014).

    Article  CAS  Google Scholar 

  136. Stern, R. J. & Gerya, T. V. The importance of continents, oceans and plate tectonics for the evolution of complex life: implications for finding extraterrestrial civilizations. Sci. Rep. 14, 8552 (2024).

    Article  CAS  Google Scholar 

  137. Dong, J., Fischer, R. A., Stixrude, L. P. & Lithgow-Bertelloni, C. R. Constraining the volume of Earth’s early oceans with a temperature-dependent mantle water storage capacity model. AGU Adv. 2, e2020AV000323 (2021).

    Article  Google Scholar 

  138. Flament, N., Coltice, N. & Rey, P. F. A case for late-Archaean continental emergence from thermal evolution models and hypsometry. Earth Planet. Sci. Lett. 275, 326–336 (2008).

    Article  CAS  Google Scholar 

  139. Walker, J. C. G., Hays, P. B. & Kasting, J. F. A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J. Geophys. Res. Ocean 86, 9776–9782 (1981).

    Article  CAS  Google Scholar 

  140. Crockford, P. & Halevy, I. Questioning the paradigm of a phosphate-limited Archean biosphere. Geophys. Res. Lett. 49, e2022GL099818 (2022).

    Article  Google Scholar 

  141. Hao, J., Knoll, A. H., Huang, F., Hazen, R. M. & Daniel, I. Cycling phosphorus on the Archean Earth: part I. Continental weathering and riverine transport of phosphorus. Geochim. Cosmochim. Acta 273, 70–84 (2020).

    Article  CAS  Google Scholar 

  142. Damer, B. & Deamer, D. The hot spring hypothesis for an origin of life. Astrobiology 20, 429–452 (2019).

    Article  Google Scholar 

  143. Sasselov, D. D., Grotzinger, J. P. & Sutherland, J. D. The origin of life as a planetary phenomenon. Sci. Adv. 6, eaax3419 (2020).

    Article  CAS  Google Scholar 

  144. O’Neill, C. & Nimmo, F. The role of episodic overturn in generating the surface geology and heat flow on Enceladus. Nat. Geosci. 3, 88–91 (2010).

    Article  Google Scholar 

  145. Moore, W. B. & Webb, A. A. G. Heat-pipe Earth. Nature 501, 501–505 (2013).

    Article  CAS  Google Scholar 

  146. Lourenço, D. L., Rozel, A. B., Ballmer, M. D. & Tackley, P. J. Plutonic-squishy lid: a new global tectonic regime generated by intrusive magmatism on Earth-like planets. Geochem. Geophys. Geosyst. 21, e2019GC008756 (2020).

    Article  Google Scholar 

  147. Lherm, V., Nakajima, M. & Blackman, E. G. Thermal and magnetic evolution of an Earth-like planet with a basal magma ocean. Phys. Earth Planet. Inter. 356, 107267 (2024).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Timescales of Mineral Systems Group at Curtin University for financial support.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conceptualization, writing and figure drafting.

Corresponding author

Correspondence to Christopher L. Kirkland.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Roberta Rudnick, who co-reviewed with Pengyuan Han; Taras Gerya and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Density waves

In astrophysics, density waves are spiral-shaped regions of enhanced mass density that move through the disk of a galaxy, like the Milky Way, at a different speed than individual stars or gas clouds.

Endogenic

Internal processes, which are powered primarily by the planet’s internal heat from both residual accretionary energy and ongoing radiogenic decay, drive crust production and modification on Earth, including mantle melting, subduction and crustal recycling.

Enriched, ‘arc-like’ mantle sources

A mantle domain whose composition has been modified by the addition of fluids or crustal components, often via subduction, or by melt extraction and subsequent re-fertilization, producing geochemical signatures resembling those of volcanic arc settings (for example, enriched large ion lithophile elements, light rare-earth elements and distinctive isotopic ratios).

Exogenic

External processes influence crust production and surface evolution, such as large meteorite impacts, and can trigger melting, surface modification and crustal reworking, particularly during the early history of the Earth.

Non-uniformitarian

Refers to processes or events in Earth’s history that do not have direct modern analogues, such as more frequent large impacts, higher mantle temperatures or tectonic regimes unlike modern plate tectonics and therefore require different explanatory frameworks.

Preservation effect

A geological bias arising when certain rock types, structures or metamorphic conditions are less likely to survive over time owing to erosion, overprinting or tectonic recycling, meaning the absence of specific features in the record may reflect poor preservation rather than true absence in the past.

Rayleigh–Taylor instabilities

A physical process that occurs when denser material overlies less dense material under the influence of gravity, causing the denser material to sink and the lighter material to rise. In geology, this can describe the dripping or delamination of dense lower crust or lithospheric mantle into the underlying asthenosphere, influencing mantle convection and crustal recycling.

Uniformitarian

The principle that the physical, chemical and biological processes operating today also operated in the past, meaning present-day processes can be used to interpret the geological record.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirkland, C.L., Johnson, T.E., Brown, M. et al. The evolution of Earth’s early continental crust. Nat Rev Earth Environ 6, 612–625 (2025). https://doi.org/10.1038/s43017-025-00706-6

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43017-025-00706-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing