Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Impacts of rising atmospheric dryness on terrestrial ecosystem carbon cycle

Subjects

Abstract

Rising atmospheric dryness is affecting the terrestrial ecosystem carbon cycle through its influence on plant physiology. In this Review, we synthesize historical and projected trends in atmospheric vapour pressure deficit (VPD), a proxy for atmospheric dryness, and the mechanisms by which it affects the terrestrial carbon cycle. Since the late 1990s, global mean VPD has increased at a mean rate of 0.0155 ± 0.0041 hPa yr−1. VPD-driven reductions in leaf area index (0.11 ± 0.07 m2 m−2 hPa−1, 1982–2015), gross primary production (13.82 ± 3.12 PgC hPa−1, 1982–2015), light use efficiency (0.04 ± 0.02 gC MJ−1 hPa−1, 2001–2020) and net ecosystem production (5.59 ± 1.15 PgC hPa−1, 1982–2013) have been observed globally. However, attributing changes in the terrestrial carbon cycle to VPD is still challenging, owing to the confounding influence of other environmental factors, such as soil moisture, temperature and radiation. The mechanisms underlying plant responses to VPD — which include stomatal closure, hydraulic failure, abscisic acid biosynthesis, and cascading effects on fires and soil moisture deficits — are also poorly constrained, limiting the predictive capabilities of terrestrial carbon cycle models. Future research should prioritize establishing global VPD-manipulation experiments to enhance understanding of feedbacks between VPD, plants and the carbon cycle, and these mechanisms should then be integrated into terrestrial carbon cycle models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Historical changes in vapour pressure deficit across terrestrial ecosystems.
Fig. 2: Sensitivity of terrestrial carbon cycling to rising atmosphere dryness.
Fig. 3: Thresholds of VPD influence on terrestrial ecosystem carbon cycling.
Fig. 4: The impacts of atmosphere dryness on terrestrial carbon cycle.
Fig. 5: Projected changes in global VPD between 2015–2100.

Similar content being viewed by others

Data availability

All the data that support the findings are openly available. The air temperature and AVP from the Climate Research Unit are available at https://crudata.uea.ac.uk/cru/data/hrg/. The annual precipitation and potential evapotranspiration from the TerraClimate data are obtained from https://climate.northwestknowledge.net/TERRACLIMATE/index_directDownloads.php. The leaf area index and gross primary production from the Global Land Surface Satellite (GLASS) are available at https://www.glass.hku.hk/. The NEP from the Trendy data is obtained from https://globalcarbonbudgetdata.org/. The global land cover change dataset is available at https://gee-community-catalog.org/projects/glc_fcs/. The eddy covariance observations from FLUXNET2015 are available at https://fluxnet.org/data/fluxnet2015-dataset/. The CMIP6 dataset is available at https://esgf-node.llnl.gov/search/cmip6/.

References

  1. Canadell, J. G. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. P. et al.) 673–816 (IPCC, Cambridge Univ. Press, 2021).

  2. Monteith, J. & Unsworth, M. Principles of Environmental Physics (Elsevier, 1991).

  3. Nwayor, I. J., Robeson, S. M., Ficklin, D. L. & Maxwell, J. T. A multiscalar standardized vapor pressure deficit index for drought monitoring and impacts. Int. J. Climatol. 44, 5825–5838 (2024).

    Article  Google Scholar 

  4. Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, eaax1396 (2019).

    Article  CAS  Google Scholar 

  5. Willett, K. M., Jones, P. D., Gillett, N. P. & Thorne, P. W. Recent changes in surface humidity: development of the HadCRUH dataset. J. Clim. 21, 5364–5383 (2008).

    Article  Google Scholar 

  6. Seager, R. et al. Climatology, variability, and trends in the U.S. vapor pressure deficit, an important fire-related meteorological quantity. J. Appl. Meteorol. Clim. 54, 1121–1141 (2015).

    Article  Google Scholar 

  7. Ficklin, D. L. & Novick, K. A. Historic and projected changes in vapor pressure deficit suggest a continental-scale drying of the United States atmosphere. J. Geophys. Res. Atmos. 122, 2061–2079 (2017).

    Article  Google Scholar 

  8. Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change. 6, 1023–1027 (2016).

    Article  CAS  Google Scholar 

  9. Merilo, E. et al. Stomatal VPD response: there is more to the story than ABA. Plant Physiol. 176, 851–864 (2018).

    Article  CAS  Google Scholar 

  10. Massmann, A., Gentine, P. & Lin, C. When does vapor pressure deficit drive or reduce evapotranspiration? J. Adv. Model. Earth Syst. 11, 3305–3320 (2019).

    Article  Google Scholar 

  11. Bourbia, I. & Brodribb, T. J. Stomatal response to VPD is not triggered by changes in soil–leaf hydraulic conductance in Arabidopsis or Callitris. N. Phytol. 242, 444–452 (2024).

    Article  CAS  Google Scholar 

  12. Zhong, Z. et al. Disentangling the effects of vapor pressure deficit on northern terrestrial vegetation productivity. Sci. Adv. 9, eadf3166 (2023).

    Article  CAS  Google Scholar 

  13. Chen, K. et al. Abscisic acid dynamics, signaling, and functions in plants. J. Integr. Plant Biol. 62, 25–54 (2020).

    Article  CAS  Google Scholar 

  14. Bauman, D. et al. Tropical tree mortality has increased with rising atmospheric water stress. Nature 608, 528–533 (2022).

    Article  CAS  Google Scholar 

  15. Song, C. et al. Differential tree demography mediated by water stress and functional traits in a moist tropical forest. Funct. Ecol. 37, 2927–2939 (2023).

    Article  CAS  Google Scholar 

  16. Guillemot, J. et al. Small and slow is safe: on the drought tolerance of tropical tree species. Glob. Change Biol. 28, 2622–2638 (2022).

    Article  CAS  Google Scholar 

  17. Clarke, H. et al. Forest fire threatens global carbon sinks and population centres under rising atmospheric water demand. Nat. Commun. 13, 7161 (2022).

    Article  CAS  Google Scholar 

  18. He, B. et al. Worldwide impacts of atmospheric vapor pressure deficit on the interannual variability of terrestrial carbon sinks. Natl Sci. Rev. 9, nwab150 (2022).

    Article  Google Scholar 

  19. Fu, Z. et al. The surface–atmosphere exchange of carbon dioxide in tropical rainforests: sensitivity to environmental drivers and flux measurement methodology. Agric. For. Meteorol. 263, 292–307 (2018).

    Article  Google Scholar 

  20. Zhou, S., Zhang, Y., Williams, A. P. & Gentine, P. Projected increases in intensity, frequency, and terrestrial carbon costs of compound drought and aridity events. Sci. Adv. 5, eaau5740 (2019).

    Article  Google Scholar 

  21. Liu, L. et al. Soil moisture dominates dryness stress on ecosystem production globally. Nat. Commun. 11, 4892 (2020).

    Article  CAS  Google Scholar 

  22. Lu, H. et al. Large influence of atmospheric vapor pressure deficit on ecosystem production efficiency. Nat. Commun. 13, 1653 (2022).

    Article  CAS  Google Scholar 

  23. Berry, J. A., Beerling, D. J. & Franks, P. J. Stomata: key players in the Earth system, past and present. Curr. Opin. Plant Biol. 13, 232–239 (2010).

    Article  Google Scholar 

  24. Grossiord, C. et al. Plant responses to rising vapor pressure deficit. N. Phytol. 226, 1550–1566 (2020).

    Article  Google Scholar 

  25. Xu, W. et al. Weakened increase in global near-surface water vapor pressure during the last 20 years. Geophys. Res. Lett. 51, e2023GL107909 (2024).

    Article  Google Scholar 

  26. Hermann, M., Wernli, H. & Röthlisberger, M. Drastic increase in the magnitude of very rare summer-mean vapor pressure deficit extremes. Nat. Commun. 15, 7022 (2024).

    Article  CAS  Google Scholar 

  27. Lian, X. et al. Multifaceted characteristics of dryland aridity changes in a warming world. Nat. Rev. Earth Environ. 2, 232–250 (2021).

    Article  Google Scholar 

  28. Song, Y., Jiao, W., Wang, J. & Wang, L. Increased global vegetation productivity despite rising atmospheric dryness over the last two decades. Earths Future. 10, e2021EF002634 (2022).

    Article  Google Scholar 

  29. Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).

    Article  Google Scholar 

  30. Huang, J., Yu, H., Dai, A., Wei, Y. & Kang, L. Drylands face potential threat under 2 °C global warming target. Nat. Clim. Change 7, 417–422 (2017).

    Article  Google Scholar 

  31. Wang, J. et al. Higher warming rate in global arid regions driven by decreased ecosystem latent heat under rising vapor pressure deficit from 1981 to 2022. Agric. For. Meteorol. 371, 110622 (2025).

    Article  Google Scholar 

  32. Wang, Y. et al. Higher plant photosynthetic capability in autumn responding to low atmospheric vapor pressure deficit. Innovation 2, 100163 (2021).

    CAS  Google Scholar 

  33. Chen, Y. et al. Comparison of satellite-based evapotranspiration models over terrestrial ecosystems in China. Remote Sens. Environ. 140, 279–293 (2014).

    Article  Google Scholar 

  34. Yuan, W., Lin, S. & Wang, X. Progress of studies on satellite-based terrestrial vegetation production models in China. Prog. Phys. Geogr. 46, 889–908 (2022).

    Article  Google Scholar 

  35. Restaino, C. M., Peterson, D. L. & Littell, J. Increased water deficit decreases Douglas fir growth throughout western US forests. Proc. Natl Acad. Sci. USA 113, 9557–9562 (2016).

    Article  CAS  Google Scholar 

  36. Konings, A. G., Williams, A. P. & Gentine, P. Sensitivity of grassland productivity to aridity controlled by stomatal and xylem regulation. Nat. Geosci. 10, 284–28 (2017).

    Article  CAS  Google Scholar 

  37. Babst, F. et al. Twentieth century redistribution in climatic drivers of global tree growth. Sci. Adv. 5, eaat4313 (2019).

    Article  Google Scholar 

  38. Roby, M. C., Scott, R. L. & Moore, D. J. P. High vapor pressure deficit decreases the productivity and water use efficiency of rain-induced pulses in semiarid ecosystems. J. Geophys. Res. Biogeosci. 125, e2020JG005665 (2020).

    Article  Google Scholar 

  39. Mirabel, A., Girardin, M. P., Metsaranta, J., Way, D. & Reich, P. B. Increasing atmospheric dryness reduces boreal forest tree growth. Nat. Commun. 14, 6901 (2023).

    Article  CAS  Google Scholar 

  40. Drake, J. E. et al. Stomatal and non-stomatal limitations of photosynthesis for four tree species under drought: a comparison of model formulations. Agric. For. Meteorol. 247, 454–466 (2017).

    Article  Google Scholar 

  41. Flexas, J. et al. Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis. Plant Sci. 193, 70–84 (2012).

    Article  Google Scholar 

  42. Huang, C. et al. Global convergence in terrestrial gross primary production response to atmospheric vapor pressure deficit. Sci. China Life Sci. 67, 2016–2025 (2024).

    Article  CAS  Google Scholar 

  43. Li, F. et al. Global water use efficiency saturation due to increased vapor pressure deficit. Science 381, 672–677 (2023).

    Article  CAS  Google Scholar 

  44. Zhang, Q. et al. Response of ecosystem intrinsic water use efficiency and gross primary productivity to rising vapor pressure deficit. Environ. Res. Lett. 14, 074023 (2019).

    Article  CAS  Google Scholar 

  45. Franks, P. J. & Farquhar, G. D. The mechanical diversity of stomata and its significance in gas-exchange control. Plant Physiol. 143, 78–87 (2007).

    Article  CAS  Google Scholar 

  46. Niemczyk, M. et al. Coping with extremes: responses of Quercus robur L. and Fagus sylvatica L. to soil drought and elevated vapour pressure deficit. Sci. Total. Environ. 948, 174912 (2024).

    Article  CAS  Google Scholar 

  47. Mas, E. et al. Drought effects in Mediterranean forests are not alleviated by diversity-driven water source partitioning. J. Ecol. 112, 2107–2122 (2024).

    Article  Google Scholar 

  48. Wang, S. et al. Drylands contribute disproportionately to observed global productivity increases. Sci. Bull. 68, 224–232 (2023).

    Article  Google Scholar 

  49. Tao, J. et al. Soil moisture rather than atmospheric dryness dominates CO2 uptake in an alpine steppe. J. Geophys. Res. Biogeosci. 128, e2023JG007593 (2023).

    Article  CAS  Google Scholar 

  50. Zhang, Y. et al. Immediate and lagged vegetation responses to dry spells revealed by continuous solar-induced chlorophyll fluorescence observations in a tall-grass prairie. Remote Sens. Environ. 305, 114080 (2024).

    Article  Google Scholar 

  51. Zhang, Y. et al. Satellite solar-induced chlorophyll fluorescence tracks physiological drought stress development during 2020 southwest US drought. Glob. Change Biol. 29, 3395–3408 (2023).

    Article  CAS  Google Scholar 

  52. Xu, S. et al. Response of ecosystem productivity to high vapor pressure deficit and low soil moisture: lessons learned from the global eddy-covariance observations. Earths Future 11, e2022EF003252 (2023).

    Article  Google Scholar 

  53. Zhou, X. et al. Water use efficiency of China’s karst ecosystems: the effect of different ecohydrological and climatic factors. Sci. Total Environ. 905, 167069 (2023).

    Article  CAS  Google Scholar 

  54. Zani, D., Crowther, T. W., Mo, L., Renner, S. S. & Zohner, C. M. Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees. Science. 370, 1066–1071 (2020).

    Article  CAS  Google Scholar 

  55. Chen, X. et al. Novel representation of leaf phenology improves simulation of amazonian evergreen forest photosynthesis in a land surface model. J. Adv. Model. Earth Syst. 12, e2018MS001565 (2020).

    Article  Google Scholar 

  56. Jakubowicz, M., Nowak, W., Gałgański, Ł, Babula-Skowrońska, D. & Kubiak, P. Expression profiling of the genes encoding ABA route components and the ACC oxidase isozymes in the senescing leaves of Populus tremula. J. Plant Physiol. 248, 153143 (2020).

    Article  CAS  Google Scholar 

  57. Dong, K. & Wang, X. Disentangling the effects of atmospheric and soil dryness on autumn phenology across the northern hemisphere. Remote Sens. 16, 3552 (2024).

    Article  Google Scholar 

  58. Li, Q. et al. Remote sensing of seasonal climatic constraints on leaf phenology across pantropical evergreen forest biome. Earths Future 9, e2021EF002160 (2021).

    Article  Google Scholar 

  59. Dai, Y. et al. Litterfall seasonality and adaptive strategies of tropical and subtropical evergreen forests in China. J. Plant Ecol. 15, 320–334 (2022).

    Article  Google Scholar 

  60. Gong, F. X. et al. Partitioning of three phenology rhythms in American tropical and subtropical forests using remotely sensed solar-induced chlorophyll fluorescence and field litterfall observations. Int. J. Appl. Earth Obs. Geoinf. 107, 102698 (2022).

    Google Scholar 

  61. Wu, C. et al. Increased drought effects on the phenology of autumn leaf senescence. Nat. Clim. Change 12, 943–949 (2022).

    Article  Google Scholar 

  62. Li, P. et al. Rising atmospheric CO2 alleviates drought impact on autumn leaf senescence over northern mid-high latitudes. Glob. Ecol. Biogeogr. 34, e13954 (2025).

    Article  Google Scholar 

  63. Salah, H. B. H. & Tardieu, F. Control of leaf expansion rate of droughted maize plants under fluctuating evaporative demand (a superposition of hydraulic and chemical messages?) Plant Physiol. 114, 893–900 (1997).

    Article  CAS  Google Scholar 

  64. Devi, M. J., Taliercio, E. W. & Sinclair, T. R. Leaf expansion of soybean subjected to high and low atmospheric vapour pressure deficits. J. Exp. Bot. 66, 1845–1850 (2015).

    Article  CAS  Google Scholar 

  65. Clifton-Brown, J. C. & Jones, M. B. The thermal response of leaf extension rate in genotypes of the C4–grass Miscanthus: an important factor in determining the potential productivity of different genotypes. J. Exp. Bot. 48, 1573–1581 (1997).

    CAS  Google Scholar 

  66. Carins Murphy, M. R., Jordan, G. J. & Brodribb, T. J. Acclimation to humidity modifies the link between leaf size and the density of veins and stomata. Plant Cell Environ. 37, 124–131 (2014).

    Article  CAS  Google Scholar 

  67. Lacube, S. et al. Distinct controls of leaf widening and elongation by light and evaporative demand in maize. Plant Cell Environ. 40, 2017–2028 (2017).

    Article  CAS  Google Scholar 

  68. Lebourgeois, F., Bréda, N., Ulrich, E. & Granier, A. Climate-tree-growth relationships of European beech (Fagus sylvatica L.) in the French permanent plot network (RENECOFOR). Trees 19, 385–401 (2005).

    Article  Google Scholar 

  69. Camargo, M. A. B. & Marenco, R. A. Stem growth of Amazonian species is driven by intra-annual variability in rainfall, vapor pressure and evapotranspiration. Acta Bot. Bras. https://doi.org/10.1590/1677-941x-abb-2022-0219 (2023).

    Article  Google Scholar 

  70. Köcher, P., Gebauer, T., Horna, V. & Leuschner, C. Leaf water status and stem xylem flux in relation to soil drought in five temperate broad-leaved tree species with contrasting water use strategies. Ann. For. Sci. 66, 1 (2009).

    Article  Google Scholar 

  71. Wang, X. et al. Field evidences for the positive effects of aerosols on tree growth. Glob. Change Biol. 24, 4983–4992 (2018).

    Article  Google Scholar 

  72. Puchi, P. F., Castagneri, D., Rossi, S. & Carrer, M. Wood anatomical traits in black spruce reveal latent water constraints on the boreal forest. Glob. Change Biol. 26, 1767–1777 (2020).

    Article  Google Scholar 

  73. Köcher, P., Horna, V. & Leuschner, C. Environmental control of daily stem growth patterns in five temperate broad-leaved tree species. Tree Physiol. 32, 1021–1032 (2012).

    Article  Google Scholar 

  74. Jiang, Y. et al. Response of daily stem radial growth of Platycladus orientalis to environmental factors in a semi-arid area of North China. Trees 29, 87–96 (2015).

    Article  Google Scholar 

  75. Li, W., Yue, F., Wang, C., Liao, J. & Zhang, X. Climatic influences on intra-annual stem variation of Larix principis-rupprechtii in a semi-arid region. Front. For. Glob. Change https://doi.org/10.3389/ffgc.2022.948022 (2022).

    Article  Google Scholar 

  76. Wang, K. H. & Hamzah, M. Z. Different cambial activities in response to climatic factors of three Malaysian rainforest Shorea species with different stem diameters. Trees. 32, 1519–1530 (2018).

    Article  Google Scholar 

  77. Lopez, J., Way, D. A. & Sadok, W. Systemic effects of rising atmospheric vapor pressure deficit on plant physiology and productivity. Glob. Change Biol. 27, 1704–1720 (2021).

    Article  CAS  Google Scholar 

  78. McDowell, N. G. & Allen, C. D. Darcy’s law predicts widespread forest mortality under climate warming. Nat. Clim. Change 5, 669–672 (2015).

    Article  Google Scholar 

  79. Olson, M. E. et al. Plant height and hydraulic vulnerability to drought and cold. Proc. Natl Acad. Sci. USA 115, 7551–7556 (2018).

    Article  CAS  Google Scholar 

  80. Thaxton, R. et al. Downstream decreases in water availability, tree height, canopy volume and growth rate in cottonwood forests along the Green River, southwestern USA. Ecohydrology 17, e2693 (2024).

    Article  Google Scholar 

  81. Zheng, Y. et al. Vegetation canopy structure mediates the response of gross primary production to environmental drivers across multiple temporal scales. Sci. Total. Environ. 917, 170439 (2024).

    Article  CAS  Google Scholar 

  82. Liu, M. et al. Overridingly increasing vegetation sensitivity to vapor pressure deficit over the recent two decades in China. Ecol. Indic. 161, 111977 (2024).

    Article  Google Scholar 

  83. Zhu, L. et al. Hydraulic role in differential stomatal behaviors at two contrasting elevations in three dominant tree species of a mixed coniferous and broad-leaved forest in low subtropical China. For. Ecosyst. 10, 100095 (2023).

    Article  Google Scholar 

  84. Diao, H. et al. Dry inside: progressive unsaturation within leaves with increasing vapour pressure deficit affects estimation of key leaf gas exchange parameters. N. Phytol. 244, 1275–1287 (2024).

    Article  Google Scholar 

  85. Zweifel, R. et al. Why trees grow at night. N. Phytol. 231, 2174–2185 (2021).

    Article  Google Scholar 

  86. Hasan, M. M. et al. ABA activated SnRK2 kinases: an emerging role in plant growth and physiology. Plant Signal. Behav. 17, e2071024 (2022).

    Article  Google Scholar 

  87. Li, S. & Liu, F. Vapour pressure deficit and endogenous ABA level modulate stomatal responses of tomato plants to soil water deficit. Environ. Exp. Bot. 199, 104889 (2022).

    Article  CAS  Google Scholar 

  88. Novick, K. A. et al. The impacts of rising vapour pressure deficit in natural and managed ecosystems. Plant Cell Environ. 47, 3561–3589 (2024).

    Article  CAS  Google Scholar 

  89. Savva, J. V. & Vaganov, E. A. Genetic and environmental effects assessment in Scots pine provenances planted in Central Siberia. Mitig. Adapt. Strateg. Glob. Change 11, 269–290 (2006).

    Article  Google Scholar 

  90. Pompa-García, M., Camarero, J. J. & Colangelo, M. Different xylogenesis responses to atmospheric water demand contribute to species coexistence in a mixed pine–oak forest. J. For. Res. 34, 51–62 (2023).

    Article  Google Scholar 

  91. Oberhuber, W., Gruber, A., Lethaus, G., Winkler, A. & Wieser, G. Stem girdling indicates prioritized carbon allocation to the root system at the expense of radial stem growth in Norway spruce under drought conditions. Environ. Exp. Bot. 138, 109–118 (2017).

    Article  Google Scholar 

  92. Metcalfe, D. B. et al. The effects of water availability on root growth and morphology in an Amazon rainforest. Plant Soil 311, 189–199 (2008).

    Article  CAS  Google Scholar 

  93. Bi, J. et al. Sunlight mediated seasonality in canopy structure and photosynthetic activity of Amazonian rainforests. Environ. Res. Lett. 10, 064014 (2015).

    Article  Google Scholar 

  94. Xu, L. et al. Satellite observation of tropical forest seasonality: spatial patterns of carbon exchange in Amazonia. Environ. Res. Lett. 10, 084005 (2015).

    Article  Google Scholar 

  95. Huete, A. R. et al. Amazon rainforests green-up with sunlight in dry season. Geophys. Res. Lett. https://doi.org/10.1029/2005GL025583 (2006).

    Article  Google Scholar 

  96. Wu, J. et al. Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests. Science 351, 972–976 (2016).

    Article  CAS  Google Scholar 

  97. Brodribb, T. J., Holbrook, N. M. & Gutiérrez, M. V. Hydraulic and photosynthetic co-ordination in seasonally dry tropical forest trees. Plant Cell Environ. 25, 1435–1444 (2002).

    Article  Google Scholar 

  98. Lee, J.-E. & Boyce, K. Impact of the hydraulic capacity of plants on water and carbon fluxes in tropical South America. J. Geophys. Res. https://doi.org/10.1029/2010jd014568 (2010).

    Article  Google Scholar 

  99. Yang, X. et al. A comprehensive framework for seasonal controls of leaf abscission and productivity in evergreen broadleaved tropical and subtropical forests. Innovation 2, 100154 (2021).

    Google Scholar 

  100. Chen, X. et al. Vapor pressure deficit and sunlight explain seasonality of leaf phenology and photosynthesis across Amazonian evergreen broadleaved forest. Glob. Biogeochem. Cycles 35, e2018MS001565 (2021).

    Article  Google Scholar 

  101. Chapin, F. S., Schulze, E. & Mooney, H. A. The ecology and economics of storage in plants. Annu. Rev. Ecol. Evol. Syst. 21, 423–447 (1990).

    Article  Google Scholar 

  102. Cuzzuol, G. R. F., Venâncio, F. C. D., Pezzopane, J. E. M. & Toledo, J. V. Climate change compromises leaf units and lignin content in sun-tolerant Paubrasilia echinata plants. N. For. 56, 23 (2025).

    Google Scholar 

  103. Martínez-Vilalta, J. et al. Dynamics of non-structural carbohydrates in terrestrial plants: a global synthesis. Ecol. Monogr. 86, 495–516 (2016).

    Article  Google Scholar 

  104. Frak, E. et al. Spatial distribution of leaf nitrogen and photosynthetic capacity within the foliage of individual trees: disentangling the effects of local light quality, leaf irradiance, and transpiration. J. Exp. Bot. 53, 2207–2216 (2002).

    Article  CAS  Google Scholar 

  105. Du, Y. et al. Plant photosynthetic overcompensation under nocturnal warming: lack of evidence in subtropical evergreen trees. Ann. Bot. 130, 109–119 (2022).

    Article  CAS  Google Scholar 

  106. Park Williams, A. et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Change 3, 292–297 (2013).

    Article  Google Scholar 

  107. Gazol, A. & Camarero, J. J. Compound climate events increase tree drought mortality across European forests. Sci. Total Environ. 816, 151604 (2022).

    Article  CAS  Google Scholar 

  108. McDowell, N. et al. Drivers and mechanisms of tree mortality in moist tropical forests. N. Phytol. 219, 851–869 (2018).

    Article  Google Scholar 

  109. Rowland, L. et al. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 528, 119–122 (2015).

    Article  CAS  Google Scholar 

  110. Powell, T. L. et al. Differences in xylem and leaf hydraulic traits explain differences in drought tolerance among mature Amazon rainforest trees. Glob. Change Biol. 23, 4280–4293 (2017).

    Article  Google Scholar 

  111. Barros, F. D. V. et al. Hydraulic traits explain differential responses of Amazonian forests to the 2015 El Niño-induced drought. N. Phytol. 223, 1253–1266 (2019).

    Article  CAS  Google Scholar 

  112. Oliveira, R. S. et al. Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro-topographic gradients. N. Phytol. 221, 1457–1465 (2019).

    Article  Google Scholar 

  113. Powers, J. S. et al. A catastrophic tropical drought kills hydraulically vulnerable tree species. Glob. Change Biol. 26, 3122–3133 (2020).

    Article  Google Scholar 

  114. Bittencourt, P. R. D. L. et al. Divergence of hydraulic traits among tropical forest trees across topographic and vertical environment gradients in Borneo. N. Phytol. 235, 2183–2198 (2022).

    Article  CAS  Google Scholar 

  115. Oliveira, R. S. et al. Linking plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical ecosystems. N. Phytol. 230, 904–923 (2021).

    Article  Google Scholar 

  116. Song, C., Xu, W., Chen, S., Fu, Y. & Yuan, W. Water use and mortality risk of four tropical canopy trees with different leaf phenology during the 2016 El Niño drought. Agric. For. Meteorol. 352, 110035 (2024).

    Article  Google Scholar 

  117. Quetin, G. R., Anderegg, L. D. L., Boving, I., Anderegg, W. R. L. & Trugman, A. T. Observed forest trait velocities have not kept pace with hydraulic stress from climate change. Glob. Change Biol. 29, 5415–5428 (2023).

    Article  CAS  Google Scholar 

  118. Liu, D., Wang, T., Peñuelas, J. & Piao, S. Drought resistance enhanced by tree species diversity in global forests. Nat. Geosci. 15, 800–804 (2022).

    Article  CAS  Google Scholar 

  119. Green, J. K. et al. Surface temperatures reveal the patterns of vegetation water stress and their environmental drivers across the tropical Americas. Glob. Change Biol. 28, 2940–2955 (2022).

    Article  CAS  Google Scholar 

  120. Looney, C. E., Previant, W. J., Bradford, J. B. & Nagel, L. M. Species mixture effects and climate influence growth, recruitment and mortality in Interior West USA Populus tremuloides-conifer communities. J. Ecol. 109, 2934–2949 (2021).

    Article  Google Scholar 

  121. Cleverly, J. et al. Carbon, water and energy fluxes in agricultural systems of Australia and New Zealand. Agric. For. Meteorol. 287, 107934 (2020).

    Article  Google Scholar 

  122. Williams, M. et al. Seasonal variation in net carbon exchange and evapotranspiration in a Brazilian rain forest: a modelling analysis. Plant, Cell Environ. 21, 953–968 (1998).

    Article  Google Scholar 

  123. Gou, R. et al. Atmospheric water demand constrains net ecosystem production in subtropical mangrove forests. J. Hydrol. 630, 130651 (2024).

    Article  CAS  Google Scholar 

  124. Goodrich, J. P. et al. Atmospheric effects are stronger than soil moisture in restricting net CO2 uptake of managed grasslands in New Zealand. Agric. For. Meteorol. 345, 109822 (2024).

    Article  Google Scholar 

  125. Liu, C. et al. Variation of stomatal traits from cold temperate to tropical forests and association with water use efficiency. Funct. Ecol. 32, 20–28 (2018).

    Article  Google Scholar 

  126. Balachowski, J. A., Bristiel, P. M. & Volaire, F. A. Summer dormancy, drought survival and functional resource acquisition strategies in California perennial grasses. Ann. Bot. 118, 357–368 (2016).

    Article  Google Scholar 

  127. Schreiner-McGraw, A. P., Wood, J. D., Metz, M. E., Sadler, E. J. & Sudduth, K. A. Agriculture accentuates interannual variability in water fluxes but not carbon fluxes, relative to native prairie, in the U.S. Corn belt. Agric. For. Meteorol. 333, 109420 (2023).

    Article  Google Scholar 

  128. Wagle, P., Kakani, V. G. & Huhnke, R. L. Net ecosystem carbon dioxide exchange of dedicated bioenergy feedstocks: switchgrass and high biomass sorghum. Agric. For. Meteorol. 207, 107–116 (2015).

    Article  Google Scholar 

  129. Wagle, P., Gowda, P. H., Moorhead, J. E., Marek, G. W. & Brauer, D. K. Net ecosystem exchange of CO2 and H2O fluxes from irrigated grain sorghum and maize in the Texas high plains. Sci. Total Environ. 637–638, 163–173 (2018).

    Article  Google Scholar 

  130. Wagle, P. et al. Dynamics of CO2 and H2O fluxes in Johnson grass in the U.S. southern great plains. Sci. Total Environ. 739, 140077 (2020).

    Article  CAS  Google Scholar 

  131. Jones, H. G. Partitioning stomatal and non-stomatal limitations to photosynthesis. Plant Cell Environ. 8, 95–104 (1985).

    Article  Google Scholar 

  132. Jones, H. G. Stomatal control of photosynthesis and transpiration. J. Exp. Bot. 49, 387–398 (1998).

    Article  Google Scholar 

  133. Gupta, A., Rico-Medina, A. & Caño-Delgado, A. I. The physiology of plant responses to drought. Science 368, 266–269 (2020).

    Article  CAS  Google Scholar 

  134. Wang, Y., Wang, Y., Tang, Y. & Zhu, X.-G. Stomata conductance as a goalkeeper for increased photosynthetic efficiency. Curr. Opin. Plant Biol. 70, 102310 (2022).

    Article  CAS  Google Scholar 

  135. Slot, M., Rifai, S. W., Eze, C. E. & Winter, K. The stomatal response to vapor pressure deficit drives the apparent temperature response of photosynthesis in tropical forests. N. Phytol. 244, 1238–1249 (2024).

    Article  CAS  Google Scholar 

  136. Lobell, D. B. et al. Greater sensitivity to drought accompanies maize yield increase in the U.S. Midwest. Science 344, 516–519 (2014).

    Article  CAS  Google Scholar 

  137. Márquez, D. A. & Busch, F. A. The interplay of short-term mesophyll and stomatal conductance responses under variable environmental conditions. Plant Cell Environ. 47, 3393–3410 (2024).

    Article  Google Scholar 

  138. McDowell, N. G. et al. Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nat. Rev. Earth Environ. 3, 294–308 (2022).

    Article  CAS  Google Scholar 

  139. Tardieu, F. & Simonneau, T. Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours. J. Exp. Bot. 49, 419–432 (1998).

    Article  Google Scholar 

  140. Martínez-Vilalta, J., Poyatos, R., Aguadé, D., Retana, J. & Mencuccini, M. A new look at water transport regulation in plants. N. Phytol. 204, 105–115 (2014).

    Article  Google Scholar 

  141. Martínez-Vilalta, J. & Garcia-Forner, N. Water potential regulation, stomatal behaviour and hydraulic transport under drought: deconstructing the iso/anisohydric concept. Plant Cell Environ. 40, 962–976 (2017).

    Article  Google Scholar 

  142. Marchin, R. M., Broadhead, A. A., Bostic, L. E., Dunn, R. R. & Hoffmann, W. A. Stomatal acclimation to vapour pressure deficit doubles transpiration of small tree seedlings with warming. Plant Cell Environ. 39, 2221–2234 (2016).

    Article  CAS  Google Scholar 

  143. Urban, J., Ingwers, M., McGuire, M. A. & Teskey, R. O. Stomatal conductance increases with rising temperature. Plant Signal. Behav. 12, e1356534 (2017).

    Article  Google Scholar 

  144. Rashid, M. A., Andersen, M. N., Wollenweber, B., Zhang, X. & Olesen, J. E. Acclimation to higher VPD and temperature minimized negative effects on assimilation and grain yield of wheat. Agric. For. Meteorol. 248, 119–129 (2018).

    Article  Google Scholar 

  145. Sperry, J. S., Adler, F. R., Campbell, G. S. & Comstock, J. P. Limitation of plant water use by rhizosphere and xylem conductance: results from a model. Plant Cell Environ. 21, 347–359 (1998).

    Article  Google Scholar 

  146. Liu, Y., Kumar, M., Katul, G. G., Feng, X. & Konings, A. G. Plant hydraulics accentuates the effect of atmospheric moisture stress on transpiration. Nat. Clim. Change 10, 691–695 (2020).

    Article  CAS  Google Scholar 

  147. McDowell, N. et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? N. Phytol. 178, 719–739 (2008).

    Article  Google Scholar 

  148. Sala, A., Piper, F. & Hoch, G. Physiological mechanisms of drought-induced tree mortality are far from being resolved. N. Phytol. 186, 274–281 (2010).

    Article  Google Scholar 

  149. Hartmann, H. Will a 385 million year-struggle for light become a struggle for water and for carbon? - How trees may cope with more frequent climate change-type drought events. Glob. Change Biol. 17, 642–655 (2011).

    Article  Google Scholar 

  150. Zeppel, M. J. B., Anderegg, W. R. L. & Adams, H. D. Forest mortality due to drought: latest insights, evidence and unresolved questions on physiological pathways and consequences of tree death. N. Phytol. 197, 372–374 (2013).

    Article  Google Scholar 

  151. Kono, Y. et al. Initial hydraulic failure followed by late-stage carbon starvation leads to drought-induced death in the tree trema orientalis. Commun. Biol. 2, 8 (2019).

    Article  Google Scholar 

  152. Cernusak, L. A., Winter, K. & Turner, B. L. Plant δ15N correlates with the transpiration efficiency of nitrogen acquisition in tropical trees. Plan. Physiol. 151, 1667–1676 (2009).

    Article  CAS  Google Scholar 

  153. Adams, P. & Hand, D. J. Effects of humidity and Ca level on dry-matter and Ca accumulation by leaves of cucumber (Cucumis sativus L.). J. Horticultural Sci. India 68, 767–774 (1993).

    Article  CAS  Google Scholar 

  154. Lambers, H., Chapin III, F. S. & Pons, T. L. Plant Physiological Ecology (Springer, 2008).

  155. Shrestha, R. K., Engel, K. & Becker, M. Effect of transpiration on iron uptake and translocation in lowland rice. J. Plant Nutr. Soil Sci. 178, 365–369 (2015).

    Article  CAS  Google Scholar 

  156. Novák, V. & Vidovič, J. Transpiration and nutrient uptake dynamics in maize (Zea mays L.). Ecol. Modell. 166, 99–107 (2003).

    Article  Google Scholar 

  157. Suzuki, M. et al. Effects of relative humidity and nutrient supply on growth and nutrient uptake in greenhouse tomato production. Sci. Hortic. 187, 44–49 (2015).

    Article  CAS  Google Scholar 

  158. Ding, J. et al. Effect of vapor pressure deficit on the photosynthesis, growth, and nutrient absorption of tomato seedlings. Sci. Hortic. 293, 110736 (2022).

    Article  CAS  Google Scholar 

  159. Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R. & Abrams, S. R. Abscisic acid: emergence of a core signaling network. Annu. Rev. Plant Biol. 61, 651–679 (2010).

    Article  CAS  Google Scholar 

  160. Skelton, R. P., Brodribb, T. J., McAdam, S. A. M. & Mitchell, P. J. Gas exchange recovery following natural drought is rapid unless limited by loss of leaf hydraulic conductance: evidence from an evergreen woodland. N. Phytol. 215, 1399–1412 (2017).

    Article  CAS  Google Scholar 

  161. McAdam, S. A. M. et al. Abscisic acid controlled sex before transpiration in vascular plants. Proc. Natl Acad. Sci. USA 113, 12862–12867 (2016).

    Article  CAS  Google Scholar 

  162. McAdam, S. A. M., Sussmilch, F. C. & Brodribb, T. J. Stomatal responses to vapour pressure deficit are regulated by high speed gene expression in angiosperms. Plant Cell Environ. 39, 485–491 (2016).

    Article  CAS  Google Scholar 

  163. Waadt, R. et al. Fret-based reporters for the direct visualization of abscisic acid concentration changes and distribution in arabidopsis. eLife 3, e01739 (2014).

    Article  Google Scholar 

  164. Feitosa-Araujo, E., da Fonseca-Pereira, P., Knorr, L. S., Schwarzländer, M. & Nunes-Nesi, A. Nad meets ABA: connecting cellular metabolism and hormone signaling. Trends Plant Sci. 27, 16–28 (2022).

    Article  CAS  Google Scholar 

  165. Kavi Kishor, P. B., Tiozon, R. N., Fernie, A. R. & Sreenivasulu, N. Abscisic acid and its role in the modulation of plant growth, development, and yield stability. Trends Plant Sci. 27, 1283–1295 (2022).

    Article  CAS  Google Scholar 

  166. McAdam, S. A. M. & Brodribb, T. J. Linking turgor with ABA biosynthesis: implications for stomatal responses to vapor pressure deficit across land plants. Plant Physiol. 171, 2008–2016 (2016).

    Article  CAS  Google Scholar 

  167. Aliniaeifard, S., Malcolm Matamoros, P. & van Meeteren, U. Stomatal malfunctioning under low VPD conditions: induced by alterations in stomatal morphology and leaf anatomy or in the ABA signaling? Physiol. Plant. 152, 688–699 (2014).

    Article  CAS  Google Scholar 

  168. Ma, Y. et al. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324, 1064–1068 (2009).

    Article  CAS  Google Scholar 

  169. Park, S.-Y. et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324, 1068–1071 (2009).

    Article  CAS  Google Scholar 

  170. Hsu, P.-K., Dubeaux, G., Takahashi, Y. & Schroeder, J. I. Signaling mechanisms in abscisic acid-mediated stomatal closure. Plant J. 105, 307–321 (2021).

    Article  CAS  Google Scholar 

  171. Zhang, J. et al. Impacts of site aridity on intra-annual radial variation of two alpine coniferous species in cold and dry ecosystems. Ecol. Indic. 158, 111420 (2024).

    Article  Google Scholar 

  172. Bauer, H. et al. The stomatal response to reduced relative humidity requires guard cell-autonomous ABA synthesis. Curr. Biol. 23, 53–57 (2013).

    Article  CAS  Google Scholar 

  173. McAdam, S. A. M., Sussmilch, F. C., Brodribb, T. J. & Ross, J. J. Molecular characterization of a mutation affecting abscisic acid biosynthesis and consequently stomatal responses to humidity in an agriculturally important species. AoB Plants 7, plv091 (2015).

    Article  Google Scholar 

  174. Yaaran, A., Negin, B. & Moshelion, M. Role of guard-cell ABA in determining steady-state stomatal aperture and prompt vapor-pressure-deficit response. Plant Sci. 281, 31–40 (2019).

    Article  CAS  Google Scholar 

  175. Sussmilch, F. C. & McAdam, S. A. M. Surviving a dry future: abscisic acid (ABA)-mediated plant mechanisms for conserving water under low humidity. Plants 6, 54 (2017).

    Article  Google Scholar 

  176. Sampaio Filho, I. D. et al. Below versus above ground plant sources of abscisic acid (ABA) at the heart of tropical forest response to warming. Int. J. Mol. Sci. 19, 2023 (2018).

    Article  Google Scholar 

  177. Kane, M. E. & Albert, L. S. Abscisic acid induces aerial leaf morphology and vasculature in submerged Hippuris vulgaris L. Aquat. Bot. 28, 81–88 (1987).

    Article  CAS  Google Scholar 

  178. Hwang, S.-G. et al. Ectopic expression of rice OsNCED3 in Arabidopsis increases ABA level and alters leaf morphology. Plant Sci. 178, 12–22 (2010).

    Article  CAS  Google Scholar 

  179. Rudich, J. & Halevy, A. H. Involvement of abscisic acid in the regulation of sex expression in the cucumber. Plant Cell Physiol. 15, 635–642 (1974).

    Article  CAS  Google Scholar 

  180. Friedlander, M., Atsmon, D. & Galun, E. Sexual differentiation in cucumber: the effects of abscisic acid and other growth regulators on various sex genotypes. Plant Cell Physiol. 18, 261–269 (1977).

    CAS  Google Scholar 

  181. Wu, J. et al. Leaf shedding of pan-Asian tropical evergreen forests depends on the synchrony of seasonal variations of rainfall and incoming solar radiation. Agric. For. Meteorol. 311, 108691 (2021).

    Article  Google Scholar 

  182. Kane, C. N. & McAdam, S. A. M. Abscisic acid can augment, but is not essential for, autumnal leaf senescence. J. Exp. Bot. 74, 3255–3266 (2023).

    Article  CAS  Google Scholar 

  183. Zhang, Y. & Liang, S. Changes in forest biomass and linkage to climate and forest disturbances over northeastern China. Glob. Change Biol. 20, 2596–2606 (2014).

    Article  Google Scholar 

  184. Descals, A. et al. Unprecedented fire activity above the Arctic Circle linked to rising temperatures. Science 378, 532–537 (2022).

    Article  CAS  Google Scholar 

  185. Rao, K., Williams, A. P., Diffenbaugh, N. S., Yebra, M. & Konings, A. G. Plant-water sensitivity regulates wildfire vulnerability. Nat. Ecol. Evol. 6, 332–339 (2022).

    Article  Google Scholar 

  186. Zhu, X., Xu, X. & Jia, G. Asymmetrical trends of burned area between eastern and western Siberia regulated by atmospheric oscillation. Geophys. Res. Lett. 48, e2021GL096095 (2021).

    Article  Google Scholar 

  187. Rother, D. E., De Sales, F., Stow, D. & McFadden, J. P. Summer and fall extreme fire weather projected to occur more often and affect a growing portion of California throughout the 21st century. Fire 5, 177 (2022).

    Article  Google Scholar 

  188. Boiffin, J. & Munson, A. D. Three large fire years threaten resilience of closed crown black spruce forests in eastern Canada. Ecosphere 4, art56 (2013).

    Article  Google Scholar 

  189. Rodrigues, C. A., Zirondi, H. L. & Fidelis, A. Fire frequency affects fire behavior in open savannas of the Cerrado. For. Ecol. Manage. 482, 118850 (2021).

    Article  Google Scholar 

  190. Qing, Y. et al. Accelerated soil drying linked to increasing evaporative demand in wet regions. npj Clim. Atmos. Sci. 6, 205 (2023).

    Article  Google Scholar 

  191. Rodrigues, M., Resco de Dios, V., Sil, Â, Cunill Camprubí, À & Fernandes, P. M. VPD-based models of dead fine fuel moisture provide best estimates in a global dataset. Agric. For. Meteorol. 346, 109868 (2024).

    Article  Google Scholar 

  192. Alizadeh, M. R. et al. Warming enabled upslope advance in western US forest fires. Proc. Natl Acad. Sci. USA 118, e2009717118 (2021).

    Article  CAS  Google Scholar 

  193. Resco de Dios, V. et al. Climate change induced declines in fuel moisture may turn currently fire-free Pyrenean mountain forests into fire-prone ecosystems. Sci. Total Environ. 797, 149104 (2021).

    Article  CAS  Google Scholar 

  194. Jain, P., Castellanos-Acuna, D., Coogan, S. C. P., Abatzoglou, J. T. & Flannigan, M. D. Observed increases in extreme fire weather driven by atmospheric humidity and temperature. Nat. Clim. Change 12, 63–70 (2022).

    Article  Google Scholar 

  195. Or, D., Lehmann, P., Shahraeeni, E. & Shokri, N. Advances in soil evaporation physics — a review. Vadose Zone J. 12, 1–16 (2013).

    Article  Google Scholar 

  196. Kim, Y., Park, H., Kimball, J. S., Colliander, A. & McCabe, M. F. Global estimates of daily evapotranspiration using SMAP surface and root-zone soil moisture. Remote Sens. Environ. 298, 113803 (2023).

    Article  Google Scholar 

  197. Miralles, D. G., Gentine, P., Seneviratne, S. I. & Teuling, A. J. Land–atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges. Ann. N. Y. Acad. Sci. 1436, 19–35 (2019).

    Article  Google Scholar 

  198. Shekhar, A., Hortnagl, L., Buchmann, N. & Gharun, M. Long-term changes in forest response to extreme atmospheric dryness. Glob. Change Biol. 30, e17062 (2023).

    Google Scholar 

  199. Shibuya, T., Hirai, N., Sakamoto, Y. & Komuro, J. Effects of morphological characteristics of Cucumis sativus seedlings grown at different vapor pressure deficits on initial colonization of Bemisia tabaci (Hemiptera: Aleyrodidae). J. Econ. Entomol. 102, 2265–2267 (2009).

    Article  CAS  Google Scholar 

  200. Chave, J. et al. Regional and seasonal patterns of litterfall in tropical South America. Biogeosciences 7, 43–55 (2010).

    Article  Google Scholar 

  201. Wang, W., Li, B., Zhao, X., Zhang, S. & Li, J. Light intensity moderates photosynthesis by optimizing photosystem mechanisms under high VPD stress. Plant Physiol. Biochem. 218, 109322 (2025).

    Article  CAS  Google Scholar 

  202. Fang, Z., Zhang, W., Brandt, M., Abdi, A. M. & Fensholt, R. Globally increasing atmospheric aridity over the 21st century. Earths Future. 10, e2022EF003019 (2022).

    Article  Google Scholar 

  203. Yu, X., Zhang, L., Zhou, T., Zheng, J. & Guan, J. Higher atmospheric aridity-dominated drought stress contributes to aggravating dryland productivity loss under global warming. Weather Clim. Extremes 44, 100692 (2024).

    Article  Google Scholar 

  204. Douville, H. & Willett, K. M. A drier than expected future, supported by near-surface relative humidity observations. Sci. Adv. 9, eade6253 (2023).

    Article  CAS  Google Scholar 

  205. Kolby Smith, W. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Change 6, 306–310 (2016).

    Article  CAS  Google Scholar 

  206. Tian, C. et al. Projections of changes in ecosystem productivity under 1.5 °C and 2 °C global warming. Glob. Planet. Change 205, 103588 (2021).

    Article  Google Scholar 

  207. Dai, Y. et al. The common land model. Bull. Am. Meteorol. Soc. 84, 1013–1024 (2003).

    Article  Google Scholar 

  208. Zhou, X., Gui, H., Xin, Q. & Dai, Y. Divergent trajectories of future global gross primary productivity and evapotranspiration of terrestrial vegetation in shared socioeconomic pathways. Sci. Total. Environ. 919, 170580 (2024).

    Article  CAS  Google Scholar 

  209. Chen, Z., Wang, W., Forzieri, G. & Cescatti, A. Transition from positive to negative indirect CO2 effects on the vegetation carbon uptake. Nat. Commun. 15, 1500 (2024).

    Article  CAS  Google Scholar 

  210. Cawson, J. G., Collins, L., Parks, S. A., Nolan, R. H. & Penman, T. D. Atmospheric dryness removes barriers to the development of large forest fires. Agric. For. Meteorol. 350, 109990 (2024).

    Article  Google Scholar 

  211. Yin, J. et al. Drought-related wildfire accounts for one-third of the forest wildfires in subtropical China. Agric. For. Meteorol. 346, 109893 (2024).

    Article  Google Scholar 

  212. Liu, Y., Peñuelas, J., Cescatti, A., Zhang, Y. & Zhang, Z. Atmospheric dryness dominates afternoon depression of global terrestrial photosynthesis. Geophys. Res. Lett. 51, e2024GL110954 (2024).

    Article  Google Scholar 

  213. Jalakas, P., Takahashi, Y., Waadt, R., Schroeder, J. I. & Merilo, E. Molecular mechanisms of stomatal closure in response to rising vapour pressure deficit. N. Phytol. 232, 468–475 (2021).

    Article  CAS  Google Scholar 

  214. Dong, N. et al. Components of leaf-trait variation along environmental gradients. N. Phytol. 228, 82–94 (2020).

    Article  CAS  Google Scholar 

  215. Christoffersen, B. O. et al. Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v.1-Hydro). Geosci. Model Dev. 9, 4227–4255 (2016).

    Article  Google Scholar 

  216. Vialet-Chabrand, S. R. M. et al. Temporal dynamics of stomatal behavior: modeling and implications for photosynthesis and water use. Plant Physiol. 174, 603–613 (2017).

    Article  CAS  Google Scholar 

  217. Sperry, J. S. et al. Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost. Plant Cell Environ. 40, 816–830 (2017).

    Article  CAS  Google Scholar 

  218. Eller, C. B. et al. Stomatal optimization based on xylem hydraulics (SOX) improves land surface model simulation of vegetation responses to climate. N. Phytol. 226, 1622–1637 (2020).

    Article  CAS  Google Scholar 

  219. Venturas, M. D., Sperry, J. S. & Hacke, U. G. Plant xylem hydraulics: what we understand, current research, and future challenges. J. Integr. Plant Biol. 59, 356–389 (2017).

    Article  Google Scholar 

  220. Bonan, G. B., Patton, E. G., Finnigan, J. J., Baldocchi, D. D. & Harman, I. N. Moving beyond the incorrect but useful paradigm: reevaluating big-leaf and multilayer plant canopies to model biosphere-atmosphere fluxes — a review. Agric. For. Meteorol. 306, 108435 (2021).

    Article  Google Scholar 

  221. De Weirdt, M. et al. Seasonal leaf dynamics for tropical evergreen forests in a process-based global ecosystem model. Geosci. Model Dev. 5, 1091–1108 (2012).

    Article  Google Scholar 

  222. Tian, J. et al. A leaf age-dependent light use efficiency model for remote sensing the gross primary productivity seasonality over pantropical evergreen broadleaved forests. Glob. Change Biol. 30, e17454 (2024).

    Article  CAS  Google Scholar 

  223. Eckes-Shephard, A. H., Ljungqvist, F. C., Drew, D. M., Rathgeber, C. B. K. & Friend, A. D. Wood formation modeling — a research review and future perspectives. Front. Plant Sci. 13, 837648 (2022).

    Article  Google Scholar 

  224. Fritts, H. C., Vaganov, E. A., Sviderskaya, I. V. & Shashkin, A. V. Climatic variation and tree-ring structure in conifers: empirical and mechanistic models of tree-ring width, number of cells, cell size, cell-wall thickness and wood density. Clim. Res. 1, 97–116 (1991).

    Article  Google Scholar 

  225. Fritts, H. C., Shashkin, A. & Downes, G. M. in Tree-Ring Analysis (eds Wimmer, R. & Vetter, R. E.) 3–32 (Cambridge Univ. Press, 1999).

  226. Drew, D. M., Downes, G. M. & Battaglia, M. CAMBIUM, a process-based model of daily xylem development in Eucalyptus. J. Theor. Biol. 264, 395–406 (2010).

    Article  Google Scholar 

  227. Peters, R. L. et al. High vapour pressure deficit enhances turgor limitation of stem growth in an Asian tropical rainforest tree. Plant Cell Environ. 46, 2747–2762 (2023).

    Article  CAS  Google Scholar 

  228. Hölttä, T., Mäkinen, H., Nöjd, P., Mäkelä, A. & Nikinmaa, E. A physiological model of softwood cambial growth. Tree Physiol. 30, 1235–1252 (2010).

    Article  Google Scholar 

  229. Bourbia, I., Yates, L. A. & Brodribb, T. J. Using long-term field data to quantify water potential regulation in response to VPD and soil moisture in a conifer tree. N. Phytol. 246, 911–923 (2025).

    Article  CAS  Google Scholar 

  230. Anderegg, W. R. L. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532 (2015).

    Article  CAS  Google Scholar 

  231. Trugman, A. T., Anderegg, L. D. L., Anderegg, W. R. L., Das, A. J. & Stephenson, N. L. Why is tree drought mortality so hard to predict? Trends Ecol. Evol. 36, 520–532 (2021).

    Article  Google Scholar 

  232. Hillabrand, R. M., Hacke, U. G. & Lieffers, V. J. Defoliation constrains xylem and phloem functionality. Tree Physiol. 39, 1099–1108 (2019).

    Article  Google Scholar 

  233. Sevanto, S., McDowell, N. G., Dickman, L. T., Pangle, R. & Pockman, W. T. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant Cell Environ. 37, 153–161 (2014).

    Article  CAS  Google Scholar 

  234. Dudney, J. et al. Nonlinear shifts in infectious rust disease due to climate change. Nat. Commun. 12, 5102 (2021).

    Article  CAS  Google Scholar 

  235. Zhang, X. et al. GLC_FCS30D: the first global 30 m land-cover dynamics monitoring product with a fine classification system for the period from 1985 to 2022 generated using dense-time-series Landsat imagery and the continuous change-detection method. Earth Syst. Sci. Data 16, 1353–1381 (2024).

    Article  Google Scholar 

  236. Felton, A. J. et al. Global estimates of the storage and transit time of water through vegetation. Nat. Water 3, 59–69 (2025).

    Article  Google Scholar 

  237. Huang, Z., Zhou, L. & Chi, Y. Spring phenology rather than climate dominates the trends in peak of growing season in the northern hemisphere. Glob. Change Biol. 29, 4543–4555 (2023).

    Article  CAS  Google Scholar 

  238. Su, Y. et al. Observed strong atmospheric water constraints on forest photosynthesis using eddy covariance and satellite-based data across the northern hemisphere. Int. J. Appl. Earth Obs. Geoinf. 110, 102808 (2022).

    Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (42471326, 42141020; 41971275), the National Key R&D Program of China (No. 2024YFF1306600) and the Science and Technology Program of Guangdong (No. 2024B1212070012) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

W.Y. and X.C. designed the manuscript. J.T., M.W., S.W. and W.X. researched data for the article. All authors reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Wenping Yuan or Xiuzhi Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Flurin Babst, Yanlan Liu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, W., Tian, J., Wang, M. et al. Impacts of rising atmospheric dryness on terrestrial ecosystem carbon cycle. Nat Rev Earth Environ (2025). https://doi.org/10.1038/s43017-025-00726-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43017-025-00726-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing