Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Challenges and opportunities in scaling enhanced weathering for carbon dioxide removal

Abstract

Terrestrial enhanced weathering (EW) on agricultural lands is a proposed carbon dioxide removal (CDR) technology involving the amendment of soils with crushed base cation-rich rocks, such as basalt. Over a quarter of a billion dollars have been raised by commercial EW start-ups across the globe, accelerating the deployment of EW at scale. In this Review, we outline the scientific knowledge and policy requirements for scaling EW. The global CDR potential of EW is 0.5–2 Gt CO2 year by 2050. Tracking carbon as it is transferred from soils (cradle) to the oceans (grave), fully considering and quantifying lag times in CDR and developing a robust framework of monitoring, reporting and verification of CDR are all important for understanding the performance of EW deployments. Policies aimed at incentivizing responsible deployment and gaining acceptability among directly impacted communities, such as agriculture, are essential to sustainable and long-term growth of EW. High initial prices, the lack of consistent methodology for issuing carbon credits and lifecycle carbon emissions associated with a deployment are the main challenges of scaling EW through the voluntary carbon market. Future research needs to explore the co-deployment of EW and other CDR technologies and utilize long-term (>10 years) instrumented EW field trials to evaluate processes that regulate CDR efficiency and agronomic and economic co-benefits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of enhanced weathering of crushed basalt rock on agricultural lands.
Fig. 2: Downstream processes that affect carbon dioxide removal efficiency.
Fig. 3: The impact of soil cation exchange on the time dynamics of carbon removal.
Fig. 4: The cradle-to-grave framework for tracking carbon flow.

Similar content being viewed by others

References

  1. Intergovernmental Panel on Climate Change (IPCC). Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways (World Meteorological Organization, 2018).

  2. van Dijk, M., Morley, T., Rau, M. & Saghai, Y. A meta-analysis of projected global food demand and population risk of hunger for the period 2010–2050. Nat. Food 2, 494–501 (2021).

    Article  Google Scholar 

  3. Mbow, C. et al. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (eds Shukla, P. R. et al.) (World Meteorological Organization, 2019).

  4. Hartmann, J. et al. Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification. Rev. Geophys. 51, 113–149 (2013).

    Article  Google Scholar 

  5. Beerling, D. J. et al. Potential for large-scale CO2 removal via enhanced rock weathering with croplands. Nature 583, 242–248 (2020).

    Article  CAS  Google Scholar 

  6. Goll, D. S. et al. Potential CO2 removal from enhanced weathering by ecosystem responses to powdered rock. Nat. Geosci. 14, 545–549 (2021).

    Article  CAS  Google Scholar 

  7. Beerling, D. J. et al. Farming with crops and rocks to address global climate, food and soil security. Nat. Plants 4, 138–147 (2018).

    Article  Google Scholar 

  8. Taylor, L. L. et al. (2016). Enhanced weathering strategies for stabilizing climate and averting ocean acidification. Nat. Clim. Change 6, 402–406 (2016).

    Article  CAS  Google Scholar 

  9. Kanzaki, Y., Planavsky, N. J. & Reinhard, C. T. New estimates of the storage permanence and ocean co-benefits of enhanced rock weathering. PNAS Nexus 2, pgad059 (2023).

    Article  Google Scholar 

  10. Beerling, D. J. et al. Transforming US agriculture for carbon removal with enhanced weathering. Nature 638, 425–434 (2025).

    Article  CAS  Google Scholar 

  11. Swoboda, P., Döring, T. F. & Hamer, M. Remineralizing soils? The agricultural usage of silicate rock powders: a review. Sci. Total Environ. 807, 150976 (2021).

    Article  Google Scholar 

  12. Hopkins, B. M., Lal, R., Lyons, W. B. & Welch, S. A carbon capture potential and environmental impact of concrete weathering. Sci. Total Environ. 957, 177692 (2024).

    Article  Google Scholar 

  13. McDermott, F., Bryson, M., Magee, R. & van Acken, D. Enhanced weathering for CO2 removal using carbonate-rich crushed concrete: a pilot study from SE Ireland. App. Geochem. 169, 106056 (2024).

    Article  CAS  Google Scholar 

  14. Berner, E. K. & Berner, R. A. Global Environment: Water, Air, and Geochemical Cycles 2nd edn (Princeton Univ. Press, 2012).

  15. Drever, J. I. The Geochemistry of Natural Waters: Surface and Groundwater Environments (Prentice Hall, 1997).

  16. Kelland, M. E. et al. Increased yield and CO2 sequestration potential with the C4 cereal crop Sorghum bicolor cultivated in basaltic rock dust amended agricultural soil. Glob. Change Biol. 26, 3658–3676 (2020).

    Article  Google Scholar 

  17. Manning, D. A. C. Biological enhancement of soil carbonate precipitation: passive removal of atmospheric CO2. Min. Mag. 72, 639–649 (2008).

    Article  CAS  Google Scholar 

  18. Zamanian, K., Pustovoytov, K. & Kuzyakov, Y. Pedogenic carbonates: forms and formation processes. Earth Sci. Rev. 157, 1–17 (2016).

    Article  CAS  Google Scholar 

  19. Bullock, L. A., James, R. H., Matter, J., Renforth, P. & Teagle, D. A. H. Global carbon dioxide removal potential of waste materials from metal and diamond mining. Front. Clim. 3, 694175 (2021).

    Article  Google Scholar 

  20. Bandstra, J. Z. et al. in Kinetics of Water–Rock Interaction (eds Brantley, S. L., Kubicki, J. D. & White, A. F.) 737–823 (Springer, 2008).

  21. Kemp, S. J., Lewis, A. L. & Rushton, J. C. Detection and quantification of low levels of carbonate mineral species using thermogravimetric-mass spectrometry to validate CO2 drawdown via enhanced rock weathering. App. Geochem. 146, 105465 (2022).

    Article  CAS  Google Scholar 

  22. Edwards, D. P. et al. Climate change mitigation: potential benefits and pitfalls of enhanced rock weathering in tropical agriculture. Biol. Lett. 13, 20160715 (2017).

    Article  Google Scholar 

  23. Brantley, S. L. et al. How temperature-dependent silicate weathering acts as Earth’s geological thermostat. Science 379, 382–389 (2023).

    Article  CAS  Google Scholar 

  24. Moosdorf, N., Renforth, P. & Hartmann, J. Carbon dioxide efficiency of terrestrial enhanced weathering. Environ. Sci. Technol. 48, 4809–4816 (2014).

    Article  CAS  Google Scholar 

  25. Li, Z., Planavsky, N. J. & Reinhard, C. T. Geospatial assessment of the cost and energy demand of feedstock grinding for enhanced rock weathering in the coterminous United States. Front. Clim. 6, 1380651 (2024).

    Article  Google Scholar 

  26. Kantzas, E. P. et al. Substantial carbon drawdown potential from enhanced rock weathering in the United Kingdom. Nat. Geosci. 15, 382–389 (2022).

    Article  CAS  Google Scholar 

  27. Amann, T. et al. Enhanced weathering and related element fluxes — a cropland mesocosm approach. Biogeosciences 17, 103–119 (2020).

    Article  CAS  Google Scholar 

  28. Bufe, A. et al. Co-variation of silicate, carbonate and sulfide weathering drives CO2 release with erosion. Nat. Geo. 14, 211–216 (2021).

    Article  CAS  Google Scholar 

  29. Larkin, C. S. et al. Quantification of CO2 removal in a large-scale enhanced weathering field trial on an oil palm plantation in Sabah, Malyasia. Front. Clim. 4, 959229 (2022).

    Article  Google Scholar 

  30. Beerling, D. J. et al. Enhanced weathering in the US Corn Belt delivers carbon removal with agronomic benefits. Proc. Natl Acad. Sci. USA 121, e2319436121 (2024).

    Article  CAS  Google Scholar 

  31. Gaillardet, J., Dupré, B., Louvat, P. & Allègre, C. J. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 159, 3–30 (1999).

    Article  CAS  Google Scholar 

  32. Jacobson, A. D. & Blum, J. D. Relationship between mechanical erosion and atmospheric CO2 consumption in the New Zealand Southern Alps. Geology 31, 865–868 (2003).

    Article  Google Scholar 

  33. Kantola, I. B. et al. Improved net carbon budgets in the US Midwest through direct measured impacts of enhanced weathering. Glob. Change Biol. 29, 7012–7028 (2023).

    Article  CAS  Google Scholar 

  34. April, R., Newton, R. & Coles, L. T. Chemical weathering in two Adriondack watersheds: past and present-day rates. GSA Bull. 97, 1232–1238 (1986).

    Article  CAS  Google Scholar 

  35. Reershemius, T. et al. Initial validation of a soil-based mass-balance approach for empirical monitoring of enhanced rock weathering rates. Environ. Sci. Technol. 57, 19497–19507 (2023).

    Article  CAS  Google Scholar 

  36. Bradford, M. A. et al. Testing the feasibility of quantifying change in agricultural soil carbon stocks through empirical sampling. Geoderma 440, 116719 (2023).

    Article  CAS  Google Scholar 

  37. Suhrhoff, T. J. et al. A tool for assessing the sensitivity of soil-based approaches for quantifying enhanced weathering: a US case study. Front. Clim. 6, 1346117 (2024).

    Article  Google Scholar 

  38. Malik, A. A. et al. Land use driven change in soil pH affects microbial carbon cycling processes. Nat. Commun. 9, 3591 (2018).

    Article  Google Scholar 

  39. Kanzaki, Y. et al. Soil cation storage as a key control on the carbon removal dynamics of enhanced weathering. Environ. Res. Lett. 20, 074055 (2025).

    Article  Google Scholar 

  40. Dietzen, C. & Rosing, M. T. Quantification of CO2 uptake by enhanced weathering of silicate minerals applied to acidic soils. Int. J. Greenh. Gas Control 125, 103872 (2023).

    Article  CAS  Google Scholar 

  41. Galla, J. K. et al. The evolution of lithium isotope signatures in fluids draining actively weathering hillslopes. Earth Planet. Sci. Lett. 567, 116988 (2021).

    Article  Google Scholar 

  42. Wolters, T. et al. The derivation of denitrification conditions in groundwater: combined method approach and application for Germany. Ecol. Indic. 144, 109564 (2022).

    Article  CAS  Google Scholar 

  43. Tivig, M., Keller, D. P. & Oschlies, A. Riverine nitrogen supply to the global ocean and its limited impact on global marine primary production: a feedback study using an Earth system model. Biogeosciences 18, 5327–5350 (2021).

    Article  CAS  Google Scholar 

  44. Sarmiento, J. L. & Gruber, N. Ocean Biogeochemical Dynamics 528 (Princeton Univ. Press, 20206).

  45. Zhang, S. et al. A framework for modeling carbon loss from rivers following enhanced terrestrial weathering. Environ. Res. Lett. 20, 024014 (2025).

    Article  CAS  Google Scholar 

  46. Harrington, K. J., Hilton, R. G. & Henderson, G. M. Implications of riverine response to enhanced weathering for CO2 removal in the UK. App. Geochem. 152, 105643 (2023).

    Article  CAS  Google Scholar 

  47. Bertagni, M. B. & Porporato, A. The carbon capture efficiency of natural water alkalinization: implications for enhanced weathering. Sci. Total Environ. 838, 156524 (2022).

    Article  CAS  Google Scholar 

  48. MacKenzie, F. T. & Kump, L. R. Reverse weathering, clay mineral formation, and oceanic element cycles. Science 270, 586–587 (1995).

    Article  CAS  Google Scholar 

  49. Michalopoulos, P. & Aller, R. Rapid clay mineral formation in Amazon delta cycles: reverse weathering and oceanic elemental cycles. Science 270, 614–617 (1995).

    Article  CAS  Google Scholar 

  50. Michalopoulos, P. & Aller, R. Early diagenesis of biogenic silica in the Amazon delta: alteration, authigenic clay formation, and storage. Geochim. Cosmochim. Acta 68, 1061–1085 (2004).

    Article  CAS  Google Scholar 

  51. Suplis, O. et al. Calcium carbonate dissolution patterns in the ocean. Nat. Geosci. 14, 423–428 (2021).

    Article  Google Scholar 

  52. Motlaghzadeh, K. et al. Applying equity principles leads to higher carbon removal obligations in Canada. Commun. Earth Environ. 6, 88 (2025).

    Article  Google Scholar 

  53. Steefel, C. I. et al. Reactive transport codes for subsurface environmental simulations. Comp. Geosci. 19, 445–478 (2015).

    Article  Google Scholar 

  54. Kanzaki, Y. et al. Soil cycles of elements simulator for predicting terrestrial regulation of greenhouse gases: SCEPTER v0.9. Geosci. Model Dev. 15, 4959–4990 (2022).

    Article  CAS  Google Scholar 

  55. Kanzaki, Y. et al. In silico calculation of soil pH by SCEPTER v1.0. Geosci. Model Dev. 17, 4515–4532 (2024).

    Article  CAS  Google Scholar 

  56. Zhang, S. et al. River chemistry constraints on the carbon capture potential of surficial enhanced rock weathering. Limnol. Oceanogr. 67, S148–S157 (2022).

    Article  CAS  Google Scholar 

  57. Strefler, J. et al. Potential and costs of carbon dioxide removal by enhanced weathering of rocks. Environ. Res. Lett. 13, 034010 (2018).

    Article  Google Scholar 

  58. Chen, A. et al. Experimentally-calibrated estimation of CO2 removal potentials of enhanced weathering. Sci. Total Environ. 900, 165766 (2023).

    Article  CAS  Google Scholar 

  59. Rockstrom, J. et al. A roadmap for rapid decarbonisation. Science 355, 1269–1271 (2017).

    Article  Google Scholar 

  60. Guo, F. et al. Improving food security and farmland carbo sequestration in China through enhanced rock weathering: field evidence and potential assessment in different humid regions. Sci. Total Environ. 903, 166118 (2023).

    Article  CAS  Google Scholar 

  61. Van Straaten, P. Farming with rocks and minerals: challenges and opportunities. Ann. Braz. Acad. Sci. 78, 731–747 (2006).

    Article  Google Scholar 

  62. Alewell, C. et al. Global phosphorus shortage will be aggravated by soil erosions. Nat. Commun. 11, 4546 (2020).

    Article  CAS  Google Scholar 

  63. Brownlie, W. J. et al. Global food security threatened by potassium neglect. Nat. Food 5, 111–115 (2024).

    Article  Google Scholar 

  64. Blanc-Betes, E. et al. In silico assessment of the potential of basalt amendments to reduce N2O emissions from bioenergy crops. Glob. Change Biol. Bioenergy 13, 224–241 (2020).

    Article  Google Scholar 

  65. Chiaravalloti, I. et al. Mitigation of soil nitrous oxide emissions during maize production with basalt amendments. Front. Clim. 5, 1203043 (2023).

    Article  Google Scholar 

  66. Weber, J. et al. Global agricultural N2O emission reduction strategies deliver climate benefits with minimum impact on stratospheric O3 recovery. npj Clim. Atmos. Sci. 7, 121 (2024).

    Article  Google Scholar 

  67. Levy, C. R. et al. Enhanced rock weathering for carbon removal — monitoring and mitigating potential environmental impacts on agricultural land. Environ. Sci. Technol. 58, 17215–17226 (2024).

    Article  CAS  Google Scholar 

  68. Dupla, X., Moller, B., Baveye, P. C. & Grand, S. Potential accumulation of toxic trace elements in soils during enhanced rock weathering. Eur. J. Soil Sci. 74, e13343 (2023).

    Article  CAS  Google Scholar 

  69. Richardson, J. B. Basalt rock dust amendment on soil health properties and inorganic nutrients — laboratory and field study at two organic farm soils in New England, USA. Agriculture 15, 52 (2025).

    Article  CAS  Google Scholar 

  70. Uchibayashi, H. et al. Impact of basalt application on soil chemical properties and elemental uptake by paddy rice through enhanced rock weathering. Soil Sci. Plant Nutr. https://doi.org/10.1080/00380768.2024.2448457 (2025).

    Article  Google Scholar 

  71. Wang, F. et al. Wollastonite power application increases rice yield and CO2 sequestration in Northeast China. Plant Soil 502, 589–603 (2024).

    CAS  Google Scholar 

  72. Skov, K. et al. Initial agronomic benefits of enhanced weathering using basalt: a study of spring oat in a temperate climate. PLoS ONE 19, e0295031 (2024).

    Article  CAS  Google Scholar 

  73. Delina, R. E. et al. Chromium occurrence in a nickel laterite profile and its implications to surrounding surface waters. Chem. Geol. 558, 119863 (2020).

    Article  CAS  Google Scholar 

  74. Mannion, P. et al. Carbon removals: how to scale a new gigaton industry. https://www.mckinsey.com/capabilities/sustainability/our-insights/carbon-removals-how-to-scale-a-new-gigaton-industry#/ (2023).

  75. Net Zero Stocktake. Technical Report, Energy and Climate Intelligence Unit, Data-Driven EnviroLab, New Climate Institute, Oxford Net Zero (2023).

  76. Probst, B. S. et al. Systematic assessment of the achieved emissions reduction of carbon crediting projects. Nat. Commun. 15, 9562 (2024).

    Article  CAS  Google Scholar 

  77. Popkin, G. Shaky ground. Science 381, 369–373 (2023).

    Article  CAS  Google Scholar 

  78. Dupla, X. et al. Are soil carbon credits empty promises? Shortcomings of current soil carbon quantification methodologies and improvement avenues. Soil Use Manag. 40, e13092 (2024).

    Article  Google Scholar 

  79. Barbato, C. T. & Strong, A. L. Farmer perspectives on the carbon markets incentivizing agricultural soil carbon sequestration. npj Clim. Action 2, 26 (2023).

    Article  Google Scholar 

  80. Oldfield, E. E. et al. Crediting agricultural soil carbon sequestration. Science 375, 1222–1225 (2022).

    Article  CAS  Google Scholar 

  81. Hong, A. et al. State of the Voluntary Carbon Market 2023 (Carbon Direct, 2023).

  82. Renforth, P. The negative emissions potential of alkaline materials. Nat. Commun. 10, 1401 (2019).

    Article  Google Scholar 

  83. Broberg, D. et al. Government Intervention in Support of Quality Carbon Credits (Bipartisan Policy Centre, Carbon Direct, 2023).

  84. Amaglobeli, D., Benson, T. & Mogues, T. Agricultural Producer Subsidies: Navigating Challenges and Policy Considerations (IMF Notes, 2024).

  85. Boudinot, F. G. et al. Enhanced Rock Weathering in the Global South: Exploring Potential for Enhanced Agricultural Productivity and Carbon Dioxide Drawdown (Precision Development & Institute for Governance & Sustainable Development, Cornell Univ., 2023).

  86. Xu, P. & Reinhard, C. T. Evaluating the carbon capture potential of industrial waste as a feedstock for enhancing weathering. Environ. Res. Lett. 20, 044013 (2025).

    Article  CAS  Google Scholar 

  87. Webb, R. M. The Law of Enhanced Weathering for Carbon Dioxide Removal (Columbia Law School, 2020).

  88. Fritz, L., Baum, C. M., Brutschin, E., Low, S. & Sovacool, B. K. Climate beliefs, climate technologies and transformation pathways: contextualizing public perceptions in 22 countries. Glob. Environ. Change 87, 102880 (2024).

    Article  Google Scholar 

  89. Buck, H. J. Rapid scale-up of negative emissions technologies: social barriers and social implications. Clim. Change 139, 155–167 (2016).

    Article  CAS  Google Scholar 

  90. Cox, E., Pidgeon, N., Spence, E. & Thomas, G. Blurred lines: the ethics and policy of greenhouse gas removal at scale. Front. Environ. Sci. 6, 38 (2018).

    Article  Google Scholar 

  91. Rayner, S. et al. The Oxford principles. Clim. Change 121, 499–512 (2013).

    Article  Google Scholar 

  92. Cox, E. et al. Question-led innovation: public priorities for enhanced weathering research in Malaysia. Environ. Sci. Policy 163, 103977 (2025).

    Article  Google Scholar 

  93. Baum, C., Fritz, L., Low, S. & Sovacool, B. K. Public perception and support of climate intervention technologies across the Global North and the Global South. Nat. Commun. 15, 2060 (2024).

    Article  CAS  Google Scholar 

  94. Spence, E., Cox, E. & Pidgeon, N. F. Exploring cross-national public support for the use of enhanced weathering as a land-based carbon dioxide removal strategy. Clim. Change 165, 23 (2021).

    Article  CAS  Google Scholar 

  95. Wolske, K. S., Raimi, K. T., Campbell-Arvai, V. & Hart, P. S. Public support for carbon dioxide removal strategies: the role of tampering with nature perceptions. Clim. Change 152, 345–361 (2019).

    Article  CAS  Google Scholar 

  96. Butler, C., Demski, C. C., Parkhill, K. A., Pidgeon, N. F. & Spence, A. Public values for energy futures: framing, indeterminacy and policy making. Energy Policy 87, 665–672 (2015).

    Article  Google Scholar 

  97. Cox, E., Spence, E. & Pidgeon, N. Public perceptions of carbon dioxide removal in the US and UK. Nat. Clim. Change 10, 744–749 (2020).

    Article  CAS  Google Scholar 

  98. Cox, E., Spence, E. & Pidgeon, N. F. Deliberating enhanced weathering: public frames, iconic ecosystems, and the governance of carbon removal at scale. Public Underst. Sci. 31, 960–977 (2022).

    Article  Google Scholar 

  99. Low, S., Fritz, L., Baum, C. M. & Sovacool, B. K. Public perceptions on carbon removal from focus groups in 22 countries. Nat. Commun. 15, 3453 (2024).

    Article  CAS  Google Scholar 

  100. Gough, C. & Mander, S. Beyond social acceptability: applying lessons from CCS social science to support deployment of BECCS. Curr. Sust. Renew. Energy Rep. 6, 116–123 (2019).

    Google Scholar 

  101. Bennett, N. J. & Satterfield, T. Environmental governance: a practical framework to guide design, evaluation, and analysis. Conserv. Lett. 11, e12600 (2018).

    Article  Google Scholar 

  102. Buck, H. J. Mining the air: political ecologies of the circular carbon economy. Environ. Plan. E Nat. Space 5, 1086–1105 (2021).

    Article  Google Scholar 

  103. McLaren, D. Quantifying the potential scale of mitigation deterrence from greenhouse gas removal techniques. Clim. Change 162, 2411–2428 (2020).

    Article  CAS  Google Scholar 

  104. Fuhrman, J. et al. Diverse carbon dioxide removal approaches could reduce impacts on the energy–water–land system. Nat. Clim. Change 13, 341–350 (2023).

    Article  CAS  Google Scholar 

  105. Chiquier, S. et al. Integrated assessment of carbon dioxide removal portfolios: land, energy, and economic trade-offs for climate policy. Environ. Res. Lett. 20, 024002 (2025).

    Article  Google Scholar 

  106. Xu, T. et al. Enhanced silicate weathering accelerates forest carbon sequestration by stimulating the soil mineral carbon pump. Glob. Change Biol. 30, e17464 (2024).

    Article  CAS  Google Scholar 

  107. Amann, T. & Hartmann, J. Ideas and perspectives: synergies from co-deployment of negative emission technologies. Biogeosciences 16, 2949–2960 (2019).

    Article  CAS  Google Scholar 

  108. Buss, W. et al. Applying minerals to soil to draw down atmospheric carbon dioxide through synergistic organic and inorganic pathways. Commun. Earth Environ. 5, 602 (2024).

    Article  Google Scholar 

  109. Wu, W. et al. Prospects for the potential carbon sink effects of afforestation to enhance weathering in China. J. Asian Earth Sci. 276, 106370 (2024).

    Article  Google Scholar 

  110. Honvault, N. et al. Additive effects of basalt enhanced weathering and biochar co-application on carbon sequestration, soil nutrient status and plant performance in a mesocosm experiment. Appl. Geochem. 169, 106054 (2024).

    Article  CAS  Google Scholar 

  111. Baek, S. H. et al. Impact of climate on the global capacity for enhanced rock weathering on croplands. Earth’s Fut. 11, e2023EF003698 (2023).

    Article  Google Scholar 

  112. Lauvaset, S. K. et al. GLODAPv2.2022: the latest version of the global interior ocean biogeochemical data product. Earth Syst. Sci. Data 14, 5543–5572 (2022).

    Article  Google Scholar 

  113. Kopittke, P. M. & Menzies, N. W. A review of the use of basic cation exchange ratio and the ‘ideal’ soil. Soil. Sci. Am. J. 71, 259–265 (2007).

    Article  CAS  Google Scholar 

  114. McLean, E. O., Hartwig, R. C., Eckert, D. J. & Triplett, G. B. Basic cation saturation ratios as a basis for fertilizing and liming agronomic crops. II. Field studies. Agron. J. 75, 635–639 (1983).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the Leverhulme Trust (Leverhulme Research Centre grant RC-2015-029) and UKRI under the UK Greenhouse Gas Removal Programme (BB/V011359/1). N.J.P. acknowledges support from the Yale Centre for Natural Carbon Capture. N.J.P. and C.T.R. acknowledge support from the Grantham Foundation and the Environmental Defense Fund.

Author information

Authors and Affiliations

Authors

Contributions

D.J.B. led the writing with contributions from other authors. All authors contributed to discussion, review and editing of the article.

Corresponding author

Correspondence to David J. Beerling.

Ethics declarations

Competing interests

D.J.B. has a minority equity stake in companies (Future Forest and Undo) and is an advisory board member of The Carbon Community, a UK carbon removal charity. N.J.P. and C.T.R. were co-founders of the CDR company Lithos Carbon but have no remaining financial ties to the company. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks David Manning, Feng Tao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Alt Carbon: https://www.alt-carbon.com/

Andes Bio: https://www.andes.bio/

CA SB 643: https://legiscan.com/CA/text/SB643/id/313503

California Air Resources Board: https://ww2.arb.ca.gov/sites/default/files/2023-04/2022-sp.pdf

Cambridge: https://www.cambridge.org/engage/api-gateway/coe/assets/orp/resource/item/66c38d1ff3f4b052905d4317/original/cambridge-permanence-and-durability-voluntary-carbon-market-workshop-resources-and-summary.pdf

Carbonaught: https://www.carbonaught.io/

Carbon Negative Shot: https://www.energy.gov/fecm/project-selections-foa-3082-carbon-negative-shot-pilots

Carbon Removal and Carbon Farming Certification Framework: https://ec.europa.eu/commission/presscorner/detail/en/ip_24_885

Carbony: https://www.carbony.earth/

Cascade Climate: https://cascadeclimate.org/our-work#erw

CDR.fyi: https://www.cdr.fyi/

CDR Purchase Pilot Prize: https://www.energy.gov/fecm/funding-notice-carbon-dioxide-removal-purchase-pilot-prize

CDRterra: https://cdrterra.de/en/

Climate-Smart Agriculture Program: https://www.agriculture.gov.au/agriculture-land/farm-food-drought/natural-resources/landcare/climate-smart

ClimeRock: https://climerock.com/

CO2RE: https://co2re.org/

Commodity Insights: https://www.spglobal.com/commodity-insights/en/news-research/latest-news/energy-transition/042224-japans-gx-ets-to-accept-international-removal-voluntary-credits-for-compliance-obligations

C-SINK: https://c-sinkproject.eu/

Department of Energy: https://www.energy.gov/articles/doe-announces-12-million-accelerate-americas-carbon-dioxide-removal-industry

Department for Energy Security and Net Zero: https://www.gov.uk/government/consultations/integrating-greenhouse-gas-removals-in-the-uk-emissions-trading-scheme

Eion: https://eioncarbon.com/

Emissions Trading Scheme: https://www.gov.uk/government/publications/participating-in-the-uk-ets/participating-in-the-uk-ets

Environmental Protection Agency: https://www.epa.gov/rcra/resource-conservation-and-recovery-act-rcra-overview

Everest Carbon: https://www.everestcarbon.com/

Flux Carbon: https://www.fluxcarbon.earth/

Frontier: https://frontierclimate.com/portfolio

Frontier Climate: https://frontierclimate.com/portfolio?pathway=enhanced_weathering

Greening Government Strategy: https://www.canada.ca/en/treasury-board-secretariat/news/2024/10/government-of-canada-commits-to-purchase-carbon-dioxide-removal-services-to-green-government-operations-and-achieve-net-zero-emissions.html

GX Emissions Trading Scheme: https://gx-league.go.jp/action/gxets/

InPlanet: https://inplanet.earth/

Label Bas-Carbone: https://label-bas-carbone.ecologie.gouv.fr/

Leverhulme Trust: https://www.leverhulme.ac.uk/

Lithos Carbon: https://www.lithoscarbon.com/

Mati Carbon: https://www.mati.earth/

MetalPlant: https://metalplant.com/

Nationwide programme for environmental regeneration of soils through liming: https://www.gov.pl/web/nfosigw/ogolnopolski-program-regeneracji-srodowiskowej-gleb-poprzez-ich-wapnowanie

New Brunswick: https://www2.gnb.ca/content/gnb/en/services/services_renderer.201573.New_Brunswick_Lime_Transportation_Assistance_Program.html

Newfoundland and Labrador: https://www.gov.nl.ca/ffa/programs-and-funding/programs/limestone/

Nova Scotia: https://novascotia.ca/programs/limestone-trucking-assistance/

Remineralizer Law: https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos-agricolas/fertilizantes/legislacao/lei-no-12-890-de-10-de-dezembro-de-2013_ingles.pdf

Reverce: https://reverce.com/

Rock Flour: https://www.rockflour.co/

RockMIP: https://sheffield.ac.uk/rockMIP

Silica Earth: https://silica.earth/

Silicate Carbon: https://www.silicatecarbon.com/

Terradot: https://terradot.earth/

Undo: https://un-do.com/enhancedweathering/

Varaha: https://www.varaha.earth/ourProjects

Verde Agritech: https://verde.ag/en/about-verde/

World Bank: https://openknowledge.worldbank.org/entities/publication/e5f6e755-e6a6-4d2c-927a-23b5cc8a9b03

X Prize: https://www.xprize.org/prizes/carbonremoval

ZeroEx: https://zeroex.com/en

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beerling, D.J., Reinhard, C.T., James, R.H. et al. Challenges and opportunities in scaling enhanced weathering for carbon dioxide removal. Nat Rev Earth Environ 6, 672–686 (2025). https://doi.org/10.1038/s43017-025-00713-7

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43017-025-00713-7

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene