Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Targeting therapy-persistent residual disease

Abstract

Disease relapse driven by acquired drug resistance limits the effectiveness of most systemic anti-cancer agents. Targeting persistent cancer cells in residual disease before relapse has emerged as a potential strategy for enhancing the efficacy and the durability of current therapies. However, barriers remain to implementing persister-directed approaches in the clinic. This Perspective discusses current preclinical and clinical complexities and outlines key steps toward the development of clinical strategies that target therapy-persistent residual disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nongenetic sources of therapy-persistent RD.
Fig. 2: Framework for clinical evaluation of persister-directed therapies.

Similar content being viewed by others

References

  1. Turke, A. B. et al. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell 17, 77–88 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Su, K.-Y. et al. Pretreatment epidermal growth factor receptor (EGFR) T790M mutation predicts shorter EGFR tyrosine kinase inhibitor response duration in patients with non-small-cell lung cancer. J. Clin. Oncol. 30, 433–440 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Ye, X. et al. High T790M detection rate in TKI-naive NSCLC with EGFR sensitive mutation: truth or artifact? J. Thorac. Oncol. 8, 1118–1120 (2013).

    Article  PubMed  Google Scholar 

  4. Hata, A. N. et al. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat. Med. 22, 262–269 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ramirez, M. et al. Diverse drug-resistance mechanisms can emerge from drug-tolerant cancer persister cells. Nat. Commun. 7, 10690 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sharma, S. V. et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141, 69–80 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Berger, A. J. et al. IRS1 phosphorylation underlies the non-stochastic probability of cancer cells to persist during EGFR inhibition therapy. Nat. Cancer 2, 1055–1070 (2021).

    Article  Google Scholar 

  8. Sequist, L. V. et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci. Transl. Med. 3, 75ra26 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Shi, H. et al. Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov. 4, 80–93 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Marcoux, N. et al. EGFR-mutant adenocarcinomas that transform to small-cell lung cancer and other neuroendocrine carcinomas: clinical outcomes. J. Clin. Oncol. 37, 278–285 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Tsai, Y. S. et al. Rapid idiosyncratic mechanisms of clinical resistance to KRAS G12C inhibition. J. Clin. Invest. 132, e155523 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Awad, M. M. et al. Acquired resistance to KRASG12C inhibition in cancer. N. Engl. J. Med. 384, 2382–2393 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maynard, A. et al. Therapy-induced evolution of human lung cancer revealed by single-cell RNA sequencing. Cell 182, 1232–1251 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vokes, N. I. et al. Concurrent TP53 mutations facilitate resistance evolution in EGFR-mutant lung adenocarcinoma. J. Thorac. Oncol. 17, 779–792 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ryl, T. et al. Cell-cycle position of single MYC-driven cancer cells dictates their susceptibility to a chemotherapeutic drug. Cell Syst. 5, 237–250 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Hastings, J. F. et al. Memory of stochastic single-cell apoptotic signaling promotes chemoresistance in neuroblastoma. Sci. Adv. 9, eabp8314 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Singh, D. K. et al. Patterns of basal signaling heterogeneity can distinguish cellular populations with different drug sensitivities. Mol. Syst. Biol. 6, 369 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Shaffer, S. M. et al. Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature 546, 431–435 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Min, M. & Spencer, S. L. Spontaneously slow-cycling subpopulations of human cells originate from activation of stress-response pathways. PLoS Biol. 17, e3000178 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sun, X. et al. Modulating environmental signals to reveal mechanisms and vulnerabilities of cancer persisters. Sci. Adv. 8, eabi7711 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Obenauf, A. C. et al. Therapy-induced tumour secretomes promote resistance and tumour progression. Nature 520, 368–372 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schmitt, M. et al. Colon tumour cell death causes mTOR dependence by paracrine P2X4 stimulation. Nature 612, 347–353 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pu, Y. et al. Drug-tolerant persister cells in cancer: the cutting edges and future directions. Nat. Rev. Clin. Oncol. 20, 799–813 (2023).

  24. Shen, S., Vagner, S. & Robert, C. Persistent cancer cells: the deadly survivors. Cell 183, 860–874 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Cabanos, H. F. & Hata, A. N. Emerging insights into targeted therapy-tolerant persister cells in cancer. Cancers 13, 2666 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Conti, G. D., Dias, M. H. & Bernards, R. Fighting drug resistance through the targeting of drug-tolerant persister cells. Cancers 13, 1118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mikubo, M., Inoue, Y., Liu, G. & Tsao, M.-S. Mechanism of drug tolerant persister cancer cells: the landscape and clinical implication for therapy. J. Thorac. Oncol. 16, 1798–1809 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Rambow, F. et al. Toward minimal residual disease-directed therapy in melanoma. Cell 174, 843–855 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Zhou, X. et al. Persister cell phenotypes contribute to poor patient outcomes after neoadjuvant chemotherapy in PDAC. Nat. Cancer 4, 1362–1381 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Isozaki, H. et al. Therapy-induced APOBEC3A drives evolution of persistent cancer cells. Nature 620, 393–401 (2023).

  31. Russo, M. et al. Adaptive mutability of colorectal cancers in response to targeted therapies. Science 366, 1473–1480 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Goyal, Y. et al. Diverse clonal fates emerge upon drug treatment of homogeneous cancer cells. Nature 620, 651–659 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Guler, G. D. et al. Repression of stress-induced LINE-1 expression protects cancer cell subpopulations from lethal drug exposure. Cancer Cell 32, 221–237 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Hangauer, M. J. et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 551, 247–250 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dhimolea, E. et al. An embryonic diapause-like adaptation with suppressed Myc activity enables tumor treatment persistence. Cancer Cell 39, 240–256 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rehman, S. K. et al. Colorectal cancer cells enter a diapause-like DTP state to survive chemotherapy. Cell 184, 226–242 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Hu, H. et al. Three subtypes of lung cancer fibroblasts define distinct therapeutic paradigms. Cancer Cell 39, 1531–1547 (2021).

  38. Kleczko, E. K. et al. Durable responses to alectinib in murine models of EML4-ALK lung cancer requires adaptive immunity. NPJ Precis. Oncol. 7, 15 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sehgal, K. et al. Dynamic single-cell RNA sequencing identifies immunotherapy persister cells following PD-1 blockade. J. Clin. Invest. 131, e135038 (2020).

    Article  Google Scholar 

  40. Biehs, B. et al. A cell identity switch allows residual BCC to survive Hedgehog pathway inhibition. Nature 562, 429–433 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Yu, M. et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339, 580–584 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jordan, N. V. et al. HER2 expression identifies dynamic functional states within circulating breast cancer cells. Nature 537, 102–106 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tian, J. et al. Combined PD-1, BRAF and MEK inhibition in BRAFV600E colorectal cancer: a phase 2 trial. Nat. Med. 29, 458–466 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bao, F. et al. Integrative spatial analysis of cell morphologies and transcriptional states with MUSE. Nat. Biotechnol. 40, 1200–1209 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Pappas, L., Adalsteinsson, V. A. & Parikh, A. R. The emerging promise of liquid biopsies in solid tumors. Nat. Cancer 3, 1420–1422 (2022).

    Article  PubMed  Google Scholar 

  46. Gray, J. E. et al. Early clearance of plasma epidermal growth factor receptor mutations as a predictor of outcome on osimertinib in advanced non-small cell lung cancer; exploratory analysis from AURA3 and FLAURA. Clin. Cancer Res. 29, 3340–3351 (2023).

    Article  CAS  PubMed  Google Scholar 

  47. Paweletz, C. P. et al. Early changes in circulating cell-free KRAS G12C predict response to adagrasib in KRAS mutant non-small cell lung cancer patients. Clin. Cancer Res. 29, 3074–3080 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tolmeijer, S. H. et al. Early on-treatment changes in circulating tumor DNA fraction and response to enzalutamide or abiraterone in metastatic castration-resistant prostate cancer. Clin. Cancer Res. 29, 2835–2844 (2023).

    Article  CAS  PubMed  Google Scholar 

  49. Oxnard, G. R. et al. Association between plasma genotyping and outcomes of treatment with osimertinib (AZD9291) in advanced non-small-cell lung cancer. J. Clin. Oncol. 34, 3375–3382 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Larson, M. H. et al. A comprehensive characterization of the cell-free transcriptome reveals tissue- and subtype-specific biomarkers for cancer detection. Nat. Commun. 12, 2357 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Roskams-Hieter, B. et al. Plasma cell-free RNA profiling distinguishes cancers from pre-malignant conditions in solid and hematologic malignancies. NPJ Precis. Oncol. 6, 28 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Esfahani, M. S. et al. Inferring gene expression from cell-free DNA fragmentation profiles. Nat. Biotechnol. 40, 585–597 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shen, S. Y. et al. Sensitive tumour detection and classification using plasma cell-free DNA methylomes. Nature 563, 579–583 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Berchuck, J. E. et al. Detecting neuroendocrine prostate cancer through tissue-informed cell-free DNA methylation analysis. Clin. Cancer Res. 28, 928–938 (2021).

    Article  Google Scholar 

  55. Sadeh, R. et al. ChIP–seq of plasma cell-free nucleosomes identifies gene expression programs of the cells of origin. Nat. Biotechnol. 39, 586–598 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fedyuk, V. et al. Multiplexed, single-molecule, epigenetic analysis of plasma-isolated nucleosomes for cancer diagnostics. Nat. Biotechnol. 41, 212–221 (2023).

    Article  CAS  PubMed  Google Scholar 

  57. Baca, S. C. et al. Liquid biopsy epigenomic profiling for cancer subtyping. Nat. Med. 29, 2737–2741 (2023).

  58. Brito-Rocha, T., Constâncio, V., Henrique, R. & Jerónimo, C. Shifting the cancer screening paradigm: the rising potential of blood-based multi-cancer early detection tests. Cells 12, 935 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Vandekerckhove, O. et al. Liquid biopsy in early-stage lung cancer: current and future clinical applications. Cancers 15, 2702 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gomez, D. R. et al. Local consolidative therapy versus maintenance therapy or observation for patients with oligometastatic non-small-cell lung cancer without progression after first-line systemic therapy: a multicentre, randomised, controlled, phase 2 study. Lancet Oncol. 17, 1672–1682 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gomez, D. R. et al. Local consolidative therapy vs. maintenance therapy or observation for patients with oligometastatic non-small-cell lung cancer: long-term results of a multi-institutional, phase II, randomized study. J. Clin. Oncol. 37, 1558–1565 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Solomon, B. J. et al. Efficacy and safety of first-line lorlatinib versus crizotinib in patients with advanced, ALK-positive non-small-cell lung cancer: updated analysis of data from the phase 3, randomised, open-label CROWN study. Lancet Respir. Med. 11, 354–366 (2023).

    Article  CAS  PubMed  Google Scholar 

  63. Gouda, M. A., Buschhorn, L., Schneeweiss, A., Wahida, A. & Subbiah, V. N-of-1 trials in cancer drug development. Cancer Discov. 13, 1301–1309 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Drilon, A. et al. SHP2 inhibition sensitizes diverse oncogene-addicted solid tumors to re-treatment with targeted therapy. Cancer Discov. 13, 1789–1801 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.N.H. was supported by US National Institutes of Health (NIH) R01 CA249291, P50 CA265826, the Break Through Cancer foundation and the Ludwig Center at Harvard. X.S. was supported by the QB3 Postdoc Entrepreneurship Fellowship. S.J.A. was supported by the Mark Foundation for Cancer Research ASPIRE Award. L.F.W. was supported by NIH R01 CA184984.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lani F. Wu, Steven J. Altschuler or Aaron N. Hata.

Ethics declarations

Competing interests

A.N.H. has received grants and/or research support from Amgen, BridgeBio, Bristol Myers Squibb, C4 Therapeutics, Eli Lilly, Novartis, Nuvalent, Pfizer and Scorpion Therapeutics and has served as a compensated consultant for Amgen, Engine Biosciences, Nuvalent, Oncovalent, Pfizer, TigaTx and Tolremo Therapeutics. X.S., L.F.W. and S.J.A. declare no competing interests.

Peer review information

Nature Cancer thanks Peter Bailey and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Wu, L.F., Altschuler, S.J. et al. Targeting therapy-persistent residual disease. Nat Cancer 5, 1298–1304 (2024). https://doi.org/10.1038/s43018-024-00819-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43018-024-00819-9

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer