Abstract
Rising atmospheric dryness is affecting the terrestrial ecosystem carbon cycle through its influence on plant physiology. In this Review, we synthesize historical and projected trends in atmospheric vapour pressure deficit (VPD), a proxy for atmospheric dryness, and the mechanisms by which it affects the terrestrial carbon cycle. Since the late 1990s, global mean VPD has increased at a mean rate of 0.0155 ± 0.0041 hPa yr−1. VPD-driven reductions in leaf area index (0.11 ± 0.07 m2 m−2 hPa−1, 1982–2015), gross primary production (13.82 ± 3.12 PgC hPa−1, 1982–2015), light use efficiency (0.04 ± 0.02 gC MJ−1 hPa−1, 2001–2020) and net ecosystem production (5.59 ± 1.15 PgC hPa−1, 1982–2013) have been observed globally. However, attributing changes in the terrestrial carbon cycle to VPD is still challenging, owing to the confounding influence of other environmental factors, such as soil moisture, temperature and radiation. The mechanisms underlying plant responses to VPD — which include stomatal closure, hydraulic failure, abscisic acid biosynthesis, and cascading effects on fires and soil moisture deficits — are also poorly constrained, limiting the predictive capabilities of terrestrial carbon cycle models. Future research should prioritize establishing global VPD-manipulation experiments to enhance understanding of feedbacks between VPD, plants and the carbon cycle, and these mechanisms should then be integrated into terrestrial carbon cycle models.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
Data availability
All the data that support the findings are openly available. The air temperature and AVP from the Climate Research Unit are available at https://crudata.uea.ac.uk/cru/data/hrg/. The annual precipitation and potential evapotranspiration from the TerraClimate data are obtained from https://climate.northwestknowledge.net/TERRACLIMATE/index_directDownloads.php. The leaf area index and gross primary production from the Global Land Surface Satellite (GLASS) are available at https://www.glass.hku.hk/. The NEP from the Trendy data is obtained from https://globalcarbonbudgetdata.org/. The global land cover change dataset is available at https://gee-community-catalog.org/projects/glc_fcs/. The eddy covariance observations from FLUXNET2015 are available at https://fluxnet.org/data/fluxnet2015-dataset/. The CMIP6 dataset is available at https://esgf-node.llnl.gov/search/cmip6/.
References
Canadell, J. G. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. P. et al.) 673–816 (IPCC, Cambridge Univ. Press, 2021).
Monteith, J. & Unsworth, M. Principles of Environmental Physics (Elsevier, 1991).
Nwayor, I. J., Robeson, S. M., Ficklin, D. L. & Maxwell, J. T. A multiscalar standardized vapor pressure deficit index for drought monitoring and impacts. Int. J. Climatol. 44, 5825–5838 (2024).
Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, eaax1396 (2019).
Willett, K. M., Jones, P. D., Gillett, N. P. & Thorne, P. W. Recent changes in surface humidity: development of the HadCRUH dataset. J. Clim. 21, 5364–5383 (2008).
Seager, R. et al. Climatology, variability, and trends in the U.S. vapor pressure deficit, an important fire-related meteorological quantity. J. Appl. Meteorol. Clim. 54, 1121–1141 (2015).
Ficklin, D. L. & Novick, K. A. Historic and projected changes in vapor pressure deficit suggest a continental-scale drying of the United States atmosphere. J. Geophys. Res. Atmos. 122, 2061–2079 (2017).
Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change. 6, 1023–1027 (2016).
Merilo, E. et al. Stomatal VPD response: there is more to the story than ABA. Plant Physiol. 176, 851–864 (2018).
Massmann, A., Gentine, P. & Lin, C. When does vapor pressure deficit drive or reduce evapotranspiration? J. Adv. Model. Earth Syst. 11, 3305–3320 (2019).
Bourbia, I. & Brodribb, T. J. Stomatal response to VPD is not triggered by changes in soil–leaf hydraulic conductance in Arabidopsis or Callitris. N. Phytol. 242, 444–452 (2024).
Zhong, Z. et al. Disentangling the effects of vapor pressure deficit on northern terrestrial vegetation productivity. Sci. Adv. 9, eadf3166 (2023).
Chen, K. et al. Abscisic acid dynamics, signaling, and functions in plants. J. Integr. Plant Biol. 62, 25–54 (2020).
Bauman, D. et al. Tropical tree mortality has increased with rising atmospheric water stress. Nature 608, 528–533 (2022).
Song, C. et al. Differential tree demography mediated by water stress and functional traits in a moist tropical forest. Funct. Ecol. 37, 2927–2939 (2023).
Guillemot, J. et al. Small and slow is safe: on the drought tolerance of tropical tree species. Glob. Change Biol. 28, 2622–2638 (2022).
Clarke, H. et al. Forest fire threatens global carbon sinks and population centres under rising atmospheric water demand. Nat. Commun. 13, 7161 (2022).
He, B. et al. Worldwide impacts of atmospheric vapor pressure deficit on the interannual variability of terrestrial carbon sinks. Natl Sci. Rev. 9, nwab150 (2022).
Fu, Z. et al. The surface–atmosphere exchange of carbon dioxide in tropical rainforests: sensitivity to environmental drivers and flux measurement methodology. Agric. For. Meteorol. 263, 292–307 (2018).
Zhou, S., Zhang, Y., Williams, A. P. & Gentine, P. Projected increases in intensity, frequency, and terrestrial carbon costs of compound drought and aridity events. Sci. Adv. 5, eaau5740 (2019).
Liu, L. et al. Soil moisture dominates dryness stress on ecosystem production globally. Nat. Commun. 11, 4892 (2020).
Lu, H. et al. Large influence of atmospheric vapor pressure deficit on ecosystem production efficiency. Nat. Commun. 13, 1653 (2022).
Berry, J. A., Beerling, D. J. & Franks, P. J. Stomata: key players in the Earth system, past and present. Curr. Opin. Plant Biol. 13, 232–239 (2010).
Grossiord, C. et al. Plant responses to rising vapor pressure deficit. N. Phytol. 226, 1550–1566 (2020).
Xu, W. et al. Weakened increase in global near-surface water vapor pressure during the last 20 years. Geophys. Res. Lett. 51, e2023GL107909 (2024).
Hermann, M., Wernli, H. & Röthlisberger, M. Drastic increase in the magnitude of very rare summer-mean vapor pressure deficit extremes. Nat. Commun. 15, 7022 (2024).
Lian, X. et al. Multifaceted characteristics of dryland aridity changes in a warming world. Nat. Rev. Earth Environ. 2, 232–250 (2021).
Song, Y., Jiao, W., Wang, J. & Wang, L. Increased global vegetation productivity despite rising atmospheric dryness over the last two decades. Earths Future. 10, e2021EF002634 (2022).
Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).
Huang, J., Yu, H., Dai, A., Wei, Y. & Kang, L. Drylands face potential threat under 2 °C global warming target. Nat. Clim. Change 7, 417–422 (2017).
Wang, J. et al. Higher warming rate in global arid regions driven by decreased ecosystem latent heat under rising vapor pressure deficit from 1981 to 2022. Agric. For. Meteorol. 371, 110622 (2025).
Wang, Y. et al. Higher plant photosynthetic capability in autumn responding to low atmospheric vapor pressure deficit. Innovation 2, 100163 (2021).
Chen, Y. et al. Comparison of satellite-based evapotranspiration models over terrestrial ecosystems in China. Remote Sens. Environ. 140, 279–293 (2014).
Yuan, W., Lin, S. & Wang, X. Progress of studies on satellite-based terrestrial vegetation production models in China. Prog. Phys. Geogr. 46, 889–908 (2022).
Restaino, C. M., Peterson, D. L. & Littell, J. Increased water deficit decreases Douglas fir growth throughout western US forests. Proc. Natl Acad. Sci. USA 113, 9557–9562 (2016).
Konings, A. G., Williams, A. P. & Gentine, P. Sensitivity of grassland productivity to aridity controlled by stomatal and xylem regulation. Nat. Geosci. 10, 284–28 (2017).
Babst, F. et al. Twentieth century redistribution in climatic drivers of global tree growth. Sci. Adv. 5, eaat4313 (2019).
Roby, M. C., Scott, R. L. & Moore, D. J. P. High vapor pressure deficit decreases the productivity and water use efficiency of rain-induced pulses in semiarid ecosystems. J. Geophys. Res. Biogeosci. 125, e2020JG005665 (2020).
Mirabel, A., Girardin, M. P., Metsaranta, J., Way, D. & Reich, P. B. Increasing atmospheric dryness reduces boreal forest tree growth. Nat. Commun. 14, 6901 (2023).
Drake, J. E. et al. Stomatal and non-stomatal limitations of photosynthesis for four tree species under drought: a comparison of model formulations. Agric. For. Meteorol. 247, 454–466 (2017).
Flexas, J. et al. Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis. Plant Sci. 193, 70–84 (2012).
Huang, C. et al. Global convergence in terrestrial gross primary production response to atmospheric vapor pressure deficit. Sci. China Life Sci. 67, 2016–2025 (2024).
Li, F. et al. Global water use efficiency saturation due to increased vapor pressure deficit. Science 381, 672–677 (2023).
Zhang, Q. et al. Response of ecosystem intrinsic water use efficiency and gross primary productivity to rising vapor pressure deficit. Environ. Res. Lett. 14, 074023 (2019).
Franks, P. J. & Farquhar, G. D. The mechanical diversity of stomata and its significance in gas-exchange control. Plant Physiol. 143, 78–87 (2007).
Niemczyk, M. et al. Coping with extremes: responses of Quercus robur L. and Fagus sylvatica L. to soil drought and elevated vapour pressure deficit. Sci. Total. Environ. 948, 174912 (2024).
Mas, E. et al. Drought effects in Mediterranean forests are not alleviated by diversity-driven water source partitioning. J. Ecol. 112, 2107–2122 (2024).
Wang, S. et al. Drylands contribute disproportionately to observed global productivity increases. Sci. Bull. 68, 224–232 (2023).
Tao, J. et al. Soil moisture rather than atmospheric dryness dominates CO2 uptake in an alpine steppe. J. Geophys. Res. Biogeosci. 128, e2023JG007593 (2023).
Zhang, Y. et al. Immediate and lagged vegetation responses to dry spells revealed by continuous solar-induced chlorophyll fluorescence observations in a tall-grass prairie. Remote Sens. Environ. 305, 114080 (2024).
Zhang, Y. et al. Satellite solar-induced chlorophyll fluorescence tracks physiological drought stress development during 2020 southwest US drought. Glob. Change Biol. 29, 3395–3408 (2023).
Xu, S. et al. Response of ecosystem productivity to high vapor pressure deficit and low soil moisture: lessons learned from the global eddy-covariance observations. Earths Future 11, e2022EF003252 (2023).
Zhou, X. et al. Water use efficiency of China’s karst ecosystems: the effect of different ecohydrological and climatic factors. Sci. Total Environ. 905, 167069 (2023).
Zani, D., Crowther, T. W., Mo, L., Renner, S. S. & Zohner, C. M. Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees. Science. 370, 1066–1071 (2020).
Chen, X. et al. Novel representation of leaf phenology improves simulation of amazonian evergreen forest photosynthesis in a land surface model. J. Adv. Model. Earth Syst. 12, e2018MS001565 (2020).
Jakubowicz, M., Nowak, W., Gałgański, Ł, Babula-Skowrońska, D. & Kubiak, P. Expression profiling of the genes encoding ABA route components and the ACC oxidase isozymes in the senescing leaves of Populus tremula. J. Plant Physiol. 248, 153143 (2020).
Dong, K. & Wang, X. Disentangling the effects of atmospheric and soil dryness on autumn phenology across the northern hemisphere. Remote Sens. 16, 3552 (2024).
Li, Q. et al. Remote sensing of seasonal climatic constraints on leaf phenology across pantropical evergreen forest biome. Earths Future 9, e2021EF002160 (2021).
Dai, Y. et al. Litterfall seasonality and adaptive strategies of tropical and subtropical evergreen forests in China. J. Plant Ecol. 15, 320–334 (2022).
Gong, F. X. et al. Partitioning of three phenology rhythms in American tropical and subtropical forests using remotely sensed solar-induced chlorophyll fluorescence and field litterfall observations. Int. J. Appl. Earth Obs. Geoinf. 107, 102698 (2022).
Wu, C. et al. Increased drought effects on the phenology of autumn leaf senescence. Nat. Clim. Change 12, 943–949 (2022).
Li, P. et al. Rising atmospheric CO2 alleviates drought impact on autumn leaf senescence over northern mid-high latitudes. Glob. Ecol. Biogeogr. 34, e13954 (2025).
Salah, H. B. H. & Tardieu, F. Control of leaf expansion rate of droughted maize plants under fluctuating evaporative demand (a superposition of hydraulic and chemical messages?) Plant Physiol. 114, 893–900 (1997).
Devi, M. J., Taliercio, E. W. & Sinclair, T. R. Leaf expansion of soybean subjected to high and low atmospheric vapour pressure deficits. J. Exp. Bot. 66, 1845–1850 (2015).
Clifton-Brown, J. C. & Jones, M. B. The thermal response of leaf extension rate in genotypes of the C4–grass Miscanthus: an important factor in determining the potential productivity of different genotypes. J. Exp. Bot. 48, 1573–1581 (1997).
Carins Murphy, M. R., Jordan, G. J. & Brodribb, T. J. Acclimation to humidity modifies the link between leaf size and the density of veins and stomata. Plant Cell Environ. 37, 124–131 (2014).
Lacube, S. et al. Distinct controls of leaf widening and elongation by light and evaporative demand in maize. Plant Cell Environ. 40, 2017–2028 (2017).
Lebourgeois, F., Bréda, N., Ulrich, E. & Granier, A. Climate-tree-growth relationships of European beech (Fagus sylvatica L.) in the French permanent plot network (RENECOFOR). Trees 19, 385–401 (2005).
Camargo, M. A. B. & Marenco, R. A. Stem growth of Amazonian species is driven by intra-annual variability in rainfall, vapor pressure and evapotranspiration. Acta Bot. Bras. https://doi.org/10.1590/1677-941x-abb-2022-0219 (2023).
Köcher, P., Gebauer, T., Horna, V. & Leuschner, C. Leaf water status and stem xylem flux in relation to soil drought in five temperate broad-leaved tree species with contrasting water use strategies. Ann. For. Sci. 66, 1 (2009).
Wang, X. et al. Field evidences for the positive effects of aerosols on tree growth. Glob. Change Biol. 24, 4983–4992 (2018).
Puchi, P. F., Castagneri, D., Rossi, S. & Carrer, M. Wood anatomical traits in black spruce reveal latent water constraints on the boreal forest. Glob. Change Biol. 26, 1767–1777 (2020).
Köcher, P., Horna, V. & Leuschner, C. Environmental control of daily stem growth patterns in five temperate broad-leaved tree species. Tree Physiol. 32, 1021–1032 (2012).
Jiang, Y. et al. Response of daily stem radial growth of Platycladus orientalis to environmental factors in a semi-arid area of North China. Trees 29, 87–96 (2015).
Li, W., Yue, F., Wang, C., Liao, J. & Zhang, X. Climatic influences on intra-annual stem variation of Larix principis-rupprechtii in a semi-arid region. Front. For. Glob. Change https://doi.org/10.3389/ffgc.2022.948022 (2022).
Wang, K. H. & Hamzah, M. Z. Different cambial activities in response to climatic factors of three Malaysian rainforest Shorea species with different stem diameters. Trees. 32, 1519–1530 (2018).
Lopez, J., Way, D. A. & Sadok, W. Systemic effects of rising atmospheric vapor pressure deficit on plant physiology and productivity. Glob. Change Biol. 27, 1704–1720 (2021).
McDowell, N. G. & Allen, C. D. Darcy’s law predicts widespread forest mortality under climate warming. Nat. Clim. Change 5, 669–672 (2015).
Olson, M. E. et al. Plant height and hydraulic vulnerability to drought and cold. Proc. Natl Acad. Sci. USA 115, 7551–7556 (2018).
Thaxton, R. et al. Downstream decreases in water availability, tree height, canopy volume and growth rate in cottonwood forests along the Green River, southwestern USA. Ecohydrology 17, e2693 (2024).
Zheng, Y. et al. Vegetation canopy structure mediates the response of gross primary production to environmental drivers across multiple temporal scales. Sci. Total. Environ. 917, 170439 (2024).
Liu, M. et al. Overridingly increasing vegetation sensitivity to vapor pressure deficit over the recent two decades in China. Ecol. Indic. 161, 111977 (2024).
Zhu, L. et al. Hydraulic role in differential stomatal behaviors at two contrasting elevations in three dominant tree species of a mixed coniferous and broad-leaved forest in low subtropical China. For. Ecosyst. 10, 100095 (2023).
Diao, H. et al. Dry inside: progressive unsaturation within leaves with increasing vapour pressure deficit affects estimation of key leaf gas exchange parameters. N. Phytol. 244, 1275–1287 (2024).
Zweifel, R. et al. Why trees grow at night. N. Phytol. 231, 2174–2185 (2021).
Hasan, M. M. et al. ABA activated SnRK2 kinases: an emerging role in plant growth and physiology. Plant Signal. Behav. 17, e2071024 (2022).
Li, S. & Liu, F. Vapour pressure deficit and endogenous ABA level modulate stomatal responses of tomato plants to soil water deficit. Environ. Exp. Bot. 199, 104889 (2022).
Novick, K. A. et al. The impacts of rising vapour pressure deficit in natural and managed ecosystems. Plant Cell Environ. 47, 3561–3589 (2024).
Savva, J. V. & Vaganov, E. A. Genetic and environmental effects assessment in Scots pine provenances planted in Central Siberia. Mitig. Adapt. Strateg. Glob. Change 11, 269–290 (2006).
Pompa-García, M., Camarero, J. J. & Colangelo, M. Different xylogenesis responses to atmospheric water demand contribute to species coexistence in a mixed pine–oak forest. J. For. Res. 34, 51–62 (2023).
Oberhuber, W., Gruber, A., Lethaus, G., Winkler, A. & Wieser, G. Stem girdling indicates prioritized carbon allocation to the root system at the expense of radial stem growth in Norway spruce under drought conditions. Environ. Exp. Bot. 138, 109–118 (2017).
Metcalfe, D. B. et al. The effects of water availability on root growth and morphology in an Amazon rainforest. Plant Soil 311, 189–199 (2008).
Bi, J. et al. Sunlight mediated seasonality in canopy structure and photosynthetic activity of Amazonian rainforests. Environ. Res. Lett. 10, 064014 (2015).
Xu, L. et al. Satellite observation of tropical forest seasonality: spatial patterns of carbon exchange in Amazonia. Environ. Res. Lett. 10, 084005 (2015).
Huete, A. R. et al. Amazon rainforests green-up with sunlight in dry season. Geophys. Res. Lett. https://doi.org/10.1029/2005GL025583 (2006).
Wu, J. et al. Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests. Science 351, 972–976 (2016).
Brodribb, T. J., Holbrook, N. M. & Gutiérrez, M. V. Hydraulic and photosynthetic co-ordination in seasonally dry tropical forest trees. Plant Cell Environ. 25, 1435–1444 (2002).
Lee, J.-E. & Boyce, K. Impact of the hydraulic capacity of plants on water and carbon fluxes in tropical South America. J. Geophys. Res. https://doi.org/10.1029/2010jd014568 (2010).
Yang, X. et al. A comprehensive framework for seasonal controls of leaf abscission and productivity in evergreen broadleaved tropical and subtropical forests. Innovation 2, 100154 (2021).
Chen, X. et al. Vapor pressure deficit and sunlight explain seasonality of leaf phenology and photosynthesis across Amazonian evergreen broadleaved forest. Glob. Biogeochem. Cycles 35, e2018MS001565 (2021).
Chapin, F. S., Schulze, E. & Mooney, H. A. The ecology and economics of storage in plants. Annu. Rev. Ecol. Evol. Syst. 21, 423–447 (1990).
Cuzzuol, G. R. F., Venâncio, F. C. D., Pezzopane, J. E. M. & Toledo, J. V. Climate change compromises leaf units and lignin content in sun-tolerant Paubrasilia echinata plants. N. For. 56, 23 (2025).
Martínez-Vilalta, J. et al. Dynamics of non-structural carbohydrates in terrestrial plants: a global synthesis. Ecol. Monogr. 86, 495–516 (2016).
Frak, E. et al. Spatial distribution of leaf nitrogen and photosynthetic capacity within the foliage of individual trees: disentangling the effects of local light quality, leaf irradiance, and transpiration. J. Exp. Bot. 53, 2207–2216 (2002).
Du, Y. et al. Plant photosynthetic overcompensation under nocturnal warming: lack of evidence in subtropical evergreen trees. Ann. Bot. 130, 109–119 (2022).
Park Williams, A. et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Change 3, 292–297 (2013).
Gazol, A. & Camarero, J. J. Compound climate events increase tree drought mortality across European forests. Sci. Total Environ. 816, 151604 (2022).
McDowell, N. et al. Drivers and mechanisms of tree mortality in moist tropical forests. N. Phytol. 219, 851–869 (2018).
Rowland, L. et al. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 528, 119–122 (2015).
Powell, T. L. et al. Differences in xylem and leaf hydraulic traits explain differences in drought tolerance among mature Amazon rainforest trees. Glob. Change Biol. 23, 4280–4293 (2017).
Barros, F. D. V. et al. Hydraulic traits explain differential responses of Amazonian forests to the 2015 El Niño-induced drought. N. Phytol. 223, 1253–1266 (2019).
Oliveira, R. S. et al. Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro-topographic gradients. N. Phytol. 221, 1457–1465 (2019).
Powers, J. S. et al. A catastrophic tropical drought kills hydraulically vulnerable tree species. Glob. Change Biol. 26, 3122–3133 (2020).
Bittencourt, P. R. D. L. et al. Divergence of hydraulic traits among tropical forest trees across topographic and vertical environment gradients in Borneo. N. Phytol. 235, 2183–2198 (2022).
Oliveira, R. S. et al. Linking plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical ecosystems. N. Phytol. 230, 904–923 (2021).
Song, C., Xu, W., Chen, S., Fu, Y. & Yuan, W. Water use and mortality risk of four tropical canopy trees with different leaf phenology during the 2016 El Niño drought. Agric. For. Meteorol. 352, 110035 (2024).
Quetin, G. R., Anderegg, L. D. L., Boving, I., Anderegg, W. R. L. & Trugman, A. T. Observed forest trait velocities have not kept pace with hydraulic stress from climate change. Glob. Change Biol. 29, 5415–5428 (2023).
Liu, D., Wang, T., Peñuelas, J. & Piao, S. Drought resistance enhanced by tree species diversity in global forests. Nat. Geosci. 15, 800–804 (2022).
Green, J. K. et al. Surface temperatures reveal the patterns of vegetation water stress and their environmental drivers across the tropical Americas. Glob. Change Biol. 28, 2940–2955 (2022).
Looney, C. E., Previant, W. J., Bradford, J. B. & Nagel, L. M. Species mixture effects and climate influence growth, recruitment and mortality in Interior West USA Populus tremuloides-conifer communities. J. Ecol. 109, 2934–2949 (2021).
Cleverly, J. et al. Carbon, water and energy fluxes in agricultural systems of Australia and New Zealand. Agric. For. Meteorol. 287, 107934 (2020).
Williams, M. et al. Seasonal variation in net carbon exchange and evapotranspiration in a Brazilian rain forest: a modelling analysis. Plant, Cell Environ. 21, 953–968 (1998).
Gou, R. et al. Atmospheric water demand constrains net ecosystem production in subtropical mangrove forests. J. Hydrol. 630, 130651 (2024).
Goodrich, J. P. et al. Atmospheric effects are stronger than soil moisture in restricting net CO2 uptake of managed grasslands in New Zealand. Agric. For. Meteorol. 345, 109822 (2024).
Liu, C. et al. Variation of stomatal traits from cold temperate to tropical forests and association with water use efficiency. Funct. Ecol. 32, 20–28 (2018).
Balachowski, J. A., Bristiel, P. M. & Volaire, F. A. Summer dormancy, drought survival and functional resource acquisition strategies in California perennial grasses. Ann. Bot. 118, 357–368 (2016).
Schreiner-McGraw, A. P., Wood, J. D., Metz, M. E., Sadler, E. J. & Sudduth, K. A. Agriculture accentuates interannual variability in water fluxes but not carbon fluxes, relative to native prairie, in the U.S. Corn belt. Agric. For. Meteorol. 333, 109420 (2023).
Wagle, P., Kakani, V. G. & Huhnke, R. L. Net ecosystem carbon dioxide exchange of dedicated bioenergy feedstocks: switchgrass and high biomass sorghum. Agric. For. Meteorol. 207, 107–116 (2015).
Wagle, P., Gowda, P. H., Moorhead, J. E., Marek, G. W. & Brauer, D. K. Net ecosystem exchange of CO2 and H2O fluxes from irrigated grain sorghum and maize in the Texas high plains. Sci. Total Environ. 637–638, 163–173 (2018).
Wagle, P. et al. Dynamics of CO2 and H2O fluxes in Johnson grass in the U.S. southern great plains. Sci. Total Environ. 739, 140077 (2020).
Jones, H. G. Partitioning stomatal and non-stomatal limitations to photosynthesis. Plant Cell Environ. 8, 95–104 (1985).
Jones, H. G. Stomatal control of photosynthesis and transpiration. J. Exp. Bot. 49, 387–398 (1998).
Gupta, A., Rico-Medina, A. & Caño-Delgado, A. I. The physiology of plant responses to drought. Science 368, 266–269 (2020).
Wang, Y., Wang, Y., Tang, Y. & Zhu, X.-G. Stomata conductance as a goalkeeper for increased photosynthetic efficiency. Curr. Opin. Plant Biol. 70, 102310 (2022).
Slot, M., Rifai, S. W., Eze, C. E. & Winter, K. The stomatal response to vapor pressure deficit drives the apparent temperature response of photosynthesis in tropical forests. N. Phytol. 244, 1238–1249 (2024).
Lobell, D. B. et al. Greater sensitivity to drought accompanies maize yield increase in the U.S. Midwest. Science 344, 516–519 (2014).
Márquez, D. A. & Busch, F. A. The interplay of short-term mesophyll and stomatal conductance responses under variable environmental conditions. Plant Cell Environ. 47, 3393–3410 (2024).
McDowell, N. G. et al. Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nat. Rev. Earth Environ. 3, 294–308 (2022).
Tardieu, F. & Simonneau, T. Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours. J. Exp. Bot. 49, 419–432 (1998).
Martínez-Vilalta, J., Poyatos, R., Aguadé, D., Retana, J. & Mencuccini, M. A new look at water transport regulation in plants. N. Phytol. 204, 105–115 (2014).
Martínez-Vilalta, J. & Garcia-Forner, N. Water potential regulation, stomatal behaviour and hydraulic transport under drought: deconstructing the iso/anisohydric concept. Plant Cell Environ. 40, 962–976 (2017).
Marchin, R. M., Broadhead, A. A., Bostic, L. E., Dunn, R. R. & Hoffmann, W. A. Stomatal acclimation to vapour pressure deficit doubles transpiration of small tree seedlings with warming. Plant Cell Environ. 39, 2221–2234 (2016).
Urban, J., Ingwers, M., McGuire, M. A. & Teskey, R. O. Stomatal conductance increases with rising temperature. Plant Signal. Behav. 12, e1356534 (2017).
Rashid, M. A., Andersen, M. N., Wollenweber, B., Zhang, X. & Olesen, J. E. Acclimation to higher VPD and temperature minimized negative effects on assimilation and grain yield of wheat. Agric. For. Meteorol. 248, 119–129 (2018).
Sperry, J. S., Adler, F. R., Campbell, G. S. & Comstock, J. P. Limitation of plant water use by rhizosphere and xylem conductance: results from a model. Plant Cell Environ. 21, 347–359 (1998).
Liu, Y., Kumar, M., Katul, G. G., Feng, X. & Konings, A. G. Plant hydraulics accentuates the effect of atmospheric moisture stress on transpiration. Nat. Clim. Change 10, 691–695 (2020).
McDowell, N. et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? N. Phytol. 178, 719–739 (2008).
Sala, A., Piper, F. & Hoch, G. Physiological mechanisms of drought-induced tree mortality are far from being resolved. N. Phytol. 186, 274–281 (2010).
Hartmann, H. Will a 385 million year-struggle for light become a struggle for water and for carbon? - How trees may cope with more frequent climate change-type drought events. Glob. Change Biol. 17, 642–655 (2011).
Zeppel, M. J. B., Anderegg, W. R. L. & Adams, H. D. Forest mortality due to drought: latest insights, evidence and unresolved questions on physiological pathways and consequences of tree death. N. Phytol. 197, 372–374 (2013).
Kono, Y. et al. Initial hydraulic failure followed by late-stage carbon starvation leads to drought-induced death in the tree trema orientalis. Commun. Biol. 2, 8 (2019).
Cernusak, L. A., Winter, K. & Turner, B. L. Plant δ15N correlates with the transpiration efficiency of nitrogen acquisition in tropical trees. Plan. Physiol. 151, 1667–1676 (2009).
Adams, P. & Hand, D. J. Effects of humidity and Ca level on dry-matter and Ca accumulation by leaves of cucumber (Cucumis sativus L.). J. Horticultural Sci. India 68, 767–774 (1993).
Lambers, H., Chapin III, F. S. & Pons, T. L. Plant Physiological Ecology (Springer, 2008).
Shrestha, R. K., Engel, K. & Becker, M. Effect of transpiration on iron uptake and translocation in lowland rice. J. Plant Nutr. Soil Sci. 178, 365–369 (2015).
Novák, V. & Vidovič, J. Transpiration and nutrient uptake dynamics in maize (Zea mays L.). Ecol. Modell. 166, 99–107 (2003).
Suzuki, M. et al. Effects of relative humidity and nutrient supply on growth and nutrient uptake in greenhouse tomato production. Sci. Hortic. 187, 44–49 (2015).
Ding, J. et al. Effect of vapor pressure deficit on the photosynthesis, growth, and nutrient absorption of tomato seedlings. Sci. Hortic. 293, 110736 (2022).
Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R. & Abrams, S. R. Abscisic acid: emergence of a core signaling network. Annu. Rev. Plant Biol. 61, 651–679 (2010).
Skelton, R. P., Brodribb, T. J., McAdam, S. A. M. & Mitchell, P. J. Gas exchange recovery following natural drought is rapid unless limited by loss of leaf hydraulic conductance: evidence from an evergreen woodland. N. Phytol. 215, 1399–1412 (2017).
McAdam, S. A. M. et al. Abscisic acid controlled sex before transpiration in vascular plants. Proc. Natl Acad. Sci. USA 113, 12862–12867 (2016).
McAdam, S. A. M., Sussmilch, F. C. & Brodribb, T. J. Stomatal responses to vapour pressure deficit are regulated by high speed gene expression in angiosperms. Plant Cell Environ. 39, 485–491 (2016).
Waadt, R. et al. Fret-based reporters for the direct visualization of abscisic acid concentration changes and distribution in arabidopsis. eLife 3, e01739 (2014).
Feitosa-Araujo, E., da Fonseca-Pereira, P., Knorr, L. S., Schwarzländer, M. & Nunes-Nesi, A. Nad meets ABA: connecting cellular metabolism and hormone signaling. Trends Plant Sci. 27, 16–28 (2022).
Kavi Kishor, P. B., Tiozon, R. N., Fernie, A. R. & Sreenivasulu, N. Abscisic acid and its role in the modulation of plant growth, development, and yield stability. Trends Plant Sci. 27, 1283–1295 (2022).
McAdam, S. A. M. & Brodribb, T. J. Linking turgor with ABA biosynthesis: implications for stomatal responses to vapor pressure deficit across land plants. Plant Physiol. 171, 2008–2016 (2016).
Aliniaeifard, S., Malcolm Matamoros, P. & van Meeteren, U. Stomatal malfunctioning under low VPD conditions: induced by alterations in stomatal morphology and leaf anatomy or in the ABA signaling? Physiol. Plant. 152, 688–699 (2014).
Ma, Y. et al. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324, 1064–1068 (2009).
Park, S.-Y. et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324, 1068–1071 (2009).
Hsu, P.-K., Dubeaux, G., Takahashi, Y. & Schroeder, J. I. Signaling mechanisms in abscisic acid-mediated stomatal closure. Plant J. 105, 307–321 (2021).
Zhang, J. et al. Impacts of site aridity on intra-annual radial variation of two alpine coniferous species in cold and dry ecosystems. Ecol. Indic. 158, 111420 (2024).
Bauer, H. et al. The stomatal response to reduced relative humidity requires guard cell-autonomous ABA synthesis. Curr. Biol. 23, 53–57 (2013).
McAdam, S. A. M., Sussmilch, F. C., Brodribb, T. J. & Ross, J. J. Molecular characterization of a mutation affecting abscisic acid biosynthesis and consequently stomatal responses to humidity in an agriculturally important species. AoB Plants 7, plv091 (2015).
Yaaran, A., Negin, B. & Moshelion, M. Role of guard-cell ABA in determining steady-state stomatal aperture and prompt vapor-pressure-deficit response. Plant Sci. 281, 31–40 (2019).
Sussmilch, F. C. & McAdam, S. A. M. Surviving a dry future: abscisic acid (ABA)-mediated plant mechanisms for conserving water under low humidity. Plants 6, 54 (2017).
Sampaio Filho, I. D. et al. Below versus above ground plant sources of abscisic acid (ABA) at the heart of tropical forest response to warming. Int. J. Mol. Sci. 19, 2023 (2018).
Kane, M. E. & Albert, L. S. Abscisic acid induces aerial leaf morphology and vasculature in submerged Hippuris vulgaris L. Aquat. Bot. 28, 81–88 (1987).
Hwang, S.-G. et al. Ectopic expression of rice OsNCED3 in Arabidopsis increases ABA level and alters leaf morphology. Plant Sci. 178, 12–22 (2010).
Rudich, J. & Halevy, A. H. Involvement of abscisic acid in the regulation of sex expression in the cucumber. Plant Cell Physiol. 15, 635–642 (1974).
Friedlander, M., Atsmon, D. & Galun, E. Sexual differentiation in cucumber: the effects of abscisic acid and other growth regulators on various sex genotypes. Plant Cell Physiol. 18, 261–269 (1977).
Wu, J. et al. Leaf shedding of pan-Asian tropical evergreen forests depends on the synchrony of seasonal variations of rainfall and incoming solar radiation. Agric. For. Meteorol. 311, 108691 (2021).
Kane, C. N. & McAdam, S. A. M. Abscisic acid can augment, but is not essential for, autumnal leaf senescence. J. Exp. Bot. 74, 3255–3266 (2023).
Zhang, Y. & Liang, S. Changes in forest biomass and linkage to climate and forest disturbances over northeastern China. Glob. Change Biol. 20, 2596–2606 (2014).
Descals, A. et al. Unprecedented fire activity above the Arctic Circle linked to rising temperatures. Science 378, 532–537 (2022).
Rao, K., Williams, A. P., Diffenbaugh, N. S., Yebra, M. & Konings, A. G. Plant-water sensitivity regulates wildfire vulnerability. Nat. Ecol. Evol. 6, 332–339 (2022).
Zhu, X., Xu, X. & Jia, G. Asymmetrical trends of burned area between eastern and western Siberia regulated by atmospheric oscillation. Geophys. Res. Lett. 48, e2021GL096095 (2021).
Rother, D. E., De Sales, F., Stow, D. & McFadden, J. P. Summer and fall extreme fire weather projected to occur more often and affect a growing portion of California throughout the 21st century. Fire 5, 177 (2022).
Boiffin, J. & Munson, A. D. Three large fire years threaten resilience of closed crown black spruce forests in eastern Canada. Ecosphere 4, art56 (2013).
Rodrigues, C. A., Zirondi, H. L. & Fidelis, A. Fire frequency affects fire behavior in open savannas of the Cerrado. For. Ecol. Manage. 482, 118850 (2021).
Qing, Y. et al. Accelerated soil drying linked to increasing evaporative demand in wet regions. npj Clim. Atmos. Sci. 6, 205 (2023).
Rodrigues, M., Resco de Dios, V., Sil, Â, Cunill Camprubí, À & Fernandes, P. M. VPD-based models of dead fine fuel moisture provide best estimates in a global dataset. Agric. For. Meteorol. 346, 109868 (2024).
Alizadeh, M. R. et al. Warming enabled upslope advance in western US forest fires. Proc. Natl Acad. Sci. USA 118, e2009717118 (2021).
Resco de Dios, V. et al. Climate change induced declines in fuel moisture may turn currently fire-free Pyrenean mountain forests into fire-prone ecosystems. Sci. Total Environ. 797, 149104 (2021).
Jain, P., Castellanos-Acuna, D., Coogan, S. C. P., Abatzoglou, J. T. & Flannigan, M. D. Observed increases in extreme fire weather driven by atmospheric humidity and temperature. Nat. Clim. Change 12, 63–70 (2022).
Or, D., Lehmann, P., Shahraeeni, E. & Shokri, N. Advances in soil evaporation physics — a review. Vadose Zone J. 12, 1–16 (2013).
Kim, Y., Park, H., Kimball, J. S., Colliander, A. & McCabe, M. F. Global estimates of daily evapotranspiration using SMAP surface and root-zone soil moisture. Remote Sens. Environ. 298, 113803 (2023).
Miralles, D. G., Gentine, P., Seneviratne, S. I. & Teuling, A. J. Land–atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges. Ann. N. Y. Acad. Sci. 1436, 19–35 (2019).
Shekhar, A., Hortnagl, L., Buchmann, N. & Gharun, M. Long-term changes in forest response to extreme atmospheric dryness. Glob. Change Biol. 30, e17062 (2023).
Shibuya, T., Hirai, N., Sakamoto, Y. & Komuro, J. Effects of morphological characteristics of Cucumis sativus seedlings grown at different vapor pressure deficits on initial colonization of Bemisia tabaci (Hemiptera: Aleyrodidae). J. Econ. Entomol. 102, 2265–2267 (2009).
Chave, J. et al. Regional and seasonal patterns of litterfall in tropical South America. Biogeosciences 7, 43–55 (2010).
Wang, W., Li, B., Zhao, X., Zhang, S. & Li, J. Light intensity moderates photosynthesis by optimizing photosystem mechanisms under high VPD stress. Plant Physiol. Biochem. 218, 109322 (2025).
Fang, Z., Zhang, W., Brandt, M., Abdi, A. M. & Fensholt, R. Globally increasing atmospheric aridity over the 21st century. Earths Future. 10, e2022EF003019 (2022).
Yu, X., Zhang, L., Zhou, T., Zheng, J. & Guan, J. Higher atmospheric aridity-dominated drought stress contributes to aggravating dryland productivity loss under global warming. Weather Clim. Extremes 44, 100692 (2024).
Douville, H. & Willett, K. M. A drier than expected future, supported by near-surface relative humidity observations. Sci. Adv. 9, eade6253 (2023).
Kolby Smith, W. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Change 6, 306–310 (2016).
Tian, C. et al. Projections of changes in ecosystem productivity under 1.5 °C and 2 °C global warming. Glob. Planet. Change 205, 103588 (2021).
Dai, Y. et al. The common land model. Bull. Am. Meteorol. Soc. 84, 1013–1024 (2003).
Zhou, X., Gui, H., Xin, Q. & Dai, Y. Divergent trajectories of future global gross primary productivity and evapotranspiration of terrestrial vegetation in shared socioeconomic pathways. Sci. Total. Environ. 919, 170580 (2024).
Chen, Z., Wang, W., Forzieri, G. & Cescatti, A. Transition from positive to negative indirect CO2 effects on the vegetation carbon uptake. Nat. Commun. 15, 1500 (2024).
Cawson, J. G., Collins, L., Parks, S. A., Nolan, R. H. & Penman, T. D. Atmospheric dryness removes barriers to the development of large forest fires. Agric. For. Meteorol. 350, 109990 (2024).
Yin, J. et al. Drought-related wildfire accounts for one-third of the forest wildfires in subtropical China. Agric. For. Meteorol. 346, 109893 (2024).
Liu, Y., Peñuelas, J., Cescatti, A., Zhang, Y. & Zhang, Z. Atmospheric dryness dominates afternoon depression of global terrestrial photosynthesis. Geophys. Res. Lett. 51, e2024GL110954 (2024).
Jalakas, P., Takahashi, Y., Waadt, R., Schroeder, J. I. & Merilo, E. Molecular mechanisms of stomatal closure in response to rising vapour pressure deficit. N. Phytol. 232, 468–475 (2021).
Dong, N. et al. Components of leaf-trait variation along environmental gradients. N. Phytol. 228, 82–94 (2020).
Christoffersen, B. O. et al. Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v.1-Hydro). Geosci. Model Dev. 9, 4227–4255 (2016).
Vialet-Chabrand, S. R. M. et al. Temporal dynamics of stomatal behavior: modeling and implications for photosynthesis and water use. Plant Physiol. 174, 603–613 (2017).
Sperry, J. S. et al. Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost. Plant Cell Environ. 40, 816–830 (2017).
Eller, C. B. et al. Stomatal optimization based on xylem hydraulics (SOX) improves land surface model simulation of vegetation responses to climate. N. Phytol. 226, 1622–1637 (2020).
Venturas, M. D., Sperry, J. S. & Hacke, U. G. Plant xylem hydraulics: what we understand, current research, and future challenges. J. Integr. Plant Biol. 59, 356–389 (2017).
Bonan, G. B., Patton, E. G., Finnigan, J. J., Baldocchi, D. D. & Harman, I. N. Moving beyond the incorrect but useful paradigm: reevaluating big-leaf and multilayer plant canopies to model biosphere-atmosphere fluxes — a review. Agric. For. Meteorol. 306, 108435 (2021).
De Weirdt, M. et al. Seasonal leaf dynamics for tropical evergreen forests in a process-based global ecosystem model. Geosci. Model Dev. 5, 1091–1108 (2012).
Tian, J. et al. A leaf age-dependent light use efficiency model for remote sensing the gross primary productivity seasonality over pantropical evergreen broadleaved forests. Glob. Change Biol. 30, e17454 (2024).
Eckes-Shephard, A. H., Ljungqvist, F. C., Drew, D. M., Rathgeber, C. B. K. & Friend, A. D. Wood formation modeling — a research review and future perspectives. Front. Plant Sci. 13, 837648 (2022).
Fritts, H. C., Vaganov, E. A., Sviderskaya, I. V. & Shashkin, A. V. Climatic variation and tree-ring structure in conifers: empirical and mechanistic models of tree-ring width, number of cells, cell size, cell-wall thickness and wood density. Clim. Res. 1, 97–116 (1991).
Fritts, H. C., Shashkin, A. & Downes, G. M. in Tree-Ring Analysis (eds Wimmer, R. & Vetter, R. E.) 3–32 (Cambridge Univ. Press, 1999).
Drew, D. M., Downes, G. M. & Battaglia, M. CAMBIUM, a process-based model of daily xylem development in Eucalyptus. J. Theor. Biol. 264, 395–406 (2010).
Peters, R. L. et al. High vapour pressure deficit enhances turgor limitation of stem growth in an Asian tropical rainforest tree. Plant Cell Environ. 46, 2747–2762 (2023).
Hölttä, T., Mäkinen, H., Nöjd, P., Mäkelä, A. & Nikinmaa, E. A physiological model of softwood cambial growth. Tree Physiol. 30, 1235–1252 (2010).
Bourbia, I., Yates, L. A. & Brodribb, T. J. Using long-term field data to quantify water potential regulation in response to VPD and soil moisture in a conifer tree. N. Phytol. 246, 911–923 (2025).
Anderegg, W. R. L. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532 (2015).
Trugman, A. T., Anderegg, L. D. L., Anderegg, W. R. L., Das, A. J. & Stephenson, N. L. Why is tree drought mortality so hard to predict? Trends Ecol. Evol. 36, 520–532 (2021).
Hillabrand, R. M., Hacke, U. G. & Lieffers, V. J. Defoliation constrains xylem and phloem functionality. Tree Physiol. 39, 1099–1108 (2019).
Sevanto, S., McDowell, N. G., Dickman, L. T., Pangle, R. & Pockman, W. T. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant Cell Environ. 37, 153–161 (2014).
Dudney, J. et al. Nonlinear shifts in infectious rust disease due to climate change. Nat. Commun. 12, 5102 (2021).
Zhang, X. et al. GLC_FCS30D: the first global 30 m land-cover dynamics monitoring product with a fine classification system for the period from 1985 to 2022 generated using dense-time-series Landsat imagery and the continuous change-detection method. Earth Syst. Sci. Data 16, 1353–1381 (2024).
Felton, A. J. et al. Global estimates of the storage and transit time of water through vegetation. Nat. Water 3, 59–69 (2025).
Huang, Z., Zhou, L. & Chi, Y. Spring phenology rather than climate dominates the trends in peak of growing season in the northern hemisphere. Glob. Change Biol. 29, 4543–4555 (2023).
Su, Y. et al. Observed strong atmospheric water constraints on forest photosynthesis using eddy covariance and satellite-based data across the northern hemisphere. Int. J. Appl. Earth Obs. Geoinf. 110, 102808 (2022).
Acknowledgements
The authors thank the National Natural Science Foundation of China (42471326, 42141020; 41971275), the National Key R&D Program of China (No. 2024YFF1306600) and the Science and Technology Program of Guangdong (No. 2024B1212070012) for financial support.
Author information
Authors and Affiliations
Contributions
W.Y. and X.C. designed the manuscript. J.T., M.W., S.W. and W.X. researched data for the article. All authors reviewed and edited the manuscript before submission.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Earth & Environment thanks Flurin Babst, Yanlan Liu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Yuan, W., Tian, J., Wang, M. et al. Impacts of rising atmospheric dryness on terrestrial ecosystem carbon cycle. Nat Rev Earth Environ (2025). https://doi.org/10.1038/s43017-025-00726-2
Accepted:
Published:
DOI: https://doi.org/10.1038/s43017-025-00726-2