Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Overcoming recycling barriers to transform global phosphorus management

Abstract

The global phosphorus challenge arises from the uneven distribution of phosphorus resources, environmental effects from phosphorus losses and unsustainable linear management. Despite progress in advanced phosphorus recycling, less than 1% of secondary phosphorus resources produced globally are recycled. In this Review, we comprehensively explore global barriers to phosphorus recycling. Manure (15–20 million tons P (MtP) yr−1), mining and fertilizer industry waste (6–12 MtP yr−1), wastewater (~3.7 MtP yr−1) and food waste (~1.2 MtP yr−1) are the major secondary phosphorus resources worldwide. In addition, accumulated legacy phosphorus in soil and sediment comprises a combined stock of more than 3,200 MtP. Phosphorus mismanagement and losses cost stakeholders US$265 billion annually, yet substantial barriers to phosphorus recycling remain. Key challenges to be overcome include low competitiveness of recycled phosphorus products, complex waste handling, limited legacy phosphorus recovery and fragmented collaboration among stakeholders. A shift is needed towards an integrated, systems-based approach that simultaneously addresses technical, economic and societal challenges. Transdisciplinary strategies and research will advance phosphorus recycling and the development of a sustainable, circular phosphorus economy. Incorporating the perspectives of diverse stakeholders will help drive increasingly sustainable phosphorus management.

Key points

  • Mineral phosphorus dependency, uneven global distribution, eutrophication and linear nutrient management are fundamental and deeply interconnected challenges in managing phosphorus.

  • Efficient phosphorus use and recycling are essential to closing the phosphorus cycle, but numerous barriers stand in the way of achieving this goal.

  • The existence of conflicting objectives among stakeholders is a key barrier to developing and implementing effective strategies for sustainable phosphorus use.

  • Successful strategies for circular management of phosphorus require improved communication, interdisciplinary research and transdisciplinary processes that incorporate the needs of all stakeholders.

  • Inclusive policies are vital to align incentives, foster collaboration and promote sustainable phosphorus-use practices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phosphorus cycle flows and challenges in the EU.
Fig. 2: Global phosphorus inputs and removals in agriculture.
Fig. 3: Global distribution and recovery amounts of advanced phosphorus recovery plants.
Fig. 4: Transdisciplinarity as a tool to overcome fragmentation through integration and stakeholder engagement.

Similar content being viewed by others

References

  1. Chen, M. & Graedel, T. E. A half-century of global phosphorus flows, stocks, production, consumption, recycling, and environmental impacts. Glob. Environ. Change 36, 139–152 (2016).

    Article  Google Scholar 

  2. US Geological Survey. Mineral Commodity Summaries 2024: US Geological Survey (2024); https://doi.org/10.3133/mcs2024.

  3. Haldar, S. K. in Mineral Exploration (Elsevier, 2018); https://doi.org/10.1016/b978-0-12-814022-2.00001-0.

  4. Reetz, H. F. International Fertilizer industry Association. Fertilizers and Their Efficient Use (2016); https://www.fertilizer.org/resource/fertilizers-and-their-efficient-use/.

  5. International Fertilizer Industry Association. Phosphate Rock Resources and Reserves (2023); https://www.fertilizer.org/wp-content/uploads/2023/04/2023_Argus_IFA_Phosphate_Rock_Resources_and_Reserves_Final.pdf.

  6. Brownlie, W. J., Sutton, M. A., Heal, K. V., Reay, D. S. & Spears, B. M. Our Phosphorus Future Network. Our Phosphorus Future (2022); https://doi.org/10.13140/RG.2.2.17834.08645.

  7. Chen, Y. & Chen, M. Evolution of the global phosphorus trade network: a production perspective on resilience. J. Clean. Prod. 405, 136843 (2023).

    Article  Google Scholar 

  8. Geissler, B., Hermann, L., Mew, M. C. & Steiner, G. Striving toward a circular economy for phosphorus: the role of phosphate rock mining. Minerals 8, 395 (2018).

    Article  Google Scholar 

  9. Scholz, R. W. & Wellmer, F. W. Losses and use efficiencies along the phosphorus cycle. part 1: dilemmata and losses in the mines and other nodes of the supply chain. Resour. Conserv. Recycl. 105, 216–234 (2015).

    Article  Google Scholar 

  10. Walsh, M., Schenk, G. & Schmidt, S. Realising the circular phosphorus economy delivers for sustainable development goals. npj Sustain. Agric. 1, 1–15 (2023).

    Article  Google Scholar 

  11. Liu, X., Zhang, Y., Cheng, M., Jiang, S. & Yuan, Z. Recycling phosphorus from waste in China: recycling methods and their environmental and resource consequences. Resour. Conserv. Recycl. 188, 106669 (2023).

    Article  Google Scholar 

  12. Teodoro, D. L., da, C., Rocha, S. M. da & Benicio, L. P. F. Toward agricultural resilience: analyzing Brazil’s national fertilizer plan. Sci. Technol. Public Policy 8, 9–14 (2024).

    Article  Google Scholar 

  13. Ministério da Indústria, Comércio Exterior e Serviços. Secretaria de Desenvolvimento Industrial, Inovação, Comércio e Serviços. Ministério da Gestão e da Inovação em Serviços Públicos. Plano Nacional de Fertilizantes 2050: uma Estratégia para os Fertilizantes no Brasil (2023).

  14. Smol, M. The importance of sustainable phosphorus management in the circular economy (CE) model: the Polish case study. J. Mater. Cycles Waste Manag. 21, 227–238 (2019).

    Article  CAS  Google Scholar 

  15. Mayer, B. K. et al. Total value of phosphorus recovery. Environ. Sci. Technol. 50, 6606–6620 (2016).

    Article  CAS  Google Scholar 

  16. Devault, M., Woolf, D. & Lehmann, J. Nutrient recycling potential of excreta for global crop and grassland production. Nat. Sustain. 8, 99–111 (2025).

    Article  Google Scholar 

  17. Egle, L., Rechberger, H., Krampe, J. & Zessner, M. Phosphorus recovery from municipal wastewater: An integrated comparative technological, environmental and economic assessment of P recovery technologies. Sci. Total Environ. 571, 522–542 (2016).

    Article  CAS  Google Scholar 

  18. Jupp, A. R., Beijer, S., Narain, G. C., Schipper, W. & Slootweg, J. C. Phosphorus recovery and recycling – closing the loop. Chem. Soc. Rev. 50, 87–101 (2021).

    Article  CAS  Google Scholar 

  19. Bernal, M. P. et al. LIFE + MANEV. Evaluation of Manure Management Systems in Europe. Final Report (no. LIFE09 ENV/ES/000453) (SARGA, 2015).

  20. European Commission. Treating Urban Waste Water: New Data Shows Improvement Across Europe (2021); https://environment.ec.europa.eu/news/treating-urban-waste-water-new-data-shows-improvement-across-europe-2021-11-19_en#:~:Text=On%20the%20occasion%20of%20the,in%20line%20with%20EU%20standards.

  21. Garske, B. & Ekardt, F. Economic policy instruments for sustainable phosphorus management: taking into account climate and biodiversity targets. Environ. Sci. Eur. 33, 56 (2021).

    Article  Google Scholar 

  22. Kalpakchiev, T., Fraundorfer, M., Jacobs, B., Martin-Ortega, J. & Cordell, D. Transforming the European union’s phosphorus governance through holistic and intersectoral framings. Front. Sustain. Resour. Manag. 2, 1273271 (2023).

    Article  Google Scholar 

  23. Zhu, F., Cakmak, E. K. & Cetecioglu, Z. Phosphorus recovery for circular economy: application potential of feasible resources and engineering processes in Europe. Chem. Eng. J. 454, 140153 (2023).

    Article  CAS  Google Scholar 

  24. Cordell, D. & White, S. Life’s bottleneck: sustaining the world’s phosphorus for a food secure future. Annu. Rev. Environ. Resour. 39, 161–188 (2014).

    Article  Google Scholar 

  25. Hosseinian, A., Pettersson, A., Ylä-Mella, J. & Pongrácz, E. Phosphorus recovery methods from secondary resources, assessment of overall benefits and barriers with focus on the Nordic countries. J. Mater. Cycles Waste Manag. 25, 3104–3116 (2023).

    Article  CAS  Google Scholar 

  26. Aarikka-Stenroos, L., Kokko, M. & Pohls, E. L. Catalyzing the circular economy of critical resources in a national system: case study on drivers, barriers, and actors in nutrient recycling. J. Clean. Prod. 397, 136380 (2023).

    Article  CAS  Google Scholar 

  27. Lou, H. et al. Quantitative evaluation of legacy phosphorus and its spatial distribution. J. Environ. Manage. 211, 296–305 (2018).

    Article  CAS  Google Scholar 

  28. Solangi, F. et al. The global dilemma of soil legacy phosphorus and its improvement strategies under recent changes in agro-ecosystem sustainability. ACS Omega 8, 23271–23282 (2023).

    Article  CAS  Google Scholar 

  29. Pavinato, P. S. et al. Revealing soil legacy phosphorus to promote sustainable agriculture in Brazil. Sci. Rep. 10, 15615 (2020).

    Article  CAS  Google Scholar 

  30. Li, B. et al. Network evolution and risk assessment of the global phosphorus trade. Sci. Total Environ. 860, 160433 (2023).

    Article  CAS  Google Scholar 

  31. Powers, S. M. et al. Global opportunities to increase agricultural independence through phosphorus recycling. Earths Future 7, 370–383 (2019).

    Article  Google Scholar 

  32. Cordell, D. & Neset, T. S. S. Phosphorus vulnerability: a qualitative framework for assessing the vulnerability of national and regional food systems to the multi-dimensional stressors of phosphorus scarcity. Glob. Environ. Change 24, 108–122 (2014).

    Article  Google Scholar 

  33. Nanda, M., Cordell, D. & Kansal, A. Assessing national vulnerability to phosphorus scarcity to build food system resilience: the case of India. J. Environ. Manage. 240, 511–517 (2019).

    Article  CAS  Google Scholar 

  34. Pistilli, M. INN. Top 10 Phosphate Countries by Production (Updated 2024); https://investingnews.com/daily/resource-investing/agriculture-investing/phosphate-investing/top-phosphate-countries-by-production/.

  35. Bonini, C. & Wesenbeeck, C. F. A. The economics of phosphorus: does its price reect its attributes? an economic and geopolitical analysis of the market for phosphate rock. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-2519554/v1 (2023).

  36. Mew, M. C. Phosphate rock costs, prices and resources interaction. Sci. Total Environ. 542, 1008–1012 (2016).

    Article  CAS  Google Scholar 

  37. Cordell, D. & White, S. Peak phosphorus: clarifying the key issues of a vigorous debate about long-term phosphorus security. Sustainability 3, 2027–2049 (2011).

    Article  Google Scholar 

  38. Cordell, D., Drangert, J.-O. & White, S. The story of phosphorus: global food security and food for thought. Glob. Environ. Change 19, 292–305 (2009).

    Article  Google Scholar 

  39. Moosavi, J., Fathollahi-Fard, A. M. & Dulebenets, M. A. Supply chain disruption during the COVID-19 pandemic: recognizing potential disruption management strategies. Int. J. Disaster Risk Reduct. 75, 102983 (2022).

    Article  Google Scholar 

  40. Kee, J., Cardell, L. & Zereyesus, Y. A. USDA ERS. Global Fertilizer Market Challenged by Russia’s Invasion of Ukraine (2023); https://www.ers.usda.gov/amber-waves/2023/september/global-fertilizer-market-challenged-by-russia-s-invasion-of-ukraine/.

  41. Chow, E. & Patton, D. China issues phosphate quotas to rein in fertiliser exports — analysts. Reuters (2022); https://www.reuters.com/article/markets/currencies/china-issues-phosphate-quotas-to-rein-in-fertiliser-exports-analysts-idUSKBN2OQ0KX/.

  42. White, E. US, Canadian farmers face soaring fertilizer prices amid Trump trade war. Reuters (2025); https://www.reuters.com/markets/commodities/us-canadian-farmers-face-soaring-fertilizer-prices-amid-trump-trade-war-2025-03-07/.

  43. International Food Policy Research Institute (IFPRI). Global Fertilizer Trade 2021−2023: What Happened after War-Related Price Spikes (2024); https://www.ifpri.org/blog/global-fertilizer-trade-2021-2023-what-happened-after-war-related-price-spikes/.

  44. de Ridder, M., de Jong, S., Polchar, J. & Lingemann, S. HCSS. Risks and Opportunities in the Global Phosphate Rock Market. Robust Strategies in Times of Uncertainty (2012); https://hcss.nl/report/risks-and-opportunities-in-the-global-phosphate-rock-market-robust-strategies-in-times-of-uncertainty/.

  45. Brunner, P. H. Substance flow analysis as a decision support tool for phosphorus management. J. Ind. Ecol. 14, 870–873 (2010).

    Article  CAS  Google Scholar 

  46. Brownlie, W. J. et al. Phosphorus price spikes: a wake-up call for phosphorus resilience. Front. Sustain. Food Syst. 7, 1088776 (2023).

    Article  Google Scholar 

  47. van Dijk, K. C., Lesschen, J. P. & Oenema, O. Phosphorus flows and balances of the European union member states. Sci. Total Environ. 542, 1078–1093 (2016).

    Article  Google Scholar 

  48. Lun, F. et al. Global and regional phosphorus budgets in agricultural systems and their implications for phosphorus-use efficiency. Earth Syst. Sci. Data 10, 1–18 (2018).

    Article  Google Scholar 

  49. Vanlauwe, B. et al. International Fertilizer Development Center (IFDC). Fertilizer and Soil Health in Africa: the Role of Fertilizer in Building Soil Health to Sustain Farming and Address Climate Change (2023).

  50. Sabo, R. D. et al. Phosphorus inventory for the conterminous United States (2002–2012). J. Geophys. Res. Biogeosci. 126, e2020JG005684 (2021).

    Article  CAS  Google Scholar 

  51. Liu, W. et al. Global phosphorus losses from croplands under future precipitation scenarios. Environ. Sci. Technol. 54, 14761–14771 (2020).

    Article  CAS  Google Scholar 

  52. Wang, R., Cai, C., Zhang, J., Sun, S. & Zhang, H. Study on phosphorus loss and influencing factors in the water source area. Int. Soil Water Conserv. Res. 10, 324–334 (2022).

    Article  Google Scholar 

  53. Mekonnen, M. M. & Hoekstra, A. Y. Global anthropogenic phosphorus loads to freshwater and associated grey water footprints and water pollution levels: a high-resolution global study. Water Resour. Res. 54, 345–358 (2018).

    Article  CAS  Google Scholar 

  54. European Union. Directive 2000/60/EC of the European parliament and of the council of 23 october 2000 establishing a framework for community action in the field of water policy. J. Eur. Parliament L327, 1−73 (2000).

    Google Scholar 

  55. Tu, L. et al. Anthropogenic modification of phosphorus sequestration in lake sediments during the Holocene: a global perspective. Glob. Planet. Change 229, 104222 (2023).

    Article  Google Scholar 

  56. Bilal, E. et al. Phosphogypsum circular economy considerations: a critical review from more than 65 storage sites worldwide. J. Clean. Prod. 414, 137561 (2023).

    Article  CAS  Google Scholar 

  57. Jama-Rodzeńska, A., Białowiec, A., Koziel, J. A. & Sowiński, J. Waste to phosphorus: a transdisciplinary solution to P recovery from wastewater based on the TRIZ approach. J. Environ. Manage. 287, 112235 (2021).

    Article  Google Scholar 

  58. Carrillo, V., Castillo, R., Magrí, A., Holzapfel, E. & Vidal, G. Phosphorus recovery from domestic wastewater: a review of the institutional framework. J. Environ. Manage. 351, 119812 (2024).

    Article  CAS  Google Scholar 

  59. Girotto, F., Alibardi, L. & Cossu, R. Food waste generation and industrial uses: a review. Waste Manag. 45, 32–41 (2015).

    Article  CAS  Google Scholar 

  60. Yu, Y. H., Du, C. M., Zhang, Y. T. & Yuan, R. Y. Phosphorus recovery from phosphate tailings through a two-stage leaching-precipitation process: toward the harmless and reduction treatment of P-bearing wastes. Environ. Res. 248, 118328 (2024).

    Article  CAS  Google Scholar 

  61. Xiao, Y. et al. Co-pyrolysis of sewage sludge and phosphate tailings: synergistically enhancing heavy metal immobilization and phosphorus availability. Waste Manag. 181, 44–56 (2024).

    Article  CAS  Google Scholar 

  62. Spooren, J. et al. Near-zero-waste processing of low-grade, complex primary ores and secondary raw materials in Europe: technology development trends. Resour. Conserv. Recycl. 160, 104919 (2020).

    Article  Google Scholar 

  63. Singh, M. Treating waste phosphogypsum for cement and plaster manufacture. Cem. Concr. Res. 32, 1033–1038 (2002).

    Article  CAS  Google Scholar 

  64. Fuleihan, N. F. Phosphogypsum disposal — the pros and cons of wet versus dry stacking. Procedia Eng. 46, 195–205 (2012).

    Article  CAS  Google Scholar 

  65. Pliaka, M. & Gaidajis, G. Potential uses of phosphogypsum: a review. J. Environ. Sci. Health A 57, 746–763 (2022).

    Article  CAS  Google Scholar 

  66. Panagos, P. et al. Improving the phosphorus budget of European agricultural soils. Sci. Total Environ. 853, 158706 (2022).

    Article  CAS  Google Scholar 

  67. Köninger, J. et al. Manure management and soil biodiversity: towards more sustainable food systems in the EU. Agric. Syst. 194, 103251 (2021).

    Article  Google Scholar 

  68. Zhang, Q. et al. Comprehensive assessment of the utilization of manure in China’s croplands based on national farmer survey data. Sci. Data 10, 223 (2023).

    Article  CAS  Google Scholar 

  69. Bai, Z. et al. Nitrogen, phosphorus, and potassium flows through the manure management chain in China. Environ. Sci. Technol. 50, 13409–13418 (2016).

    Article  CAS  Google Scholar 

  70. Hjorth, M. & Jørgensen, B. U. Polymer flocculation mechanism in animal slurry established by charge neutralization. Water Res. 46, 1045–1051 (2012).

    Article  CAS  Google Scholar 

  71. Hjorth, M., Christensen, K. V., Christensen, M. L. & Sommer, S. G. Solid—liquid separation of animal slurry in theory and practice. A review. Agron. Sustain. Dev. 30, 153–180 (2010).

    Article  CAS  Google Scholar 

  72. Möller, K. & Müller, T. Effects of anaerobic digestion on digestate nutrient availability and crop growth: a review. Eng. Life Sci. 12, 242–257 (2012).

    Article  Google Scholar 

  73. Kabeyi, M. J. B. & Olanrewaju, O. A. Biogas production and applications in the sustainable energy transition. J. Energy 2022, 8750221 (2022).

    Article  Google Scholar 

  74. Haldar, D. et al. Understanding the management of household food waste and its engineering for sustainable valorization- a state-of-the-art review. Bioresour. Technol. 358, 127390 (2022).

    Article  CAS  Google Scholar 

  75. Garcia-Garcia, G., Woolley, E. & Rahimifard, S. Optimising industrial food waste management. Procedia Manuf. 8, 432–439 (2017).

    Article  Google Scholar 

  76. Otles, S., Despoudi, S., Bucatariu, C. & Kartal, C. Food waste management, valorization, and sustainability in the food industry. Food Waste Recover. https://doi.org/10.1016/B978-0-12-800351-0.00001-8 (2015).

  77. Ruffatto, K., Shurson, G. C., Muenich, R. L. & Cusick, R. D. Modeling national embedded phosphorus flows of corn ethanol distillers’ grains to elucidate nutrient reduction opportunities. Environ. Sci. Technol. 57, 14429–14441 (2023).

    Article  CAS  Google Scholar 

  78. Chia, D. et al. A systematic review of country-specific drivers and barriers to household food waste reduction and prevention. Waste Manag. Res. 42, 459–475 (2024).

    Article  Google Scholar 

  79. Schanes, K., Dobernig, K. & Gözet, B. Food waste matters — a systematic review of household food waste practices and their policy implications. J. Clean. Prod. 182, 978–991 (2018).

    Article  Google Scholar 

  80. Arcas-Pilz, V., Gabarrell, X., Orsini, F. & Villalba, G. Literature review on the potential of urban waste for the fertilization of urban agriculture: a closer look at the metropolitan area of Barcelona. Sci. Total Environ. 905, 167193 (2023).

    Article  CAS  Google Scholar 

  81. Mokjatturas, S., Chinwetkitvanich, S., Patthanaissaranukool, W., Polprasert, C. & Polprasert, S. Phosphorus mass flows and economic benefits of food waste management: the case study of selected retail and wholesale fresh markets in Thailand. Clean. Technol. Environ. Policy 27, 219–233 (2025).

    Article  Google Scholar 

  82. Jones, E. R., Vliet, M. T. H. V., Qadir, M. & Bierkens, M. F. P. Country-level and gridded estimates of wastewater production, collection, treatment and reuse. Earth Syst. Sci. Data 13, 237–254 (2021).

    Article  Google Scholar 

  83. Kok, D. J. D. et al. Global phosphorus recovery from wastewater for agricultural reuse. Hydrol. Earth Syst. Sci. 22, 5781–5799 (2018).

    Article  Google Scholar 

  84. Diaz, R. et al. Enhanced bio-P removal: past, present, and future — a comprehensive review. Chemosphere 309, 136518 (2022).

    Article  CAS  Google Scholar 

  85. Korving, L., Loosdrecht, M. V. & Wilfert, P. in Phosphorus Recovery and Recycling (Springer, 2018); https://doi.org/10.1007/978-981-10-8031-9_21.

  86. Witek-Krowiak, A. et al. Phosphorus recovery from wastewater and bio-based waste: an overview. Bioengineered 13, 13474–13506 (2022).

    Article  CAS  Google Scholar 

  87. Denmark. Danish Environmental Protection Agency. Danmark uden affald — genanvend mere — forbrænd mindre — Ressourceplan for affaldshåndtering 2013–2018 (Miljøstyrelsen, 2013); https://regeringen.dk/media/ke3hq3tx/danmark_uden_affald__genanvend_mere__forbraend_mindre.pdf.

  88. European Sustainable Phosphorus Platform (ESPP). Catalogue of Nutrient Recovery Technologies (2023); https://phosphorusplatform.eu/activities/p-recovery-technology-inventory.

  89. Egle, L., Rechberger, H. & Zessner, M. Overview and description of technologies for recovering phosphorus from municipal wastewater. Resour. Conserv. Recycl. 105, 325–346 (2015).

    Article  Google Scholar 

  90. Wijdeveld, W. K. et al. Pilot-scale magnetic recovery of vivianite from digested sewage sludge. Water Res. 212, 118131 (2022).

    Article  CAS  Google Scholar 

  91. Quist-Jensen, C. A. et al. Acidification and recovery of phosphorus from digested and non-digested sludge. Water Res. 146, 307–317 (2018).

    Article  CAS  Google Scholar 

  92. Amann, A. et al. Environmental impacts of phosphorus recovery from municipal wastewater. Resour. Conserv. Recycl. 130, 127–139 (2018).

    Article  Google Scholar 

  93. Zhu, Y. et al. Thermal treatment of sewage sludge: a comparative review of the conversion principle, recovery methods and bioavailability-predicting of phosphorus. Chemosphere 291, 133053 (2022).

    Article  CAS  Google Scholar 

  94. Kiani, M. et al. Recycling eutrophic lake sediments into grass production: a four-year field experiment on agronomical and environmental implications. Sci. Total Environ. 870, 161881 (2023).

    Article  CAS  Google Scholar 

  95. Gatiboni, L. C. et al. Plant uptake of legacy phosphorus from soils without P fertilization. Nutr. Cycl. Agroecosyst. 119, 139–151 (2021).

    Article  CAS  Google Scholar 

  96. Sattari, S. Z., Bouwman, A. F., Giller, K. E. & Ittersum, M. K. V. Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. Proc. Natl Acad. Sci. USA 109, 6348–6353 (2012).

    Article  CAS  Google Scholar 

  97. Demay, J., Ringeval, B., Pellerin, S. & Nesme, T. Half of global agricultural soil phosphorus fertility derived from anthropogenic sources. Nat. Geosci. 16, 69–74 (2023).

    Article  CAS  Google Scholar 

  98. Zhang, J. et al. Spatiotemporal dynamics of soil phosphorus and crop uptake in global cropland during the 20th century. Biogeosciences 14, 2055–2068 (2017).

    Article  Google Scholar 

  99. Hallama, M., Pekrun, C., Lambers, H. & Kandeler, E. Hidden miners – the roles of cover crops and soil microorganisms in phosphorus cycling through agroecosystems. Plant Soil 434, 7–45 (2019).

    Article  CAS  Google Scholar 

  100. Lambers, H., Shane, M. W., Cramer, M. D., Pearse, S. J. & Veneklaas, E. J. Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann. Bot. 98, 693–713 (2006).

    Article  Google Scholar 

  101. Zhu, Y., Yan, F., Zörb, C. & Schubert, S. A link between citrate and proton release by proteoid roots of white lupin (Lupinus albus L.) grown under phosphorus-deficient conditions? Plant Cell Physiol. 46, 892–901 (2005).

    Article  CAS  Google Scholar 

  102. Richardson, A. E. et al. Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant Soil 349, 121–156 (2011).

    Article  CAS  Google Scholar 

  103. Ojeda-Rivera, J. O., Alejo-Jacuinde, G., Nájera-González, H.-R. & López-Arredondo, D. Prospects of genetics and breeding for low-phosphate tolerance: an integrated approach from soil to cell. Theor. Appl. Genet. 135, 4125–4150 (2022).

    Article  CAS  Google Scholar 

  104. Jha, U. C. et al. Breeding and genomics approaches for improving phosphorus-use efficiency in grain legumes. Environ. Exp. Bot. 205, 105120 (2023).

    Article  CAS  Google Scholar 

  105. Oburger, E., Jones, D. L. & Wenzel, W. W. Phosphorus saturation and pH differentially regulate the efficiency of organic acid anion-mediated P solubilization mechanisms in soil. Plant Soil 341, 363–382 (2011).

    Article  CAS  Google Scholar 

  106. Carver, R. E. et al. Cover crop and phosphorus fertilizer management impacts on surface water quality from a no-till corn-soybean rotation. J. Environ. Manage. 301, 113818 (2022).

    Article  CAS  Google Scholar 

  107. Zhu, J., Li, M. & Whelan, M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: a review. Sci. Total Environ. 612, 522–537 (2018).

    Article  CAS  Google Scholar 

  108. Ogunsanya, H. Y. et al. Belgian endive-derived biostimulants promote shoot and root growth in vitro. Sci. Rep. 12, 8792 (2022).

    Article  CAS  Google Scholar 

  109. Kirol, A. P. et al. Linking sediment and water column phosphorus dynamics to oxygen, temperature, and aeration in shallow eutrophic lakes. Water Resour. Res. 60, e2023WR034813 (2024).

    Article  CAS  Google Scholar 

  110. Simoni, G. et al. Flocculating and dewatering of lake sediment: an in-situ pilot study comparing synthetic polymers and biopolymers for restoring lake water quality and reusing phosphorus. Sci. Total Environ. 913, 169597 (2024).

    Article  CAS  Google Scholar 

  111. Hollas, C. E. et al. Second-generation phosphorus: recovery from wastes towards the sustainability of production chains. Sustainability 13, 5919 (2021).

    Article  CAS  Google Scholar 

  112. Joint Research Centre (European Commission) et al.Publications Office of the European Union.Screening Risk Assessment of Organic Pollutants and Environmental Impacts from Sewage Sludge Management: Study to Support Policy Development on the Sewage Sludge Directive (86/278/EEC) (2022).

  113. Directorate-General for Environment (European Commission) et al. Publications Office of the European Union. Support to the Evaluation of the Sewage Sludge Directive: Final Study Report (2022).

  114. Sichler, T. C. et al. Determination of the phosphorus content in sewage sludge: comparison of different aqua regia digestion methods and ICP-OES, ICP-MS, and photometric determination. Environ. Sci. Eur. 34, 99 (2022).

    Article  CAS  Google Scholar 

  115. Duboc, O., Hernandez-Mora, A., Wenzel, W. W. & Santner, J. Improving the prediction of fertilizer phosphorus availability to plants with simple, but non-standardized extraction techniques. Sci. Total Environ. 806, 150486 (2022).

    Article  CAS  Google Scholar 

  116. Hernandez-Mora, A. et al. Fertilization efficiency of thirty marketed and experimental recycled phosphorus fertilizers. J. Clean. Prod. 467, 142957 (2024).

    Article  CAS  Google Scholar 

  117. Smit, A. L., Van Middelkoop, J. C., Van Dijk, W. & Van Reuler, H. A substance flow analysis of phosphorus in the food production, processing and consumption system of the Netherlands. Nutr. Cycl. Agroecosyst. 103, 1–13 (2015).

    Article  CAS  Google Scholar 

  118. Talboys, P. J. et al. Struvite: a slow-release fertiliser for sustainable phosphorus management? Plant Soil 401, 109–123 (2016).

    Article  CAS  Google Scholar 

  119. Deinert, L., Ikoyi, I., Egeter, B., Forrestal, P. & Schmalenberger, A. Short-term impact of recycling-derived fertilizers on their p supply for perennial ryegrass (Lolium perenne). Plants 12, 2762 (2023).

    Article  CAS  Google Scholar 

  120. Dox, K., Martin, T., Houot, S., Merckx, R. & Smolders, E. Superior residual fertiliser value in soil with phosphorus recycled from urine in layered double hydroxides. Sci. Rep. 12, 8092 (2022).

    Article  CAS  Google Scholar 

  121. Kratz, S., Vogel, C. & Adam, C. Agronomic performance of P recycling fertilizers and methods to predict it: a review. Nutr. Cycl. Agroecosyst. 115, 1–39 (2019).

    Article  CAS  Google Scholar 

  122. Buss, W., Assavavittayanon, K., Shepherd, J. G., Heal, K. V. & Sohi, S. Biochar phosphorus release is limited by high pH and excess calcium. J. Environ. Qual. 47, 1298–1303 (2018).

    Article  CAS  Google Scholar 

  123. Hertzberger, A. J., Cusick, R. D. & Margenot, A. J. A review and meta-analysis of the agricultural potential of struvite as a phosphorus fertilizer. Soil Sci. Soc. Am. J. 84, 653–671 (2020).

    Article  CAS  Google Scholar 

  124. Lam, K. L., Zlatanović, L. & van der Hoek, J. P. Life cycle assessment of nutrient recycling from wastewater: a critical review. Water Res. 173, 115519 (2020).

    Article  CAS  Google Scholar 

  125. Harvey, F. & correspondent, F. H. E. Nearly 30,000 tonnes of sewage sludge containing human waste to enter UK. The Guardian (2 September 2020); https://www.theguardian.com/environment/2020/sep/02/sewage-sludge-containing-human-waste-uk.

  126. Flynn, K. C., Spiegal, S., Kleinman, P. J. A., Meinen, R. J. & Smith, D. R. Manure shed management to overcome longstanding nutrient imbalances in US agriculture. Resour. Conserv. Recycl. 188, 106632 (2023).

    Article  Google Scholar 

  127. Ghimire, S., Wang, J. & Fleck, J. R. Integrated crop-livestock systems for nitrogen management: a multi-scale spatial analysis. Animals 11, 1–21 (2021).

    Article  CAS  Google Scholar 

  128. Tonini, D., Saveyn, H. G. M. & Huygens, D. Environmental and health co-benefits for advanced phosphorus recovery. Nat. Sustain. 2, 1051–1061 (2019).

    Article  Google Scholar 

  129. Lessmann, M., Kanellopoulos, A., Kros, J., Orsi, F. & Bakker, M. Maximizing agricultural reuse of recycled nutrients: a spatially explicit assessment of environmental consequences and costs. J. Environ. Manage. 332, 117378 (2023).

    Article  CAS  Google Scholar 

  130. Teenstra, E. et al. Livestock Research. Global Assessment of Manure Management Policies and Practices (2014); https://www.wur.nl/upload_mm/a/2/f/8a7d1a1e-2535-432b-bab5-fd10ff49a2b1_Global-Assessment-Manure-Management.pdf.

  131. Li, J. et al. Optimal manure utilization chain for distributed animal farms: model development and a case study from Hangzhou, China. Agric. Syst. 187, 102996 (2021).

    Article  Google Scholar 

  132. Khodadadi, M., Masoumi, A., Sadeghi, M. & Moheb, A. Optimization of drying specification and protein losses of poultry litter during drying process using response surface methodology. Therm. Sci. Eng. Prog. 43, 101958 (2023).

    Article  Google Scholar 

  133. Akram, U., Quttineh, N. H., Wennergren, U., Tonderski, K. & Metson, G. S. Enhancing nutrient recycling from excreta to meet crop nutrient needs in Sweden — a spatial analysis. Sci. Rep. 9, 10264 (2019).

    Article  Google Scholar 

  134. Panday, D., Bhusal, N., Das, S. & Ghalehgolabbehbahani, A. Rooted in nature: the rise, challenges, and potential of organic farming and fertilizers in agroecosystems. Sustainability 16, 1530 (2024).

    Article  CAS  Google Scholar 

  135. Case, S. D. C., Oelofse, M., Hou, Y., Oenema, O. & Jensen, L. S. Farmer perceptions and use of organic waste products as fertilisers — a survey study of potential benefits and barriers. Agric. Syst. 151, 84–95 (2017).

    Article  Google Scholar 

  136. Grieger, K., Merck, A., Deviney, A. & Marshall, A. What are stakeholder views and needs for achieving phosphorus sustainability? Environ. Syst. Decis. 44, 114–125 (2024).

    Article  Google Scholar 

  137. Schlumberger, S. Phos4life am Standort Emmenspitz (2023); https://zar-ch.ch/fileadmin/user_upload/Contentdokumente/Phos4Life2023/20230425_P4L_Emmenspitz_Aktueller_Statusbericht_April_2023.pdf.

  138. FOB Rotterdam. Phosphoric Acid Prices, News, Monitor, Analysis and Demand (2024); https://www.chemanalyst.com/Pricing-data/phosphoric-acid-1162.

  139. Uzkurt Kaljunen, J., Al-Juboori, R. A., Khunjar, W., Mikola, A. & Wells, G. Phosphorus recovery alternatives for sludge from chemical phosphorus removal processes — technology comparison and system limitations. Sustain. Mater. Technol. 34, e00514 (2022).

    CAS  Google Scholar 

  140. Maaß, O., Grundmann, P. & Polach, C. V. B. U. Added-value from innovative value chains by establishing nutrient cycles via struvite. Resour. Conserv. Recycl. 87, 126–136 (2014).

    Article  Google Scholar 

  141. Mudragada, R. et al. Phosphorous removal during sludge dewatering to prevent struvite formation in sludge digesters by full scale evaluation. J. Water Process. Eng. 2, 37–42 (2014).

    Article  Google Scholar 

  142. Siciliano, A., Limonti, C., Curcio, G. M. & Molinari, R. Advances in struvite precipitation technologies for nutrients removal and recovery from aqueous waste and wastewater. Sustainability 12, 7538 (2020).

    Article  CAS  Google Scholar 

  143. Rice, B. & Vos, R. Who’s afraid of high fertilizer prices? Africa South of the Sahara https://ssa.foodsecurityportal.org/node/2733 (2024).

  144. Krüger, O. & Adam, C. Phosphorus in recycling fertilizers — analytical challenges. Environ. Res. 155, 353–358 (2017).

    Article  Google Scholar 

  145. van der Kooij, S. et al. Phosphorus recovered from human excreta: a socio-ecological-technical approach to phosphorus recycling. Resour. Conserv. Recycl. 157, 104744 (2020).

    Article  Google Scholar 

  146. Marks, J., Martin, B. & Zadoroznyj, M. How Australians order acceptance of recycled water. J. Sociol. 44, 83–99 (2008).

    Article  Google Scholar 

  147. Ricart, S., Rico, A. M. & Ribas, A. Risk−yuck factor nexus in reclaimed wastewater for irrigation: comparing farmers’ attitudes and public perception. Water 11, 187 (2019).

    Article  Google Scholar 

  148. Martin-Ortega, J. et al. Are stakeholders ready to transform phosphorus use in food systems? A transdisciplinary study in a livestock intensive system. Environ. Sci. Policy 131, 177–187 (2022).

    Article  CAS  Google Scholar 

  149. Zhang, X. et al. Quantifying nutrient budgets for sustainable nutrient management. Glob. Biogeochem. Cycles 34, e2018GB006060 (2020).

    Article  CAS  Google Scholar 

  150. Tyllianakis, E. et al. A window into land managers’ preferences for new forms of agri-environmental schemes: evidence from a post-brexit analysis. Land Use Policy 129, 106627 (2023).

    Article  Google Scholar 

  151. Cardwell, M. Results-based agri-environmental scheme design: Legal implications. Environ. Law Rev. 25, 260–288 (2023).

    Article  Google Scholar 

  152. Brownlie, W. J. et al. Global actions for a sustainable phosphorus future. Nat. Food 2, 71–74 (2021).

    Article  CAS  Google Scholar 

  153. Metson, G. S., Brownlie, W. J. & Spears, B. M. Towards net-zero phosphorus cities. npj Urban Sustain. 2, 1–9 (2022).

    Article  Google Scholar 

  154. Verordnung über die verwertung von klärschlamm, klärschlammgemisch und klärschlammkompost (klärschlammverordnung-abfklärv. AbfKlärV https://www.gesetze-im-internet.de/abfkl_rv_2017/BJNR346510017.html (2017).

  155. Federal Ministry for Sustainability and Tourism. Federal Waste Management Plan 2017 (Part 1) (2017); https://www.bmluk.gv.at/dam/jcr:40f2e12e-479a-42ea-bd29-88333109f2c1/Federal_Waste_Management_Plan_2017_Part_2.pdf.

  156. The Swiss Federal Council. Ordinance on the Avoidance and the Disposal of Waste (Waste Ordinance, ADWO) (2015); https://www.fedlex.admin.ch/eli/cc/2015/891/en.

  157. Sichler, T. C., Adam, C., Montag, D. & Barjenbruch, M. Future nutrient recovery from sewage sludge regarding three different scenarios — German case study. J. Clean. Prod. 333, 130130 (2022).

    Article  CAS  Google Scholar 

  158. European Union. Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 Laying Down Rules on the Making Available on the Market of EU Fertilising Products and Amending Regulations (EC) No. 1069/2009 and (EC) No. 1107/2009 and Repealing Regulation (EC) No. 2003/2003 (2019); https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:2019:170:FULL.

  159. Sakudo, A., Anraku, D. & Itarashiki, T. Inactivation of prions by low-temperature sterilization technology using vaporized gas derived from a hydrogen peroxide–peracetic acid mixture. Pathogens 10, 24 (2020).

    Article  Google Scholar 

  160. EFSA Panel on Biological Hazards (BIOHAZ) et al. Effect of incineration, co-incineration and combustion on TSE hazards in category 1 animal by-products. EFSA J. 23, e9435 (2025).

    Article  Google Scholar 

  161. European Sustainable Phosphorus Platform. Summary of ESPP Webinar on Category 1 Animal By-product Ash Safety and Prions (2023); https://www.phosphorusplatform.eu/images/Regulatory%20activities/Summary%20ESPP%20ABP%20webinar%2022_5_23.pdf.

  162. Garske, B., Stubenrauch, J. & Ekardt, F. Sustainable phosphorus management in European agricultural and environmental law. Rev. Eur. Comp. Int. Environ. Law 29, 107–117 (2020).

    Article  Google Scholar 

  163. European Union. Urban Wastewater Treatment Directive 91/271/EEC (1991); https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:1991:135:FULL.

  164. Asai, M., Langer, V. & Frederiksen, P. Responding to environmental regulations through collaborative arrangements: social aspects of manure partnerships in Denmark. Livest. Sci. 167, 370–380 (2014).

    Article  Google Scholar 

  165. European Union. EU Nitrates Directive 91/676EC (1991); https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31991L0676.

  166. Steinfurth, K. et al. Thresholds of target phosphorus fertility classes in European fertilizer recommendations in relation to critical soil test phosphorus values derived from the analysis of 55 European long-term field experiments. Agric. Ecosyst. Environ. 332, 107926 (2022).

    Article  CAS  Google Scholar 

  167. Deviney, A., Grieger, K., Merck, A., Classen, J. & Marshall, A. M. Phosphorus sustainability through coordinated stakeholder engagement: a perspective. Environ. Syst. Decis. 43, 371–378 (2023).

    Article  Google Scholar 

  168. Pätzold, S., Leenen, M. & Heggemann, T. W. Proximal mobile gamma spectrometry as tool for precision farming and field experimentation. Soil Syst. 4, 31 (2020).

    Article  Google Scholar 

  169. Boer, M. A. de, Romeo-Hall, A. G., Rooimans, T. M. & Slootweg, J. C. An assessment of the drivers and barriers for the deployment of urban phosphorus recovery technologies: a case study of the Netherlands. Sustainability 10, 1790 (2018).

    Article  Google Scholar 

  170. Metson, G. S., Bennett, E. M. & Elser, J. J. The role of diet in phosphorus demand. Environ. Res. Lett. 7, 044043 (2012).

    Article  Google Scholar 

  171. Davidson, T. A. et al. Temporary stratification promotes large greenhouse gas emissions in a shallow eutrophic lake. Biogeosciences 21, 93–107 (2024).

    Article  CAS  Google Scholar 

  172. Sohoulande, C. D. D. et al. Evaluation of phosphorus runoff from sandy soils under conservation tillage with surface broadcasted recovered phosphates. J. Environ. Manage. 328, 117005 (2023).

    Article  CAS  Google Scholar 

  173. Withers, P. J. A., Sylvester-Bradley, R., Jones, D. L., Healey, J. R. & Talboys, P. J. Feed the crop not the soil: rethinking phosphorus management in the food Chain. Environ. Sci. Technol. 48, 6523–6530 (2014).

    Article  CAS  Google Scholar 

  174. Lautrou, M., Cappelaere, L. & Létourneau Montminy, M.-P. Phosphorus and nitrogen nutrition in swine production. Anim. Front. 12, 23–29 (2022).

    Article  Google Scholar 

  175. Sajjad, M. et al. Methods for the removal and recovery of nitrogen and phosphorus nutrients from animal waste: a critical review. Ecol. Front. 44, 2–14 (2024).

    Article  Google Scholar 

  176. Lorick, D., Macura, B., Ahlström, M., Grimvall, A. & Harder, R. Effectiveness of struvite precipitation and ammonia stripping for recovery of phosphorus and nitrogen from anaerobic digestate: a systematic review. Environ. Evid. 9, 27 (2020).

    Article  Google Scholar 

  177. Schott, C. et al. Enabling efficient phosphorus recovery from cow manure: liberation of phosphorus through acidification and recovery of phosphorus as calcium phosphate granules. Chem. Eng. J. 460, 141695 (2023).

    Article  CAS  Google Scholar 

  178. Hukari, S., Hermann, L. & Nättorp, A. From wastewater to fertilisers - technical overview and critical review of european legislation governing phosphorus recycling. Sci. Total Environ. 542, 1127–1135 (2016).

    Article  CAS  Google Scholar 

  179. Rolfe, J. & Windle, J. Using auction mechanisms to reveal costs for water quality improvements in great barrier reef catchments in Australia. Agric. Water Manag. 98, 493–501 (2011).

    Article  Google Scholar 

  180. World Trade Organization. The WTO Agreements: Agreement on Agriculture, Annex 2:1 (2022); https://www.wto.org/english/docs_e/legal_e/ag_e.htm#ann2.

  181. Smith, F. in Research Handbook on EU Agriculture Law (eds McMahon, J. A. & Cardwell, M. N.) (Edward Elgar, 2015); https://doi.org/10.4337/9781781954621.00031.

  182. European Commission. State Aid: Commission Approves Introduction of Tradable Phosphate Rights for Dairy Cattle in the Netherlands (2017); https://ec.europa.eu/commission/presscorner/detail/en/ip_17_5362.

  183. Wu, Z., Feng, X., Zhang, Y. & Fan, S. Repositioning fertilizer manufacturing subsidies for improving food security and reducing greenhouse gas emissions in China. J. Integr. Agric. 23, 430–443 (2024).

    Article  CAS  Google Scholar 

  184. Heyl, K., Ekardt, F., Sund, L. & Roos, P. Potentials and limitations of subsidies in sustainability governance: the example of agriculture. Sustainability 14, 15859 (2022).

    Article  Google Scholar 

  185. Bagheri, M., Gómez-Sanabria, A. & Höglund-Isaksson, L. Economic feasibility and direct greenhouse gas emissions from different phosphorus recovery methods in Swedish wastewater treatment plants. Sustain. Prod. Consum. 49, 462–473 (2024).

    Article  Google Scholar 

  186. Withers, P. J. A. et al. Stewardship to tackle global phosphorus inefficiency: the case of Europe. Ambio 44, 193–206 (2015).

    Article  CAS  Google Scholar 

  187. Martin-Ortega, J. We cannot address global water challenges without social sciences. Nat. Water 1, 2–3 (2023).

    Article  Google Scholar 

  188. Leahey, E., Beckman, C. M. & Stanko, T. L. Prominent but less productive: the impact of interdisciplinarity on scientists’ research. Adm. Sci. Q. 62, 105–139 (2017).

    Article  Google Scholar 

  189. Liu, L., Jones, B. F., Uzzi, B. & Wang, D. Data, measurement and empirical methods in the science of science. Nat. Hum. Behav. 7, 1046–1058 (2023).

    Article  CAS  Google Scholar 

  190. Daniel, K. L., McConnell, M., Schuchardt, A. & Peffer, M. E. Challenges facing interdisciplinary researchers: findings from a professional development workshop. PLoS ONE 17, e0267234 (2022).

    Article  CAS  Google Scholar 

  191. Lyon, C. et al. Five pillars for stakeholder analyses in sustainability transformations: the global case of phosphorus. Environ. Sci. Policy 107, 80–89 (2020).

    Article  CAS  Google Scholar 

  192. Cordell, D. et al. UK phosphorus transformation strategy: towards a circular UK food system, RePhoKUs project. Zenodo https://zenodo.org/records/7404622 (2022).

  193. Fang, L. et al. Feasibility of wet-extraction of phosphorus from incinerated sewage sludge ash (ISSA) for phosphate fertilizer production: a critical review. Crit. Rev. Environ. Sci. Technol. 51, 939–971 (2021).

    Article  CAS  Google Scholar 

  194. Suboticki, I. Transdisciplinarity: breaking down disciplinary and academic barriers. Cambridge: SSH Centre https://sshcentre.eu/wp-content/uploads/2023/05/04-Literature-Briefs_transpdisiplinarity.pdf (2023).

  195. Rigolot, C. Transdisciplinarity as a discipline and a way of being: complementarities and creative tensions. Humanit. Soc. Sci. Commun. 7, 100 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank D. Stuligross for his expert copy editing. His sharp eye and thoughtful revisions greatly improved the clarity and readability of this manuscript. The RecaP project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 956454. K.R. and M.L.C. were further supported by the Poul Due Jensen Foundation (Grundfos Foundation) under grant no. 2020-068.

Author information

Authors and Affiliations

Authors

Contributions

H.R.R. and J.S.-G. contributed to the project administration, conceptualization, visualization, data curation and writing of the original draft. H.L.M. contributed to the investigation, visualization, writing, reviewing and editing. T.K., J.K, Y.Z., R.M.V. and S.M. contributed to the investigation, writing, reviewing and editing. A.J.G.-E. contributed to the investigation. L.K., P.W. and T.P contributed to the conceptualization, supervision, investigation, validation, writing, reviewing and editing. J.M.-O., D.S.M.-S., M.v.L., D.C., J.S., H.L., L.H., M.S., M.L.C., F.v.d.B., S.K.J. and F.S. contributed to the investigation, validation, writing, reviewing and editing. N.S.R. contributed to the investigation, validation, visualization, writing, reviewing and editing. K.R. contributed to the project coordination, conceptualization, supervision, investigation, validation, writing, reviewing and editing.

Corresponding author

Correspondence to Kasper Reitzel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Jeremy Guest, who co-reviewed with Zixuan Wang, Eric Roy and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Disclaimer

The results expressed in this article are those of the authors only and do not necessarily reflect those of the European Union. The European Union cannot be held responsible for them.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raniro, H.R., Serrano-Gomez, J., Mort, H.L. et al. Overcoming recycling barriers to transform global phosphorus management. Nat Rev Earth Environ (2025). https://doi.org/10.1038/s43017-025-00717-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43017-025-00717-3

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene