Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Climate change impacts on roadways

Abstract

Roadways provide safe and efficient transport and are essential to the function of societies and economies. However, climate change increasingly pushes pavements beyond their engineering limits, leading to deterioration. In this Review, we explore the impacts of climate change on roadways and approaches to mitigate them. Roadways are vulnerable to changes in temperature, precipitation and sea level rise driven by climate change. High temperatures soften asphalt pavements, causing rutting, which is projected to increase by 2% per 1% increase in mean temperature. Increased moisture in the underlying soil caused by precipitation and sea level rise reduces the load-bearing capacity of roadways for months and in some cases halves their lifetime. Roadway closures due to extreme weather events or resulting reconstruction cause delays and detours; by 2100, high tide flooding in the USA is expected to cause delays of 3.4 billion vehicle-hours per year. Climate change is projected to increase national annual costs of pavement maintenance by over US$500 million on average by 2050, depending on the country. Adaptation strategies include adjusting the type of asphalt, reinforcing concrete with steel, stabilizing gravel roads and adding nature-based features. Rapid implementation of policies, guidance on evaluating adaptation alternatives and exploration of the combined impacts of multiple climate stressors are needed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The effect of temperature on roadways.
Fig. 2: The effect of precipitation and moisture on roadways.
Fig. 3: The effect of sea level rise on roadways.
Fig. 4: Combined impacts of multiple climate stressors on asphalt pavements.
Fig. 5: The impact of climate change on pavement maintenance costs.
Fig. 6: Pavement adaptation strategies.
Fig. 7: The global impacts of climate change on roadways.

Similar content being viewed by others

References

  1. Niklas, S. Freight transport for development toolkit: rural freight. World Bank https://documents.worldbank.org/en/publication/documents-reports/documentdetail/140791468315544452/Freight-transport-for-development-toolkit-rural-freight (2009).

  2. Mouratidis, K. Urban planning and quality of life: a review of pathways linking the built environment to subjective well-being. Cities 115, 103229 (2021).

    Article  Google Scholar 

  3. Li, H., Liu, Y. & Peng, K. Characterizing the relationship between road infrastructure and local economy using structural equation modeling. Transp. Policy 61, 17–25 (2018).

    Article  Google Scholar 

  4. Bles, T. et al. Climate change risk assessments and adaptation for roads — results of the ROADAPT project. Transp. Res. Procedia 14, 58–67 (2016).

    Article  Google Scholar 

  5. McEvoy, D., Ahmed, I. & Mullett, J. The impact of the 2009 heat wave on Melbourne’s critical infrastructure. Local Environ. 17, 783–796 (2012).

    Article  Google Scholar 

  6. Liu, M. Evaluating thermal regime of cold region roads for climate change adaptation (University of Waterloo, 2020).

  7. Oyediji, R., Lu, D. & Tighe, S. L. Impact of flooding and inundation on concrete pavement performance. Int. J. Pavement Eng. 22, 1363–1375 (2021).

    Article  Google Scholar 

  8. Knott, J. F., Elshaer, M., Daniel, J. S., Jacobs, J. M. & Kirshen, P. Assessing the effects of rising groundwater from sea level rise on the service life of pavements in coastal road infrastructure. Transp. Res. Rec. 2639, 1–10 (2017).

    Article  Google Scholar 

  9. Stoner, A. M. K., Daniel, J. S., Jacobs, J. M., Hayhoe, K. & Scott-Fleming, I. Quantifying the impact of climate change on flexible pavement performance and lifetime in the United States. Transp. Res. Rec. 2673, 110–122 (2019).

    Article  Google Scholar 

  10. Guo, S., Dai, Q. & Hiller, J. Investigation on the freeze–thaw damage to the jointed plain concrete pavement under different climate conditions. Front. Struct. Civ. Eng. 12, 227–238 (2018).

    Article  Google Scholar 

  11. Bosio, E., Arlet, J., Comas, A. A. N. & Leger, N. A. Road Costs Knowledge System (ROCKS) — update (The World Bank, 2018).

  12. Nieto, N., Chamorro, A., Echaveguren, T., Sáez, E. & González, A. Development of fragility curves for road embankments exposed to perpendicular debris flows. Geomat. Nat. Hazards Risk 12, 1560–1583 (2021).

    Article  Google Scholar 

  13. Chatiza, K. Cyclone Idai in Zimbabwe: an analysis of policy implications for post-disaster institutional development to strengthen disaster risk management (Oxfam, 2019); https://doi.org/10.21201/2019.5273.

  14. Burch, A. D. S., Medina, E. & Selig, K. A tale of two hurricanes finds more that differs than is the same. The New York Times https://www.nytimes.com/2024/10/13/us/hurricane-milton-helene-florida-north-carolina.html (2024).

  15. American Association of State Highway and Transportation Officials. Helene-hit state DOTs get FHWA relief funding. AASHTO Journal https://aashtojournal.transportation.org/helene-hit-state-dots-get-fhwa-relief-funding/ (2024).

  16. Biden–Harris administration sends North Carolina $100 million in emergency relief funding for roads and bridges damaged by Hurricane Helene. US Department of Transportation https://www.transportation.gov/briefing-room/biden-harris-administration-sends-north-carolina-100-million-emergency-relief-funding (2024).

  17. Howe, S. Helene by the numbers: what they tell us about the devastation, cost of recovery. The Asheville Citizen Times https://www.citizen-times.com/story/news/local/2024/10/13/helenes-impact-on-north-carolina-by-the-numbers/75663328007/ (2024).

  18. Fant, C. et al. Mere nuisance or growing threat? The physical and economic impact of high tide flooding on US road networks. J. Infrastruct. Syst. 27, 04021044 (2021).

    Article  Google Scholar 

  19. Collop, A. C. & Roque, R. Report on the prediction of surface-initiated longitudinal wheel path cracking in asphalt pavements. Road Mater. Pavement Des. 5, 409–434 (2004).

    Google Scholar 

  20. Apeagyei, A. K., Dave, E. V. & Buttlar, W. G. Effect of cooling rate on thermal cracking of asphalt concrete pavements. Asph. Paving Technol. Proc. 77, 709 (2008).

    CAS  Google Scholar 

  21. Johanneck, L. & Khazanovich, L. Comprehensive evaluation of effect of climate in mechanistic–empirical pavement design guide predictions. Transp. Res. Rec. 2170, 45–55 (2010).

    Article  Google Scholar 

  22. Tighe, S. L., Cowe Falls, L., Haas, R., & MacLeod, D. Climate impacts and adaptations on roads in Northern Canada. In Transportation Research Board 85th Annual Meeting (Transportation Research Board Washington, D.C., 2006).

  23. Biel, T. D. & Lee, H. Performance study of portland cement concrete pavement joint sealants. J. Transp. Eng. 123, 398–404 (1997).

    Article  Google Scholar 

  24. Mills, B. N., Tighe, S. L., Andrey, J., Smith, J. T. & Huen, K. Climate change implications for flexible pavement design and performance in Southern Canada. J. Transp. Eng. 135, 773–782 (2009).

    Article  Google Scholar 

  25. Knott, J. F., Jacobs, J. M., Sias, J. E., Kirshen, P. & Dave, E. V. A framework for introducing climate-change adaptation in pavement management. Sustainability 11, 4382 (2019).

    Article  Google Scholar 

  26. Meagher, W., Daniel, J. S., Jacobs, J. & Linder, E. Method for evaluating implications of climate change for design and performance of flexible pavements. Transp. Res. Rec. 2305, 111–120 (2012).

    Article  Google Scholar 

  27. Guest, G., Zhang, J., Maadani, O. & Shirkhani, H. Incorporating the impacts of climate change into infrastructure life cycle assessments: a case study of pavement service life performance. J. Ind. Ecol. 24, 356–368 (2020).

    Article  CAS  Google Scholar 

  28. Gudipudi, P. P., Underwood, B. S. & Zalghout, A. Impact of climate change on pavement structural performance in the United States. Transp. Res. D 57, 172–184 (2017).

    Article  Google Scholar 

  29. Fifer Bizjak, K. et al. The impact of climate change on the European road network. Proc. Inst. Civ. Eng. Transp. 167, 281–295 (2014).

    Google Scholar 

  30. Qiao, Y., Guo, Y., Stoner, A. M. K. & Santos, J. Impacts of future climate change on flexible road pavement economics: a life cycle costs analysis of 24 case studies across the United States. Sustain. Cities Soc. 80, 103773 (2022).

    Article  Google Scholar 

  31. Matini, N., Gulzar, S., Underwood, S. & Castorena, C. Evaluation of structural performance of pavements under extreme events: flooding and heatwave case studies. Transp. Res. Rec. 2676, 233–248 (2022).

    Article  Google Scholar 

  32. Underwood, B. S., Guido, Z., Gudipudi, P. & Feinberg, Y. Increased costs to US pavement infrastructure from future temperature rise. Nat. Clim. Change 7, 704–707 (2017).

    Article  Google Scholar 

  33. Rao, S., Abdualla, H., Lee, H. & Darter, M. Evaluation of concrete pavement buckling in Wisconsin (Applied Research Associates, 2022); https://wisconsindot.gov/documents2/research/0092-20-02-final-report.pdf.

  34. Barzegar, M. & Wen, H. Modeling roadway temperatures for wildfire evacuation and assessment of pavement damage. J. Infrastruct. Preserv. Resil. 4, 18 (2023).

    Article  Google Scholar 

  35. Ram, P., Lopez, S., Stempihar, J., Smith, K. & Golalipour, A. Impact of wildfires on pavement systems. Transp. Res. Rec. https://doi.org/10.1177/03611981251328976 (2025).

    Article  Google Scholar 

  36. Sylvestre, O., Bilodeau, J.-P. & Doré, G. Effect of frost heave on long-term roughness deterioration of flexible pavement structures. Int. J. Pavement Eng. 20, 704–713 (2019).

    Article  Google Scholar 

  37. Fradette, N., Doré, G., Pierre, P. & Hébert, S. Evolution of pavement winter roughness. Transp. Res. Rec. 1913, 137–147 (2005).

    Article  Google Scholar 

  38. Knapp, K., Kroeger, D. & Giese, K. Mobility and safety impacts of winter storm events in a freeway environment. Center for Transportation Research and Education, Iowa State University https://publications.iowa.gov/11693/1/winstorm.pdf (2000).

  39. Tighe, S. L., Smith, J., Mills, B. & Andrey, J. Evaluating climate change impact on low-volume roads in Southern Canada. Transp. Res. Rec. 2053, 9–16 (2008).

    Article  Google Scholar 

  40. Saleh, N. F. et al. Effects of aging on asphalt mixture and pavement performance. Constr. Build. Mater. 258, 120309 (2020).

    Article  Google Scholar 

  41. Aursand, P. O., Evensen, R. & Lerfald, B. O. Climate changes in Norway: factors affecting pavement performance. In Proc. International Conferences on the Bearing Capacity of Roads, Railways and Airfields (eds Hoff, I., Mork, H. & Garba Saba, R.) 537–544 (2013).

  42. Liu, T., Yang, S., Jiang, X., Liao, B. & Castillo-Camarena, E. A. Adaptation measures for asphalt pavements to climate change in China. J. Clean. Prod. 415, 137861 (2023).

    Article  CAS  Google Scholar 

  43. Daniel, J. S. et al. Climate change: potential impacts on frost–thaw conditions and seasonal load restriction timing for low-volume roadways. Road Mater. Pavement Des. 19, 1126–1146 (2018).

    Article  Google Scholar 

  44. Apeagyei, A. K., Grenfell, J. R. A. & Airey, G. D. Moisture-induced strength degradation of aggregate–asphalt mastic bonds. Road Mater. Pavement Des. 15, 239–262 (2014).

    Article  CAS  Google Scholar 

  45. Caro, S., Masad, E., Bhasin, A. & Little, D. N. Moisture susceptibility of asphalt mixtures, part 1: mechanisms. Int. J. Pavement Eng. 9, 81–98 (2008).

    Article  CAS  Google Scholar 

  46. Copeland, A. R. Influence of moisture on bond strength of asphalt–aggregate systems (Vanderbilt University, 2007).

  47. Gundla, A., Offei, E., Wang, G., Holzschuher, C. & Choubane, B. Implementation of a decision support criteria for flood inundated roadways. In Transportation Research Board 99th Annual Meeting (Transportation Research Board Washington, D.C., 2020).

  48. Tamrakar, P. & Nazarian, S. Moisture effects on moduli of pavement bases. Int. J. Pavement Eng. 22, 1410–1422 (2021).

    Article  Google Scholar 

  49. Smith, J. T., Tighe, S. L., Andrey, J. & Mills, B. Temperature and precipitation sensitivity analysis on pavement performance. In Transportation Research Circular: 4th National Conf. on Surface Transportation Weather and 7th Int. Symp. on Snow Removal and Ice Control Technology 558–571 (Transportation Research Board, 2008).

  50. Salour, F. & Erlingsson, S. The influence of groundwater level on the structural behaviour of a pavement structure using FWD. In Proc. International Conferences on the Bearing Capacity of Roads, Railways and Airfields (eds Hoff, I., Mork, H. & Garba Saba, R.) 485–494 (2013).

  51. Mousavi, S., Ghayoomi, M. & Dave, E. V. A system dynamics framework for mechanistic analysis of flexible pavement systems under moisture variations. Transp. Geotech. 30, 100619 (2021).

    Article  Google Scholar 

  52. Avilés-Rojas, N., Suárez, F., Chamorro, A. & González, A. Flood impact on structural response of asphalt pavement: a finite element modeling approach. Structures 57, 105259 (2023).

    Article  Google Scholar 

  53. Abdollahi, S. F., Kutay, M. E. & Lanotte, M. UPDAPS-Flood: a mechanistic-empirical flexible pavement analysis tool to evaluate the effect of flooding events on flexible pavement performance. Int. J. Pavement Eng. 25, 2387743 (2024).

    Article  Google Scholar 

  54. Sultana, M. et al. Rutting and roughness of flood-affected pavements: literature review and deterioration models. J. Infrastruct. Syst. 24, 04018006 (2018).

    Article  Google Scholar 

  55. Khan, M. U., Mesbah, M., Ferreira, L. & Williams, D. J. Developing a new road deterioration model incorporating flooding. Proc. Inst. Civ. Eng. Transp. 167, 322–333 (2014).

    Google Scholar 

  56. Lu, D., Tighe, S. L. & Xie, W.-C. Impact of flood hazards on pavement performance. Int. J. Pavement Eng. 21, 746–752 (2020).

    Article  Google Scholar 

  57. Mohd Hasan, M. R., Hiller, J. E. & You, Z. Effects of mean annual temperature and mean annual precipitation on the performance of flexible pavement using ME design. Int. J. Pavement Eng. 17, 647–658 (2016).

    Article  CAS  Google Scholar 

  58. Qiao, Y. et al. Simulating floodwater movement in pavements for developing post-flooding time–depth–damage functions. Constr. Build. Mater. 396, 132408 (2023).

    Article  Google Scholar 

  59. Asbahan, R. E. & Vandenbossche, J. M. Effects of temperature and moisture gradients on slab deformation for jointed plain concrete pavements. J. Transp. Eng. 137, 563–570 (2011).

    Article  Google Scholar 

  60. Mateos, A. et al. Evaluation of the moisture dependence of concrete coefficient of thermal expansion and its impacts on thermal deformations and stresses of concrete pavements. Transp. Res. Rec. 2674, 545–555 (2020).

    Article  Google Scholar 

  61. Gransberg, D. D. & James, D. M. B. Chip seal best practices (Transportation Research Board, National Research Council, 2005).

  62. Blauhut, V., Stephan, R. & Stahl, K. Impacts of drought on European inland transportation — insights from the European drought impact inventory 2.0. In EGU-13632 (2023); https://doi.org/10.5194/egusphere-egu23-13632.

  63. Welch, J. et al. Unveiling the hidden threat: drought-induced inelastic subsidence in expansive soils. Geophys. Res. Lett. 51, e2023GL107549 (2024).

    Article  Google Scholar 

  64. Elswick, F. The challenges droughts are causing for California’s roads. Midwest Industrial Supply https://blog.midwestind.com/challenges-droughts-causing-californias-roads/ (2014).

  65. Dawson, A. in Climate Change, Energy, Sustainability and Pavements (eds Gopalakrishnan, K., Steyn, W. J. & Harvey, J.) 127–157 (Springer, 2014).

  66. Blaauw, S. A., Maina, J. W., Mturi, G. A. J. & Visser, A. T. Flexible pavement performance and life cycle assessment incorporating climate change impacts. Transp. Res. D 104, 103203 (2022).

    Article  Google Scholar 

  67. Luo, R. & Prozzi, J. A. Development of longitudinal cracks on pavement over shrinking expansive subgrade. Road Mater. Pavement Des. 11, 807–832 (2010).

    Article  Google Scholar 

  68. George, K. P. Shrinkage cracking of soil–cement base: theoretical and model studies. Highw. Res. Rec. 351, 115–133 (1971).

    Google Scholar 

  69. Li, X., Wen, H. & Muhunthan, B. Modeling the drying shrinkage cracking of untreated soils and cementitiously stabilized soils. Transp. Res. Rec. 2511, 90–101 (2015).

    Article  Google Scholar 

  70. Harrison, A. M., Heaton, M. & Entwisle, D. C. Increasing road network resilience to the impacts of ground movement due to climate change: a case study from Lincolnshire, UK. Q. J. Eng. Geol. Hydrogeol. 56, qjegh2023–002 (2023).

    Article  Google Scholar 

  71. Geertzen, A. J. J. Determining drought-induced subsidence in urban areas (Delft University of Technology, 2021).

  72. Pritchard, O. G. & Hallett, D. S. H. Road subsidence in Lincolnshire: soils and road condition (ITRC, 2013); https://www.itrc.org.uk/wp-content/PDFs/Lincs-soil-road-condition-report.pdf.

  73. Underwood, B. S. et al. Improving resilience of transportation infrastructure to hurricane damage (NC State University, 2023); https://connect.ncdot.gov/projects/research/RNAProjDocs/RP2021-08_Final%20Report.pdf.

  74. Sahoo, U. C., Dash, S. R. & Sahu, C. S. Climate-resilient road design in coastal areas subjected to cyclones and associated floods. Infrastruct. Asset Manag. 8, 209–218 (2021).

    Article  Google Scholar 

  75. Kulkarni, A. R. & Shafei, B. Impact of extreme events on transportation infrastructure in iowa: a Bayesian network approach. Transp. Res. Rec. 2672, 45–57 (2018).

    Article  Google Scholar 

  76. Cahoon, J. E., Baker, D. & Carson, J. Factors for rating condition of culverts for repair or replacement needs. Transp. Res. Rec. 1814, 197–202 (2002).

    Article  Google Scholar 

  77. Vallès-Vallès, D. & Torres-Machi, C. Deterioration of flexible pavements induced by flooding: case study using stochastic Monte Carlo simulations in discrete-time Markov chains. J. Infrastruct. Syst. 29, 05022009 (2023).

    Article  Google Scholar 

  78. Elseifi, M. A., Mousa, M. R. & Gaspard, K. Impact of the great flood of 2016 on the asphaltic concrete road infrastructure in Louisiana. Transp. Res. Rec. 2676, 463–474 (2022).

    Article  Google Scholar 

  79. Karanam, G. D. Determination of pavement condition surveying frequency using probabilistic modeling with Bayesian spatiotemporal inference techniques (North Carolina State University, 2023).

  80. Kim, K., Ha, S. & Kim, H. Using real options for urban infrastructure adaptation under climate change. J. Clean. Prod. 143, 40–50 (2017).

    Article  Google Scholar 

  81. Jiménez-Ramos, G., Echaveguren, T., Vargas-Baecheler, J. & Chamorro, A. Traffic interruption risk induced by cut-slope failure: the rainfall effect. Transp. Geotech. 41, 100993 (2023).

    Article  Google Scholar 

  82. Asset management, extreme weather and proxy indicators pilot project (Arizona Department of Transportation, 2020); https://azdot.gov/sites/default/files/media/2020/03/ADOT-Asset-Management-Infrastructure-Resilience-Study-Report%20Final-2020.pdf.

  83. Muench, S., Van Dam, T., Ram, P., & Smith, K. Pavement resilience: state of the practice (US Department of Transportation, 2023); https://www.fhwa.dot.gov/pavement/pub_details.cfm?id=1154.

  84. Jacobs, J. M., Cattaneo, L. R., Sweet, W. & Mansfield, T. Recent and future outlooks for nuisance flooding impacts on roadways on the U.S. East Coast. Transp. Res. Rec. 2672, 1–10 (2018).

    Article  Google Scholar 

  85. Knott, J. F., Jacobs, J. M., Daniel, J. S. & Kirshen, P. Modeling groundwater rise caused by sea-level rise in coastal New Hampshire. J. Coast. Res. 35, 143–157 (2019).

    Article  Google Scholar 

  86. Knott, J. F., Jacobs, J. M., Daniel, J. S. & Kirshen, P. Modeling groundwater rise caused by sea-level rise in coastal New Hampshire. coas 35, 143–157 (2018).

    Google Scholar 

  87. Rojali, A., Gocmez, M. g., Ali, H. A. & Fuentes, H. R. Improvement and benefit of updated vulnerability maps of pavement infrastructure affected by sea-level rise: a case in South Florida. In 18th Annual Meeting of the Asia Oceania Geosciences Society (eds Liong, S.-Y. & Satoh, M.) (World Scientific, 2022); https://doi.org/10.1142/9789811260100_0047.

  88. Saltan, M., Karadağ, Ö. & Kaçaroğlu, G. Investigation of the adhesion properties and strength of hot mix asphalt exposed to sea water. J. Sci. Rep. A 51, 283–296 (2022).

    Google Scholar 

  89. Setiadji, B. H., Utomo, S. & Nahyo Effect of chemical compounds in tidal water on asphalt pavement mixture. Int. J. Pavement Res. Technol. 10, 122–130 (2017).

    Article  Google Scholar 

  90. Mangi, S. A., Makhija, A., Raza, M. S., Khahro, S. H. & Jhatial, A. A. A comprehensive review on effects of seawater on engineering properties of concrete. Silicon 13, 4519–4526 (2021).

    Article  CAS  Google Scholar 

  91. Roshani, A., Mirfenderesk, H., Rajapakse, J. & Gallage, C. Groundwater table response to sea level rise and its impact on pavement structure. In Proc. 9th Annual International Conference of the International Institute for Infrastructure Renewal and Reconstruction (eds Barnes, P. H. & Goonetilleke, A.) 531–539 (Queensland University of Technology, 2015).

  92. Chen, X. & Wang, H. Impact of sea level rise on asphalt pavement responses considering seasonal groundwater and moisture gradient in subgrade. Transp. Geotech. 40, 100992 (2023).

    Article  Google Scholar 

  93. Rojali, A., Fuentes, H. R., Chang, C. M. & Ali, H. Network-scale analysis of sea-level rise impact on flexible pavements. Water 15, 4163 (2023).

    Article  Google Scholar 

  94. Chen, X. & Wang, H. Impact of sea level rise-induced hazards on airfield pavement performance: a simulation study. Transp. Res. Rec. https://doi.org/10.1177/03611981241265850 (2024).

  95. Batouli, M. & Mostafavi, A. Multiagent simulation for complex adaptive modeling of road infrastructure resilience to sea‐level rise. Comput. Civ. Infrastruct. Eng. 33, 393–410 (2018).

    Article  Google Scholar 

  96. Knott, J. F., Daniel, J. S., Jacobs, J. M. & Kirshen, P. Adaptation planning to mitigate coastal-road pavement damage from groundwater rise caused by sea-level rise. Transp. Res. Rec. 2672, 11–22 (2018).

    Article  Google Scholar 

  97. Regionally unified sea level rise projection. Southeast Florida Regional Climate Compact https://southeastfloridaclimatecompact.org/initiative/regionally-unified-sea-level-rise-projection/ (2024).

  98. Darestani, Y. M., Webb, B., Padgett, J. E., Pennison, G. & Fereshtehnejad, E. Fragility analysis of coastal roadways and performance assessment of coastal transportation systems subjected to storm hazards. J. Perform. Constr. Facil. 35, 04021088 (2021).

    Article  Google Scholar 

  99. Velasquez-Montoya, L., Sciaudone, E. J., Smyre, E. & Overton, M. F. Vulnerability indicators for coastal roadways based on barrier island morphology and shoreline change predictions. Nat. Hazards Rev. 22, 04021003 (2021).

    Article  Google Scholar 

  100. Qiao, Y., Flintsch, G. W., Dawson, A. R. & Parry, T. Examining effects of climatic factors on flexible pavement performance and service life. Transp. Res. Rec. 2349, 100–107 (2013).

    Article  Google Scholar 

  101. Dawson, A. Water in Road Structures: Movement, Drainage and Effects (Springer, 2008).

  102. Islam, R. M., Arafat, S. & Wasiuddin, N. M. Quantification of reduction in hydraulic conductivity and skid resistance caused by fog seal in low-volume roads. Transp. Res. Rec. 2657, 99–108 (2017).

    Article  Google Scholar 

  103. Chu, L., Fwa, T. F. & Ong, G. P. Evaluating hydroplaning potential of rutted highway pavements. J. East. Asia Soc. Transp. Stud. 11, 1613–1622 (2015).

    Google Scholar 

  104. Mamlouk, M., Vinayakamurthy, M., Underwood, B. S. & Kaloush, K. E. Effects of the international roughness index and rut depth on crash rates. Transp. Res. Rec. 2672, 418–429 (2018).

    Article  Google Scholar 

  105. Ishikawa, T., Lin, T., Kawabata, S., Kameyama, S. & Tokoro, T. Effect evaluation of freeze–thaw on resilient modulus of unsaturated granular base course material in pavement. Transp. Geotech. 21, 100284 (2019).

    Article  Google Scholar 

  106. Janoo, V. C. & Berg, R. L. Thaw weakening of pavement structures in seasonal frost areas. Transp. Res. Rec. 1286, 217–233 (1990).

    Google Scholar 

  107. Glendinning, S., Loveridge, F., Starr-Keddle, R. E., Bransby, M. F. & Hughes, P. N. Role of vegetation in sustainability of infrastructure slopes. Proc. Inst. Civ. Eng. Eng. Sustain. 162, 101–110 (2009).

    Google Scholar 

  108. Wieder, W. L. & Shoop, S. A. State of the knowledge of vegetation impact on soil strength and trafficability. J. Terramech. 78, 1–14 (2018).

    Article  Google Scholar 

  109. British Geological Survey. OR/20/032 coastal impacts of rising groundwater levels scoping study: an executive summary (BGS, 2020); https://www.bgs.ac.uk/download/or-20-032-coastal-impacts-of-rising-groundwater-levels-scoping-study-an-executive-summary/.

  110. Webb, B. M. et al. Nature-based solutions for coastal highway resilience: an implementation guide (US Department of Transportation, 2019); https://rosap.ntl.bts.gov/view/dot/43591/dot_43591_DS1.pdf.

  111. Kodippily, S., Yeaman, J., Henning, T. & Tighe, S. Effects of extreme climatic conditions on pavement response. Road Mater. Pavement Des. 21, 1413–1425 (2020).

    Article  Google Scholar 

  112. Tsumita, N., Jaensirisak, S., Kikuchi, H. & Fukuda, A. Analysis of travel behaviors during floods in Ubon Ratchathani city, Thailand. IOP Conf. Ser. Earth Environ. Sci. 832, 012034 (2021).

    Article  Google Scholar 

  113. Voumard, J., Derron, M.-H. & Jaboyedoff, M. Natural hazard events affecting transportation networks in Switzerland from 2012 to 2016. Nat. Hazards Earth Syst. Sci. 18, 2093–2109 (2018).

    Article  Google Scholar 

  114. Pregnolato, M. et al. Assessing flooding impact to riverine bridges: an integrated analysis. Nat. Hazards Earth Syst. Sci. 22, 1559–1576 (2022).

    Article  Google Scholar 

  115. Climate summary of South Africa (South African Weather Service, 2024); https://hdl.handle.net/10520/ejc-cssa_v35_n1_a2.

  116. Su, X., Zhi, D., Song, D., Tian, L. & Yang, Y. Exploring weather-related factors affecting the delay caused by traffic incidents: mitigating the negative effect of traffic incidents. Sci. Total Environ. 877, 162938 (2023).

    Article  CAS  Google Scholar 

  117. Giang, W. C. W., Donmez, B., Ahghari, M. & MacDonald, R. D. The impact of precipitation on land interfacility transport times. Prehosp. Disaster Med. 29, 593–599 (2014).

    Article  Google Scholar 

  118. Venner, M. & Zamurs, J. Increased maintenance costs of extreme weather events: preparing for climate change adaptation. Transp. Res. Rec. 2292, 20–28 (2012).

    Article  Google Scholar 

  119. Bowers, B. & Gu, F. Asphalt pavement: a critically important aspect of infrastructure resiliency (National Center for Asphalt Technology, 2021); https://eng.auburn.edu/research/centers/ncat/files/technical-reports/rep21-02.pdf.

  120. Rozenberg, J., Briceno-Garmendia, C., Lu, X., Bonzanigo, L. & Moroz, H. Improving the resilience of Peru’s road network to climate events (The World Bank, 2017).

  121. Detelinova, I., Thomas, T. S., Tian, J., Hammond, W. & Arndt, C. From climate risk to resilience: unpacking the economic impacts of climate change in Mozambique (The African Climate Foundation, 2023); https://doi.org/10.2499/p15738coll2.136961.

  122. Glenn, C., Beam, A. & Rodriguez, O. R. City of Chico to receive millions in compensation for roads damaged during response to Camp Fire — CBS Sacramento. CBS News https://www.cbsnews.com/sacramento/news/city-of-chico-to-receive-millions-in-compensation-for-roads-damaged-during-response-to-camp-fire/ (23 November 2023).

  123. Praharaj, S., Chen, T. D., Zahura, F. T., Behl, M. & Goodall, J. L. Estimating impacts of recurring flooding on roadway networks: a Norfolk, Virginia case study. Nat. Hazards 107, 2363–2387 (2021).

    Article  Google Scholar 

  124. Knott, J. F., Sias, J. E., Dave, E. V. & Jacobs, J. M. Seasonal and long-term changes to pavement life caused by rising temperatures from climate change. Transp. Res. Rec. 2673, 267–278 (2019).

    Article  Google Scholar 

  125. Sadeghi, P. & Goli, A. Investigating the impact of pavement condition and weather characteristics on road accidents (review paper). Int. J. Crashworthiness https://doi.org/10.1080/13588265.2024.2348269 (2024).

  126. Dehghani, M. S., Flintsch, G. W. & McNeil, S. Roadway network as a degrading system: vulnerability and system level performance. Transp. Lett. 5, 105–114 (2013).

    Article  Google Scholar 

  127. Arrighi, C., Pregnolato, M. & Castelli, F. Indirect flood impacts and cascade risk across interdependent linear infrastructures. Nat. Hazards Earth Syst. Sci. 21, 1955–1969 (2021).

    Article  Google Scholar 

  128. Zhu, J. et al. An empirical approach for developing functions for the vulnerability of roads to tropical cyclones. Transp. Res. D 102, 103136 (2022).

    Article  Google Scholar 

  129. Arrighi, C., Pregnolato, M., Dawson, R. J. & Castelli, F. Preparedness against mobility disruption by floods. Sci. Total Environ. 654, 1010–1022 (2019).

    Article  CAS  Google Scholar 

  130. Khan, M. U., Mesbah, M., Ferreira, L. & Williams, D. J. Assessment of flood risk to performance of highway pavements. Proc. Inst. Civ. Eng. Transp. 170, 363–372 (2017).

    Google Scholar 

  131. Chinowsky, P. S., Price, J. C. & Neumann, J. E. Assessment of climate change adaptation costs for the U.S. road network. Glob. Environ. Change 23, 764–773 (2013).

    Article  Google Scholar 

  132. Mallick, R. B., Radzicki, M. J., Daniel, J. S. & Jacobs, J. M. Use of system dynamics to understand long-term impact of climate change on pavement performance and maintenance cost. Transp. Res. Rec. 2455, 1–9 (2014).

    Article  Google Scholar 

  133. Schweikert, A., Chinowsky, P., Espinet, X. & Tarbert, M. Climate change and infrastructure impacts: comparing the impact on roads in ten countries through 2100. Procedia Eng. 78, 306–316 (2014).

    Article  Google Scholar 

  134. Espinet, X., Schweikert, A. & Chinowsky, P. Robust prioritization framework for transport infrastructure adaptation investments under uncertainty of climate change. ASCE ASME J. Risk Uncertain. Eng. Syst. A 3, E4015001 (2017).

    Google Scholar 

  135. Schweikert, A. et al. Road infrastructure and climate change: impacts and adaptations for South Africa. J. Infrastruct. Syst. 21, 04014046 (2015).

    Article  Google Scholar 

  136. Chinowsky, P. S., Schweikert, A. E., Strzepek, N. L. & Strzepek, K. Infrastructure and climate change: a study of impacts and adaptations in Malawi, Mozambique, and Zambia. Clim. Change 130, 49–62 (2015).

    Article  Google Scholar 

  137. American Society of Civil Engineers and EBP. Bridging the gap. Economic impacts of national infrastructure investment, 2024–2043 (American Society of Civil Engineers, 2024).

  138. Robbins, M. M. & Tran, N. H. A synthesis report: value of pavement smoothness and ride quality to roadway users and the impact of pavement roughness on vehicle operating costs (National Center for Asphalt Technology, 2016); https://eng.auburn.edu/research/centers/ncat/files/technical-reports/rep16-03.pdf.

  139. Zaabar, I. & Chatti, K. Estimating vehicle operating costs caused by pavement surface conditions. Transp. Res. Rec. 2455, 63–76 (2014).

    Article  Google Scholar 

  140. Okte, E., Al-Qadi, I. L. & Ozer, H. Effects of pavement condition on LCCA user costs. Transp. Res. Rec. 2673, 339–350 (2019).

    Article  Google Scholar 

  141. Wang, T., Harvey, J., Lea, J. & Kim, C. Impact of pavement roughness on vehicle free-flow speed. J. Transp. Eng. 140, 04014039 (2014).

    Article  Google Scholar 

  142. Grau-Torrent, D., Edward Back, W. & McElvy, R. J. Impact of nighttime paving operations on asphalt roughness behavior. University of Alabama https://rosap.ntl.bts.gov/view/dot/26142/dot_26142_DS1.pdf (2013).

  143. Arditi, D., Lee, D.-E. & Polat, G. Fatal accidents in nighttime vs. daytime highway construction work zones. J. Saf. Res. 38, 399–405 (2007).

    Article  Google Scholar 

  144. Global land transport infrastructure requirements (International Energy Agency, 2013); https://www.iea.org/reports/global-land-transport-infrastructure-requirements.

  145. Ferris, N. How $4trn of global road projects threaten net-zero pledges. Energy Monitor https://www.energymonitor.ai/sectors/transport/exclusive-how-4trn-of-global-road-projects-threaten-net-zero-pledges/ (2023).

  146. Yao, L., Leng, Z., Ni, F., Lu, G. & Jiang, J. Adaptive maintenance strategies to mitigate climate change impacts on asphalt pavements. Transp. Res. D 126, 104026 (2024).

    Article  Google Scholar 

  147. Savonis, M. J., Burkett, V. & Potter, J. R. Impacts of climate change and variability on transportation systems and infrastructure: Gulf Coast study, phase I. US Climate Change Science Program https://rosap.ntl.bts.gov/view/dot/17351/dot_17351_DS1.pdf (2008).

  148. Cordero, F., LaMondia, J. J. & Bowers, B. F. Performance measure-based framework for evaluating transportation infrastructure resilience. Transp. Res. Rec. 2678, 601–616 (2024).

    Article  Google Scholar 

  149. Kwakkel, J. H. Is real options analysis fit for purpose in supporting climate adaptation planning and decision-making? WIREs Clim. Change 11, e638 (2020).

    Article  Google Scholar 

  150. Little, L. R. & Lin, B. B. A decision analysis approach to climate adaptation: a structured method to consider multiple options. Mitig. Adapt. Strateg. Glob. Change 22, 15–28 (2017).

    Article  Google Scholar 

  151. Ray, P. A., Brown, C. M. Confronting climate uncertainty in water resources planning and project design: the decision tree framework (The World Bank, 2015); https://documents.worldbank.org/en/publication/documents-reports/documentdetail/516801467986326382/Confronting-climate-uncertainty-in-water-resources-planning-and-project-design-the-decision-tree-framework.

  152. Taner, M. Ü., Ray, P. & Brown, C. Robustness-based evaluation of hydropower infrastructure design under climate change. Clim. Risk Manag. 18, 34–50 (2017).

    Article  Google Scholar 

  153. Brown, C., Ghile, Y., Laverty, M. & Li, K. Decision scaling: linking bottom-up vulnerability analysis with climate projections in the water sector. Water Resour. Res. https://doi.org/10.1029/2011WR011212 (2012).

  154. Lea, J., Harvey, J., Saboori, A. & Butt, A. A. eLCAP: a web application for environmental life cycle assessment for pavements. Institute of Transportation Studies, University of California, Davis https://doi.org/10.7922/G2ST7N5G (2022).

  155. Ram, P., Hoerner, T., Meijer, J., Harvey, J. & Butt, A. Pavements — federal highway administration. Federal Highway Administration https://www.fhwa.dot.gov/pavement/lcatool/ (2021).

  156. Swedish Transport Administration. Klimatkalkylering: calculating energy use and greenhouse gas emissions of transport infrastructure — English summary. Trafikverket https://bransch.trafikverket.se/contentassets/eb8e472550374d7b91a4032918687069/klimatkalky_report_v_5_0_and_6.0_english.pdf (2016).

  157. Harvey, J. T. et al. Life cycle assessment and life cycle cost analysis for six strategies for GHG reduction in caltrans operations. University of California Pavement Research Center, UC Davis https://doi.org/10.7922/G22R3PZG (2020).

  158. CalEnviroScreen. OEHHA https://oehha.ca.gov/calenviroscreen (2014).

  159. Okte, E., Boakye, J. & Behrend, M. A quantitative methodology for measuring the social sustainability of pavement deterioration. Sci. Rep. 14, 2112 (2024).

    Article  CAS  Google Scholar 

  160. Ostovar, M. Environmental and social life cycle assessment (LCA) in transport infrastructure (UC Davis, 2023).

  161. Zheng, X., Easa, S. M., Ji, T. & Jiang, Z. Modeling life-cycle social assessment in sustainable pavement management at project level. Int. J. Life Cycle Assess. 25, 1106–1118 (2020).

    Article  Google Scholar 

  162. Blaauw, S. A., Maina, J. W. & Grobler, L. J. Social life cycle inventory for pavements — a case study of South Africa. Transp. Eng. 4, 100060 (2021).

    Article  Google Scholar 

  163. Stern, N. H. The Economics of Climate Change: The Stern Review (Cambridge Univ. Press, 2007).

  164. Reeder, T. & Ranger, N. How Do You Adapt in an Uncertain World?: Lessons from the Thames Estuary 2100 Project (2011).

  165. Cities infrastructure delivery management system toolkit edition 2. Annexure D climate resilience (National Treasury South Africa, 2023); https://www.treasury.gov.za/documents/national%20budget/2022/review/Annexure%20D.pdf.

  166. Adger, W. N. Vulnerability. Glob. Environ. Change 16, 268–281 (2006).

    Article  Google Scholar 

  167. Hoang, D. A., Pedroso, F. F. F., Wang, B., Dos Anjos Ribeiro Cordeiro, M. J. & Charles, K. C. Resilient transport in small island developing states: from a call for action to action. World Bank https://documents.worldbank.org/en/publication/documents-reports/documentdetail/099840104262222525/P1641570ed55c3096098670e0fd1a73eb3a (2020).

  168. Rolt, J. et al. A guide to the structural design of surfaced roads in tropical and sub-tropical regions: integrating climate resilience into road networks. Road Note https://trid.trb.org/View/2143893 (2022).

  169. Paige-Green, P., Verhaeghe, B. & Head, M. Climate adaptation: risk management and resilience optimisation for vulnerable road access in Africa, engineering adaptation guidelines. ReCAP https://assets.publishing.service.gov.uk/media/5f9d7c9ae90e070413b14ee6/CSIR-PGC-StHelens-ClimateAdaptation-EngineeringAdaptationGuideline-AfCAP-GEN2014C-190926-compressed.pdf (Council for Scientific and Industrial Research, Paige-Green Consulting Ltd & St Helens Consulting Ltd, 2019).

  170. Cambodia rural roads improvement project: results from climate change adaptation. Nordic Development Fund https://www.ndf.int/media/project-files/cambodia-rural-roads-improvement-project-results-from-climate-change-adaptation.pdf (2016).

  171. USAID climate-resilient water infrastructure — guidelines and lessons from the USAID Be Secure Project. AECOM https://www.climatelinks.org/sites/default/files/asset/document/2017_USAID_Climate-Resilient%20Water%20Infrastructure%20-%20Guidelines%20and%20Lessons%20from%20the%20USAID%20Be%20Secure%20Project.pdf (2017).

  172. Barbi, P. S. R., Tavassoti, P. & Tighe, S. Enhanced pavement design and analysis framework to improve the resiliency of flexible airfield pavements. Transp. Res. Rec. 2677, 118–136 (2023).

    Article  Google Scholar 

  173. King, D. & Taylor, P. Concrete overlay strategies for improving pavement resilience. Transp. Res. Rec. 2677, 259–269 (2023).

    Article  Google Scholar 

  174. Dealing with the effects of climate change on road pavements. PIARC https://www.piarc.org/en/order-library/16862-en-Dealing%20with%20the%20effects%20of%20climate%20change%20on%20road%20pavements.htm (2012).

  175. Enríquez-de-Salamanca, Á. Environmental impacts of climate change adaptation of road pavements and mitigation options. Int. J. Pavement Eng. 20, 691–696 (2019).

    Article  Google Scholar 

  176. Regmi, M. B. & Hanaoka, S. A survey on impacts of climate change on road transport infrastructure and adaptation strategies in Asia. Environ. Econ. Policy Stud. 13, 21–41 (2011).

    Article  Google Scholar 

  177. Qiao, Y., Santos, J., Stoner, A. M. K. & Flinstch, G. Climate change impacts on asphalt road pavement construction and maintenance: an economic life cycle assessment of adaptation measures in the State of Virginia, United States. J. Ind. Ecol. 24, 342–355 (2020).

    Article  Google Scholar 

  178. Wu, S., Wen, H., Chaney, S., Littleton, K. & Muench, S. Evaluation of long-term performance of stone matrix asphalt in Washington State. J. Perform. Constr. Facil. 31, 04016074 (2017).

    Article  Google Scholar 

  179. Guo, R., Nian, T. & Zhou, F. Analysis of factors that influence anti-rutting performance of asphalt pavement. Constr. Build. Mater. 254, 119237 (2020).

    Article  Google Scholar 

  180. Zhao, Z., Xu, L., Du, Z. & Xiao, F. Moisture resistance of stone matrix asphalt at lab simulated high temperature and continuous rainfall condition. Int. J. Pavement Eng. 24, 2096884 (2023).

    Article  Google Scholar 

  181. Asi, I. M. Laboratory comparison study for the use of stone matrix asphalt in hot weather climates. Constr. Build. Mater. 20, 982–989 (2006).

    Article  Google Scholar 

  182. Teltayev, B. B., Rossi, C. O., Izmailova, G. G. & Amirbayev, E. D. Effect of freeze–thaw cycles on mechanical characteristics of bitumens and stone mastic asphalts. Appl. Sci. 9, 458 (2019).

    Article  CAS  Google Scholar 

  183. Aletba, S. R. O. et al. Thermal performance of cooling strategies for asphalt pavement: a state-of-the-art review. J. Traffic Transp. Eng. 8, 356–373 (2021).

    Google Scholar 

  184. Jiang, Y., Deng, C., Chen, Z. & Tian, Y. Evaluation of the cooling effect and anti-rutting performance of thermally resistant and heat-reflective pavement. Int. J. Pavement Eng. 21, 447–456 (2020).

    Article  CAS  Google Scholar 

  185. Li, M., Dai, Q., Su, P. & You, Z. Buckling prediction based on joint opening and safe temperature estimation in jointed plain concrete pavements. Constr. Build. Mater. 444, 137630 (2024).

    Article  Google Scholar 

  186. Yang, G. & Bradford, M. A. Thermal-induced upheaval buckling of concrete pavements incorporating the effects of temperature gradient. Eng. Struct. 164, 316–324 (2018).

    Article  Google Scholar 

  187. Liu, J., Zhao, S., Li, L., Li, P. & Saboundjian, S. Low temperature cracking analysis of asphalt binders and mixtures. Cold Reg. Sci. Technol. 141, 78–85 (2017).

    Article  Google Scholar 

  188. Iliuta, S., Andriescu, A., Hesp, S. A. M. & Tam, K. Improved approach to low temperature and fatigue fracture performance grading of asphalt cements. In Proc. Forty-Ninth Annual Conference of the Canadian Technical Asphalt Association (eds Rajabipour, F. & Mohammad, L.) (CTAA, 2004).

  189. Belletti, B., Cerioni, R., Meda, A. & Plizzari, G. Design aspects on steel fiber-reinforced concrete pavements. J. Mater. Civ. Eng. 20, 599–607 (2008).

    Article  CAS  Google Scholar 

  190. Hussain, I., Ali, B., Akhtar, T., Jameel, M. S. & Raza, S. S. Comparison of mechanical properties of concrete and design thickness of pavement with different types of fiber-reinforcements (steel, glass, and polypropylene). Case Stud. Constr. Mater. 13, e00429 (2020).

    Google Scholar 

  191. Flinstch, G., Meijer, J. & Smith, K. Improved asphalt sustainability through perpetual pavement design. Federal Highway Administration https://rosap.ntl.bts.gov/view/dot/50764/dot_50764_DS1.pdf (2020).

  192. Mack, J., Dean, G. A. & Wathne, L. G. Improving pavement resiliency to flooding: a case for concrete pavement. In Airfield and Highway Pavements 2023: Innovation and Sustainability in Airfield and Highway Pavements Technology (eds Garg, N., Bhasin, A. & Vandenbossche, J. M.) 135–146 (American Society of Civil Engineers, 2023).

  193. Lee, J. L., Balmaceda, P. & Hansen, B. in Pavement Performance Monitoring, Modeling, and Management (eds Steyn, W. J., Chen, X. & Nam, B. B.) (American Society of Civil Engineers, 2014); https://doi.org/10.1061/9780784478547.012.

  194. Pooni, J., Giustozzi, F., Robert, D., Setunge, S. & O’Donnell, B. Durability of enzyme stabilized expansive soil in road pavements subjected to moisture degradation. Transp. Geotech. 21, 100255 (2019).

    Article  Google Scholar 

  195. Tseng, E., Al-Qadi, I. L., Tutumluer, E., Qamhia, I. I. A. & Ozer, H. Flexible pavement resiliency and mitigation strategies following adverse environmental events. Transp. Res. Rec. 2677, 351–366 (2023).

    Article  Google Scholar 

  196. Chen, Q., Zhang, Z. & Gaspard, K. Case study on the impact of flooding and inundation on pavement performance. Transp. Res. Rec. 2677, 157–168 (2023).

    Article  Google Scholar 

  197. Chakravarty, H. & Sinha, S. Moisture damage of bituminous pavements and application of nanotechnology in its prevention. J. Mater. Civ. Eng. 32, 03120003 (2020).

    Article  CAS  Google Scholar 

  198. Oldham, D., Mallick, R. & Fini, E. H. Reducing susceptibility to moisture damage in asphalt pavements using polyethylene terephthalate and sodium montmorillonite clay. Constr. Build. Mater. 269, 121302 (2021).

    Article  CAS  Google Scholar 

  199. Yau Seng Mah, D., Chiat Ng, T. & Josep Putuhena, F. Integrating infiltration facility to urban road drainage. IJET 7, 31 (2018).

    Article  Google Scholar 

  200. Pappas, J. Delaware’s pervious pavements mitigate roadway flooding. National Asphalt Pavement Association https://napanow.org/2023/12/11/delawares-pervious-pavements-mitigate-roadway-flooding/ (2023).

  201. Zhu, H., Yu, M., Zhu, J., Lu, H. & Cao, R. Simulation study on effect of permeable pavement on reducing flood risk of urban runoff. Int. J. Transp. Sci. Technol. 8, 373–382 (2019).

    Article  Google Scholar 

  202. Imran, H. M., Akib, S. & Karim, M. R. Permeable pavement and stormwater management systems: a review. Environ. Technol. 34, 2649–2656 (2013).

    Article  CAS  Google Scholar 

  203. Sevara, J. A. et al. Financial protection against natural disasters: from products to comprehensive strategies — an operational framework for disaster risk financing and insurance. World Bank https://documents.worldbank.org/en/publication/documents-reports/documentdetail/523011468129274796/Financial-protection-against-natural-disasters-from-products-to-comprehensive-strategies-an-operational-framework-for-disaster-risk-financing-and-insurance (2015).

  204. Matos Silva, M. & Costa, J. P. Flood adaptation measures applicable in the design of urban public spaces: proposal for a conceptual framework. Water 8, 284 (2016).

    Article  Google Scholar 

  205. Amakye, S. Y. & Abbey, S. J. Understanding the performance of expansive subgrade materials treated with non-traditional stabilisers: a review. Clean. Eng. Technol. 4, 100159 (2021).

    Article  Google Scholar 

  206. Cheng, Y. & Huang, X. Effect of mineral additives on the behavior of an expansive soil for use in highway subgrade soils. Appl. Sci. 9, 30 (2019).

    Article  CAS  Google Scholar 

  207. Bridges, T. S. et al. Use of natural and nature-based features (NNBF) for coastal resilience (US Army Engineer Research and Development Center, Environmental Laboratory, 2015).

  208. NOAA, FHWA federal agency partnership recognized with environmental excellence awards. NCCOS Coastal Science Website https://coastalscience.noaa.gov/news/a-federal-agency-partnership-between-noaa-and-fhwa-is-recognized-with-environmental-excellence-awards/ (2024).

  209. Intergovernmental Panel on Climate Change. Managing the risks of extreme events and disasters to advance climate change adaptation (IPCC, 2012); https://www.ipcc.ch/report/managing-the-risks-of-extreme-events-and-disasters-to-advance-climate-change-adaptation/.

  210. Admin, iENGINEERING. AASHTO journal — resiliency key to Hawaii DOT’s West Maui highway project. AASHTO Journal https://aashtojournal.transportation.org/resiliency-key-to-hawaii-dots-west-maui-highway-project/ (2021).

  211. Critical infrastructure at risk: sea level rise planning guidance for California’s coastal zone. California Coastal Commission https://documents.coastal.ca.gov/assets/slr/SLR%20Guidance_Critical%20Infrastructure_12.6.2021.pdf (2021).

  212. Howard, I. L., Doyle, J. D., Hemsley, J. M. Jr, Baumgardner, G. L. & Cooley, L. A. Jr Emergency paving using hot-mixed asphalt incorporating warm mix technology. Int. J. Pavement Eng. 15, 202–214 (2014).

    Article  Google Scholar 

  213. Howard, I. L. Full-scale emergency paving demonstration of hot-mixed and warm-compacted asphalt. J. Transp. Eng. B 144, 04017020 (2018).

    Google Scholar 

  214. Ajorlou, E., Mousavi, S., Ghayoomi, M. & Dave, E. V. Performance of flooded flexible pavements: a data-driven sensitivity analysis considering soil moisture fluctuations. Transp. Geotech. 45, 101202 (2024).

    Article  Google Scholar 

  215. Ward, M. & Rowlands, R. Overland to Orford from Pittwater (Sorell) and Richmond to Spring Bay (Orford) in the nineteenth century. Pap. Proc. Tasman. Hist. Res. Assoc. 70, 30–55 (2023).

    Google Scholar 

  216. Karskens, G. The Blue Mountains crossings: new histories from the old legends. J. Aust. Colon. Hist. 16, 197–225 (2020).

    Google Scholar 

  217. Foster, V., Rana, A. & Gorgulu, N. Understanding public spending trends for infrastructure in developing countries (The World Bank, 2022); https://doi.org/10.1596/1813-9450-9903.

  218. Highway and road expenditures. Urban Institute https://www.urban.org/policy-centers/cross-center-initiatives/state-and-local-finance-initiative/state-and-local-backgrounders/highway-and-road-expenditures (2021).

  219. Turner & Townsend. Global construction cost performance. International Construction Market Survey https://publications.turnerandtownsend.com/international-construction-market-survey-2024/global-construction-cost-performance#block-ab6ad559-9158-419a-beef-f65c457c315e (2024).

  220. Barton, B. & Schütte, P. Electric vehicle law and policy: a comparative analysis. J. Energy Nat. Resour. Law 35, 147–170 (2017).

    Google Scholar 

  221. Harvey, J. et al. Effects of increased weights of alternative fuel trucks on pavement and bridges (Institute of Transportation Studies, Univ. California, Davis, 2020); https://doi.org/10.7922/G27M066V.

  222. Kaufman, K. Vehicle miles traveled taxes rollout across states. Tax Foundation https://taxfoundation.org/blog/state-vmt-vehicle-miles-traveled-taxes/ (2024).

  223. Zhou, Q., Ramakrishnan, A., Fakhreddine, M., Okte, E. & Al-Qadi, I. L. Impacts of heavy-duty electric trucks on flexible pavements. Int. J. Pavement Eng. 25, 2361087 (2024).

    Article  Google Scholar 

  224. Jayme, A. et al. Impact of heavy commercial electric vehicles on flexible pavements. US Department of Transportation https://rosap.ntl.bts.gov/view/dot/83465 (2025).

  225. Balsari, S., Dresser, C. & Leaning, J. Climate change, migration, and civil strife. Curr. Environ. Health Rep. 7, 404–414 (2020).

    Article  Google Scholar 

  226. Piguet, E., Pécoud, A. & De Guchteneire, P. Migration and climate change: an overview. Refugee Surv. Q. 30, 1–23 (2011).

    Article  Google Scholar 

  227. Gössling, S., Neger, C., Steiger, R. & Bell, R. Weather, climate change, and transport: a review. Nat. Hazards 118, 1341–1360 (2023).

    Article  Google Scholar 

  228. Allen, E., Costello, S. C. & Henning, T. Contribution of network redundancy to reducing criticality of road links. Transp. Res. Rec. 2678, 1574–1590 (2024).

    Article  Google Scholar 

  229. Underwood, B. S., Guido, Z., Gudipudi, P. & Feinberg, Y. Increased costs to US pavement infrastructure from future temperature rise. Nat. Clim. Change https://doi.org/10.1038/nclimate3390 (2017).

  230. Aldabet, S., Goldstein, E. B. & Lazarus, E. D. Thresholds in road network functioning on US Atlantic and Gulf Barrier Islands. Earth’s Future 10, e2021EF002581 (2022).

    Article  Google Scholar 

  231. Filosa, G., Plovnick, A., Stahl, L., Miller, R. & Pickrell, D. H. Vulnerability assessment and adaptation framework 3rd edn. Report No: FHWA-HEP-18-020 https://rosap.ntl.bts.gov/view/dot/36188/dot_36188_DS1.pdf (2017).

  232. Flannery, A., Pena, M. A. & Manns, J. Resilience in transportation planning, engineering, management, policy, and administration (Transportation Research Board, 2018); https://doi.org/10.17226/25166.

  233. Increasing the pace of change in transportation infrastructure adaptation: findings of the 2023 ICNet Global Workshop and roadmap for tangible next steps (ICNet, 2024).

  234. El Haloui, Y. et al. Adoption of asphalt binder performance grades for morocco considering climate change. Int. J. Civ. Eng. 21, 1061–1075 (2023).

    Article  Google Scholar 

  235. Zhang, Q., Yang, S. & Chen, G. Regional variations of climate change impacts on asphalt pavement rutting distress. Transp. Res. D 126, 103968 (2024).

    Article  Google Scholar 

  236. Anyala, M., Odoki, J. B. & Baker, C. J. Hierarchical asphalt pavement deterioration model for climate impact studies. Int. J. Pavement Eng. 15, 251–266 (2014).

    Article  Google Scholar 

  237. Abttan, A. A., Zeiada, W., Merabtene, T., Gamal, A. & Mirou, S. Implication of future temperature changes on asphalt binder selection and simulated pavement performance in Sharjah. Innov. Infrastruct. Solut. 9, 88 (2024).

    Article  Google Scholar 

  238. Bilodeau, J.-P., Drolet, F. P., Doré, G. & Sottile, M.-F. Effect of climate changes expected during winter on pavement performance. In 16th International Conference on Cold Regions Engineering (ed. Spencer Guthrie, W.) https://doi.org/10.1061/9780784479315.054 (American Society of Civil Engineers, 2015).

  239. Marath, A., Swarna, S. T. & Mehta, Y. Resilient pavement materials to mitigate impact of climate change in New Jersey. J. Test. Eval. 51, 2186–2198 (2023).

    Article  Google Scholar 

  240. Qiao, Y., Wang, Y., Zhang, S., Stoner, A. M. K. & Santos, J. Effects of 1.5 °C global warming on pavement climatic factors and performance. Transp. Res. D 136, 104393 (2024).

    Article  Google Scholar 

  241. Twerefou, D., Chinowsky, P., Adjei-Mantey, K. & Strzepek, N. The economic impact of climate change on road infrastructure in Ghana. Sustainability 7, 11949–11966 (2015).

    Article  CAS  Google Scholar 

  242. Espinet, X., Schweikert, A., van den Heever, N. & Chinowsky, P. Planning resilient roads for the future environment and climate change: quantifying the vulnerability of the primary transport infrastructure system in Mexico. Transp. Policy 50, 78–86 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

We thank H. Li and W. Sun for the contribution of references and data.

Author information

Authors and Affiliations

Authors

Contributions

J.E.S. provided overall coordination for the review. J.E.S., E.V.D., B.F.B., B.S.U., S.L.T., J.T.H., J.M.J., E.M. and A.G. developed the concept for the review. Initial draft writing was conducted by J.E.S., E.V.D., B.F.B., B.S.U., S.L.T., T.F.P.H., J.T.H. and J.M.J. All authors contributed data and reviewed the final manuscript.

Corresponding author

Correspondence to Jo E. Sias.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Sheldon Blaauw, Aditia Rojali, Cristina Torres-Machi and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

CalEnviroScreen: https://oehha.ca.gov/calenviroscreen

Climate data processing tools: https://fhwaapps.fhwa.dot.gov/cmip

Flood maps: https://www.fema.gov/flood-maps

Hazus: https://www.fema.gov/flood-maps/tools-resources/flood-map-products/hazus/

HERA: https://www.usgs.gov/apps/hera/

Interactive Atlas: https://interactive-atlas.ipcc.ch/atlas

Statista: https://www.statista.com/statistics/1246737/forecast-road-freight-activity/

The World Factbook: https://www.cia.gov/the-world-factbook/about/archives/2022/field/roadways/country-comparison

US federal fuel tax: https://www.ncsl.org/transportation/variable-rate-gas-taxes

US National Highway Construction Cost Index: https://www.fhwa.dot.gov/policy/otps/nhcci/

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sias, J.E., Dave, E.V., Underwood, B.S. et al. Climate change impacts on roadways. Nat Rev Earth Environ 6, 555–573 (2025). https://doi.org/10.1038/s43017-025-00711-9

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43017-025-00711-9

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene