Abstract
Continental crust is fundamental to planetary habitability, providing the geochemical reservoirs and physical interfaces that drive and regulate exchanges among the atmosphere, hydrosphere and biosphere. However, the evolution of Earth’s crust is uncertain owing to debate regarding the competing roles of internal versus external energetic drivers. In this Review, we examine the interplay between internal and external drivers of the production, modification and destruction of crust on the early Earth using geochemical, geological and geophysical data. Internal drivers are potentially linked to plate tectonics and processes such as subduction (dripping) or delamination. External drivers from large meteorite impacts likely influenced crust formation by inducing rapid decompression melting of the mantle to form basaltic protocratons, the early, mantle-derived crustal nuclei that preceded stable continental crust. On a planet covered by water, protocratons might have been transformed by intracrustal differentiation into evolved (continental) crust. Future research into the processes driving Earth’s early evolution and habitability should consider a wide range of temporal and spatial scales from seconds to millions of years and the subgrain to the galactic, to uncover the long-wavelength patterns, in mantle overturn rates and impact flux preserved in deep-time records.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Aarons, S. M., Johnson, A. C. & Rader, S. T. Forming Earth’s continental crust: a nontraditional stable isotope perspective. Elements 17, 413–418 (2021).
Johnson, T. E. et al. An impact melt origin for Earth’s oldest known evolved rocks. Nat. Geosci. 11, 795–799 (2018).
Reimink, J. R., Chacko, T., Stern, R. A. & Heaman, L. M. Earth’s earliest evolved crust generated in an Iceland-like setting. Nat. Geosci. 7, 529–533 (2014).
Turner, S., Wilde, S., Wörner, G., Schaefer, B. & Lai, Y.-J. An andesitic source for Jack Hills zircon supports onset of plate tectonics in the Hadean. Nat. Commun. 11, 1241 (2020).
Bell, E. A. & Harrison, T. M. Post-Hadean transitions in Jack Hills zircon provenance: a signal of the late heavy bombardment? Earth Planet. Sci. Lett. 364, 1–11 (2013).
Gillman, M. & Erenler, H. Reconciling the Earth’s stratigraphic record with the structure of our galaxy. Geosci. Front. 10, 2147–2151 (2019).
Gillman, M. & Zhang, R. Generation of a galactic chronology with impact ages and spiral arm tangents. Sci. Rep. 14, 5790 (2024).
Kirkland, C. L. & Sutton, P. A geological telescope through the galaxy? J. Geol. Soc. 181, jgs2023–jgs2219 (2024).
Kirkland, C. L. et al. Did transit through the galactic spiral arms seed crust production on the early Earth? Geology 50, 1312–1317 (2022).
Allègre, C. J., Manhès, G. & Göpel, C. The age of the Earth. Geochim. Cosmochim. Acta 59, 1445–1456 (1995).
Wood, B. J., Walter, M. J. & Wade, J. Accretion of the Earth and segregation of its core. Nature 441, 825–833 (2006).
Piani, L. et al. Earth’s water may have been inherited from material similar to enstatite chondrite meteorites. Science 369, 1110–1113 (2020).
Sleep, N. H., Zahnle, K. & Neuhoff, P. S. Initiation of clement surface conditions on the earliest Earth. Proc. Natl Acad. Sci. USA 98, 3666–3672 (2001).
Smithies, R. H. et al. No evidence for high-pressure melting of Earth’s crust in the Archean. Nat. Commun. 10, 5559 (2019).
Arndt, N. How did the continental crust form: no basalt, no water, no granite. Precambrian Res. 397, 107196 (2023).
Campbell, I. H. & Taylor, S. R. No water, no granites — no oceans, no continents. Geophys. Res. Lett. 10, 1061–1064 (1983).
Collins, W. J., Murphy, J. B., Johnson, T. E. & Huang, H.-Q. Critical role of water in the formation of continental crust. Nat. Geosci. 13, 331–338 (2020).
Piccolo, A., Palin, R. M., Kaus, B. J. P. & White, R. W. Generation of Earth’s early continents from a relatively cool Archean mantle. Geochem. Geophys. Geosyst. 20, 1679–1697 (2019).
Brown, M., Pearce, J. A. & Johnson, T. E. Is plate tectonics a post-Archean phenomenon? A petrological perspective. J. Geol. Soc. 181, jgs2024–jgs2091 (2024).
Moyen, J.-F. & Stevens, G. Experimental constraints on TTG petrogenesis: implications for Archean geodynamics. In Archean Geodynamics and Environments, American Geophysical Union, Geophysical Monograph Series (eds Benn, K. et al.) Vol. 164, 149–175 (2006).
Zhang, C. et al. Constraints from experimental melting of amphibolite on the depth of formation of garnet-rich restites, and implications for models of early Archean crustal growth. Precambrian Res. 231, 206–217 (2013).
Rapp, R. P., Watson, E. B. & Miller, C. F. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Res. 51, 1–25 (1991).
Johnson, T. E., Brown, M., Gardiner, N. J., Kirkland, C. L. & Smithies, R. H. Earth’s first stable continents did not form by subduction. Nature 543, 239–242 (2017).
Johnson, T. E. et al. Giant impacts and the origin and evolution of continents. Nature 608, 330–335 (2022).
Moyen, J.-F. & Laurent, O. Archaean tectonic systems: a view from igneous rocks. Lithos 302–303, 99–125 (2018).
Hawkesworth, C., Cawood, P., Kemp, T., Storey, C. & Dhuime, B. A matter of preservation. Science 323, 49–50 (2009).
Sundell, K. E. & Macdonald, F. A. The tectonic context of hafnium isotopes in zircon. Earth Planet. Sci. Lett. 584, 117426 (2022).
Hawkesworth, C. J. & Brown, M. Earth dynamics and the development of plate tectonics. Philos. Trans. R. Soc. A 376, 20180228 (2018).
Korenaga, J. Crustal evolution and mantle dynamics through Earth history. Philos. Trans. R. Soc. A 376, 20170408 (2018).
Hopkins, M., Harrison, T. M. & Manning, C. E. Low heat flow inferred from >4 Gyr zircons suggests Hadean plate boundary interactions. Nature 456, 493–496 (2008).
Yuan, Q., Gurnis, M., Asimow, P. D. & Li, Y. A giant impact origin for the first subduction on Earth. Geophys. Res. Lett. 51, e2023GL106723 (2024).
Stern, R. J. & Gerya, T. Subduction initiation in nature and models: a review. Tectonophysics 746, 173–198 (2018).
Bercovici, D. & Ricard, Y. Plate tectonics, damage and inheritance. Nature 508, 513–516 (2014).
Hartnady, M. I. H. & Kirkland, C. L. A gradual transition to plate tectonics on Earth between 3.2 to 2.7 billion years ago. Terra Nova 31, 129–134 (2019).
Holder, R. M., Viete, D. R., Brown, M. & Johnson, T. E. Metamorphism and the evolution of plate tectonics. Nature 572, 378–381 (2019).
Brown M., Pearce J. A. & Johnson T.E. Is plate tectonics a post-Archean phenomenon? A petrological perspective. J. Geol. Soc. 181, jgs2024-091 (2024).
Brenner, A. R. et al. Paleomagnetic evidence for modern-like plate motion velocities at 3.2 Ga. Sci. Adv. 6, eaaz8670 (2020).
Brenner, A. R., Fu, R. R., Kylander-Clark, A. R. C., Hudak, G. J. & Foley, B. J. Plate motion and a dipolar geomagnetic field at 3.25 Ga. Proc. Natl Acad. Sci. USA 119, e2210258119 (2022).
Kemp, A. I. S. et al. Hadean crustal evolution revisited: new constraints from Pb–Hf isotope systematics of the Jack Hills zircons. Earth Planet. Sci. Lett. 296, 45–56 (2010).
Ptáček, M. P., Dauphas, N. & Greber, N. D. Chemical evolution of the continental crust from a data-driven inversion of terrigenous sediment compositions. Earth Planet. Sci. Lett. 539, 116090 (2020).
Lenardic, A. The diversity of tectonic modes and thoughts about transitions between them. Philos. Trans. R. Soc. A 376, 20170416 (2018).
Dauphas, N., Hopp, T. & Nesvorný, D. Bayesian inference on the isotopic building blocks of Mars and Earth. Icarus 408, 115805 (2024).
Turner, S., Wood, B., Johnson, T., O’Neill, C. & Bourdon, B. Formation and composition of Earth’s Hadean protocrust. Nature 640, 1–5 (2025).
Hartnady, M. et al. Incipient continent formation by shallow melting of an altered mafic protocrust. Nat. Commun. 16, 4557 (2025).
Wilde, S. A., Valley, J. W., Peck, W. H. & Graham, C. M. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409, 175–178 (2001).
Drabon, N. et al. Heterogeneous Hadean crust with ambient mantle affinity recorded in detrital zircons of the Green Sandstone Bed, South Africa. Proc. Natl Acad. Sci. USA 118, e2004370118 (2021).
Paquette, J. L. et al. The geological roots of South America: 4.1 Ga and 3.7 Ga zircon crystals discovered in N.E. Brazil and N.W. Argentina. Precambrian Res. 271, 49–55 (2015).
Froude, D. O. et al. Ion microprobe identification of 4,100–4,200 Myr-old terrestrial zircons. Nature 304, 616–618 (1983).
Compston, W. & Pidgeon, R. T. Jack Hills, evidence of more very old detrital zircons in Western Australia. Nature 321, 766–769 (1986).
Harrison, T. M., Bell, E. A. & Boehnke, P. Hadean zircon petrochronology. Rev. Mineral. Geochem. 83, 329–363 (2017).
Byerly, B. L. et al. Hadean zircon from a 3.3 Ga sandstone, Barberton greenstone belt, South Africa. Geology 46, 967–970 (2018).
Chaudhuri, T., Wan, Y., Mazumder, R., Ma, M. & Liu, D. Evidence of enriched, Hadean mantle reservoir from 4.2–4.0 Ga zircon xenocrysts from paleoarchean TTGs of the Singhbhum Craton, Eastern India. Sci. Rep. 8, 7069 (2018).
Wan, Y. et al. Hadean to early mesoarchean rocks and zircons in the North China Craton: a review. Earth-Sci. Rev. 243, 104489 (2023).
Bauer, A. M. et al. Hafnium isotopes in zircons document the gradual onset of mobile-lid tectonics. Geochem. Perspect. Lett. 14, 1–6 (2020).
Drabon, N. et al. Destabilization of long-lived Hadean protocrust and the onset of pervasive hydrous melting at 3.8 Ga. AGU Adv. 3, e2021AV000520 (2022).
Korenaga, J. Hadean geodynamics and the nature of early continental crust. Precambrian Res. 359, 106178 (2021).
Mojzsis, S. J., Harrison, T. M. & Pidgeon, R. T. Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4,300 Myr ago. Nature 409, 178–181 (2001).
Peck, W. H., Valley, J. W., Wilde, S. A. & Graham, C. M. Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: ion microprobe evidence for high δ18O continental crust and oceans in the early Archean. Geochim. Cosmochim. Acta 65, 4215–4229 (2001).
Valley, J. W. et al. 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contrib. Mineral. Petrol. 150, 561–580 (2005).
O’Neill, C. et al. A window for plate tectonics in terrestrial planet evolution? Phys. Earth Planet. Inter. 255, 80–92 (2016).
O’Neill, C., Marchi, S., Zhang, S. & Bottke, W. Impact-driven subduction on the Hadean Earth. Nat. Geosci. 10, 793–797 (2017).
van Hunen, J. & Moyen, J.-F. Archean subduction: fact or fiction? Annu. Rev. Earth Planet. Sci. 40, 195–219 (2012).
Sizova, E., Gerya, T., Brown, M. & Perchuk, L. L. Subduction styles in the Precambrian: insight from numerical experiments. Lithos 116, 209–229 (2010).
Foley, B. J. Generation of Archean TTGs via sluggish subduction. Geology 52, 656–660 (2024).
Foley, B. J. The dependence of planetary tectonics on mantle thermal state: applications to early Earth evolution. Philos. Trans. R. Soc. A 376, 20170409 (2018).
O’Neill, C. & Debaille, V. The evolution of Hadean–Eoarchaean geodynamics. Earth Planet. Sci. Lett. 406, 49–58 (2014).
Bernadet, J. et al. Making continental crust on water-bearing terrestrial planets. Sci. Adv. 11, eads6746 (2025).
Borisova, A. Y. et al. Hadean zircon formed due to hydrated ultramafic protocrust melting. Geology 50, 300–304 (2021).
Kenny, G. G., Whitehouse, M. J. & Kamber, B. S. Differentiated impact melt sheets may be a potential source of Hadean detrital zircon. Geology 44, 435–438 (2016).
Tusch, J. et al. Long-term preservation of Hadean protocrust in Earth’s mantle. Proc. Natl. Acad. Sci. USA 119, e2120241119 (2022).
Bennett, V. C., Brandon, A. D. & Nutman, A. P. Coupled 142Nd-143Nd isotopic evidence for Hadean mantle dynamics. Science 318, 1907–1910 (2007).
Debaille, V. et al. Stagnant-lid tectonics in early Earth revealed by 142Nd variations in late Archean rocks. Earth Planet. Sci. Lett. 373, 83–92 (2013).
Fisher, C. M. & Vervoort, J. D. Using the magmatic record to constrain the growth of continental crust — the Eoarchean zircon Hf record of Greenland. Earth Planet. Sci. Lett. 488, 79–91 (2018).
Vervoort, J. D. & Kemp, A. I. S. Isotope evolution of the depleted mantle. Annu. Rev. Earth Planet. Sci. https://doi.org/10.1146/annurev-earth-031621-112052 (2024).
Dröllner, M., Kirkland, C. L., Barham, M., Evans, N. J. & McDonald, B. J. A persistent Hadean–Eoarchean protocrust in the western Yilgarn Craton, Western Australia. Terra Nova 34, 458–464 (2022).
Kamber, B. S. The evolving nature of terrestrial crust from the Hadean, through the Archaean, into the Proterozoic. Precambrian Res. 258, 48–82 (2015).
Bauer, A. M., Vervoort, J. D. & Fisher, C. M. Unraveling the complexity of zircons from the 4.0–2.9 Ga Acasta Gneiss Complex. Geochim. Cosmochim. Acta 283, 85–102 (2020).
Nutman, A. P., Bennett, V. C., & Friend, C. R. L. The emergence of the Eoarchaean proto-arc: evolution of a c. 3700 Ma convergent plate boundary at Isua, southern West Greenland. Geol. Soc. 389, 113–133 (2015).
Moyen, J.-F. & van Hunen, J. Short-term episodicity of Archaean plate tectonics. Geology 40, 451–454 (2012).
Mole, D. R. et al. Time–space evolution of an Archean craton: a Hf-isotope window into continent formation. Earth-Sci. Rev. 196, 102831 (2019).
Morris, P. A. & Kirkland, C. L. Melting of a subduction-modified mantle source: a case study from the Archean Marda Volcanic Complex, central Yilgarn Craton, Western Australia. Lithos 190–191, 403–419 (2014).
Nutman, A. P., Friend, C. R. L. & Bennett, V. C. Evidence for 3650–3600 Ma assembly of the northern end of the Itsaq Gneiss Complex, Greenland: implication for early Archaean tectonics. Tectonics https://doi.org/10.1029/2000TC001203 (2002).
Keller, B. & Schoene, B. Plate tectonics and continental basaltic geochemistry throughout Earth history. Earth Planet. Sci. Lett. 481, 290–304 (2018).
Smithies, R. H. et al. Two distinct origins for Archean greenstone belts. Earth Planet. Sci. Lett. 487, 106–116 (2018).
Johnson, T. E. et al. Secular change in TTG compositions: implications for the evolution of Archaean geodynamics. Earth Planet. Sci. Lett. 505, 65–75 (2019).
Cawood, P. A. et al. Secular evolution of continents and the Earth system. Rev. Geophys. 60, e2022RG000789 (2022).
Bindeman, I. N. et al. Rapid emergence of subaerial landmasses and onset of a modern hydrologic cycle 2.5 billion years ago. Nature 557, 545–548 (2018).
Hawkesworth, C., Cawood, P. A. & Dhuime, B. Rates of generation and growth of the continental crust. Geosci. Front. 10, 165–173 (2019).
Laurent, O., Martin, H., Moyen, J. F. & Doucelance, R. The diversity and evolution of late-Archean granitoids: evidence for the onset of ‘modern-style’ plate tectonics between 3.0 and 2.5Ga. Lithos 205, 208–235 (2014).
Drabon, N. & Lowe, D. R. Progressive accretion recorded in sedimentary rocks of the 3.28–3.23 Ga Fig Tree Group, Barberton Greenstone Belt. GSA Bull. 134, 1258–1276 (2021).
Wiemer, D., Schrank, C. E., Murphy, D. T., Wenham, L. & Allen, C. M. Earth’s oldest stable crust in the Pilbara Craton formed by cyclic gravitational overturns. Nat. Geosci. 11, 357–361 (2018).
Kendrick, J. & Yakymchuk, C. Garnet fractionation, progressive melt loss and bulk composition variations in anatectic metabasites: complications for interpreting the geodynamic significance of TTGs. Geosci. Front. 11, 745–763 (2020).
Vandenburg, E. D. et al. Spatial and temporal control of Archean tectonomagmatic regimes. Earth-Sci. Rev. 241, 104417 (2023).
Sizova, E., Gerya, T., Stüwe, K. & Brown, M. Generation of felsic crust in the Archean: a geodynamic modeling perspective. Precambrian Res. 271, 198–224 (2015).
Smithies, R. H. et al. Oxygen isotopes trace the origins of Earth’s earliest continental crust. Nature 592, 70–75 (2021).
Hartnady, M. I. H. et al. Fluid processes in the early Earth and the growth of continents. Earth Planet. Sci. Lett. 594, 117695 (2022).
André, L. et al. Early continental crust generated by reworking of basalts variably silicified by seawater. Nat. Geosci. 12, 769–773 (2019).
Zhang, Q. et al. No evidence of supracrustal recycling in Si-O isotopes of Earth’s oldest rocks 4 Ga ago. Sci. Adv. 9, eadf0693 (2004).
Murphy, M. E. et al. Silicon isotopes in an Archaean migmatite confirm seawater silicification of TTG sources. Geochim. Cosmochim. Acta 368, 34–49 (2024).
Kaempf, J. et al. Paleoarchean metamorphism in the Acasta Gneiss complex: constraints from phase equilibrium modelling and in situ garnet Lu–Hf geochronology. J. Metamorph. Geol. 42, 373–394 (2024).
Martin, E. & Sigmarsson, O. Thirteen million years of silicic magma production in Iceland: links between petrogenesis and tectonic settings. Lithos 116, 129–144 (2010).
Marchi, S. et al. Widespread mixing and burial of Earth’s Hadean crust by asteroid impacts. Nature 511, 578–582 (2014).
Wetherill, G. W. Late heavy bombardment of the moon and terrestrial planets. Lunar Planet. Sci. Conf. Proc. 2, 1539–1561 (1975).
Neukum, G., Ivanov, B. A. & Hartmann, W. K. Cratering records in the inner solar system in relation to the lunar reference system. Space Sci. Rev. 96, 55–86 (2001).
Robbins, S. J. New crater calibrations for the lunar crater-age chronology. Earth Planet. Sci. Lett. 403, 188–198 (2014).
Bottke, W. F. & Norman, M. D. The late heavy bombardment. Annu. Rev. Earth Planet. Sci. 45, 619–647 (2017).
Boehnke, P. & Harrison, T. M. Illusory late heavy bombardments. Proc. Natl Acad. Sci. USA 113, 10802–10806 (2016).
Morbidelli, A., Marchi, S., Bottke, W. F. & Kring, D. A. A sawtooth-like timeline for the first billion years of lunar bombardment. Earth Planet. Sci. Lett. 355, 144–151 (2012).
Stöffler, D. et al. Cratering history and lunar chronology. Rev. Mineral. Geochem. 60, 519–596 (2006).
Marchi, S. et al. Delayed and variable late Archaean atmospheric oxidation due to high collision rates on Earth. Nat. Geosci. 14, 827–831 (2021).
O’Neill, C., Marchi, S., Bottke, W. & Fu, R. The role of impacts on Archaean tectonics. Geology 48, 174–178 (2019).
Lowe, D. R., Byerly, G. R. & Kyte, F. T. Recently discovered 3.42–3.23 Ga impact layers, Barberton Belt, South Africa: 3.8 Ga detrital zircons, Archean impact history, and tectonic implications. Geology 42, 747–750 (2014).
Kirkland, C. L. et al. A Paleoarchaean impact crater in the Pilbara Craton, Western Australia. Nat. Commun. 16, 2224 (2025).
Abbott, S. S., Harrison, T. M., Schmitt, A. K. & Mojzsis, S. J. A search for thermal excursions from ancient extraterrestrial impacts using Hadean zircon Ti–U–Th–Pb depth profiles. Proc. Natl Acad. Sci. USA 109, 13486–13492 (2012).
Abe, Y. Physical state of the very early Earth. Lithos 30, 223–235 (1993).
Zhang, R. et al. Long-term periodicity of sedimentary basins in response to astronomical forcing: review and perspective. Earth-Sci. Rev. 244, 104533 (2023).
Kirkland, C. L. et al. Bimodality in zircon oxygen isotopes and implications for crustal melting on the early Earth. Earth Planet. Sci. Lett. 625, 118491 (2024).
Wu, Y. et al. Very long-term periodicity of episodic zircon production and Earth system evolution. Earth-Sci. Rev. 233, 104164 (2022).
Vezinet, A. et al. Growth of continental crust and lithosphere subduction in the Hadean revealed by geochemistry and geodynamics. Nat. Commun. 16, 3850 (2025).
Vallée, J. P. New velocimetry and revised cartography of the spiral arms in the Milky Way — a consistent symbiosis. Astron. J. 135, 1301 (2008).
Rickman, H., Fouchard, M., Valsecchi, G. B. & Froeschlé, C. Algorithms for stellar perturbation computations on Oort cloud comets. Earth Moon Planets 97, 411–434 (2005).
Roberts, W. W. Large-scale shock formation in spiral galaxies and its implications on star formation. Astrophys. J. 158, 123 (1969).
Drolshagen, G., Koschny, D., Drolshagen, S., Kretschmer, J. & Poppe, B. Mass accumulation of earth from interplanetary dust, meteoroids, asteroids and comets. Planet. Space Sci. 143, 21–27 (2017).
Terfelt, F. & Schmitz, B. Asteroid break-ups and meteorite delivery to Earth the past 500 million years. Proc. Natl Acad. Sci. USA 118, e2020977118 (2021).
Yeomans, D. K. & Chamberlin, A. B. Comparing the Earth impact flux from comets and near-Earth asteroids. Acta Astronaut. 90, 3–5 (2013).
O’Neill, C., Lenardic, A., Moresi, L., Torsvik, T. H. & Lee, C. T. A. Episodic Precambrian subduction. Earth Planet. Sci. Lett. 262, 552–562 (2007).
Lowe, D. R. & Byerly, G. R. Geology of the Eastern Barberton Greenstone Belt, South Africa: early deformation and the role of large meteor impacts. Am. J. Sci. https://doi.org/10.2475/2001c.122938 (2024).
Partnership, A. et al. The 2014 ALMA Long Baseline Campaign: first results from High Angular Resolution Observations toward the HL Tau region*. Astrophys. J. Lett. 808, L3 (2015).
Byrne, P. K. et al. A globally fragmented and mobile lithosphere on Venus. Proc. Natl Acad. Sci. USA 118, e2025919118 (2021).
Davaille, A., Smrekar, S. & Tomlinson, S. Experimental and observational evidence for plume-induced subduction on Venus. Nat. Geosci. 10, 349–355 (2017).
Hirose, K., Wood, B. & Vočadlo, L. Light elements in the Earth’s core. Nat. Rev. Earth Environ. 2, 645–658 (2021).
Puetz, S. J. A relational database of global U–Pb ages. Geosci. Front. 9, 877–891 (2018).
Herzberg, C., Condie, K. & Korenaga, J. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292, 79–88 (2010).
Chelle-Michou, C., McCarthy, A., Moyen, J.-F., Cawood, P. A. & Capitanio, F. A. Make subductions diverse again. Earth-Sci. Rev. 226, 103966 (2022).
McKay, C. P. Requirements and limits for life in the context of exoplanets. Proc. Natl Acad. Sci. USA 111, 12628–12633 (2014).
Stern, R. J. & Gerya, T. V. The importance of continents, oceans and plate tectonics for the evolution of complex life: implications for finding extraterrestrial civilizations. Sci. Rep. 14, 8552 (2024).
Dong, J., Fischer, R. A., Stixrude, L. P. & Lithgow-Bertelloni, C. R. Constraining the volume of Earth’s early oceans with a temperature-dependent mantle water storage capacity model. AGU Adv. 2, e2020AV000323 (2021).
Flament, N., Coltice, N. & Rey, P. F. A case for late-Archaean continental emergence from thermal evolution models and hypsometry. Earth Planet. Sci. Lett. 275, 326–336 (2008).
Walker, J. C. G., Hays, P. B. & Kasting, J. F. A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J. Geophys. Res. Ocean 86, 9776–9782 (1981).
Crockford, P. & Halevy, I. Questioning the paradigm of a phosphate-limited Archean biosphere. Geophys. Res. Lett. 49, e2022GL099818 (2022).
Hao, J., Knoll, A. H., Huang, F., Hazen, R. M. & Daniel, I. Cycling phosphorus on the Archean Earth: part I. Continental weathering and riverine transport of phosphorus. Geochim. Cosmochim. Acta 273, 70–84 (2020).
Damer, B. & Deamer, D. The hot spring hypothesis for an origin of life. Astrobiology 20, 429–452 (2019).
Sasselov, D. D., Grotzinger, J. P. & Sutherland, J. D. The origin of life as a planetary phenomenon. Sci. Adv. 6, eaax3419 (2020).
O’Neill, C. & Nimmo, F. The role of episodic overturn in generating the surface geology and heat flow on Enceladus. Nat. Geosci. 3, 88–91 (2010).
Moore, W. B. & Webb, A. A. G. Heat-pipe Earth. Nature 501, 501–505 (2013).
Lourenço, D. L., Rozel, A. B., Ballmer, M. D. & Tackley, P. J. Plutonic-squishy lid: a new global tectonic regime generated by intrusive magmatism on Earth-like planets. Geochem. Geophys. Geosyst. 21, e2019GC008756 (2020).
Lherm, V., Nakajima, M. & Blackman, E. G. Thermal and magnetic evolution of an Earth-like planet with a basal magma ocean. Phys. Earth Planet. Inter. 356, 107267 (2024).
Acknowledgements
The authors acknowledge the Timescales of Mineral Systems Group at Curtin University for financial support.
Author information
Authors and Affiliations
Contributions
All authors contributed to the conceptualization, writing and figure drafting.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Earth & Environment thanks Roberta Rudnick, who co-reviewed with Pengyuan Han; Taras Gerya and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Density waves
-
In astrophysics, density waves are spiral-shaped regions of enhanced mass density that move through the disk of a galaxy, like the Milky Way, at a different speed than individual stars or gas clouds.
- Endogenic
-
Internal processes, which are powered primarily by the planet’s internal heat from both residual accretionary energy and ongoing radiogenic decay, drive crust production and modification on Earth, including mantle melting, subduction and crustal recycling.
- Enriched, ‘arc-like’ mantle sources
-
A mantle domain whose composition has been modified by the addition of fluids or crustal components, often via subduction, or by melt extraction and subsequent re-fertilization, producing geochemical signatures resembling those of volcanic arc settings (for example, enriched large ion lithophile elements, light rare-earth elements and distinctive isotopic ratios).
- Exogenic
-
External processes influence crust production and surface evolution, such as large meteorite impacts, and can trigger melting, surface modification and crustal reworking, particularly during the early history of the Earth.
- Non-uniformitarian
-
Refers to processes or events in Earth’s history that do not have direct modern analogues, such as more frequent large impacts, higher mantle temperatures or tectonic regimes unlike modern plate tectonics and therefore require different explanatory frameworks.
- Preservation effect
-
A geological bias arising when certain rock types, structures or metamorphic conditions are less likely to survive over time owing to erosion, overprinting or tectonic recycling, meaning the absence of specific features in the record may reflect poor preservation rather than true absence in the past.
- Rayleigh–Taylor instabilities
-
A physical process that occurs when denser material overlies less dense material under the influence of gravity, causing the denser material to sink and the lighter material to rise. In geology, this can describe the dripping or delamination of dense lower crust or lithospheric mantle into the underlying asthenosphere, influencing mantle convection and crustal recycling.
- Uniformitarian
-
The principle that the physical, chemical and biological processes operating today also operated in the past, meaning present-day processes can be used to interpret the geological record.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Kirkland, C.L., Johnson, T.E., Brown, M. et al. The evolution of Earth’s early continental crust. Nat Rev Earth Environ 6, 612–625 (2025). https://doi.org/10.1038/s43017-025-00706-6
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s43017-025-00706-6